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A B S T R A C T   

This paper presents a new discrete parametrization method for simultaneous topology and material optimization 
of composite laminate structures, referred to as Hyperbolic Function Parametrization (HFP). The novelty of HFP 
is the way the candidate materials are parametrized in the optimization problem. In HFP, a filtering technique 
based on hyperbolic functions is used, such that only one design variable is used for any given number of material 
candidates. Compared to state-of-the-art methods such Discrete Material and Topology Optimization (DMTO) 
and Shape Function with Penalization (SFP), HFP has much fewer optimization variables and constraints but 
introduces additional non-linearity in the optimization problems. A comparative analysis of HFP, DMTO and SFP 
are performed based on the problem of maximizing the stiffness of composite plates under a total volume 
constraint and multiple manufacturing constraints using various loads, boundary conditions and input param-
eters. The comparison shows that all three methods are highly sensitive to the choice of input parameters for the 
optimization problem, although the performance of HFP is overall more consistent. HFP method performs 
similarly to DMTO and SFP in terms of the designs obtained and computational cost. However, HFP obtains 
similar or better objective function values compared to the DMTO and SFP methods.   

1. Introduction 

Composite materials are known to have superior strength-to-weight 
and stiffness-to-weight properties compared to e.g. metallic materials. 
These properties, along with the inherent ability to enable tailoring of 
mechanical behavior of structures, have been the primary motivation for 
choosing composites in manufacturing of products and structural com-
ponents. This has historically been driven by the needs of the aerospace 
industry. The past two decades have seen a rapid development of new 
and innovative composite manufacturing technologies and an increased 
availability of diverse and cost-effective composite materials. This has 
resulted in a substantial growth in application of composites within 
industrial sectors such as aerospace, energy generation, infrastructure, 
heavy industry and automotive. 

The mechanical performance of composites structures is governed by 
a large number of design and manufacturing parameters due to the 
material characteristics of composites, and complexity of the 
manufacturing processes. Structural optimization is often utilized in an 

attempt to handle all parameters, requirements and limitations in the 
design of composite structures. This requires an efficient parametriza-
tion scheme of the relevant variables to generate optimal and manu-
facturable designs. This has resulted in a significant body of work 
concerning composite parametrization techniques performed within the 
field of structural optimization over the years. 

Composite parametrization techniques can be roughly sorted into 
three categories: Continuous Parametrization (CP), Indirect Parametri-
zation (IP) and Discrete Parametrization (DP). 

In CP, the design variables (fiber angles, ply thickness, material 
distribution, etc.), are treated directly as continuous variables in the 
optimization problem. Continuous fiber angle optimization (CFAO) uses 
fiber angles θ as design variables in the problem formulation [1,2]. 
CFAO leads to a non-convex design space with multiple stationary 
points. Solutions generated with CFAO will be highly dependent on the 
initial configuration of the design variables and will likely be sub- 
optimal both from an optimization aspect, with a high probability of 
obtaining a local minima, and from an engineering aspect as the 
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optimized designs may be difficult to realize in manufacturing. Other 
examples of CP methods are the multiple phase optimization approach 
by Zhou et al. [3] and homogenized material optimization proposed by 
Hozić et al. [4]. In both cases the initial optimization applies a smearing/ 
homogenization of the material properties for a fixed set of candidate 
materials across the design domain, with the aim of finding the optimal 
material distribution. Due to the effects of homogenization these 
methods are not well suited to handle out-of-plane loads and in general 
overestimate the mechanical properties of the designs. In order to 
generate manufacturable composite design, one or more additional 
optimization steps are also required for both methods. 

IP uses lamination parameters, first introduced by Tsai et al. [5,6], as 
intermediate design variables in the optimization problem. The stiffness 
of a composite laminate is fully parametrized using a set of, at most, 12 
linearly interdependent lamination parameters. Grenestedt and Gud-
mundson [7] showed that the feasible regions for the lamination pa-
rameters are convex, leading to a convex design space of the 
optimization problem, thus making it possible to obtain a globally 
optimal solution. Later, Bloomfield et al. [8] developed a method which, 
for a predefined set of fiber angles, generates explicit closed-form re-
lations defining the feasible regions for the full set of 12 lamination 
parameters. The main disadvantages with IP is that they are in general 
limited to consider one candidate material in the optimization problem, 
and don’t generate a direct description of the laminate data for the 
design. This makes it difficult to include e.g. composite failure criteria 
and design and manufacturing constraints, and as a result, IP requires 
additional optimization steps to generate manufacturable designs. 
Despite the shortcomings, IP has successfully been used in design 
problem considering various engineering challenges. Some recent works 
include Wu et al. [9], who studied the post-buckling behavior of com-
posite plates subjected to axial compression loads where lamination 
parameters were used to generate the optimal design of the plate, and 
Stanford et al. [10] who implemented IP for mass minimization of a 
wing structure under aeroelastic constraints. 

Discrete parametrization has gained most interest within structural 
optimization for parametrization of composites. With DP, many of the 
limitations with CP and IP techniques are overcome. In DP, the design 
variables are treated as discrete variables which gives a good repre-
sentation of the true nature of composites. This enables the use of a wide 
range of design variables – including fiber angles, ply density, ply 
thickness, and candidate materials – in the optimization problem, and 
makes it straightforward to include failure criteria and design and 
manufacturing constraints, as well as extending the optimization prob-
lems to multi-material formulations. However, the main disadvantage of 
DP techniques is that they result in large-scale integer optimization 
problems. A common approach to solve such problems is to use meta-
heuristic optimization algorithms, some recent examples include Deveci 
et al. [11], Reguera and Cortínez [12], Sreehari and Maiti [13]. 
Although metaheuristic algorithms are frequently used for stacking 
sequence optimization of laminates in a variety of engineering prob-
lems, they tend to be computationally expensive even for moderate sized 

problems and are not well suited in applications involving topology 
optimization as elaborated by Sigmund [14]. 

A better approach, which enables the use of efficient gradient-based 
optimization algorithms, to avoid large-scale integer optimization 
problems is to relax the discreteness requirement of DP and allow a 
continuous variation but penalize non-discrete (intermediate) values. 
The first example of such an approach was the Discrete Material Opti-
mization (DMO) method introduced by Stegmann and Lund [15,16] and 
further improved by Hvejsel and Lund [17,18]. 

DMO is based on expressing the constitutive matrix of a ply as a 
weighted sum of candidate materials using a multi-material interpola-
tion function for the constitutive properties, with penalization applied to 
design variables associated to each candidate. Bruyneel [19] presented 
the Shape Function with Penalization (SFP) method as an alternative to 
DMO. SFP uses an interpolation scheme based on shape functions of a 
four-node finite element, such that a fixed set of four candidates only 
require two design variables; in contrast to DMO which requires one 
design variable per candidate. The cost for reducing the number of 
variables is additional non-linearity in the optimization problem. A 
generalized version of SFP, labelled Bi-valued Coding Parametrization 
(BCP), was then introduced by Gao et al. [20]. This method has no upper 
limit on the number of candidates that can be parametrized in the 
optimization problem. Later, Sørensen et al. [21] presented an extension 
to the DMO method called Discrete Material and Thickness Optimization 
(DMTO) including also a ply density variable in the interpolation 
function of DMO, thus allowing for simultaneous material and topology 
optimization. New versions of DMTO have been presented by Sørensen 
and Lund [22] and most recently Sjølund et al. [23] in which the authors 
present further improvements to how the ply density variables are 
parametrized in DMTO. Allaire and Delgado [24] presented a level-set 
method for shape and stacking sequence optimization of composite 
laminates. This method can be seen as version of the DMTO, but the 
optimization of the shape (topology) and the stacking sequence (mate-
rial choice) of the plies is treated separately using a staggered solution 
approach. Kiyono et al. [25] presented a method named Normal Dis-
tribution Function Optimization (NDFO). This approach uses a normal 
distribution function to parametrize a discrete set of candidates using 
only one design variable when considering continuously varying fiber 
path problems. 

For a more in-depth overview of the work within this area of 
research, the authors recommend review articles by Ghiasi et al. [26,27] 
and more recent articles by Xu et al. [28], Albazzan et al. [29] and 
Nikbakt et al. [30]. 

In the present work we introduce a new DP method, referred to as 
Hyperbolic Function Parametrization (HFP). HFP is somewhat related to 
NDFO by Kiyono et al. [25] in the sense that the number of design 
variables necessary to parametrize any given number of candidate ma-
terials is reduced to only one. A detailed description of the DMTO, SFP 
and HFP methods below is followed by a numerical comparison of these 
three parametrization methods. The comparison is based on stiffness 
maximization under a total volume constraint and composite 

Fig. 1. The interpolation function in (1) illustrated for a laminate consisting of nl = 5 plies and nc = 4 cand.idate materials.  
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manufacturing constraints of a multi-layered composite laminate plate. 
Such a comparison has to the best of the authors knowledge not yet been 
done in the literature. 

