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Abstract
Background To date, there is neither any pharmacological treatment with efficacy in traumatic brain injury (TBI) nor any 
method to halt the disease progress. This is due to an incomplete understanding of the vast complexity of the biological 
cascades and failure to appreciate the diversity of secondary injury mechanisms in TBI. In recent years, techniques for high-
throughput characterization and quantification of biological molecules that include genomics, proteomics, and metabolomics 
have evolved and referred to as omics.
Methods In this narrative review, we highlight how omics technology can be applied to potentiate diagnostics and prognos-
tication as well as to advance our understanding of injury mechanisms in TBI.
Results The omics platforms provide possibilities to study function, dynamics, and alterations of molecular pathways of 
normal and TBI disease states. Through advanced bioinformatics, large datasets of molecular information from small bio-
logical samples can be analyzed in detail and provide valuable knowledge of pathophysiological mechanisms, to include 
in prognostic modeling when connected to clinically relevant data. In such a complex disease as TBI, omics enables broad 
categories of studies from gene compositions associated with susceptibility to secondary injury or poor outcome, to potential 
alterations in metabolites following TBI.
Conclusion The field of omics in TBI research is rapidly evolving. The recent data and novel methods reviewed herein may 
form the basis for improved precision medicine approaches, development of pharmacological approaches, and individualiza-
tion of therapeutic efforts by implementing mathematical “big data” predictive modeling in the near future.
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Introduction

Traumatic brain injury (TBI) is a leading cause of mortal-
ity and morbidity. In Europe, 262 per 100,000 inhabitants 
are annually hospitalized for TBI, and in the USA, TBI 

accounts for one-third of all injury-associated deaths [20, 
92]. It affects patients of all ages in developed and develop-
ing countries alike. Survivors are frequently left with debili-
tating deficits in motor, sensory, cognitive, and emotional 
functions with marked impact on their quality of life [76, 78, 
79, 103]. In children and young to middle-aged adults, TBI 
is the most important cause of death and disability, and thus, 
it has profound socioeconomic impact [64]. TBI is most 
frequently caused by motor vehicle accidents in young and 
middle-aged adults, while in the pediatric and the elderly 
population, falls account for the majority [76, 92, 114]. The 
consequences of TBI persist long after the initial trauma and 
are not always immediately recognized [79].

Importantly, TBI is a disease process, initiated at the trauma 
event, and then aggravated by a complex series of secondary 
insults and injury cascades that progress over days, months, 
to years [79]. The initial, primary injury marks the beginning 
of a series of pathological events in neuronal cells including 
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calcium influx, mitochondrial damage, and increase in free 
radicals causing disturbances in energy metabolism, extensive 
damage to the cytoskeleton, and both necrotic and apoptotic 
cell death [71, 126]. In addition, progressive neuropathology 
is frequently observed well into the chronic phase of the dis-
ease with persistent neuroinflammation, white matter degen-
eration, and progressive brain atrophy at long-term [16, 57]. 
Plausibly, this contributes to the established risk increase for 
early-onset Alzheimer’s disease (AD), tauopathies, and other 
neurodegenerative disorders observed in TBI survivors [21, 
37, 40, 58, 79, 95].

The list of clinical and experimental publications evaluat-
ing pharmacological strategies for the modulation of the sec-
ondary injury cascades is exhaustive. Unfortunately, to date, 
there is still no pharmacological drug with proven efficacy for 
human TBI [11, 115]. Instead, progress in TBI treatment and 
outcome has been achieved mainly by improved prehospital 
management, rapid and targeted surgical intervention, and 
implementation of focused neurointensive care monitoring and 
treating avoidable secondary insults such as hypoxia, hypo-
tension, hypo-/hyperglycemia, pyrexia, epileptic seizures, and 
increased intracranial pressure [31]. Initially, early improve-
ments led to a decreased mortality after severe TBI in the 
last decades of the twentieth century [31]. Nonetheless, since 
then, TBI outcomes have been largely constant [69], mainly 
owing to the limited knowledge of the underlying molecular 
pathophysiology.

