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gauge network using satellite and ground-based data
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ABSTRACT
Accurate and precise rainfall records are crucial for hydrological applications and water resources

management. The accuracy and continuity of ground-based time series rely on the density and

distribution of rain gauges over territories. In the context of a decline of rain gauge distribution, how

to optimize and design optimal networks is still an unsolved issue. In this work, we present a method

to optimize a ground-based rainfall network using satellite-based observations, maximizing the

information content of the network. We combine Climate Prediction Center MORPhing technique

(CMORPH) observations at ungauged locations with an existing rain gauge network in the Rio das

Velhas catchment, in Brazil. We use a greedy ranking algorithm to rank the potential locations to

place new sensors, based on their contribution to the joint entropy of the network. Results show that

the most informative locations in the catchment correspond to those areas with the highest rainfall

variability and that satellite observations can be successfully employed to optimize rainfall

monitoring networks.

Key words | CMORPH, information theory, rainfall, rain gauge network, satellite data, sensors’

optimization
HIGHLIGHTS

• This study proposes a method to evaluate and optimize an existing rain gauge network using

satellite observations.

• The most informative locations in the catchment are identified using a greedy ranking algorithm.

• The resulting optimal network provides higher joint entropy with fewer sensors.

• The most informative locations reflect those with highest variance.
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INTRODUCTION
Quantification of precipitation is essential for improving

knowledge about hydrological and water resources

applications, including water allocation, water resources

monitoring and risk assessment. Yet, the state of our
knowledge is subject to the density and distribution of rain-

fall monitoring networks over territories. For this reason, it

is desirable to have dense rain gauge networks (Li et al.

). However, despite their crucial role, rainfall networks

have been declining in the last decades due to their high

maintenance and operating costs (Mishra & Coulibaly

; Dai et al. ) and data are scarce or lacking in

some areas of the world (Walker et al. ). Although
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many remote sensing products are now available, ground-

based observations are still needed for their calibration, vali-

dation and bias removal (Li et al. ). In this context, many

researchers have tried to answer the question on how to

design optimal monitoring networks, which can guarantee

accurate information and reduce uncertainty in precipi-

tation (Chacon-Hurtado et al. ). The World

Meteorological Organization (WMO) proposed minimum

density requirements for hydrometric networks, based on

the topography of the area and on the characteristics of

the sensors adopted (WMO ).

Following the recent classification proposed by Chacon-

Hurtado et al. (), methods for hydrometric network

design can be distinguished as either statistics-based (e.g.,

Maddock ; Li et al. ), information theory-based,

based on expert recommendations (WMO ) and based

on the performance of hydrological models (Zeng et al. ).

Information theory (IT) (Shannon ) was first applied

to water resources research by Amorocho & Espildora

() and then introduced by Caselton & Husain () to

design a rainfall network. From that moment on, many

researchers have applied IT to solve the monitoring network

design problem (Keum et al. ), for precipitation (e.g., Chen

et al. ; Yoo et al. ), streamflow (e.g., Alfonso et al.

; Keum et al. ) and groundwater networks (e.g.,

Leach et al. ). The main principle behind all these studies

is to maximize the information provided by the network,

expressed through the concept of joint entropy (Shannon

). Many authors proposed multi-objective approaches,

such as the minimization of network redundancy, expressed

by total correlation (Alfonso et al. b, ), mutual infor-

mation (Chen et al. ; Li et al. ; Fahle et al. ) and

directional information transfer (Yang & Burn ). Some

studies adopted additional objective functions not related to

IT, such as hydrological model efficiency (Xu et al. ), rain-

fall field interpolation accuracy (Xu et al. ) and

spatiotemporality information (Huang et al. ).

A common issue for monitoring network design, in

general, is that precipitation observations, and all the infor-

mation we can derive from them, are available only at the

locations where sensors are deployed. Thus, the question

is how to decide which ungauged locations are the most

convenient to place new sensors. Most authors either interp-

olate precipitation observations (e.g., Xu et al. ), for the
://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
case of rainfall networks, or employ hydrological models to

produce water level time series at ungauged locations (e.g.,

Werstuck & Coulibaly ). However, when interpolating

precipitation, some biases are introduced and the accuracy

of the resulting rainfall field depends on the specific interp-

olation technique adopted and on the characteristics of

the area considered (Hofstra et al. ). This problem can

be addressed using remote sensing data, which have been

widely used in the last decade for many hydrological

applications (Li et al. ; Mazzoleni et al. ; Bertini

et al. ). Remote sensing products proved to better reflect

spatial relationships among objects when compared to interp-

olated and simulated data (Li et al. ; Huang et al. ).

Many satellite precipitation products have been developed

in the last two decades, with different spatial coverage,

going from 4 to 25 km, and temporal scale, from 30 min to

monthly resolution. Among all the satellite precipitation pro-

ducts, the most popular in hydrological applications are

probably the CMORPH (Climate Prediction Center MORPH-

ing technique) (Joyce et al. ), PERSIANN (Precipitation

Estimation from Remotely Sensed Information using Artifi-

cial Neural Networks) (Hsu et al. ), TMPA (Tropical

Rainfall Measuring Mission Multi-satellite Precipitation

Analysis) (Huffman et al. ) and GPCP (Global Precipi-

tation Climatology Project) (Adler et al. ).

A few authors have adopted satellite observations in

network design; among them can be listed Contreras et al.

() and Huang et al. (). The former applied the con-

ditioned Latin hypercube sampling method on a TMPA

product to capture spatiotemporal precipitation in ungauged

locations while the latter applied IT within a multi-objective

optimization approach. However, methods that consider

satellite information are very limited and still rely on

prior data interpolation, without analysing the potential

information content of satellite observations. As the main

advantage of using a gridded dataset is the information con-

tained at ungauged locations can be investigated without

introducing interpolation biases, in this work we propose a

method to use satellite precipitation estimates to evaluate

and optimize an existing rain gauge network. The number

and locations of new sensors are chosen in order to maxi-

mize the total information content of the network, given

by its joint entropy, following the generally accepted fact

that information content of time series can be taken as a
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value of variability that can indicate where it is more appro-

priate to measure rainfall (e.g., Krstanovic & Singh ;

Mishra & Coulibaly ). Entropy at ungauged locations

is evaluated using version 1.0 of CMORPH rainfall product,

which matches the requirements of a fine spatial scale and

good performance. In contrast to the study of Huang et al.

(), we do not take into account redundancy reduction,

with the aim of obtaining a robust network and ensuring

the capture of essential information even in case of a

sensor failure. Indeed, we do not mean to change or

remove the existing stations, as most hydrological appli-

cations need long time series; instead, we aim to increase

the network density in order to have a better understanding

of rainfall characteristics and an improvement of water

resources assessment in the area.

This paper is organized as follows. First, we provide a

background on IT; second, the case study and the dataset

are introduced; then, details about the methodology adopted

are provided. Finally, results and discussions are presented

and conclusions of the study are drawn.
BACKGROUND

Information theory

The amount of information content and of redundancy

given by a monitoring network can be measured using IT

(Shannon ). Definitions of the IT-related quantities

employed are presented below.

Given a set of n events, with known probabilities of occur-

rence p1, p2, . . . , pn, entropy is defined as the measure of

uncertainty of the possible n outcomes. If more information

about one of the events is obtained, then the uncertainty of

the outcomes decreases. Information can be thus regarded

as a decrease in uncertainty and entropy can be seen as a

measure of information content. The concept of entropy can

be extended to a random discrete variable X (Shannon &

Weaver ), with discrete values x1, x2, . . . , xn and corre-

sponding probabilities p(x1), p(x2), . . . , p(xn):

H(X) ¼ �
Xn
i¼1

p(xi) � logp(xi) (1)
om http://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
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where H(X) is the entropy for the variable X, also called mar-

ginal entropy.