2. Discrete parametrization of composites 

Consider a composite laminate plate with a design domain Ω made 
up of nl plies and divided into ne finite elements (FEs). The domain Ωel is 
the volume occupied by the l:th layer in the e:th element. The thickness 
distribution of the plate is sought using a density-based approach with 
an element-wise constant discretization described by a variable ρ ∈ Rn

e. 
The material in each layer of each element is assumed to be linearly 
elastic and chosen from a discrete set with nc candidates. For example, 
such a set can be fiber angles {0◦, 45◦, − 45◦,90◦} of a unidirectional 
(UD) composite material or any other given combination of candidate 
materials, i.e. metals, various types of composite materials, etc., Fig. 1 
illustrates the general idea of parametrization of the candidate materials 
through the interpolation function (1). The material candidates are 
given by a variable x. The discretization of the candidate materials is 
typically taken to be patch-wise constant, with each element in x giving 
the candidates of a given layer in a number of elements aggregated 
together to form a patch, a description of the implemented patch 
formulation is given in Section 3.1. 

The parametrization of the laminate is performed on the composite 
ply level, for which the constitutive matrix of ply l in element e is given 
by 

Eel = Eel(ρ, x) = E0 + υel(ρ)
∑nc

c=1
ωelc(x)(Ec − E0), ∀(e, l), (1)  

where matrix Ec represents the constitutive properties of a candidate 
material. Matrix E0 ≈ 0 is introduced to ensure that Eel is positive def-
inite for every admissible design (strictly speaking it suffices to have a 
non-zero E0 in just one of the layers). Note that both Ec and E0 are 
symmetric and positive definite matrices. The functions υl and ωelc in (1) 
are interpolation functions for the ply densities and candidate materials, 
respectively. 

The interpolation function (1) is a generalized version of the function 
introduced by Sørensen and Lund [31] for the DMTO method. 
Depending on how ωelc is defined in (1), we obtain the DMTO, SFP or 
HFP method described in Sections 2.2.1, 2.2.2 and 2.2.3, respectively. 
Similarly, depending on how υel is defined in (1) different ply density 
penalization functions are obtained. In this work we have chosen to 
implement the same penalization function υel(ρ), which is described in 
Section 2.1, for all three parametrization methods. 

2.1. Ply density interpolation 

In the present work we have implemented the version of the ply 
density penalization function proposed by Sørensen and Lund [22], so 
υel(ρ) in (1) is expressed as 

υel(ρ) =
ρ̃el(ρe(ρ))

1 + q(1 − ρ̃el(ρe(ρ)))
, ∀(e, l) (2)  

using the Rational Approximation of Material Properties (RAMP) 
penalization scheme [32], in which the parameter q > 1 is a penaliza-
tion factor.1 The variable ̃ρel is referred to as the physical ply density and 
is obtained by applying two filters to the non-physical (optimization) 
design variable ρe: first an in-plane filter applied on ρe to generate a set 
of intermediate design variables ρe; then an a out-of-plane filter applied 
to ρe to generate ρ̃el. These filters are described below. 

2.1.1. In-plane density filter 
The in-plane density filter gives a density ρ = ρ(ρ) and is taken as a 

standard linear density filter, see [34,35], defined by 

ρe(ρ) =
∑

j∈Ne

Wejρj, ∀e (3)  

where 

Wej =

⎧
⎪⎪⎨

⎪⎪⎩

R − d(e, j)
∑

i∈Ne

R − d(e, i)
, j ∈ Ne

0, j ∕∈ Ne  

in which R is the radius of the filter, d(e, i) the Euclidean distance be-
tween the centroids of element e and i, and Ne = {j |d(e, j)⩽R} is the 
filtering neighbourhood of element e. 

The use of the in-plane density filter herein serves a dual purpose. 
Firstly it ensures FE mesh-independent designs. Secondly it is used to 
control the thickness variation of the design, a frequent design 
requirement imposed on composite designs. The thickness variation, 
which implicitly states the ply drop-off rate in a composite design, is 
adjusted using the filter radius R. Increasing the value of R will reduce 
abrupt changes in thickness variations across the design domain. How-
ever, the in-plane density filter only provides an upper limit on the 
thickness variation, and it is not possible to use the in-plane density filter 
to specify and maintain a fixed rate of thickness variation. This moti-
vates the addition of an explicit constraint on the thickness variation in 
the design-problem (21) defined below. 

2.1.2. Out-of-plane density filter 
The variables ρ and ρ represent the total material distribution within 

the design domain and do not contain any composite ply data. To 
generate discrete ply data from the material distribution given by ρ, 
Sørensen and Lund [22] proposed the application of a filtering method 
previously introduced by Gersborg and Andreasen [36] for filter-based 
casting constraints in general topology optimization. 

In the present work, Thickness filter Nr.2 (TF2) in [22] is imple-
mented as the out-of-plane density filter. In TF2, hyperbolic functions 
are used as filtering operators on the intermediate variables ρ. The main 
purpose of the filter is to determine if a physical ply density variable, ̃ρel, 
should take on the value 0 or 1 based on the value of ρe. The out-of-plane 
density filter is defined as 

ρ̃el = Hρ(ρe; sl, β) = 1 −
tanh(βρe) + tanh(β(sl − ρe))

tanh(βρe) + tanh(β(1 − ρe))
, ∀(e, l). (4) 

0 1
0

0.125

0.25

0.375

0.5

0.625

0.75

0.875

1

Fig. 2. Out-of-plane density filter Hρ applied at s3 = 0.625 for β = 20 and 160.  

1 Whether or not q > 1 gives the desired penalization hinges of course on the 
optimization problem formulation, see [33]. 
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Here β is a parameter that controls the filter width, and 

sl =
l − 1

nl
+

1
2nl

, l = 1,…, nl, (5)  

are coordinate points in a normalized through-the-thickness coordinate 
system. Definition (5) assumes that all plies have the same thickness, so 
each coordinate point sl defines the center position of a ply l in the 
laminate. The coordinate points sl are used in Hρ as solid/void boundary 
threshold values for the ply density variables such that 

ρ̃el ≈

{
1 ifρe⩾sl
0 ifρe < sl

(6) 

Fig. 2 illustrates Hρ applied at l = 3 for an arbitrary laminate con-
sisting of nl = 4 plies. The vertical axis represents the values of the 
continuous intermediate variable ρe, the horizontal axis represents the 
discrete ply density variables ρ̃el, while the green diamond markers are 
the solid/void threshold values sl for each ply given by (5). The dashed 
blue curve represents the filtering response of ̃ρel for a low value of β =

20, which provide a wider filter width, resulting in a higher measure of 
non-discreteness of the ply density variables ρ̃el. Higher values of β =

160, represented by the solid red curve, provide a narrow filter width 
thus giving a more discrete filtering response of ρ̃el as Hρ in (4) behaves 
more as the unit-step function in (6). Overall, this shows that β has a 
large impact on the non-discreteness level of the ply density variables ̃ρel 
where higher values of β are desirable as Hρ in (4) give ̃ρel closer to either 
0 or 1. 

Unfortunately, initializing β to a high value leads to numerical dif-
ficulties such a convergence to poor local minima in the optimization 
process. Therefore a continuation strategy in which β is gradually 
increased during the optimization process is introduced. The imple-
mentation of the continuation strategy and penalization on the physical 
ply density variables ρ̃el is discussed is Section 3.4. 

2.2. Candidate material interpolation 

2.2.1. DMTO – Discrete Material and Topology Optimization 
Multiple versions of DMTO have been proposed, the main difference 

being the definition of the ply density penalization function υel in (1). 
However common for all DMTO versions, as well as the preceding DMO 
method, is the definition of the candidate material penalization function 
ωelc(x) in (1), which is expressed using the RAMP penalization scheme as 

welc(x) =
xelc

1 + p(1 − xelc)
, ∀(e, l, c). (7)  

Here xelc are the candidate material design variables, each of which is 
associated to one candidate in the set {1, …, nc}. As the constitutive 
function (1) shows, the basic idea of DMTO is to express the constitutive 
properties for a given ply in a laminate as a weighted sum of the 
constitutive properties from the set of candidates with the penalization 
functions (7) used as weights. To ensure manufacturable designs with 
DMTO, the design variables should satisfy 

xelc ∈ [0, 1], ∀(e, l, c) (8a)  

ρe ∈ [0, 1], ∀ e (8b)  

∑nc

c=1
xelc = 1, ∀(e, l). (8c)  

Condition (8a) and (8b) require all design variables in the problem 
formulation to take on values between 0 and 1. Condition (8c) states that 
only one candidate material is allowed per ply and is included in DMTO- 
based problem formulations as explicit linear constraints to reduce the 
risk of obtaining non-manufacturable mixed-material designs. 