One important reason for the failure of trials is the hetero-
geneity of TBI [59]. The currently used TBI classifications 
remain inadequate in appreciating the heterogeneity of TBI 
and its differences in the pathophysiology of secondary brain 
damage. Frequently, TBI is classified by either pathoanatomi-
cal terms such as focal or diffuse injury, or by its severity using 
the Glasgow Coma Scale (GCS) [104]. However, the hetero-
geneity of TBI remains a major barrier for the development of 
robust and reliable molecular biomarkers for diagnostic, moni-
toring, and prognostic purposes. Although many molecules 
have been proposed to reflect different aspects of TBI patho-
physiology, an optimal set of biomarkers has not been devel-
oped [63]. In addition, research in TBI is hindered by the lim-
ited availability of reliable biological samples from patients, 
as samples from brain tissue, cerebrospinal fluid (CSF), and/or 
interstitial fluid (ISF) are difficult to obtain. Thus, there is an 
unmet need for advanced methods to facilitate research on TBI 
pathophysiology as well as development of reliable biomarkers 
and efficient pharmacological therapies.

The field of omics

In recent years, techniques for high-throughput characteriza-
tion and quantification of biological molecules have evolved. 
The study of genomics, epigenomics, transcriptomics, 

proteomics, and metabolomics is referred to as omics [61] 
(Fig. 1). These platforms provide possibilities to study func-
tion, dynamics, and alterations of molecular pathways in 
biological samples of normal and diseased states, includ-
ing TBI [42]. Omics is a rapidly progressing multidiscipli-
nary field, covering all aspects of the cell, tissue, and/or 
organism. Through advanced bioinformatics, large amounts 
of data from small biological samples can be analyzed in 
detail both qualitatively and quantitatively and provide valu-
able knowledge of pathophysiological mechanisms [107]. 
In addition, bioinformatic tools and statistical methods can 
aid in integrating data from various biological domains. By 
incorporating different aspects of TBI pathophysiology, 
omics may allow a more detailed understanding of broad cel-
lular and molecular alterations [42]. Additionally, it can aid 
in the characterization of previously unknown neuropatho-
physiological processes and the discovery of diagnostic and 
prognostic biomarkers. In the near future, omics technology 
may form an integral part of precision medicine and indi-
vidualized therapies for TBI [48]. This narrative review will 
focus on how omics can be applied in TBI to advance our 
understanding of the disease. A literature search was per-
formed in PubMed, Scopus, and ISI Web of Knowledge for 
articles in English with the words “traumatic brain injury” 
together with one or a combination of the words “omics,” 

Fig. 1  Omics refers to techniques for high-throughput characteriza-
tion and quantification of biological molecules. These techniques 
provide possibilities to study function, dynamics, and alterations of 
molecular pathways in biological samples of normal cerebral and 
diseased states such as traumatic brain injury (TBI). Omics includes 
collective characterization and quantification of the organism’s genes 
(genomics), epigenetic mechanisms (epigenomics), genetic transcripts 
to RNA molecules (transcriptomics), proteins (proteomics), and 
metabolites (metabolomics)
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“multiomics,” “genomics,” “epigenomics,” “transcriptom-
ics,” “proteomics,” and “metabolomics.” Articles were 
extracted and further screened (Fig. 2). Focus was on arti-
cles with clinical implications for TBI. The purpose of this 
review was to overview the high-throughput characterization 
and quantification of pools of biological molecules, charac-
teristic for the omics field. For that reason, studies evaluat-
ing single genes or molecules were not included, other than 
when necessary for the relevance of the text. The discussion 
of the various modalities herein seeks to introduce omics 
techniques to illustrate their potential in TBI research and 
management.

Genomics

The individual genetic composition affects the response, 
recovery rate, and outcome following TBI, and many genes 
are suggested to modify the progression and outcome. How-
ever, in contrast to genetics, which refers to the study of 
individual genes and their roles in disease, genomics aims 
to collectively characterize and quantify genes. Genomics is 
particularly applicable to disorders where a combination of 
genes and environmental factors are implicated, such as TBI. 
It involves high-throughput DNA sequencing and analysis 

of the function and structure of the complete genome by 
advanced bioinformatics.