In a similar way, it is possible to evaluate the content of

information from N multiple variables X1, X2, . . . , XN ,

introducing the concept of joint entropy:

JH(X1, X2, . . . , XN) ¼
Xn1

i1¼1

Xn2

i2¼1

. . .
XnN

iN¼1

p(xi1 , xi2 , . . . , xiN )

� log p(xi1 , xi2 , . . . , xiN )

(2)

where JH (X1, X2, . . . , XN) is the joint entropy of N

random discrete variables and p (xi1 , xi2 , . . . , xiN ) is the

joint probability of the X1, X2, . . . , XN variables.

The logarithm in Equations (1) and (2) is base 2, there-

fore marginal entropy and joint entropy are measured in

bits.

In monitoring network design and optimization pro-

blems, each precipitation time series recorded by a sensor

can be regarded as a random discrete variable X, with mar-

ginal entropy H(X). The information content provided by

the whole network, made of N sensors, is given by the

joint entropy JH(X1, X2, . . . , XN).

Estimating joint entropy as defined in Equation (2) can

be a complicated task, due to the difficulty in the compu-

tation of joint probability, especially for a large number of

variables. To overcome this issue, the grouping property of

mutual information (Kraskov et al. ) can be used.

According to this property, joint entropy of a couple of

variables X and Y is equal to the marginal entropy of a

new variable Z, obtained agglomerating the original pair.

The probability of occurrence of the new variable Z is

then estimated by a histogram-based frequency analysis

together with quantization, as applied by many researchers,

e.g., Alfonso et al. (), Pádua et al. (), Ridolfi et al.

(, a, b).

Quantization can be defined as the division of a quantity

into a discrete number of smaller parts, often integral

multiples of a common quantity (Gray & Neuhoff ).

Its oldest version, which is rounding off, was already

employed in 1898 for the estimation of densities by histo-

gram (Sheppard ).

In this work, a normalized rounding off is adopted to

convert a continuous signal, which is precipitation, into
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discrete values, which are bins, filtering out the noise from

the observed time series. The quantization here adopted

rounds a value x to its nearest lowest integer xq, which is a

multiple of a predefined quantity a, following the rule:

xq ¼ k � a � ⌊ 2xþ a
2a

⌋ (3)

where k is a constant value used to normalize the time

series.
STUDY AREA AND DATA

Study area

The study is applied to the Rio das Velhas catchment, located

in the central area of Minas Gerais state, Brazil. Rio das

Velhas has a length of approximately 801 km and a drainage

area of 29,173 km2, 10% of which is occupied by the metro-

politan area of the city of Belo Horizonte. The river is the

major tributary of Rio Sao Francisco and its catchment

belongs to the Alto Sao Francisco basin. As the main pro-

ductive activities of the area, i.e., agriculture, cattle and

mining, require high amounts of water every year, constant

monitoring and assessment of water resources of the catch-

ment are needed. To this aim, the existing network made of

28 rain gauges needs to be improved.

The precipitation regime is typical of the regionwith tropi-

cal climate, with wet periods during summer (October–

March) and dry periods during winter (April–September)

(Pinto ). The catchment is generally exposed to frequent

drought cycles, especially in the urban area (Santos et al.

). The climate of the entire catchment is influenced by

atmospheric large-scale processes which control the precipi-

tation regime. The main systems governing precipitation in

the area are the South Atlantic Subtropical Anticyclone

(ASAS), the Lines of Instability (LI) and the South Atlantic

Convergence Zone (ZCAS). The former is responsible for

the high decrease in rainfall during the period June–August

and for atmospheric instability during summer, while the

latter generate long-term precipitation with large volumes in

the months November–January. An important role in rainfall

generation is also played by the presence of two mountain

chains, Serra do Espinhaço and Serra da Mantiqueira, in the
://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
eastern and southern parts of the catchment, respectively

(Figure 1). The two chains represent a natural barrier for the

air masses moving from the ocean to inland and the other

way around, generating high instability and frequent precipi-

tation in the area, which is characterized by the highest

yearly rainfall volumes of the catchment.

Precipitation datasets

Two rainfall datasets are considered, one from ground-based

measurements and the other from satellite-based obser-

vations. The ground-based dataset consists of daily

precipitation recorded by 28 rain gauges located throughout

the catchment, with an average density of approximately

1,040 km2 per sensor (Figure 1). The observations are pro-

vided by the Agência Nacional de Águas (ANA) and are

available for the period January 1994–December 2014.

The satellite-based dataset employed is the CMORPH

product, which provides precipitation estimates derived by

the NOAA Climate Prediction Center (CPC) using the

MORPhing technique. The CPC MORPhing technique

uses geostationary satellite infrared (GEO IR) consecutive

images, provided every 30 min, to derive cloud motion vec-

tors via cross-correlation (Joyce et al. ). The cloud

motion vectors are then employed to propagate in time the

passive microwave (PMW) precipitation rate estimates

both in the forward and backward directions, using tem-

poral weights. This algorithm is used to produce the so-

called CMORPH Raw (or version 0.X), which is provided

in a spatial resolution of 8 km × 8 km, with quasi-global cov-

erage (60� N–60� S), and in a 30 min temporal resolution. To

improve the precipitation estimates, bias correction was per-

formed on the raw CMORPH. More details about the bias-

corrected CMORPH product, also known as version 1.0,

can be found in Xie et al. (). CMORPH products are

available from 1998 to the present. In this work, we adopted

version 1.0 which ensures good performance at a fine spatial

scale (Xie et al. ; Sapiano & Arkin ).

Data pre-processing

The optimization of the monitoring rainfall network is con-

ducted using ground-based and satellite-based precipitation

time series, both referring to the period 1998–2014, for a



Figure 1 | Left, localization of Rio das Velhas (red) within Brazil (orange); right, elevation map of the Rio das Velhas catchment. Please refer to the online version of this paper to see this

figure in colour: http://dx.doi.org/10.2166/nh.2021.113.
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total of 17 years of observations, meeting the requirement of

a minimum 10 years of records when entropy is applied to

network design (Keum & Coulibaly ).

The existing rain gauges provide daily precipitation

depth estimates, while CMORPH gives 30 min rain inten-

sity; therefore, we first pre-process satellite observations to

make them comparable to the ground-based ones. First,

we transform CMORPH intensity estimates into precipi-

tation depth and we aggregate them to the daily scale, to

have the same temporal resolution of gauge-based measure-

ments. Finally, to match with the standard rain gauge

minimum resolution, which is 0.1 mm for the case study,

each record lower than 0.1 mm is set to 0 mm.

In both datasets missing records are removed from the

daily time series with the following rule: if at time t missing

information is detected in one of the rain gauges and/or in

one of the satellite time series, then all the observations

referring to time t, in both datasets, are removed.

The presence of zeros (i.e., dry days) in the precipitation

records can affect the information content provided and,

when there is a large number of zeros in the dataset, one
om http://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
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must isolate zero and non-zero values and deal with them sep-

arately (Gong et al. ). One option could be to use a delta

function to deal with zeros, as proposed by Gong et al.

(). As an alternative, dry days could be removed, consider-

ing only wet periods for the analysis, as done by Huang et al.

(). We adopted the second strategy. With the purpose of

isolating only the wet periods, we removed all dry days in

both datasets with the following rule: if at time t no rain is

detected from both CMORPH and rain gauges, then all pre-

cipitation records referring to time t are removed. At the end

of the mentioned pre-processing procedures, both ground-

based and remote sensing-based observations are reduced

from 6,209 to 5,120 daily observations.
METHODOLOGY

The methodology we propose can be summarized in different

steps: first, we perform experiments to rank the existing

ground-based stations (experiment G) and the satellite cells

(experiment S) based on their joint entropy, to identify the

http://dx.doi.org/10.2166/nh.2021.113
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most informative locations. Then, a sensitivity analysis on

quantization parameters a and k is carried out to reduce

uncertainty in estimation of IT-related quantities. Finally,

the optimal monitoring network is found by solving an optim-

ization problem, which defines the locations where new

ground-based sensors should be located, using CMORPH

observations (experiment GS). All three experiments are

solved using a greedy algorithm (Li et al. ; Alfonso et al.