2.2.2. SFP – Shape Function Parametrization 
Bruyneel [19] proposed SFP as an alternative method to DMTO/ 

DMO. SFP uses shape functions of a (four-noded) Lagrange finite 
element to parametrize the candidate material penalization function 
ωelc. The SFP version of the interpolation function (1) is 

Eel(ρ̃,R, S) = E0 + υel(ρ)
∑nc=4

c=1
ωelc(R,S)(Ec − E0), ∀(e, l), (9)  

where the candidate material interpolation functions is given as2 

ωelc(R,S) =
wc(Rel, Sel)

1 + p(1 − wc(Rel, Sel))
, ∀(e, l, c), (10)  

where wc are shape functions applied as weights such that each vertex of 
a reference element represents one candidate material, as illustrated in 
Fig. 3. 

The four shape functions wc in (10) are defined as 

(a) Reference FE-element (b) SFP parametrization

Fig. 3. The SFP parametrization using mapping of the Quad4 reference element.  

2 Bruyneel [19] proposed that a SIMP penalization scheme should be applied 
to parametrize the ply density and candidate material penalization functions in 
SFP; however for the sake of comparison with DMTO and HFP, we have here 
chosen to apply the RAMP scheme. 
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w1 =
1
4
(1 − Rel)(1 − Sel), w2 =

1
4
(1 + Rel)(1 − Sel)

w3 =
1
4
(1 + Rel)(1 + Sel), w4 =

1
4
(1 − Rel)(1 + Sel)

, ∀(e, l), (11)  

where Rel ∈ [ − 1,1] and Sel ∈ [ − 1, 1] are natural coordinates of the 
reference element that are used as candidate material design variables in 
SFP. 

As formulated in [19], a disadvantage of SFP is its limitation to a set 
of four candidate materials, i.e. nc = 4. However, for nc = 4, SFP only 
requires two candidate material design variables per ply in (9) to 
parametrize all four candidate materials. In comparison, DMTO requires 
one design variable per candidate material, i.e. twice the number of 
design variables. In addition, the use of shape functions in the formu-
lation of (10) means that, implicitly, the conditions set on ωelc in (8c) are 
satisfied for SFP. The constraint (8c) needs therefore not to be enforced 
explicitly in the problem formulation. Compared to DMTO, design 
problems based on SFP therefore require fewer design variables and 
constraints. 

2.2.3. HFP – Hyperbolic Function Parametrization 
In HFP a filtering technique is applied to ωelc in (1) such that, on a ply 

level, any given number of candidate materials nc are parametrized with 
only one candidate material design variable in the optimization prob-
lem. The HFP version of the interpolation function (1) is 

Eel(ρ̃, x̃) = E0 + υel(ρ̃)
∑nc

c=1
ωelc(x̃)(Ec − E0), ∀(e, l), (12)  

where ωelc(x̃) = ωelc(x̃(x(x) ) ) is the HFP version of the candidate ma-
terial penalization function. Here x̃ is the physical candidate material 
design variables used to evaluate Eel while x and x are the intermediate 
and numerical variable counterparts of x̃. 

The candidate material penalization function used in (12) is 
expressed using the RAMP penalization scheme as 

ωelc(x̃) =
x̃elc(xelc(xel))

1 + p(1 − x̃elc(xelc(xel)))
, ∀(e, l, c). (13) 

Here the physical variables x̃elc are generated by first applying a 
candidate material filter to the numerical variable xel to generate a set of 
filtered design variables xelc, which are then transformed into x̃elc by 
implementing a normalization scheme on xelc. 

2.2.3.1. Candidate material filter. The candidate material filter is based 
on the same principle as the out-of-plane density filter in Section 2.1.2, 
in that, hyperbolic functions are used as filtering operators on the nu-
merical candidate material variables xel. The filter is implemented on a 
ply level to select one candidate material from a predefined set of can-
didates nc. The candidate material filter is defined as 

xelc = Hx(xel; sc, α) = sech(α(sc − xel)), ∀(e, l, c), (14)  

where xelc are the layerwise filtered candidate material design variables, 
α controls the filter width, and each point 

sc =
c − 1

nc
+

1
2nc

, c = 1,…, nc, (15)  

corresponds to a candidate material. For large values of α,Hx in (14) 
approximates a Dirac delta function such that layer-wise filtered 
candidate material design variables are generated according to 

xelc ≈

{
1, xel = sc
0, xel ∕= sc

, ∀(e, l, c). (16) 

Fig. 4 illustrates Hx in (14) applied to a composite ply with nc = 4 
candidate materials. The vertical axis represents layerwise filtered 
physical variables xelc, the horizontal axis represents the layerwise nu-
merical design variables xel, and the green markers along the horizontal 
axis represent the points sc associated to the set of candidates {1,…, nc}. 
The two curves in Fig. 4 shows xelc for two different values of α. Lower 
values of α, as shown by the dashed blue curve for α = 20, provide a 
wide filter around each point sc and can thus result in a higher degree of 
non-discreteness of xelc. In addition, small α-values will induce filtering 
interference around the points sc. This can be seen in Fig. 4 for α = 20 
where e.g. xel2 = Hx(xel = s1, s2, 20) ∕= 0, leading to a non- 
manufacturable mixed material design, i.e. more than one candidate is 
selected. Higher values of α, represented by the solid red curve for α =

160, generate a narrow filter around the points sc thus providing a more 
discrete filtering of xel with little filter interference. The main concern 
with high values of α, as indicated by the red curve in Fig. 4, is that large 
sections of the feasible domain for xel do not generate any filtering 
response by Hx, i.e. xelc = 0 for all c, which can again lead to a non- 
feasible filter result as none of the candidate are selected. This shows 
that α has a significant impact on both the non-discreteness of the 
filtered variables xelc and the numerical conditioning of Hx in general. 

To avoid numerical difficulties for large α-values in the candidate 
material filter, a continuation strategy is applied to gradually increase α. 

0 0.0625 0.125 0.1875 0.25 0.3125 0.375 0.4375 0.5 0.5625 0.625 0.6875 0.75 0.8125 0.875 0.9375 1
0

1

Fig. 4. Candidate material filter Hx applied for nc = 4 candidate materials and α = 20, 160, the green markers represent points sc associated to the set of candi-
dates {1,…, nc}. 
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In addition, a normalization scheme, as proposed by Stegmann and Lund 
[15], is applied to the filtered variables xelc, giving the physical 
(normalized) variables 

x̃elc =
xelc

∑nc
j=1xelj

, ∀(e, l, c). (17)  

Introducing the normalization scheme in (17) reduces the effect of 
filtering interference for low values of α and the overall non-discreteness 
level of the physical design variables. 

The implementation of the continuation strategy and penalization 
for the physical candidate material variables x̃elc is discussed in Section 
3.4. 

3. Optimization Problem 

In the present work the HFP method in Section 2.2.3 is demonstrated 
on a minimum compliance problem with a number of design and com-
posite manufacturing constraints. The same problem formulation has 
also been solved using the DMTO and SFP methods such that a com-
parison between results of the three methods can be performed. 

The compliance is given by 

C(ρ̃, x̃) = FT u(ρ̃, x̃) = u(ρ̃, x̃)T K(ρ̃, x̃)u(ρ̃, x̃), (18)  

where the global displacement vector u(ρ̃, x̃) is obtained from the linear 
elastic finite element state equation 

K(ρ̃, x̃)u = F, (19)  

in which F is the global load vector. For a design domain divided into np 

patches (see Section 3.1), the global stiffness matrix is given by 

K(ρ̃, x̃) =
∑np

p=1
A

e∈P p
Ke(ρ̃, x̃) =

∑np

p=1
A

e∈P p

∑nl

l=1

∫

Ωel

BT
e Eel(ρ̃, x̃)BedV, (20)  

where A represents the assembly operator for positioning of local 
element stiffness matrices Ke into the global matrix, Be is the 
strain–displacement matrix and Eel(ρ̃, x̃) represents the effective 
constitutive matrix of a ply l in finite element e given by (12) for HFP, 
and (1) and (9) for DMTO and SFP, respectively. 

The minimum compliance problem can now be stated as 

min
ρ,x

C(ρ̃, x̃)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

DC1 : hplynl

∑ne

e=1
ρeae⩽V

MC1 : − S⩽ρenl − ρjnl⩽S, ∀e, j ∈ Me

MC2 :
∑t+nCL

l=t
x̃plc⩽nCL, ∀(p, t, c)

ρe ∈ [0, 1], ∀ e
xpl ∈ [0, 1], ∀(p, l).

(21)  

Design constraint 1 (DC1), in which ae and hply represent the elemental 
area and ply thickness, respectively, is a limit on the total amount of 

material in the design domain. Included in the problem is also two 
composite manufacturing constraints (MCs). MC1 is an explicit 
constraint on the thickness variation of the laminate presented by 
Sørensen and Lund [31] which is introduced to gain explicit control over 
this variation not provided by the in-plane density-filter (c.f. Section 
2.1.1). The constraint is here formulated for a uniform mesh with equal- 
sized square elements and the set Me gives the (at most) four immediate 
neighbouring of element e. To the best of the authors knowledge, this 
constraint has not been formulated in a mesh-independent way; doing so 
is however beyond the scope of the present article. MC2 limits the 
number of consecutive plies (nCL) in the laminate that can have the same 
candidate material. 