In genome-wide association studies (GWAS), the entire 
genome is investigated for single-nucleotide polymor-
phisms (SNPs) that are statistically enriched compared 
with healthy controls. A large number of gene polymor-
phisms are evaluated (typically 0.5–2 million SNPs) which 
poses statistical challenges and requires adequate sample 
sizes of cases and controls [18]. Analysis of the entire 
genome can help the detection of previously unknown 
genes associated with a susceptibility to secondary injury 
mechanisms or poor recovery. Candidate SNPs have 
been successfully identified with GWAS in neurologi-
cal disorders [8, 116]. To the best of our knowledge, no 
group has evaluated the genome globally using GWAS in 
TBI, although many studies evaluate SNPs in individual 
genes [reviewed in [137]]. Nonetheless, signature genes 
differentially expressed by TBI showed numerous over-
laps between top GWAS hits in, e.g., AD, schizophrenia, 
and Parkinson’s disease (PD) in a rodent model [81]. In 
a clinical study exploring variations in 18 SNPs in bio-
marker encoding genes, a S100B variant allele SNP was 
associated with improved long-term outcome post-TBI 
[91]. Furthermore, the entire mitochondrial genome was 
investigated for SNPs in patients with severe TBI [19]. 

Fig. 2  Flow diagram for search 
strategy for articles included in 
Supplementary Table 1 Pubmed (n=936) Scopus (n=540) Web of Knowledge

(n=305)

Citations after duplicates 
and non-English 

removed (n=979)

Removed (n=495)
-Book chapters/reviews

-Editorials
-Unrelated to TBI

Eligible articles 
for review (n=484)

Removed (n=435)
-Basic research

-Methodological papers
-Unrelated to -omics
-Limited clinical value

Articles included
 (n=49)
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Here, one SNP, A10398G, was associated with functional 
outcome at 6 and 12 months, while SNPs in T195, T4216, 
and A10398 were associated with the CSF lactate-to-pyru-
vate ratio in females only. Additionally, the mitochondrial 
DNA haplotype K was associated with favorable outcome 
in a large cohort of patients with TBI [12].

Further technological refinements termed “next-gener-
ation sequencing” methodologies permit high-throughput 
sequencing and identification of de novo variants with higher 
reliability [70, 89]. Methods include whole-exome sequenc-
ing (WES) and whole-genome sequencing (WGS), where 
nucleotides are determined in the exome or the genome, 
respectively. The exome constitutes ~ 2% of the entire 
genome and represents the gene coding sequence [93]. WES 
may detect variants related to protein structure and func-
tion, while WGS may be a more powerful tool for detect-
ing disease-causing mutations in large-scale human genome 
studies [7]. This kind of approach is currently undertaken in 
the field of TBI by the international Genetic Associations in 
Neurotrauma (GAIN) consortium, which combines several 

well-characterized genetic biobanks from studies conducted 
during the last two decades.

Epigenomics

Environmental factors may alter the expression of genes 
without corresponding changes in the DNA sequence 
through epigenetic modifications [121]. Epigenetic 
mechanisms include DNA methylation or hydroxymeth-
ylation, post-translational histone modifications, changes 
in nucleosome positioning. and translational repression 
or through noncoding/microRNA (miRNA, see separate 
paragraph, Fig. 3). They are involved in crucial cellular 
function during early development stages as well as later 
in life and are implicated in TBI [80]. These mechanisms 
may be rapid and dynamic or be stable and even herit-
able. There is compelling evidence of heritable epigenetic 
variations in plants, although relatively few examples in 
animals [43] and controversial in humans [43, 47]. In 

Chromosome

Chromatin

Nucleosome

Histone modifications

DNA
methylation

mRNA degradation
Transcription

Fig. 3  Epigenetic mechanisms may alter the expression of genes 
without corresponding changes in the DNA sequence. Epigenetics 
include DNA methylation or hydroxymethylation, post-translational 
histone modifications, changes in nucleosome positioning, and trans-
lational repression or through noncoding/microRNA. DNA is densely 
packed in the chromatin complex that form the chromosome, consist-
ing of nucleosomes with DNA wrapped around histone proteins in 
a “bead on a string” formation. Post-translational histone modifica-

tions cause variability in chromatin packaging of DNA, allowing the 
DNA to be more or less readily available for transcription. Similarly, 
the arrangement of nucleosomes along the DNA sequence regu-
lates gene expression by influencing the accessibility of DNA to the 
translational machinery. DNA methylation acts directly on the DNA 
sequence by adding methyl groups mainly on cysteine bases at cyto-
sine–guanine-rich regions, while noncoding/microRNA regulate gene 
expression by either translational repression or mRNA degradation
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TBI, epigenetic mechanisms are still poorly understood 
although are implicated in the injury response to TBI, rate 
of recovery, and risk for future development of neurode-
generative disorders.