; Banik et al. ; Xu et al. ), aimed to maximize

the joint entropy provided by the network. A summary of

the undertaken experiments is provided in Table 1. Further

details are given in the following subsections.

Ranking experiments

The existing stations and CMORPH cells are ranked to ident-

ify the most informative locations within the catchment. For

experiment G, the set of candidate sensor locations is the set

g ¼ {g1, g2, . . . , gN} of N existing rain gauges. The ranking

procedure can be formulated as follows: from the set of candi-

date stations g, search for the station g� such that H(g�) is the

maximum (Krstanovic & Singh ; Ridolfi et al. ); when

found, label it as g1, store it in the set RG (ranked set g) and

remove g� from the original set g. Then, search for another

station g� among the candidates in the updated set g, such

that JH(g1, g�) is maximum; when found, label it as g2,

append it to RG and remove it from g. Repeat the procedure

until the size of RG is N. The set RG, updated at each step

of the algorithm, corresponds to a quasi-optimal set of stations.

The mathematical procedure of the ranking problem is the

following:

max [JH(g1, g2)] step 2

max {JH{max [JH (g1, g2)], g3}} step 3

max {JH{max . . . JH{max [JH (g1, g2)], g3} . . .}, gN} step N

8><
>:

(4)
Table 1 | Experiment summary

Experiment
name

Decision variables
(description) Decision variables (symbol)

G Existing rain gauges g ¼ {g1, g2, . . . , gN }

S CMORPH cells s ¼ {s1, s2, . . . , sM}

GS Existing rain gauges
and CMORPH cells

gs ¼ {g1, g2, . . . , gm, s1, s2, . .

://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
For experiment S, the set of candidate sensor locations is

the set s ¼ {s1, s2, . . . , sM} of M ¼ 439 available cells in

which the catchment is spatially discretized. Similarly to exper-

iment G, the ranking procedure is as follows. Search in set s

for the cell s� that maximize H(s�); when found, label it as

s1, store it in the set RS (ranked set s) and remove s� from

the original set s. Then, among the remaining candidates in

the updated set s, search for the cell s� such that JH(s1, s�)

is maximum; when found, label it as s2, append it to RS and

remove it from s. Repeat the procedure until the size of RS

is M. The procedure can be mathematically expressed as:

max [JH(s1, s2)] step 2

max {JH{max [JH (s1, s2)], s3}} step 3

max {JH{max . . . JH{max [JH (s1, s2)], s3} . . .}, sM} step M

8><
>:

(5)
Sensitivity analysis of quantization parameters

The estimation of both marginal and joint entropy requires

the calculation of probabilities (see Equations (1) and (2)),

which is done through frequency analysis of time series, pre-

viously filtered out with Equation (3), i.e., the quantization

procedure (Alfonso et al. a; Li et al. ; Huang et al.

). The filtering process requires the a priori assumption

of the quantization parameters k and a. It means that

obtained entropy-related quantities are influenced by the

values of parameters k and a, which thus, in turn, have

implications for the final layout of the optimized network.

However, Alfonso et al. () demonstrated that, when

varying the quantization parameters, for each quasi-optimal

set of stations, there exist most probable values of joint

entropy, i.e., JH values that can be obtained using different

combinations of a and k. These JH values will be referred

to from now on as the most frequently selected or most
Criterion/Objective function

max {JH{max . . . JH{max [JH (g1, g2)], g3} . . .}, gN }

max {JH{max . . . JH{max [JH (s1, s2)], s3} . . .}, sM}

. , sM�m} max {JH{max . . . JH{max [JH (g1, g2, . . . , gm)], s1} . . .}, sn}
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probable joint entropy values. Following the procedure pro-

posed by the same authors, we performed a sensitivity

analysis on quantization parameters to identify the couple

of values providing the most probable values of joint entropy

for each quasi-optimal set of stations. The analysis is per-

formed both on the ground-based and satellite-based

observations. It can be summarized in the following steps:

(a) Assume initial values for parameters k and a in

Equation (3).

(b) Rank stations based on their joint entropy and deter-

mine quasi-optimal sets of sensors (RG or RS).

(c) Estimate joint entropy for each set identified in point b),

varying parameters k and a in the ranges

k ¼ 1, 2, . . . , 50 and a ¼ 1, 2, . . . , 50.

(d) Select the final values for parameters k and a which pro-

vide the most probable joint entropy values for each set

of quasi-optimal stations.

Monitoring network optimization

The optimal layout of sensors’ locations is defined with an

optimization procedure (experiment GS) that takes into

account the information provided by both ground-based

and satellite-based datasets. The optimal network is defined

in two steps: first, select a set of quasi-optimal rain gauges

from the existing network, i.e., the first m sensors from set

RG obtained in experiment G; second, identify n new

sensor locations to complement these m stations, choosing

them among all the CMORPH cells available over the catch-

ment, which are directly treated as a candidate for a new

station location (Chen et al. ; Yeh et al. ). The

final layout is then defined by the optimal combination of

a subset of ranked existing stations and a set of new

locations, which together provide the highest information

content.

The optimization problem is solved by the greedy algor-

ithm explained in the previous section. Its mathematical

formulation is given by:

max {JH{max . . . JH{max [JH (g1, g2, . . . , gm)], s1} . . .}, sn}

(6)

where the set {g1, g2, . . . , gm} is a subset of the first m

stations in set RG. Moreover, the set {s1, s2, . . . , sn} is the
om http://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
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same set s from experiment S, but excluding the cells

where the ground stations in set {g1, g2, . . . , gm} are

located. Therefore, the number of cells used as candidates

in this experiment is M �m.
RESULTS

First, results of the ranking experiments of the datasets are

shown, followed by our findings on the sensitivity analysis

and by the optimal network obtained.

Ranking experiments

A map of the ranked existing rain gauges is shown in

Figure 2, while the values of joint entropy obtained

with an increasing number of stations is presented in

Figure 3(b). The stations in the graph of Figure 3(b)

increase according to the ranking obtained, so for

instance, JH obtained with two stations is the one pro-

vided by the first two ranked stations, JH obtained with

three sensors is the one given by the first three ranked

stations and so on. Observing Figure 3(b), we can

notice that, as the number of sensors increases, the joint

entropy tends to converge to a stable value, in agreement

with several previous works (Chen et al. ; Wei et al.

; Yeh et al. ). In other words, above a certain

number of stations, adding new sensors does not provide a

significant improvement in the information given by the

entire network. The total amount of information given by

the existing network is JHG ¼ 8:7 bits and already the first

ten ranked sensors give almost 90% of JHG.

The results of the ranking of CMORPH cells are pre-

sented in Figure 3(a) and 3(b). In both cases, only the first

28 cells ranked are presented, to facilitate the comparison

with the existing rain gauge network, which is made up of

28 stations. At the catchment boundary, only the cells

with more than 50% of their area falling inside the catch-

ment are considered in the ranking process. Some

boundary cells were therefore excluded, since they pro-

vide information mainly referring to an area that is

outside our case study. To build the map of Figure 3(a),

the identifiers of the satellite cells selected are placed in

the centre of the selected cell. This is the reason why,



Figure 2 | Map of the existing rain gauges with the corresponding ranking (case G) –best

rank is 1.
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when a boundary cell is selected, the corresponding iden-

tifier could appear to be outside the catchment

boundaries.

It is interesting to note that none of the existing rain

gauge locations is selected. However, we can notice that

both the total amount of information provided by a

satellite-based network, which is JHS ¼ 8:6 bits, and the

trend of joint entropy with an increasing number of stations

are very similar to the corresponding obtained for rain gauge

observations (Figure 3(b)).
://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
Sensitivity analysis of quantization parameters

Bins’ width and probabilities of occurrence evaluated with

quantization are influenced by the parameters k and a of

Equation (3) and, therefore, a sensitivity analysis on those

parameters is performed. The quantization parameters k

and a are first both assumed equal to 1, as suggested in

Huang et al. () and Keum & Coulibaly (). These

values are adopted to transform both rain gauges and

CMORPH time series, which are, in turn, employed to

solve Equations (4) and (5). The stations ranked at

each step of the greedy algorithm correspond to a set of

quasi-optimal stations. For each set and each data source

we then compute joint entropy with parameters k and a

both varying in the ranges k ¼ 1, 2, . . . , 50 and

a ¼ 1, 2, . . . , 50, for a total of 2,500 possible

combinations.