All constraints in (21) are used for HFP, SFP and DMTO but their 
functional form differ. In addition, DMTO also requires condition (8c) to 
be included in the problem formulation as explicit constraints. For all 
three methods, DC1 and MC1 are linear constraints, using only the in-
termediate density variable ρe, while for HFP and SFP, MC2 is a non- 
linear constraint due to the candidate material parametrization func-
tions ωelc. 

More details on the design and manufacturing constraints are given 
in [31,22]. 

3.1. Patches 

Sørensen et al. [21] proposed a division of the design domain into so- 
called patches such that all elements in a patch retain the same prop-
erties. Patches can be defined independently on both the density vari-
ables ρ and candidate material variables x in (21) thus limiting the 
complexity of the topology and/or candidate material distribution 
within the design domain; see Fig. 5. 

Applying patches will significantly affect the numerical performance 
and solutions of the optimization problem, therefore it is important they 
should reflect the limitations in composite manufacturing such that the 
optimal results can be realized. 

In the present work, patches are implemented for the candidate 
material design variables x in (21). The design domain Ω is divided into 
a number of non-overlapping patches np⩽ne such that 

Ω =
⋃

p,l

⋃

e∈P p

Ωel, (22)  

where Ωel is the design domain of ply l in element e, and P p contains a 
unique set of element indices that belong to patches p = 1,…,np. With 
the use of patches according to (22), candidate material variables on 
element level xel will share the candidate material design variables on 
patch level xpl in (21) in the sense that xel = xpl for all e ∈ P p and all l. 

3.2. Design Sensitivity 

The optimization problem (21) is solved using gradient-based opti-
mization solvers that require design sensitivity data for both the objec-
tive function and constraints. The sensitivity data is obtained 
analytically by differentiation of the objective and constraint functions 
in (21) with respect to the density and candidate material design 

Patch 2

Patch 1 Element 2
Element 4

Element 1

Element 3

Fig. 5. A design domain with ne = 4 elements arranged into np = 2 patches.  
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variables, respectively. 
The derivative of the objective function (18) with respect to the 

density design variable is given, using the state Eq. (19), as 

∂C(ρ̃, x̃)
∂ρe

= − u(ρ̃, x̃)T ∂K(ρ̃, x̃)
∂ρe

u(ρ̃, x̃), ∀e (23)  

where, using the chain rule, 

∂K(ρ̃, x̃)
∂ρe

=
∑

m∈Ne

∑nl

l=1

∂Km(ρ̃, x̃)
∂ρ̃ml

∂ρ̃ml

∂ρm

∂ρm

∂ρj
. (24)  

Using (3), (4) and (20), the partial derivatives in (24) are expressed as 

∂Km(ρ̃, x̃)
∂ρ̃ml

=

∫

Ωel

BT
m

∂Eml(ρ̃, x̃)
∂ρ̃ml

BmdV (25a)  

∂ρ̃ml

∂ρm
= −

[(
1 − tanh(βρm)

2 )
−
(
1 − tanh(β(sl − ρm) )

2 ) ]β
tanh(βρm) + tanh(β(1 − ρm) )

+[tanh(βρm) + tanh(β(sl − ρm) ) ]
[(

1 − tanh(βρm)
2 )

−
(
1 − tanh(β(1 − ρm) )

2 ) ]β
[tanh(βρm) + tanh(β(1 − ρm) ) ]

2

(25b)  

∂ρm

∂ρj
= Wmj (25c)  

In (25a) the partial derivative of the interpolation function Eml is 
expressed using (12) and (2) as 

∂Eml(ρ̃, x̃)
∂ρ̃ml

=
∂υml(ρ̃)

∂ρ̃ml

∑nc

c=1
ωmlc(x̃)(Ec − E0) (26a)  

∂υml(ρ̃)
∂ρ̃ml

=
1 + q

(1 + q(1 − ρ̃ml) )
2 (26b)  

In similar fashion the derivative of the objective function (18) with 
respect to the candidate material design variable is given as 

∂C(ρ̃, x̃)
∂xpl

= − u(ρ̃, x̃)T ∂K(ρ̃, x̃)
∂xpl

u(ρ̃, x̃), ∀(p, l) (27)  

where 

∂K(ρ̃, x̃)
∂xpl

= A
e∈P p

∑nc

c=1

∂Ke(ρ̃, x̃)
∂x̃elc

∂x̃elc

∂xel
(28)  

Using (14), (17) and (20) the partial derivatives in (28) become 

∂Ke(ρ̃, x̃)
∂x̃elc

=

∫

Ωel

BT
e
∂Eel(ρ̃, x̃)

∂x̃elc
BedV (29a)  

∂x̃elc

∂xel
=

∂xelc
∂xel

∑nc
j=1xelj − xelc

∑nc
t=1

∂xelt
∂xel

(∑nc
j=1xelj

)2 (29b)  

∂xelc

∂xel
= αtanh(α(sc − xel) )sech(α(sc − xel) ). (29c) 

In (29a) the partial derivative of the interpolation function Eel is 
expressed using (12) and (13) as 

∂Eel(ρ̃, x̃)
∂x̃elc

= υel(ρ̃)
∂ωelc(x̃)

∂x̃elc
(Ec − E0) (30a)  

∂ωelc(x̃)
∂x̃elc

=
1 + p

(1 + p(1 − x̃elc) )
2 . (30b) 

As for the constraint functions in (21), the only non-trivial derivative 
is that of MC2. This constraint only depends on the design variables x̃ 

and not on the displacements u(ρ̃, x̃) and is obtained straightforwardly 
using the chain rule. 

3.3. Optimization Solver 

The design problem (21) is solved using a variant of the Globally 
Convergent Methods of Moving Asymptotes (GCMMA) [37,38]. To 
describe the method, let y = (ρ, x). Solutions to problem (21) (and its 
DMTO and SFP versions) are sought by solving a sequence, k = 0,1,…, 
of strictly convex subproblems of the form 

min
y

g(k,ℓ)
0 (y)

s.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

g(k,ℓ)
i (y)⩽0, i = 1,…,m

Aeqy = beq,

Ay⩽b,

y ∈ Y(k)

(31)  

where g(k,ℓ)0 is a strictly convex approximation of the compliance, and 
g(k,ℓ)i , i = 1,…,m, are convex approximations of the non-linear functions 

fptc(x) =
∑t+nCL

l=t

x̃plc(x) − nCL, ∀(p, t, c) (32)  

defining MC2 in (21). The set Y(k) is defined by the box constraints of the 
original problems and so-called move limits. 

In order to have a globally convergent method we require that the 
approximations be conservative in the sense that 

g(k,ℓ)
i (y(k,ℓ))⩾f (k,ℓ)i (y(k,ℓ)), i = 0,…,m.

To achieve conservatism, one or more inner iterations may be needed, i. 
e. ℓ > 1. Note that the linear constraints (DC1 and MC1) can be kept as 
they are in the subproblems without changing the global convergence 
properties of the method since exact approximations are conservative 
[39]. 

The approximation g(k,ℓ)0 of the compliance is taken as the usual MMA 
approximation 

g(k,ℓ)
0 (y) =

∑n

j=1

(
p(k,ℓ)

0j

u(k)
j − yj

+
q(k,ℓ)

0j

yj − l(k)j

)

+ r(k,ℓ)0 ,

where the coefficients p(k,ℓ)0j and q(k,ℓ)
0j are given by (here i = 0) 

p(k,ℓ)
ij = σk

j max

{

0,
∂fi

∂yj
(yk)

}

+
κiσ(k,ℓ)

j

4
q(k,ℓ)

ij

= σk
j max

{

0, −
∂fi

∂yj
(yk)

}

+
κiσ(k,ℓ)

j

4
fi(x(k)) −

∑n

j=1

p(k,ℓ)
ij + q(k,ℓ)

ij

σ(k)
j

, (33)  

in which σj depends on the asymptotes [39]. 

Table 1 
Material properties of GRFP-UD used for the numerical examples.  

Property Value Unit 

E11  34.00  GPa 
E22  8.20  GPa 
E33  8.20  GPa 
G12  4.50  GPa 
G23  4.00  GPa 
G13  4.50  GPa 
ν12  0.29  – 

hply  0.0025  m  
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For the convex approximation of the non-linear constraint MC2 we 
choose, for ease of implementation, an MMA approximation: 

g(k,ℓ)
i (y) =

∑n

j=1

(
p(k,ℓ)

1j

u(k)
j − yj

+
q(k,ℓ)

1j

yj − l(k)j

)

+ r(k,ℓ)0 .