DNA methylation, catalyzed by DNA methyltransferase 
enzymes (DNMT), occurs mainly on cysteine bases at 
cytosine–guanine-rich regions of the DNA, CpG islands, 
and results in activation or repression of gene expression 
[9, 51, 125]. Epigenetic modifications are cell type– spe-
cific, and careful sample tissue selection is imperative. In 
the human brain, DNA methylation is involved in memory 
formation and storage [25, 83] and also modifies brain 
function after negative life impact experiences such as 
early age stress [39].

Following TBI, early global hypomethylation was 
observed in a rat TBI model [142]. In a focal TBI model in 
juvenile rats, DMNT-1 expression was upregulated in the 
prefrontal cortex and hippocampus [88]. Additionally, TBI 
resulted in large-scale DNA methylomic changes in the hip-
pocampi in rodent TBI [81]. However, studies contradicting 
the role of DNA methylation in TBI exist. In one study using 
a system biology analysis, DNA methylation did not regulate 
chronic post-TBI transcriptomics changes following TBI in 
the rat [72].

Post-translational modification of histone proteins 
causes variability in chromatin packaging of DNA. DNA 
transcription is facilitated by loosely packed chromatin 
while inhibited by tightly packed chromatin. A variety of 
histone modifications exists, including acetylation, methyla-
tion, phosphorylation, and ubiquitylation, causing genes to 
be activated or repressed [51]. Histone acetylation can be 
increased using histone deacetylase (HDAC) inhibitors [36, 
110], and HDAC inhibitors such as valproate and lithium 
decreased blood–brain barrier (BBB) permeability, reduced 
neural damage and inflammation, and improved cognitive 
and functional outcomes in experimental TBI [117, 130]. 
Thus, compounds modifying the epigenetic machinery show 
promise as a potential therapy following TBI.

In epigenome wide association studies (EWAS), the entire 
epigenome can be investigated for epigenetic modifications. 
These studies are possible using technology such as Illumina 
methylation assays or pyrosequencing. Such large observa-
tional studies may suffer from false-positive findings due 
to multiple testing or non-causal associations. However, 
they may also provide new insights into pathophysiology 
and develop novel biomarkers [10]. In a recent study, sur-
gically resected human brain tissue from 17 patients with 
severe TBI was compared with brain biopsy samples from 
19 patients with idiopathic normal pressure hydrocephalus. 
EWAS showed differential DNA methylation in 308 CpG 
sites in genes related to cellular/anatomical structure devel-
opment, cell differentiation, and anatomical morphogenesis 
[2].

Transcriptomics/miRNA

The transcriptome, estimated to be < 5% of the genome, 
represents the part of the genetic code that is transcribed 
into RNA molecules [34]. However, mechanisms result-
ing in variances of RNA molecules, such as alternative 
splicing, RNA editing, or alternative transcription initia-
tion and termination sites, add complexity to transcrip-
tional activity. Following TBI, a multitude of differentially 
expressed genes is found experimentally, identifying, e.g., 
inflammatory, cell signaling, and reduced pro-survival sig-
natures [44, 52, 106, 127, 129, 139]. A study comparing an 
in vitro and an in vivo model of TBI demonstrated strong 
correlation in differentially expressed genes [66]. In a rat 
TBI study, RNA sequencing revealed 4964 regulated genes 
in the perilesional cortex and 1966 in the thalamus [74]. 
These high-throughput omics data can be used to evaluate 
novel candidate pharmacological therapies.