The two-dimensional frequency distribution of joint

entropy with an increasing number of stations is presented

in Figure 4. For an increasing number of sensors (x-axis),

joint entropy values (y-axis) are obtained for each combi-

nation of parameters k and a. Our findings confirmed

those of Alfonso et al. (), i.e., that there exist JH values

that can be obtained using different combinations of a and

k, i.e., the most probable joint entropy values. Figure 4(a)

shows that for rain gauge observations there is a well-

defined interval of most probable JH values, while for

CMORPH time series the same interval is still present but

more dispersed (Figure 4(b)).

The main idea of this sensitivity analysis is to find the

combination of parameter k and a which leads to the most

probable values of JH, to reduce the uncertainty related to

the evaluation of joint entropy. Since parameter values we

first assumed (a¼ 1, k¼ 1) is one of the combinations pro-

viding the most frequent JH values, for both CMORPH

and rain gauges, we decided to adopt k ¼ 1 and a ¼ 1 as

the final values to perform quantization. These values are

in agreement with those suggested by Huang et al. ()

and Keum et al. ().

Monitoring network optimization

The optimal monitoring network is defined with an optimiz-

ation problem that combines information provided by



Figure 3 | (a) Map of the first 28 ranked CMORPH cells (case S); (b) joint entropy (JH) variation with increasing number of locations selected, both for existing rain gauges (light blue) and

CMORPH cells (pink). Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/nh.2021.113.
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ground-based and satellite-based observations. We take a

subset made of m optimal rain gauges and complement it

with locations chosen among CMORPH cells, with the

aim of maximizing the information provided by the final net-

work, as expressed by Equation (6). The network is

completed when adding one more station would provide

an increase in total joint entropy, in principle, lower

than 1%.

The initial set of quasi-optimal rain gauges should be

defined so that it provides a high amount of information,

which is also lower than the maximum value of joint

entropy given by the existing network. In other words, if

we refer to the graph of Figure 3(b), the point representing

the initial subset should be located in the ascending part,

before it reaches the stable value of JH. In this way, we

ensure that the high information content of the existing
om http://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
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network is preserved but that, at the same time, the network

can be improved. To this end, we take m ¼ 8 rain gauges,

e.g., the first eight ranked.

The results we obtained are presented in Figure 5. To

complete the optimal network only eight sensors are

needed, four of which are placed in the west, two in the

south and the remaining two in the north-east. Looking

at Figure 5(b), it can be observed that combining a set of

quasi-optimal rain gauges and a set of quasi-optimal satel-

lite cells we obtain a total amount of information

JHGS ¼ 9 bits, higher than the total information provided

by both the rain gauges and CMORPH networks. This

value is achieved with fewer sensors. This is probably

due to the fact that the observations from the two datasets

are less correlated than those coming from the same data

source.

http://dx.doi.org/10.2166/nh.2021.113


Figure 4 | Two-dimensional frequency distribution of joint entropy with increasing numbers of stations obtained for (a) rain gauges and (b) CMORPH observations.

Figure 5 | (a) Map of the locations of the optimal network (case GS). The light blue circles stand for the initial rain gauges’ subset, orange squares represent the selected CMORPH cells and

black circles represent the existing rain gauges left out from optimization; (b) variation of joint entropy values with increasing number of stations obtained for rain gauges (light

blue), CMORPH (pink) and optimal network (orange). Please refer to the online version of this paper to see this figure in colour: http://dx.doi.org/10.2166/nh.2021.113.
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DISCUSSION

To verify whether the ground-based and satellite-based data-

sets are capturing rainfall variability in the same way, their

information content was analysed using the concept of

variance.

For satellite-based observations, we computed the var-

iance of time series recorded in each cell of the grid

within the catchment, while for ground-based observations

we used the time series recorded by the existing network,

applying linear interpolation to derive variance values in

ungauged locations. The results are presented in Figure 6.

Comparing the two maps, it emerges that time series

recorded from rain gauges exhibit generally higher variance

than those coming from satellite. Despite the difference in

the absolute values, the two datasets exhibit similar spatial

patterns, with the highest values localized in the western,

southern and south-eastern parts of the catchment. The

high variance in the last two of those areas is due to the
Figure 6 | Variance of time series evaluated from (a) rain gauge observations and (b) CMORPH

om http://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
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presence of the mountainous chains that block air masses

moving from the ocean to inland and the other way

around, generating high instability in the precipitation.

Comparing the map of the variance (Figure 6) with the

location of the first eight ranked sensors (Figure 2), the sen-

sors themselves are located in the areas with highest

variance. Similar results can be observed for experiment S

(Figure 3(a)). These findings confirm that entropy is

mainly driven by precipitation variability and, therefore,

time series variance (Alfonso et al. ) and that

CMORPH precipitation estimates have high capability of

capturing rainfall variability (Xie et al. ).

Our study gives insights into the information content of

satellite data, both from a statistical and an IT perspective. It

emerged that, when merging observations provided by rain

gauges and satellite, an improvement in terms of infor-

mation amount is obtained. However, more research in

this direction is needed, to verify whether this result is due

either to the optimal layout defined or to the combination
observations.
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of two less dependent data sources. To this aim, future devel-

opments should test the efficiency of the optimal network,

for example, by comparing the catchment response in

terms of discharge by means of a hydrological model. Simi-

lar research is currently ongoing.

It is noteworthy that using satellite observations to

derive data at ungauged locations avoids introducing

additional bias related to rain gauge data interpolation,

which are to be added to the systematic bias of ground

measurements, as for instance under-catch due to wind

effects (Pollock et al. ), evaporation and blowing snow

(WMO ). On the other hand, using satellite data to

identify locations for new sensors has the disadvantage of

working with a coarser resolution with respect to ground-

based data. Therefore, additional considerations, such as

areas’ accessibility, should be done to properly locate new

stations.

Even though the optimal network does not contain

some of the existing stations located in the inner part of

the catchment (Figure 5(b)), these stations should be kept

operating, both to improve rainfall knowledge in the area

and to meet minimum density requirements suggested by

the WMO (). It is worth noting that accuracy, under-

stood as the deviation of the measurement from the real

rainfall value, is not included in our analysis. We are

aware that rainfall, as for instance, measured by gauge-

radar comparison, can have an average difference of ±8%

(Vieux & Vieux ), and that similar situations can

happen with satellite data. We are also aware that accuracy

of rainfall estimates depends on rainfall intensity, topogra-

phy and climatic conditions of the area and that the use of

remote sensing products adds even more uncertainties to

these estimates (Yang & Luo ). Further considerations

in this direction could be addressed in future research,

e.g., adding to each cell time series black noise within a pre-

defined range and repeating the optimization procedure,

obtaining a family of Pareto fronts whose probabilistic distri-

bution can be analysed. Finally, some limitations may arise

when applying the methods in small catchments, as some

of them could be characterized by localized convective rain-

fall events, while some others could have more uniformly

distributed precipitation, depending on the climate and

topography of the study area.
://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
CONCLUSIONS

In this paper we present a method to optimize rain gauge

networks using satellite observations with an entropy-

based approach. The main idea is to use CMORPH precipi-

tation records to derive information at ungauged locations

and identify the most suitable locations to place new

ground-based sensors, based on their information content.