Here however, the formulas (33) would lead to a dense gradient of 
g(k,ℓ)i (y), making it impossible to solve large-scale instances of our design 
problem. The reason for this is the addition of the terms κiσ(k,ℓ)

j /4 which 

contribute with non-zeros to the gradient of g(k,ℓ)i even when ∂fi/∂xj is 
zero. To preserve the sparsity of the original constraint we therefore 
define p(k,ℓ)ij (and similarly for q(k,ℓ)

ij ) as 

p(k,ℓ)
ij = σk

j max
{

0,
∂fi

∂xj
(xk)

}

+
ρ1σ(k,ℓ)

j δ1j

4
(34)  

where δij = 1 if ∂fi/∂xj can take on non-zero values and δij = 0 otherwise. 
With this choice of coefficients, the sparsity in the gradient of MC2 is 
preserved. 

3.4. Continuation Strategy 

To ensure manufacturable designs, the physical design variables ρ̃ 
and x̃ should take on values in {0,1}n when solving (21). Applying 
gradient-based optimization solvers requires the numerical variables ρ 
and x in (21) to be treated as continuous variables however, as stated in 
Sections 2 and 2.2.3 the use of the presented filtering techniques can not 
guarantee that discrete values of the physical design variables are ob-
tained and therefore the RAMP penalization is applied. 

To achieve an acceptable level of discreteness for the physical design 
variables ̃ρ and ̃x, a continuation strategy, in which a step-wise increase 

of the values for the filter parameters α and β along with the RAMP 
parameters p and q is implemented. The increase in penalization is 
performed on the basis of the non-discreteness measure of the physical 
design variables calculated at each converged solution of problem in 
(21). Following Sørensen et al. [21] we use the following measures of 
non-discreteness for ρ̃ and x̃: 

Mdnd =
4
∑ne

e=1
∑nl

l=1Velρ̃el(1 − ρ̃el)∑ne
e=1
∑nl

l=1Vel
(35a)  

Mcnd =

∑ne
e=1
∑nl

l=1Velρ̃2
el
∏nc

c=1

⎛

⎜
⎜
⎝

1− x̃elc
1− 1

nc

⎞

⎟
⎟
⎠

2

∑ne
e=1
∑nl

l=1Velρ̃el
, (35b)  

where Vel is the volume of ply l in element e,Mdnd represents the ply 
density non-discreteness and Mcnd the candidate material non- 
discreteness. The convergence criteria of the continuation strategy is a 
modified version of the one suggested in [21], obtained by adding a 
secondary convergence condition to Mdnd so that 

Mnd =

{

Primary : max
(
Mz

dnd,M
z
cnd

)
⩽∊0/1 Secondary :max

(
MΔz

dnd,M
z
cnd

)
⩽∊0/1 ,

(36)  

where ∊0/1 is the maximum allowed value of non-discreteness, index z is 
the current iteration step of the continuation strategy and MΔz

dnd is the 
secondary condition for ply density non-discreteness given by 

MΔz
dnd = max

(
|Mz

dnd − Mz− 2
dnd |, |M

z
dnd − Mz− 1

dnd |
)
, z⩾3. (37)  

The secondary condition considers the relative change of Mz
dnd over three 

consecutive continuation iterations z, and if the maximum change of 
MΔz

dnd is below the limit ∊0/1 it is assumed that Mz
dnd has converged to its 

minimum value. Note that both the conditions in (36) requires Mz
cnd to 

retain an absolute value below the non-discreteness limit ∊0/1 to ensure 
that non-manufacturable multi-material designs are not generated. Al-
gorithm 1 shows a pseudocode for the continuation strategy imple-
mented for HFP, here Mdnd controls the values of filter parameter β and 
RAMP parameter q associated to the density variables, while Mcnd con-
trol the values of α and p associated with the candidate material 
variables.  

Algorithm 1: Pseudocode of convergence requirements for the continuation strategy 
implemented for HFP 

if Mnd⩽∊0/1  

Convergence = TRUE 

(continued on next page) 

Table 2 
Candidate material sets used for the numerical examples.  

Set nc  Value 

Θ1  4 0◦,45◦, − 45◦,90◦

Θ2  6 0◦,30◦,45◦ , − 45◦, − 30◦,90◦

Table 3 
Filter and penalization parameter sets used in the continuation strategy.  

Set HFP DMTO SFP 

Nα  Θ1 20,80,180,360  
Θ2 30,80,180,360  

– – 

Np  2  1,4,20  2  
Nβ  13,40,80,160  20,40,80,160  13,40,80,160  
Nq  0,2,4  0,4,20  0,2,4   

Table 4 
Starting values for design variables, used for all optimization runs.  

Method ρinit  xinit     

DMTO 0.45  1/nc  

HFP 0.45  0.50  
SFP 0.45  0.00   

Table 5 
Convergence tolerances for Continuation and GCMMA.  

∊0/1  ∊dv  ∊obj  ∊const  

0.1%  10− 3  10− 6  10− 6   

Fig. 6. Geometry and boundary conditions for NE1, a clamped square plate 
with edge length of 1.0 m, subjected to a uniform pressure of 1.0 kPa. The plate 
is modelled as a monolithic laminate with nl = 8 plies. 
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(continued ) 

ρz→ρ* and xz→x*  

else if Mnd > ∊0/1  

if Mk
dnd > ∊0/1 and βi < βmax ∈ Nβ  

βi→βi+1  

Convergence = FALSE 
end if 
if Mk

dnd > ∊0/1 and qj < qmax ∈ Nq  

qj→qj+1  

Convergence = FALSE 
end if 
if Mk

cnd > ∊0/1 and αk < αmax ∈ Nα  

αk→αk+1  

Convergence = FALSE 
end if 
if Mk

cnd > ∊0/1 and pm < pmax ∈ Np  

(continued on next column)  

(continued ) 

pm→pm+1  

Convergence = FALSE 
end if 

ρz→ρz+1
0 and xz→xz+1

0  
else if Mnd > ∊0/1 and z⩾3  

if Mk
cnd⩽∊0/1 and MΔk

dnd⩽∊0/1  

Convergence = TRUE 
ρz− 2→ρ* and xz− 2→x*  

end if 
if Mk

cnd⩽∊0/1 and MΔk
dnd > ∊0/1  

Convergence = FALSE 
ρz→ρz+1

0 and xz→xz+1
0  

end if 
end if  

In Algorithm1, Nβ,Nq,Nα, and Np, represent the predefined sets of 
values for the parameters β, q, α, and p, respectively, controlled by the 
continuation strategy. The values of the parameters can be adjusted 
separately at each new continuation step, thus enabling each sequence 
to stop if the corresponding design variables fulfil the non-discreteness 
requirement or maximum level of penalization is achieved, e.g. βj =

βmax or pm = pmax. The convergence requirement (36) of the continuation 
strategy is the final requirement of the optimization problem in (21) that 
needs to be satisfied in order for a design to be accepted as an optimal 
solution. If (36) is not satisfied a new continuation step is initiated and a 
new solution of problem (21) is sought with updated parameters ac-
cording to Algorithm1. 

4. Numerical Examples 

This section describes the numerical examples used to evaluate the 
HFP method. The examples are based on two geometries that are sub-
jected to different types of boundary conditions and loads, along with 
different settings for the optimization problem in (21). The numerical 
examples are also solved using the DMTO and SFP methods described in 
Sections 2.2.1 and 2.2.2, respectively, so that a comparison of the results 
obtained by HFP, DMTO and SFP can be performed. 

Table 6 
Optimization settings for NE1.  

Run ID Method R  V/V0  nS  nCL  ρe  nc  nl  ne  np  

NE1.01 DMTO 0.0  0.45  1  1  1/8  4  8  400  1  
NE1.02 HFP 0.0  0.45  1  1  1/8  4  8  400  1  
NE1.03 SFP 0.0  0.45  1  1  1/8  4  8  400  1   

NE1.04 DMTO 0.3  0.45  1  1  1/8  4  8  400  1  
NE1.05 HFP 0.3  0.45  1  1  1/8  4  8  400  1  
NE1.06 SFP 0.3  0.45  1  1  1/8  4  8  400  1   

NE1.07 DMTO 0.0  0.45  1  1  1/8  4  8  900  1  
NE1.08 HFP 0.0  0.45  1  1  1/8  4  8  900  1  
NE1.09 SFP 0.0  0.45  1  1  1/8  4  8  900  1   

NE1.10 DMTO 0.3  0.45  1  1  1/8  4  8  900  1  
NE1.11 HFP 0.3  0.45  1  1  1/8  4  8  900  1  
NE1.12 SFP 0.3  0.45  1  1  1/8  4  8  900  1  

NE1.13 DMTO 0.0  0.45  1  1  1/8  6  8  400  1  
NE1.14 HFP 0.0  0.45  1  1  1/8  6  8  400  1   

NE1.15 DMTO 0.3  0.45  1  1  1/8  6  8  400  1  
NE1.16 HFP 0.3  0.45  1  1  1/8  6  8  400  1   

NE1.17 DMTO 0.0  0.45  1  1  1/8  6  8  900  1  
NE1.18 HFP 0.0  0.45  1  1  1/8  6  8  900  1   

NE1.19 DMTO 0.3  0.45  1  1  1/8  6  8  900  1  
NE1.20 HFP 0.3  0.45  1  1  1/8  6  8  900  1   

Fig. 7. Geometry and boundary conditions for NE2, a rectangular plate with 
length l = 1 m and width w = 0.2 m, subjected to a out-of-plane torque load of 
Mτ = 1.0 kNm at the free edge. The plate is modelled as a monolithic laminate 
with nl = 16 plies. 
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For the numerical examples we use a unidirectional Glass Fiber 
Reinforced Polymer (GFRP-UD) material with material properties pro-
vided in [22] and summarized in Table 1. We consider two sets of 
candidate materials, where for both sets, each candidate represents a 
fiber orientation as given in Table 2. 