MiRNAs are short regulatory noncoding RNAs com-
posed of 17–24 nucleotides. The miRNAs are not tran-
scribed to protein; instead, they regulate gene expression 
by either translational repression or mRNA degradation 
[51]. In the brain, miRNAs play roles in synapse forma-
tion, neuronal network signaling, neuronal repair, and cell 
survival pathways [108, 128]. MiRNAs may be analyzed 
from either brain tissue, CSF, or blood, using sequencing 
or microarray methodologies. MiRNAs are abundant and 
stable and are expressed early following TBI, which make 
them attractive as biomarkers [28], and are found to dis-
criminate TBI severities as well as patient with TBI from 
uninjured controls [98, 134]. MiRNAs have the advan-
tage of being readily available in plasma samples, facili-
tating their use as biomarkers. Among the most promising 
miRNAs in TBI are miR-21, miR-16, and let-7i. MiR-21 
is highly expressed after TBI and found to reduce brain 
edema in rodents [38]. Additionally, miR-21 was elevated 
in serum at days 1 and 15 in severe TBI but not in patients 
with mild TBI [27]. MiR-16, involved in apoptosis and cell 
cycle mechanisms, is increased in plasma in mild TBI and 
decreased in severe TBI [101]. The let-7 family, highly 
enriched in brain tissue, was upregulated both in serum 
and CSF after blast-induced TBI and is involved in the reg-
ulatory pathways of several neuroinflammatory cytokines 
[5, 105]. In addition, several studies have shown potential 
of miRNA panels for diagnostic and prognostic purposes 
in various biofluids [27, 46, 62, 86, 105, 134]. Although 
still early in their development, miRNAs are promising as 
potential clinical biomarkers for diagnostics, injury pro-
gression monitoring, and possible targets for individual 
precision medicine treatment.
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Proteomics

The protein composition of an organism is highly dynamic 
and can alter significantly in response to external stimuli. 
Analysis of the proteome, i.e., the total set of proteins 
produced by an organism, can reveal alterations in a mul-
titude of biological processes following TBI [100]. The 
principal technique used in high-throughput proteomics is 
mass spectrometry (MS), since it is highly sensitive and 
specific, can identify proteins in small biological samples, 
and can identify a large number of different proteins [100]. 
An important limitation in MS-based proteomic research is 
the bias toward highly abundant proteins. There are numer-
ous available techniques to deplete these highly abundant 
proteins and enable identification of important proteins 
with low abundance.[94]. Affinity-based proteomic meth-
ods may also be automated for efficient multiplexing of 
proteins at high-throughput, are flexible and highly sensi-
tive, however require high-quality affinity reagents to pro-
vide reliable measurements [113, 132].

Proteins detected with proteomics reflect not only the 
underlying pathophysiological process, but also the pro-
teome of the biological sample analyzed. Therefore, there 
is significant variability in protein expression between dif-
ferent brain regions [109].

The number of studies using proteomics technology 
after TBI is expanding in the evaluation of biomarkers, 
although their clinical use has not been established.

In surgically evacuated brain tissue from the frontal or 
temporal area in severe TBI, > 4000 proteins were identified 
of which 160 were overexpressed and five were downregu-
lated compared to postmortem controls [133]. The altered 
proteins were involved in a multitude of biological processes, 
including glial cell differentiation and complement activa-
tion. Also, insoluble proteins such as those found aggregated 
in AD and chronic traumatic encephalopathy (CTE) can be 
characterized globally, providing a footprint of the total 
amount of insoluble proteins found in the analyzed sample. 
Recently, postmortem CTE prefrontal cortex was compared 
to controls, and > 700 proteins were increased or decreased 
in CTE, of which multiple were unique for CTE [15].

Analysis of structurally uninjured cortex from patients 
with severe TBI, sampled simultaneously with the inser-
tion of an ICP monitor, revealed distinct alterations in 
protein expression between focal and diffuse TBI. The 
analysis of small brain tissue biopsies identified 51 up- 
or downregulated proteins in patients with diffuse axonal 
injury. Among these alterations, tau was increased, while 
proteins related to the antioxidant defense such as glu-
tathione S-transferase were decreased [1].

In TBI, there are several brain-enriched protein bio-
markers such as S100B, tau, neurofilament light (NF-L), 

and glial fibrillary acid protein (GFAP), among others. 
However, single biomarkers alone are not likely to reflect 
the multifaceted pathophysiology of TBI. One advantage 
of high-throughput proteomics is that candidate biomark-
ers can be measured in combination to increase diagnos-
tic and prognostic accuracy. Recently, candidate blood 
biomarkers of TBI were tested together by affinity-based 
methods [49]. Blood samples from the TRACK-TBI data-
bank were used in a protein array, where 21 of 72 proteins 
were identified as potential biomarkers using a multivari-
ate analysis. Together, these proteins that were all related 
to the inflammatory response showed increased inflamma-
tory signatures with positive CT findings and poor recov-
ery. This approach, however, did not reach the sensitivity 
and specificity obtained with brain-enriched biomarkers. 
Alternatively, panels of brain-enriched and inflammatory 
biomarkers can be used in conjunction to improve prog-
nostic accuracy [118]. A combination of protein biomark-
ers discovered by proteomics could be integrated with 
clinical and radiological biomarkers for better prognosti-
cation and surveillance of injury progression [136].