To quantify the information achievable by rainfall

records we applied the concept of joint entropy (JH). To

identify the most informative locations within the catch-

ment, we ranked the existing rain gauges and satellite cells

based on their joint entropy, employing a greedy ranking

algorithm. The results show that, in both cases, the first

eight ranked stations are located in the areas with the high-

est variance of time series, confirming what had emerged in

previous literature works, i.e., that entropy is mainly driven

by precipitation variability. Although the locations selected

in the two optimizations were not matching, the two net-

works, rain gauge-based and satellite-based, provide a

similar amount of information from the IT perspective.

Finally, we combined the information coming from the

two datasets to define the optimal network layout. The opti-

mal network configuration is made of the first eight ranked

existing rain gauges, complemented with eight locations

chosen from CMORPH observations through an optimiz-

ation problem, based on the maximization of the joint

entropy. The number of existing rain gauges, i.e., eight, is

chosen in order to preserve the high information content

of the original network, while the addition of satellite cells

is stopped when the increment in joint entropy is very lim-

ited, i.e., lower than 1%. The total amount of information

provided by the optimal network is higher than the corre-

sponding value obtained in the two previous networks

considering the same number of sensors. Also, in this case,

the most informative locations were found to be in the

areas of the catchment with the highest variance. It is impor-

tant to note that, although the optimal layout does not

include all the existing rain gauges, we intend to preserve

also the stations excluded, in order to maintain time series

accuracy and length and to obtain a robust network.

An investigation of the variance distribution over the

catchment from the two datasets was also conducted, to
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check whether the two data sources were capturing the

same rainfall variability. It emerged that, despite a difference

in the absolute value, with higher values for ground-based

observations, the spatial pattern of variance is the same

for both data sources. The south and south-east areas and

the western part of the catchment have the highest variance,

probably due to the influence of topography.

In conclusion, satellite observations proved to be a

powerful tool to derive rainfall records at ungauged

locations to solve the network optimization problem. How-

ever, this result should be interpreted carefully and more

research is needed to verify whether the significant infor-

mation obtained is due either to the combination of two

different and less dependent data sources or to the specific

spatial configuration of sensors. Furthermore, the spatial

scale of CMORPH product, even if finer than that of other

satellite-based products, still remains coarser than the resol-

ution of rain gauges. Other considerations, such as areas’

accessibility, are needed to precisely locate the sensors

within the identified cells.
ACKNOWLEDGEMENTS

Satellite observations are from CMORPH, released by Xie

et al. () (website https://data.nodc.noaa.gov/cgi-bin/iso?

id=gov.noaa.ncdc:C00948#). Ground-based precipitation

data are from Agência Nacional de Águas, HidroWeb

Portal of the National Water Resources Information System

(SNIRH) (website http://www.snirh.gov.br/hidroweb). The

authors declare no competing interest. C.B., F.R. and F.N.

were supported by La Sapienza University of Rome in Italy;

E.R. was partially supported by the Centre of Natural

Hazards and Disaster Science (CNDS) in Sweden (www.

cnds.se); L.P. was supported by Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

The contributions of the authors was as follows: CB:

conceptualization, data analysis, writing, editing, analysis of

the results; ER: study orientation, methods, manuscript

structure, analysis of the results, editing; LP: case study,

data collection; FR: analysis of the results, editing; FN:

analysis of the results, editing; LA: study orientation,

methods, manuscript structure, analysis of the results,

editing. We thank the two anonymous reviewers for their
om http://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf

er 2021
positive and constructive comments, which helped improve

the paper.
DATA AVAILABILITY STATEMENT

All relevant data are available from an online repository or

repositories. https://www.ncei.noaa.gov/access/metadata/

landing-page/bin/iso?id¼gov.noaa.ncdc:C00948#; http://

www.snirh.gov.br/hidroweb.
REFERENCES
Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P.,
Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., Bolvin, D.,
Gruber, A., Susskind, J., Arkin, P. & Nelkin, E.  The
version-2 global precipitation climatology project (GPCP)
monthly precipitation analysis (1979-present). Journal of
Hydrometeorology 4 (6), 1147–1167. https://doi.org/10.1175/
1525-7541(2003)004&lt;1147:TVGPCP> 2.0.CO;2.

Alfonso, L., Lobbrecht, A. & Price, R. a Information theory-
based approach for location of monitoring water level gauges
in polders. Water Resources Research 46 (10). https://doi.
org/10.1029/2009WR008101.

Alfonso, L., Lobbrecht, A. & Price, R. b Optimization of water
level monitoring network in polder systems using
information theory. Water Resources Research 46 (12).
https://doi.org/10.1029/2009WR008953.

Alfonso, L., He, L., Lobbrecht, A. & Price, R.  Information
theory applied to evaluate the discharge monitoring network
of the Magdalena River. Journal of Hydroinformatics 15 (1),
211–228. https://doi.org/10.2166/hydro.2012.066.

Alfonso,L.,Ridolfi, E.,Gaytan-Aguilar, S.,Napolitano, F.&Russo, F.
Ensemble entropy formonitoring network design.Entropy
16 (3), 1365–1375. https://doi.org/10.3390/e16031365.

Alfonso, L., Mazzoleni, M., Chacon-Hurtado, J. C. & Solomatine,
D. P.  Optimal Design of Hydrometric Monitoring
Networks with Dynamic Components Based on Information
Theory. In: 12th International Conference on
Hydroinformatics, Incheon, South Korea, 21–26 August.

Amorocho, J. & Espildora, B.  Entropy in the assessment of
uncertainty in hydrologic systems and models. Water
Resources Research. https://doi.org/10.1029/
WR009i006p01511.

Banik, B. K., Alfonso, L., Di Cristo, C. & Leopardi, A.  Greedy
algorithms for sensor location in sewer systems. Water
(Switzerland) 9 (11). https://doi.org/10.3390/w9110856.

Bertini, C., Buonora, L., Ridolfi, E., Russo, F. & Napolitano, F.
On the use of satellite rainfall data to design a dam in an
ungauged site. Water 12 (11), 3028. https://doi.org/10.3390/
w12113028.

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00948#
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00948#
https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00948#
http://www.snirh.gov.br/hidroweb
http://www.snirh.gov.br/hidroweb
http://www.cnds.se
http://www.cnds.se
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00948#
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00948#
https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C00948#
http://www.snirh.gov.br/hidroweb
http://www.snirh.gov.br/hidroweb
http://dx.doi.org/10.1175/1525-7541(2003)004%3C1147:TVGPCP%3E2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2003)004%3C1147:TVGPCP%3E2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2003)004%3C1147:TVGPCP%3E2.0.CO;2
http://dx.doi.org/10.1029/2009WR008101
http://dx.doi.org/10.1029/2009WR008101
http://dx.doi.org/10.1029/2009WR008101
http://dx.doi.org/10.1029/2009WR008953
http://dx.doi.org/10.1029/2009WR008953
http://dx.doi.org/10.1029/2009WR008953
http://dx.doi.org/10.2166/hydro.2012.066
http://dx.doi.org/10.2166/hydro.2012.066
http://dx.doi.org/10.2166/hydro.2012.066
http://dx.doi.org/10.3390/e16031365
http://dx.doi.org/10.1029/WR009i006p01511
http://dx.doi.org/10.1029/WR009i006p01511
http://dx.doi.org/10.3390/w9110856
http://dx.doi.org/10.3390/w9110856
http://dx.doi.org/10.3390/w12113028
http://dx.doi.org/10.3390/w12113028


633 C. Bertini et al. | Optimization of rain gauge network using satellite and ground-based data Hydrology Research | 52.3 | 2021

Downloaded from http
by guest
on 28 September 2021
Caselton, W. F. & Husain, T.  Hydrologic networks:
information transmission. Journal of the Water Resources
Planning and Management Division, ASCE 106, 503–520.

Chacon-Hurtado, J. C., Alfonso, L. & Solomatine, D. P. 
Rainfall and streamflow sensor network design: a review of
applications, classification, and a proposed framework.
Hydrology and Earth System Sciences 21 (6), 3071–3091.
https://doi.org/10.5194/hess-21-3071-2017.