The filter and penalization parameter sets used in the continuation 
strategy are given in Table 3. 

The parameter sets for HFP were determined by conducting a 
parameter study with primary focus on obtaining best results. The 
parameter sets for DMTO are taken from [22], in which the authors 
proposed a set of optimal parameter values. For SFP the parameter sets 
were taken to be the same as for HFP. This decision was based on the 
observation that the performance of SFP was better using the parameter 
sets for HFP than those for DMTO. Note that for HFP, the initial starting 
value for parameter set Nα in Table 3 is increased for runs with candi-
date material set Θ2 to account for the increased number of candidates 
within the design space, see Fig. 4. The starting values of the design 
variables for all optimization runs is summarized in Table 4. 

The convergence tolerances used by the optimization algorithm are 
listed in Table 5, in which ∊0/1 is the tolerance for non-discreteness of the 
design variables described in Section 3.4, while ∊dv, ∊obj, ∊const are the 
tolerances for the design variables, objective function and constraints, 
respectively, used by the GCMMA solver described in Section 3.3. The 
sub-problems (31) are solved using the Interior Point OPTimizer 
(IPOPT) solver [40]. 

For the FE discretizations we use rectangular fully integrated second- 
order, nine-noded iso-parametric Mindlin-Reissner plate elements with 
five degrees-of-freedom per node. For more details regarding the finite 
element formulation, see e.g. [41,42]. 

4.1. Numerical example 1 (NE1) 

The first example, NE1, is based on the setup form [22] and is 
illustrated in Fig. 6, which shows a square plate with clamped edges 
subjected to a uniform normal pressure of 1.0 kPa across the upper 
surface. 

The plate is modelled as a composite laminate with eight plies, nl =

8. A single design patch, np = 1, is used for the entire design domain for 
the candidate material design variables. The limits in the manufacturing 
constraints in (21) are set to restrict the thickness variation between 
adjacent elements to nS = 1 for MC1, and for MC2 to restrict the number 
of consecutive plies with the same candidate material to nCL = 1. The 
composite plate is required to have one full ply span the entire design 
domain, this is achieved by setting the lower bound of the density var-
iable box constraint to ρe = 1/nl in (21). Two values for the in-plane 
density filter radius, R = 0 and R = 0.3 [m], are considered, in order 
to observe the effect of this filter on the final designs. A total of 20 

Table 7 
Optimization settings for NE2.  

Run ID Method R  V/V0  nS  nCL  ρe  nc  nl  ne  np  

NE2.01 DMTO 0.0  0.45  1  2  0  4  16  2000  1  
NE2.02 HFP 0.0  0.45  1  2  0  4  16  2000  1  
NE2.03 SFP 0.0  0.45  1  2  0  4  16  2000  1   

NE2.04 DMTO 0.5w  0.45  1  2  0  4  16  2000  1  
NE2.05 HFP 0.5w  0.45  1  2  0  4  16  2000  1  
NE2.06 SFP 0.5w  0.45  1  2  0  4  16  2000  1   

NE2.07 DMTO 1.0w  0.45  1  2  0  4  16  2000  1  
NE2.08 HFP 1.0w  0.45  1  2  0  4  16  2000  1  
NE2.09 SFP 1.0w  0.45  1  2  0  4  16  2000  1  

NE2.10 DMTO 0.0  0.45  1  2  0  6  16  2000  1  
NE2.11 HFP 0.0  0.45  1  2  0  6  16  2000  1   

NE2.12 DMTO 0.5w  0.45  1  2  0  6  16  2000  1  
NE2.13 HFP 0.5w  0.45  1  2  0  6  16  2000  1   

NE2.14 DMTO 1.0w  0.45  1  2  0  6  16  2000  1  
NE2.15 HFP 1.0w  0.45  1  2  0  6  16  2000  1   

Table 8 
NE1 – Results for the 20 × 20 mesh, visualization of results is given in Fig. 8. nC. 
It is the number of continuation steps. nIt is the number of outer GCMMA iter-
ations. nF is the number of objective and constraint function evaluations.  

Run ID Method C  Mdnd  Mcnd  nC.It nIt nF 

NE1.01 DMTO 0.0983  0.0132  0.0  32  59  181  
NE1.02 HFP 0.1049  0.0229  0.0  3  31  139  
NE1.03 SFP 0.1049  0.0023  0.0  3  33  96   

NE1.04 DMTO 0.1975  1.5838  0.0  4  167  460  
NE1.05 HFP 0.1928  1.0778  0.0  4  87  254  
NE1.06 SFP 0.1928  1.0882  0.0  4  58  132  

NE1.13 DMTO 0.0982  0.0132  0.0  4  43  125  
NE1.14 HFP 0.1049  0.0229  0.0  3  28  111   

NE1.15 DMTO 0.1969  1.3944  0.0  4  138  339  
NE1.16 HFP 0.1910  0.9486  0.0  4  116  409   

Table 9 
NE1 – Results for the 30 × 30 mesh, visualization of results is given in Fig. 9.  

Run ID Method C  Mdnd  Mcnd  nC.It nIt nF 

NE1.07 DMTO 0.1003  0.0003  0.0  19  60  182  
NE1.08 HFP 0.0833  0.0219  0.0  4  58  261  
NE1.09 SFP 0.0848  0.0035  0.0  4  59  226   

NE1.10 DMTO 0.1856  1.3862  0.0  4  106  250  
NE1.11 HFP 0.1712  1.3920  0.0  4  156  391  
NE1.12 SFP 0.1711  1.3923  0.0  4  88  202  

NE1.17 DMTO 0.0883  0.0132  0.0  4  37  115  
NE1.18 HFP 0.0839  0.0100  0.0  4  58  264   

NE1.19 DMTO 0.1818  1.1382  0.0  4  127  296  
NE1.20 HFP 0.1711  1.3680  0.0  4  117  357   
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optimization runs are performed for NE1, where the problem (21) is 
solved for both values of the in-plane density filter radius using all three 
parametrization methods and for two sets of candidates in Table 2 using 
HFP and DMTO as SFP is limited to just four candidates. The settings for 
the optimization runs are listed in Table 6, where NE1.01–12 are runs 
with nc = 4 candidates given by Θ1 for all three parametrization method 
while NE1.13–20 are runs for nc = 6 candidates given by Θ2 for HFP and 
DMTO. 

4.2. Numerical example 2 (NE2) 

The setup for NE2 is illustrated in Fig. 7. Here we consider a canti-
lever rectangular plate of length l = 1.0 [m] and width w = 0.2 [m] 
where an out-of-plane torque is applied to the free edge such that the 
plate is subjected to a torsion load case. The magnitude of the applied 
torque is Mτ = 1.0 [kNm]. 

The plate is modelled as a laminate with nl = 16 plies. The FE mesh 
consists of 200 × 20 elements. Three values for the in-plane density filter 
are considered, R = 0,0.5w and w, along with two sets of candidates, 
thus in total fifteen (15) optimization runs are performed. In this 
example there is no requirement for the laminate to retain one full ply 
across the design domain, so ρe = 0 in (21). Table 7 lists the optimization 
settings used by the optimization runs for NE2, where NE2.01–09 are 
runs with nc = 4 candidate materials given by Θ1 in Table 2 for all three 
parametrization method while NE2.10–15 are corresponding runs for 
nc = 6 candidates given by Θ2 in Table 2 for HFP and DMTO. 

5. Results 

In this section we present and discuss data from optimization runs 
based on the two numerical examples. The optimization problems 
involve a large number of parameters which may affect the performance 

Fig. 8. Optimized results for NE1 using the 20 × 20 mesh for nc = 4. Left column represent design without in-plane density filter and right column represents designs 
with applied in-plane density filter. The rows represent one of the three parametrization methods; DMTO, HFP and SFP respectively. 
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of the parametrization methods. In our numerical experiments we have 
noted that the in-plane filter radius can have a fairly large impact and we 
have therefore chosen to study variation of that parameter. 

All data presented in the following are from optimization runs which 
have converged to the tolerance limits for the GCMMA solver given in 
Table 5. 

5.1. Numerical Example 1 

The results for NE1 are presented in Table 8 for the 20 × 20 mesh and 
Table 9 for the 30 × 30 mesh, and visualized in Fig. 8 and 9 for nc = 4 
and Fig. 10 and 11 for nc = 6, respectively. 

Tables 8 and 9 show that optimization runs performed with the same 
setting of the filter radius R and mesh retain similar compliance values 
for HFP and SFP. The same observation can be made when comparing 
runs with nc = 4 and nc = 6 candidates for DMTO and HFP, respectively. 

For the 20 × 20 mesh, Table 8 show that HFP and SFP retains 7% higher 
compliance compared to DMTO for runs with R = 0, while for runs with 
R = 0.3, HFP and SFP have 2.4% lower compliance values compared to 
DMTO. Table 9 show that for all runs with the 30 × 30 mesh, HFP and 
SFP retain a 5% − 20% lower compliance compared to DMTO, depend-
ing on parameter settings and number of candidates. This shows that 
overall, HFP and SFP obtain better objective values than DMTO, indi-
cating DMTO is more sensitive to the input parameters. 

The data in Tables 8 and 9 show that in terms of function evaluations 
per design iteration, HFP require an average ratio of 3.7 which is slightly 
higher compared to DMTO and SFP that have an average ratio of 2.8. For 
the runs with nc = 4, SFP requires the least amount of function evalu-
ations to obtain a solution. For 20 × 20 mesh, SFP requires 1.9 − 3.5 
times less function evaluations than DMTO and 1.4 − 1.9 than HFP. For 
the 30 × 30 mesh, the number of function evaluations is more similar, 
with SFP requiring 1.2 times fewer than DMTO and 1.2 − 1.9 times fewer 

Fig. 9. Optimized results for NE1 using the 30x30 mesh for nc = 4. Left column represent design without in-plane density filter and right column represents designs 
with applied in-plane density filter. The rows represent one of the parametrization methods; DMTO, HFP and SFP respectively. 

D. Hozić et al.                                                                                                                                                                                                                                   



Composite Structures 276 (2021) 114374

13

than HFP. The only exception are the runs with R = 0 for the 30 × 30 
mesh in Table 9, where NE1.08 and NE1.09 using HFP and SFP require 
1.2 − 1.4 times more function evaluations than corresponding run 
NE1.07 using DMTO. For the runs with nc = 6 we note that HFP on 
average require 1.4 times more function evaluations than DMTO to 
obtain a solution. However, with the exception of NE1.13, runs with 
HFP generate better designs than DMTO. We also note that the total 
number of function evaluations and design iterations required to 
generate an optimized design increase when the in-plane density filter is 
used, i.e. when R > 0. For all runs in Tables 8 and 9, the number of 
function evaluations increase between 1.4 and 3.7 times when in-plane 
filter is applied. 

The candidate material non-discreteness measure (35b) retain very 
low values, ranging from 0% to 10− 6% for all cases, so in Tables 8 and 9 
we approximate Mcnd = 0.0%. These values are reached within two 
continuation iterations for all runs except NE1.01 in Table 8 and NE1.07 
in Table 9. This shows that all three parametrization methods can pro-
duce almost fully discrete candidate material design variables with no 
artificial mixing of materials. The non-discreteness measure Mdnd (35a) 
for the density variables retain values below the limit ∊0/1 ≤ 0.1% for 
optimization runs with R = 0. For R = 0.3,Mdnd does not reach the 
tolerance limit set in Table 5 but end up between 1.0% and 1.2%, 
depending on the parametrization method,. The same behavior is 
observed for the larger mesh in Table 9 where Mdnd reaches a value 
between 0.9% and 1.6%, indicating that the use of in-plane density filter 
together with manufacturing constraint MC1 has a large effect on the 
density non-discreteness of the designs regardless of mesh density. 

The optimized solutions in Tables 8 and 9 for runs with nc = 4 are 
cross-ply laminates consisting of 0◦ and 90◦ plies, with a maximum 
number of plies ranging from 6 to 7 for runs with R = 0.3 to 8 plies for 
runs with R = 0 as specified in Table 10. Fig. 8 and 9 show that all 
methods yields a similar design when R = 0 and that all designs for the 

30 × 30 mesh are refined versions of the designs in Fig. 8 for the 20 × 20 
mesh. We also note that for R = 0.3, similar designs are generated using 
HFP (Fig. 8d, 9d) and SFP (Fig. 8f, 9f) while a different design is 
generated with DMTO (Fig. 8b, 9b). 

For runs with nc = 6 candidates, Fig. 10 and 11 show that for R = 0, 
both HFP (Fig. 8c, 10c, 9c, 11c) and DMTO (Fig. 8a, 10a, 9a, 11a) give 
the same optimized solutions as for corresponding runs for nc = 4 can-
didates in Fig. 8 and Fig. 9. However, for runs with R = 0.3, DMTO 
(Fig. 8b, 10b, 9b, 11b) does not generate the same optimized solutions, 
while this is the case for HFP (Fig. 8d, 10d, 9d, 11d), indicating that HFP 
is more consistent and is able to find the same designs even when 
number of candidates are increased. 

The results in Tables 8 and 9 shows that all optimization runs 
converge to a solution within four continuation iterations, except for 
runs NE1.01 and NE1.12 which require 22 and 13 continuation itera-
tions, respectively. In both cases this is attributed to the optimization 
solver initially settling for a mixed-material design using the DMTO 
method which then required additional continuation iterations to find a 
fully discrete candidate material solution. For all the runs, the material 
distribution and candidate material choice of the design is essentially set 
during the two initial continuation iterations and subsequent iterations 
only yield small changes to the design in order to fulfill the non- 
discreteness criteria (36) and (37). 

5.2. Numerical Example 2 

The results for NE2 are presented in Table 11, with the optimal 
stacking sequences for all optimization runs presented in Table 12. The 
corresponding optimized designs are visualized in Fig. 12 for runs with 
nc = 4 and in Fig. 13 for runs with nc = 6. 

For NE2, the same overall behaviour is observed as for NE1 in Section 
5.1. Like for NE1, objective function values for the optimization runs 

Fig. 10. Optimized results for NE1 using the 20 × 20 mesh for nc = 6. Left column represent design without in-plane density filter and right column represents 
designs with applied in-plane density filter. The rows represent the DMTO and HFP parametrization methods, respectively. 
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with HFP and SFP in Table 11 retain similar values for a given value or R, 
with an exception for runs with R = 0 where NE2.03 using SFP gives a 
5% − 10% lower compliance compared to runs NE2.02 and NE2.01 using 
HFP and DMTO, respectively. The lowest objective function values are 
consistently obtained by HFP and SFP methods, which generate designs 
with 4% − 12% lower compliance compared DMTO for R = 0 and R = w 
and nc = 4 candidates. For nc = 6, corresponding runs show that HFP 
generates 4% − 5% lower compliance compared to DMTO. For runs with 

Fig. 11. Optimized results for NE1 using the 30 × 30 mesh for nc = 6. Left column represent design without in-plane density filter and right column represents 
designs with applied in-plane density filter. The rows represent the DMTO and HFP parametrization methods, respectively. 

Table 10 
NE1 – Stacking sequences for design in Fig. 8 and Fig. 9.  

Run ID Method Stacking Sequence 

NE1.01 DMTO 90/0/90/0/90/0/90/0  
NE1.02 HFP 90/0/90/0/90/0/90/0  
NE1.03 SFP 0/90/0/90/0/90/0/90   

NE1.04 DMTO 0/90/0/90/0/90  
NE1.05 HFP 0/90/0/90/0/90  
NE1.06 SFP 0/90/0/90/0/90   

NE1.07 DMTO 90/0/90/0/90/0/90/0  
NE1.08 HFP 90/0/90/0/90/0/90/0  
NE1.09 SFP 90/0/90/0/90/0/90/0   

NE1.10 DMTO 0/90/0/90/0/90  
NE1.11 HFP 0/90/0/90/0/90/0  
NE1.12 SFP 0/90/0/90/0/90/0  

NE1.13 DMTO 90/0/90/0/90/0/90/0  
NE1.14 HFP 90/0/90/0/90/0/90/0   

NE1.15 DMTO 0/90/ − 45/90/0/30/0  
NE1.16 HFP 90/0/90/0/90/0/ − 30   

NE1.17 DMTO 90/0/90/0/90/0/90/0  
NE1.18 HFP 90/0/90/0/90/0/90/0   

NE1.19 DMTO 90/0/45/90/0/ − 30/0  
NE1.20 HFP 90/0/90/0/90/0/90   

Table 11 
NE2 - Details of results visualized in Fig. 12.  