Chen, Y. C., Wei, C. & Yeh, H. C.  Rainfall network design
using kriging and entropy. Hydrological Processes 22 (3),
340–346. https://doi.org/10.1002/hyp.6292.

Contreras, J., Ballari, D., de Bruin, S. & Samaniego, E. 
Rainfall monitoring network design using conditioned Latin
hypercube sampling and satellite precipitation estimates: an
application in the ungauged Ecuadorian Amazon.
International Journal of Climatology 39 (4), 2209–2226.
https://doi.org/10.1002/joc.5946.

Dai, Q., Bray, M., Zhuo, L., Islam, T. & Han, D.  A scheme for
rain gauge network design based on remotely sensed rainfall
measurements. Journal of Hydrometeorology 18 (2), 363–379.
https://doi.org/10.1175/jhm-d-16-0136.1.

Fahle, M., Hohenbrink, T. L., Dietrich, O. & Lischeid, G. 
Temporal variability of the optimal monitoring setup assessed
using information theory. Water Resources Research 51 (9),
7723–7743. https://doi.org/10.1002/2015WR017137.

Gong, W., Yang, D., Gupta, H. V. & Nearing, G.  Estimating
information entropy for hydrological data: one-dimensional
case. Water Resources Research 50 (6), 5003–5018. https://
doi.org/10.1002/2014WR015874.

Gray, R. M. & Neuhoff, D. L.  Quantization. IEEE
Transactions on Information Theory 44 (6), 2325–2383.

Hofstra, N., Haylock, M., New, M., Jones, P. & Frei, C. 
Comparison of six methods for the interpolation of daily,
European climate data. Journal of Geophysical Research
Atmospheres 113 (D21). https://doi.org/10.1029/
2008JD010100.

Hsu, K. L., Gao, X., Sorooshian, S. & Gupta, H. V. 
Precipitation estimation from remotely sensed information
using artificial neural networks. Journal of Applied
Meteorology 36 (9), 1176–1190. https://doi.org/10.1175/
1520-0450(1997)036&lt;1176:PEFRSI> 2.0.CO;2.

Huang, Y., Zhao, H., Jiang, Y., Lu, X., Hao, Z. & Duan, H. 
Comparison and analysis of different discrete methods and
entropy-based methods in rain gauge network design. Water
(Switzerland) 11 (7). https://doi.org/10.3390/w11071357.

Huang, Y., Zhao, H., Jiang, Y. & Lu, X.  A method for the
optimized design of a rain gauge network combined with
satellite remote sensing data. Remote Sensing 12 (1), 194.
https://doi.org/10.3390/RS12010194.

Huffman, G. J., Adler, R. F., Bolvin, D. T., Gu, G., Nelkin, E. J.,
Bowman, K. P., Hong, Y., Stocker, E. F. & Wolff, D. B. 
The TRMM multisatellite precipitation analysis (TMPA):
quasi-global, multiyear, combined-sensor precipitation
estimates at fine scales. Journal of Hydrometeorology 8 (1),
38–55. https://doi.org/10.1175/JHM560.1.
://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
Joyce, R. J., Janowiak, J. E., Arkin, P. A. & Xie, P.  CMORPH:
A method that produces global precipitation estimates from
passive microwave and infrared data at high spatial and
temporal resolution. Journal of Hydrometeorology 5 (3),
487–503. https://doi.org/10.1175/1525-7541(2004)
005&lt;0487:CAMTPG> 2.0.CO;2.

Keum, J. & Coulibaly, P.  Information theory-based decision
support system for integrated design of multivariable
hydrometric networks. Water Resources Research 53 (7),
6239–6259. https://doi.org/10.1002/2016WR019981.

Keum, J., Kornelsen, K. C., Leach, J. M. & Coulibaly, P. 
Entropy applications to water monitoring network design: a
review. Entropy 19 (11). https://doi.org/10.3390/e19110613.

Keum, J., Awol, F. S., Ursulak, J. &Coulibaly, P.  Introducing the
ensemble-based dual entropy and multiobjective optimization
for hydrometric network design problems: EnDEMO. Entropy
21 (10), 947. https://doi.org/10.3390/e21100947.

Kraskov, A., Stögbauer, H., Andrzejak, R. G. & Grassberger, P.
 Hierarchical clustering using mutual information.
Europhysics Letters 70 (2), 278–284. https://doi.org/10.1209/
epl/i2004-10483-y.

Krstanovic, P. F. & Singh, V. P.  Evaluation of rainfall
networks using entropy: II. Application. Water Resources
Management 6 (4), 295–314. https://doi.org/10.1007/
BF00872282.

Leach, J. M., Coulibaly, P. & Guo, Y.  Entropy based
groundwater monitoring network design considering spatial
distribution of annual recharge. Advances in Water
Resources 96, 108–119. https://doi.org/10.1016/j.advwatres.
2016.07.006.

Li, J., Bárdossy, A., Guenni, L. & Liu, M.  A Copula based
observation network design approach. Environmental
Modelling and Software 26 (11), 1349–1357. https://doi.org/
10.1016/j.envsoft.2011.05.001.

Li, C., Singh, V. P. & Mishra, A. K.  Entropy theory-based
criterion for hydrometric network evaluation and design:
maximum information minimum redundancy. Water
Resources Research 48 (5). https://doi.org/10.1029/
2011WR011251.

Li, Y., Grimaldi, S., Walker, J. P. & Pauwels, V. R. N. 
Application of remote sensing data to constrain operational
rainfall-driven flood forecasting: a review. Remote Sensing
8 (6), 456. https://doi.org/10.3390/rs8060456.

Li, S., Heng, S., Siev, S., Yoshimura, C., Saavedra, O. & Ly, S. 
Multivariate interpolation and information entropy for
optimizing raingauge network in the Mekong River Basin.
Hydrological Sciences Journal 64 (12), 1439–1452. https://
doi.org/10.1080/02626667.2019.1646426.

Maddock, T.  An optimum reduction of gauges to meet data
program constraints. Hydrological Sciences Bulletin 19 (3),
337–345. https://doi.org/10.1080/02626667409493920.

Mazzoleni, M., Brandimarte, L. & Amaranto, A.  Evaluating
precipitation datasets for large-scale distributed hydrological
modelling. Journal of Hydrology 578, 124076. https://doi.org/
10.1016/j.jhydrol.2019.124076.

http://dx.doi.org/10.5194/hess-21-3071-2017
http://dx.doi.org/10.5194/hess-21-3071-2017
http://dx.doi.org/10.1002/hyp.6292
http://dx.doi.org/10.1002/hyp.6292
http://dx.doi.org/10.1002/joc.5946
http://dx.doi.org/10.1002/joc.5946
http://dx.doi.org/10.1002/joc.5946
http://dx.doi.org/10.1175/JHM-D-16-0136.1
http://dx.doi.org/10.1175/JHM-D-16-0136.1
http://dx.doi.org/10.1175/JHM-D-16-0136.1
http://dx.doi.org/10.1002/2015WR017137
http://dx.doi.org/10.1002/2015WR017137
http://dx.doi.org/10.1002/2014WR015874
http://dx.doi.org/10.1002/2014WR015874
http://dx.doi.org/10.1002/2014WR015874
http://dx.doi.org/10.1109/18.720541
http://dx.doi.org/10.1029/2008JD010100
http://dx.doi.org/10.1029/2008JD010100
http://dx.doi.org/10.1175/1520-0450(1997)036%3C1176:PEFRSI%3E2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1997)036%3C1176:PEFRSI%3E2.0.CO;2
http://dx.doi.org/10.3390/w11071357
http://dx.doi.org/10.3390/w11071357
http://dx.doi.org/10.3390/rs12010194
http://dx.doi.org/10.3390/rs12010194
http://dx.doi.org/10.3390/rs12010194
http://dx.doi.org/10.1175/JHM560.1
http://dx.doi.org/10.1175/JHM560.1
http://dx.doi.org/10.1175/JHM560.1
http://dx.doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2004)005%3C0487:CAMTPG%3E2.0.CO;2
http://dx.doi.org/10.1002/2016WR019981
http://dx.doi.org/10.1002/2016WR019981
http://dx.doi.org/10.1002/2016WR019981
http://dx.doi.org/10.3390/e19110613
http://dx.doi.org/10.3390/e19110613
http://dx.doi.org/10.3390/e21100947
http://dx.doi.org/10.3390/e21100947
http://dx.doi.org/10.3390/e21100947
http://dx.doi.org/10.1209/epl/i2004-10483-y
http://dx.doi.org/10.1007/BF00872282
http://dx.doi.org/10.1007/BF00872282
http://dx.doi.org/10.1016/j.advwatres.2016.07.006
http://dx.doi.org/10.1016/j.advwatres.2016.07.006
http://dx.doi.org/10.1016/j.advwatres.2016.07.006
http://dx.doi.org/10.1016/j.envsoft.2011.05.001
http://dx.doi.org/10.1016/j.envsoft.2011.05.001
http://dx.doi.org/10.1029/2011WR011251
http://dx.doi.org/10.1029/2011WR011251
http://dx.doi.org/10.1029/2011WR011251
http://dx.doi.org/10.3390/rs8060456
http://dx.doi.org/10.3390/rs8060456
http://dx.doi.org/10.1080/02626667.2019.1646426
http://dx.doi.org/10.1080/02626667.2019.1646426
http://dx.doi.org/10.1080/02626667409493920
http://dx.doi.org/10.1080/02626667409493920
http://dx.doi.org/10.1016/j.jhydrol.2019.124076
http://dx.doi.org/10.1016/j.jhydrol.2019.124076
http://dx.doi.org/10.1016/j.jhydrol.2019.124076