Run ID Method C  Mdnd  Mcnd  nC.It nIt nF 

NE2.01 DMTO 170.7320  0.0089  0.0  4  130  484  
NE2.02 HFP 161.7180  0.0804  0.0  4  94  486  
NE2.03 SFP 155.2570  0.1128  0.0  4  72  253   

NE2.04 DMTO 202.978  1.3160  0.0  4  203  446  
NE2.05 HFP 201.8550  1.3467  0.0  4  317  932  
NE2.06 SFP 203.0680  1.3790  0.0  4  153  402   

NE2.07 DMTO 310.216  1.5030  0.0  4  284  656  
NE2.08 HFP 276.3260  1.4318  0.0  4  227  878  
NE2.09 SFP 277.0650  1.4145  0.0  4  437  1030  

NE2.10 DMTO 163.6020  0.0113  0.0  4  109  399  
NE2.11 HFP 155.4660  0.1108  0.0  4  128  674   

NE2.12 DMTO 203.6760  1.2912  0.0  4  176  390  
NE2.13 HFP 203.1440  1.3817  0.0  4  232  965   

NE2.14 DMTO 287.4890  1.4228  0.0  4  372  844  
NE2.15 HFP 276.6790  1.4868  0.0  4  226  1260   
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R = 0.5w the results in Table 11 show that all three parametrization 
method generate design with similar objective function values for both 
nc = 4 and nc = 6. 

The results in Table 11 show that the number of function evaluations 
per design iteration is similar for SFP and DMTO, with an average value 

of 2.8 for both methods, which is the same as observed for NE1 in Sec-
tion 5.1, while for HFP the average value is 4.5 which is slightly higher 
than the corresponding value for observed in NE1 for HFP. For runs with 
nc = 4, Table 11 show that for NE2, non of the methods have a clear 
advantage in terms of computational efficiency, as the total number of 
design iterations and function evaluations required to find a solution 
changes significantly for all methods depending on the filter radius R. 
This is clearly illustrated by comparing NE2.05 with NE2.06 for R =

0.5w and NE2.08 with NE2.09 for R = w, respectively. Both sets of 
optimization runs generate designs with similar compliance, but NE2.05 
using HFP requires about 2.5 times more design iterations and function 
evaluations than NE2.06 using SFP. The opposite is observed for NE2.09 
using SFP which requires about two times more iterations and 1.3 times 
more function evaluations compared with NE2.08 using HFP. For runs 
with nc = 6, the results show an advantage for DMTO when considering 
computational efficiency as DMTO requires fewer function evaluations. 

The non-discreteness measures for NE2 in Table 11 show that all 
optimization runs give fully discrete candidate design variables as 
Mcnd ≈ 0. Mdnd follows the same pattern as for NE1 where all runs with 
R = 0, except NE2.11, have values below the non-discreteness limit 
∊0/1 ≤ 0.1%. For runs with R > 0 the primary tolerance limit is not 
fulfilled as Mdnd settles on a value between 1.26% and 1.47% depending 
on optimization run. All runs converge to a solution within 4 continu-
ation iterations. 

Table 12 show the optimized stacking sequences for all optimization 
runs in Table 11. All stacking sequences contain predominantly ±45◦

plies, which is expected considering the applied torque load case for NE2 

Table 12 
NE2 - Stacking sequences for design in Fig. 12.  

Run ID Method Stacking Sequence 

NE2.01 DMTO 452/(− 45/45)3/(45/ − 452)2/45  
NE2.02 HFP (45/ − 452)2/452/ − 45/45/ − 452/0/ − 45  
NE2.03 SFP 45/ − 452/452/ − 45/45/ − 452/45/ − 45/45/ − 452/45   

NE2.04 DMTO 45/ − 452/452/ − 452/452/ − 452/45/ − 452  

NE2.05 HFP (45/ − 452)2/452/ − 45/45/ − 452/0/90  
NE2.06 SFP 45/ − 452/0/(45/ − 45)2/ − 45/45/ − 452/452   

NE2.07 DMTO − 452/45/ − 452/452/ − 452/45/ − 45  
NE2.08 HFP (45/ − 452)2/452/ − 45/45/ − 45  
NE2.09 SFP 45/ − 452/0/45/ − 45/45/ − 452/45/ − 45  

NE2.10 DMTO (− 45/45)2/ − 452/452/ − 452/45/ − 452/452  

NE2.11 HFP (45/ − 452)2/452/ − 45/45/ − 452/452   

NE2.12 DMTO 45/ − 452/452/ − 452/(45/ − 45)2/452/ − 45  
NE2.13 HFP (45/ − 452)3/45/ − 452/0/ − 45   

NE2.14 DMTO − 45/452/ − 45/45/ − 452/45/ − 452/45  
NE2.15 HFP (45/ − 452)3/45/ − 45   

Fig. 12. Optimized results for NE2 using 200 × 20 element mesh for nc = 4. Left column represent design without in-plane density filter, central column represents 
design with R = 0.5w and right column represents designs with R = 1.0w. 
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as ±45◦ plies are the most efficient of the candidate materials at 
handling such a load case. Runs NE2.01–03, NE2.10–11 have laminates 
with a maximum of 15 plies; NE2.04–06, NE2.12–13 a maximum of 14 
plies and NE2.07–09, NE2.14–15 have a maximum of 11 plies. 
Comparing the results presented in Fig. 12 we can see that all three 
methods generate a similar material distribution for each setting of the 
in-plane density radius R and number of candidate materials. The only 
major difference between the designs is that some runs in Fig. 12 and 
Fig. 13 generate mirrored designs. 

6. Conclusions 

A new discrete parametrization method labeled HFP for optimization 
of composite laminate structures has been proposed. The method applies 
a filter-based technique using hyperbolic functions to parametrize a 
predefined set of candidate materials. This approach enables HFP to 
parametrize any given number of candidates using only one candidate 
material design variable per ply. Compared to existing state-of-art 
parametrization methods such as DMTO and SFP, HFP reduces the size 
of the optimization problem both in terms of number of design variable 
and constraints, although this comes at the cost of introducing addi-
tional non-linearity in the optimization problem. 

A numerical comparison based on two numerical examples per-
formed for sets of four and six candidate materials, respectively, shows 
that all three methods obtain similar optimal design in terms of topol-
ogy, choice of candidate material and design-variable non-discreteness. 
Considering objective values, HFP generates similar or better values 
compared to the DMTO and SFP, depending on the input parameter. 
Overall, the computational cost is on the same order of magnitude for all 
three methods, with DMTO and SFP requiring similar number of func-
tion evaluations per design iteration while requires HFP somewhat more 
function evaluations per design iteration compared to SFP and DMTO. 

Overall, the results indicate that all three methods are highly sensi-
tive to the choice of input parameters for the optimization problem, such 
as filter-and penalization parameters, number of candidate materials, 
and initial starting points, although the performance of HFP is more 
consistent compared to DMTO and SFP. 
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D. Hozić et al.                                                                                                                                                                                                                                   

http://refhub.elsevier.com/S0263-8223(21)00836-9/h0035
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0035
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0040
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0040
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0040
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0050
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0050
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0050
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0055
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0055
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0055
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0060
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0060
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0065
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0065
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0065
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0070
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0070
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0075
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0075
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0080
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0080
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0080
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0085
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0085
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0090
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0090
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0095
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0095
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0095
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0100
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0100
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0100
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0105
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0105
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0105
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0110
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0110
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0110
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0115
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0115
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0120
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0120
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0125
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0125
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0125
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0130
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0130
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0135
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0135
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0135
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0140
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0140
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0140
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0145
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0145
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0145
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0150
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0150
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0155
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0155
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0155
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0160
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0160
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0165
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0165
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0170
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0170
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0170
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0175
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0175
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0180
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0180
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0185
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0185
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0195
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0195
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0200
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0200
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0200
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0205
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0205
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0210
http://refhub.elsevier.com/S0263-8223(21)00836-9/h0210

	A new method for simultaneous material and topology optimization of composite laminate structures using Hyperbolic Function ...
	1 Introduction
	2 Discrete parametrization of composites
	2.1 Ply density interpolation
	2.1.1 In-plane density filter
	2.1.2 Out-of-plane density filter

	2.2 Candidate material interpolation
	2.2.1 DMTO – Discrete Material and Topology Optimization
	2.2.2 SFP – Shape Function Parametrization
	2.2.3 HFP – Hyperbolic Function Parametrization
	2.2.3.1 Candidate material filter



	3 Optimization Problem
	3.1 Patches
	3.2 Design Sensitivity
	3.3 Optimization Solver
	3.4 Continuation Strategy

	4 Numerical Examples
	4.1 Numerical example 1 (NE1)
	4.2 Numerical example 2 (NE2)

	5 Results
	5.1 Numerical Example 1
	5.2 Numerical Example 2

	6 Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	References