634 C. Bertini et al. | Optimization of rain gauge network using satellite and ground-based data Hydrology Research | 52.3 | 2021

Downloaded fr
by guest
on 28 Septemb
Mishra, A. K. & Coulibaly, P.  Developments in hydrometric
network design: a review. Reviews of Geophysics 47 (2).
https://doi.org/10.1029/2007RG000243.

Pádua, L. H. R., Nascimento, N. D. O., Silva, F. E. O. E. & Alfonso,
L.  Analysis of the fluviometric network of rio das velhas
using entropy. Revista Brasileira de Recursos Hidricos 24.
https://doi.org/10.1590/2318-0331.241920180188.

Pinto, E. J. D. A.  Estudo De Indicadores Climáticos Para a
Previsão De Longo Termo De Vazões Na Bacia Do Alto São
Francisco (Study of Climate Indicators for Long Term Flow
Forecasting in the Upper São Francisco Basin). PhD thesis,
Departamento de Engenharia Sanitária e Ambiental,
Departamento de Engenharia Hidráulica e Recursos Hídricos,
Universidade Federal deMinas Gerais, Belo Horizonte, Brazil.

Pollock, M. D., O’Donnell, G., Quinn, P., Dutton, M., Black, A.,
Wilkinson, M. E., Colli, M., Stagnaro, M., Lanza, L. G.,
Lewis, E., Kilsby, C. G. & O’Connell, P. E.  Quantifying
and mitigating wind-induced undercatch in rainfall
measurements. Water Resources Research 54 (6). https://doi.
org/10.1029/2017WR022421.

Ridolfi, E., Montesarchio, V., Russo, F. & Napolitano, F.  An
entropy approach for evaluating the maximum information
content achievable by an urban rainfall network. Natural
Hazards and Earth System Science 11 (7), 2075–2083. https://
doi.org/10.5194/nhess-11-2075-2011.

Ridolfi, E., Yan, K., Alfonso, L., Di Baldassarre, G., Napolitano, F.,
Russo, F. & Bates, P. D.  An entropy method for
floodplain monitoring network design. AIP Conference
Proceedings 1479 (1), 1780–1783. https://doi.org/10.1063/1.
4756522.

Ridolfi, E., Alfonso, L., Di Baldassarre, G., Dottori, F., Russo, F. &
Napolitano, F. a An entropy approach for the
optimization of cross-section spacing for river modelling.
Hydrological Sciences Journal 59, 126–137. https://doi.org/
10.1080/02626667.2013.822640.

Ridolfi, E., Servili, F., Magini, R., Napolitano, F., Russo, F. &
Alfonso, L. b Artificial Neural Networks and entropy-
based methods to determine pressure distribution in water
distribution systems. Procedia Engineering 89, 648–655.
https://doi.org/10.1016/j.proeng.2014.11.490.

Santos, M. S., Costa, V. A. F., Fernandes, W. D. S. & de Paes, R. P.
 Time-space characterization of droughts in the São
Francisco river catchment using the Standard Precipitation
Index and continuous wavelet transform. Revista Brasileira
de Recursos Hidricos 24. https://doi.org/10.1590/2318-0331.
241920180092.

Sapiano, M. R. P. & Arkin, P. A.  An intercomparison and
validation of high-resolution satellite precipitation estimates
with 3-hourly gauge data. Journal of Hydrometeorology 10 (1),
149–166. https://doi.org/10.1175/2008JHM1052.1.

Shannon, C. E.  A mathematical theory of communication.
Bell System Technical Journal 27 (4), 623–656. https://doi.
org/10.1002/j.1538-7305.1948.tb00917.x.

Shannon, C. E. & Weaver, W.  The Mathematical Theory of
Communication. University of Illinois Press, Urbana, IL, USA.
om http://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf

er 2021
Sheppard, W. F.  On the calculation of the most probable
values of frequency-constants, for data arranged according to
equidistant division of a scale. Proceedings of the London
Mathematical Society s1–29 (1), 353–380. https://doi.org/10.
1112/plms/s1-29.1.353.

Vieux, B. & Vieux, J.  Rainfall accuracy considerations using
radar and rain gauge networks for rainfall-runoff monitoring.
Journal of Water Management Modeling 13. https://doi.org/
10.14796/JWMM.R223-17.

Walker, D., Forsythe, N., Parkin, G. & Gowing, J.  Filling
the observational void: scientific value and quantitative
validation of hydrometeorological data from a
community-based monitoring programme. Journal of
Hydrology 538, 713–725. https://doi.org/10.1016/j.
jhydrol.2016.04.062.

Wei, C., Yeh, H. C. & Chen, Y. C.  Spatiotemporal scaling
effect on rainfall network design using entropy. Entropy 16
(8), 4626–4647. https://doi.org/10.3390/e16084626.

Werstuck, C. & Coulibaly, P.  Hydrometric network design
using dual entropy multi-objective optimization in the
Ottawa River basin. Hydrology Research 48 (6), 1639–1651.
https://doi.org/10.2166/nh.2016.344.

WMO  Guide to Hydrological Practices. Volume I:
Hydrology–from Measurement to Hydrological Information.
World Meteorological Organization, Geneva, Switzerland.

Xie, P., Yatagai, A., Chen, M., Hayasaka, T., Fukushima, Y., Liu, C.
& Yang, S.  A gauge-based analysis of daily precipitation
over East Asia. Journal of Hydrometeorology 8 (3), 607–626.
https://doi.org/10.1175/JHM583.1.

Xie, P., Joyce, R., Wu, S., Yoo, S. H., Yarosh, Y., Sun, F. & Lin, R.
 Reprocessed, bias-corrected CMORPH global high-
resolution precipitation estimates from 1998. Journal of
Hydrometeorology 18 (6), 1617–1641. https://doi.org/10.
1175/JHM-D-16-0168.1.

Xie, P., Joyce, R., Wu, S., Yoo, S.-H., Yarosh, Y., Sun, F. & Lin, R.
 NOAA CDR Program (2019): NOAA Climate Data
Record (CDR) of CPC Morphing Technique (CMORPH) High
Resolution Global Precipitation Estimates, Version 1 [a].
NOAA National Centers for Environmental Information.
https://doi.org/10.25921/w9va-q159.

Xu, H., Xu, C. Y., Sælthun, N. R., Xu, Y., Zhou, B. & Chen, H.
 Entropy theory based multi-criteria resampling of
rain gauge networks for hydrological modelling – A case
study of humid area in southern China. Journal of
Hydrology 525, 138–151. https://doi.org/10.1016/j.jhydrol.
2015.03.034.

Xu, P., Wang, D., Singh, V. P., Wang, Y., Wu, J., Wang, L., Zou, X.,
Liu, J., Zou, Y. & He, R.  A kriging and entropy-based
approach to raingauge network design. Environmental Research
161, 61–75. https://doi.org/10.1016/j.envres.2017.10.038.

Yang, Y. & Burn, D. H.  An entropy approach to data
collection network design. Journal of Hydrology 157,
307–324. https://doi.org/10.1016/0022-1694(94)90111-2.

Yang, Y. & Luo, Y.  Evaluating the performance of remote
sensing precipitation products CMORPH, PERSIANN, and

http://dx.doi.org/10.1029/2007RG000243
http://dx.doi.org/10.1029/2007RG000243
http://dx.doi.org/10.1590/2318-0331.241920180188
http://dx.doi.org/10.1590/2318-0331.241920180188
http://dx.doi.org/10.1029/2017WR022421
http://dx.doi.org/10.1029/2017WR022421
http://dx.doi.org/10.1029/2017WR022421
http://dx.doi.org/10.5194/nhess-11-2075-2011
http://dx.doi.org/10.5194/nhess-11-2075-2011
http://dx.doi.org/10.5194/nhess-11-2075-2011
http://dx.doi.org/10.1063/1.4756522
http://dx.doi.org/10.1063/1.4756522
http://dx.doi.org/10.1080/02626667.2013.822640
http://dx.doi.org/10.1080/02626667.2013.822640
http://dx.doi.org/10.1016/j.proeng.2014.11.490
http://dx.doi.org/10.1016/j.proeng.2014.11.490
http://dx.doi.org/10.1016/j.proeng.2014.11.490
http://dx.doi.org/10.1590/2318-0331.241920180092
http://dx.doi.org/10.1590/2318-0331.241920180092
http://dx.doi.org/10.1590/2318-0331.241920180092
http://dx.doi.org/10.1175/2008JHM1052.1
http://dx.doi.org/10.1175/2008JHM1052.1
http://dx.doi.org/10.1175/2008JHM1052.1
http://dx.doi.org/10.1002/j.1538-7305.1948.tb00917.x
http://dx.doi.org/10.1112/plms/s1-29.1.353
http://dx.doi.org/10.1112/plms/s1-29.1.353
http://dx.doi.org/10.1112/plms/s1-29.1.353
http://dx.doi.org/10.14796/JWMM.R223-17
http://dx.doi.org/10.14796/JWMM.R223-17
http://dx.doi.org/10.1016/j.jhydrol.2016.04.062
http://dx.doi.org/10.1016/j.jhydrol.2016.04.062
http://dx.doi.org/10.1016/j.jhydrol.2016.04.062
http://dx.doi.org/10.1016/j.jhydrol.2016.04.062
http://dx.doi.org/10.3390/e16084626
http://dx.doi.org/10.3390/e16084626
http://dx.doi.org/10.2166/nh.2016.344
http://dx.doi.org/10.2166/nh.2016.344
http://dx.doi.org/10.2166/nh.2016.344
http://dx.doi.org/10.1175/JHM583.1
http://dx.doi.org/10.1175/JHM583.1
http://dx.doi.org/10.1175/JHM-D-16-0168.1
http://dx.doi.org/10.1175/JHM-D-16-0168.1
http://dx.doi.org/10.25921/w9va-q159
http://dx.doi.org/10.25921/w9va-q159
http://dx.doi.org/10.25921/w9va-q159
http://dx.doi.org/10.1016/j.jhydrol.2015.03.034
http://dx.doi.org/10.1016/j.jhydrol.2015.03.034
http://dx.doi.org/10.1016/j.jhydrol.2015.03.034
http://dx.doi.org/10.1016/j.envres.2017.10.038
http://dx.doi.org/10.1016/j.envres.2017.10.038
http://dx.doi.org/10.1016/0022-1694(94)90111-2
http://dx.doi.org/10.1016/0022-1694(94)90111-2
http://dx.doi.org/10.1007/s00704-013-1072-0
http://dx.doi.org/10.1007/s00704-013-1072-0


635 C. Bertini et al. | Optimization of rain gauge network using satellite and ground-based data Hydrology Research | 52.3 | 2021

Downloaded from http
by guest
on 28 September 2021
TMPA, in the arid region of northwest China. Theoretical and
Applied Climatology 118 (3). https://doi.org/10.1007/
s00704-013-1072-0.

Yeh, H. C., Chen, Y. C., Chang, C. H., Ho, C. H. & Wei, C. 
Rainfall network optimization using radar and entropy.
Entropy 19 (10), 1–14. https://doi.org/10.3390/e19100553.

Yoo, C., Jung, K. & Lee, J.  Evaluation of rain gauge network
using entropy theory: comparison of mixed and continuous
://iwaponline.com/hr/article-pdf/52/3/620/901011/nh0520620.pdf
distribution function applications. Journal of Hydrologic
Engineering 13 (4). https://doi.org/10.1061/(ASCE)1084-
0699(2008)13:4(226).

Zeng, Q., Chen, H., Xu, C. Y., Jie, M. X., Chen, J., Guo, S. L. & Liu,
J.  The effect of rain gauge density and distribution on
runoff simulation using a lumped hydrological modelling
approach. Journal of Hydrology 563, 106–122. https://doi.
org/10.1016/j.jhydrol.2018.05.058.
First received 30 July 2020; accepted in revised form 26 February 2021. Available online 7 April 2021

http://dx.doi.org/10.1007/s00704-013-1072-0
http://dx.doi.org/10.3390/e19100553
http://dx.doi.org/10.1061/(ASCE)1084-0699(2008)13:4(226)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2008)13:4(226)
http://dx.doi.org/10.1061/(ASCE)1084-0699(2008)13:4(226)
http://dx.doi.org/10.1016/j.jhydrol.2018.05.058
http://dx.doi.org/10.1016/j.jhydrol.2018.05.058
http://dx.doi.org/10.1016/j.jhydrol.2018.05.058

	An entropy-based approach for the optimization of rain gauge network using satellite and ground-based data
	INTRODUCTION
	BACKGROUND
	Information theory

	STUDY AREA AND DATA
	Study area
	Precipitation datasets
	Data pre-processing

	METHODOLOGY
	Ranking experiments
	Sensitivity analysis of quantization parameters
	Monitoring network optimization

	RESULTS
	Ranking experiments
	Sensitivity analysis of quantization parameters
	Monitoring network optimization

	DISCUSSION
	CONCLUSIONS
	Satellite observations are from CMORPH, released by Xie et al. (2019) (website https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.ncdc:C00948#). Ground-based precipitation data are from Ag&ecirc;ncia Nacional de &Aacute;guas, HidroWeb Portal of the National Water Resources Information System (SNIRH) (website http:&sol;&sol;www.snirh.gov.br&sol;hidroweb). The authors declare no competing interest. C.B., F.R. and F.N. were supported by La Sapienza University of Rome in Italy; E.R. was partially supported by the Centre of Natural Hazards and Disaster Science (CNDS) in Sweden (www.cnds.se); L.P. was supported by Coordena&ccedil;&atilde;o de Aperfei&ccedil;oamento de Pessoal de N&iacute;vel Superior (CAPES). The contributions of the authors was as follows: CB: conceptualization, data analysis, writing, editing, analysis of the results; ER: study orientation, methods, manuscript structure, analysis of the results, editing; LP: case study, data collection; FR: analysis of the results, editing; FN: analysis of the results, editing; LA: study orientation, methods, manuscript structure, analysis of the results, editing. We thank the two anonymous reviewers for their positive and constructive comments, which helped improve the paper.
	DATA AVAILABILITY STATEMENT
	REFERENCES