Metabolomics

Metabolomics is the study of structures, functions, and inter-
actions of metabolites in cells, tissues, and body fluids. The 
metabolome is the phenotypic expression of the genome and 
proteome and comprises groups of metabolites produced 
by the cell, tissue, organism, or any other respective entity. 
Every second, numerous metabolic processes take place in 
any living organism, producing measurable small molecules 
in various tissues and body fluids. Due to recent technical 
advances, the extent of the human metabolome has been 
realized, and this field is rapidly expanding.

The brain can be regarded as the most active organ in 
humans, utilizing one-fifth of the total energy and blood vol-
ume. Central nervous tissue has several metabolic pathways 
that are fairly specific for the CNS [41]. Thus, measuring the 
metabolic fingerprint of the brain and monitoring the tem-
poral changes occurring in this fingerprint have the potential 
to produce very accurate and comprehensive data about the 
state of the brain [123]. Moreover, compared to proteomic 
profiling, metabolomic analysis is much less dependent on 
the BBB, because the measured molecules are smaller and 
thus more readily penetrate an intact BBB. Yet, metabo-
lites are not fully independent of the BBB. Although some 
metabolites may diffuse freely through the BBB, other polar 
metabolites may have active transfer depending on their 
polarity, or their diffusion may depend on whether they are 
hydro- or lipophilic.

Metabolic analysis of the brain is not a fully novel 
approach, and clinical applications have in fact been in use 
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for a while. These include magnetic resonance spectros-
copy (MRS) and microdialysis of the brain interstitial fluid 
[13, 144]. Both of these focus on a very limited number of 
metabolites, which however are able to provide clinically 
useful information about the state of the brain, especially its 
energy metabolism. Both methodologies also have spatial 
limitations: MRS analysis must be focused in a certain brain 
area, and brain microdialysis measures the metabolic state 
mainly in the close proximity of the probe. Yet, microdialy-
sis is able to give essential information to guide clinical care 
in severe brain insults, not available otherwise [138].

Metabolomic analysis can be performed in any fluid in 
the body, but here we concentrate on blood-based metabo-
lomics since analysis of the CSF is rarely clinically feasible, 
and metabolomic profiling from other body fluids (saliva, 
urine, lacrimal fluid, etc.) has not been thoroughly evalu-
ated in brain disorders. However, there is no reason why 
these other body fluids could not provide equally important 
information regarding the brain. Serum metabolome consists 
mainly of lipids and small polar metabolites (carbohydrates, 
amino acids, alcohols, polyols, organic acids, free fatty 
acids). Analysis of lipid metabolites is often called lipidom-
ics [124]. Metabolites from any fluid can be analyzed using 
liquid or gas chromatography and MS from a very small 
volume. For known metabolites or panels of metabolites, 
simple and rapid detection can be done using small mass 
spectrometers, as most have experienced at airports.

It is self-evident that serum metabolome does not contain 
only brain-related metabolites but metabolites from all parts 
of the body. One of the major challenges in metabolomics is 
to determine the biological metabolic processes that produce 
the detected/measured metabolites. Using data libraries and 
maps of metabolic pathways, this is often possible. If the 
source of the metabolite can be determined, the challenge of 
anatomical location remains since metabolic processes are 
often largely similar in various cells in various organs. More 
simply, it is often impossible to determine if a metabolite 
is brain-related or derived from processes elsewhere in the 
body. This may, however, be a less important problem than 
assumed, since in TBI, the brain is not separated or inde-
pendent from the rest of the body. Thus, systemic reactions 
to brain insults may well be equally important both diagnos-
tically, therapeutically, and prognostically [102]. Metabo-
lomics may potentially enable fairly accurate anatomic 
localization in the brain, as shown in experimental animals 
having brain region–specific signatures and responses to 
injury [53]. Metabolites have been also capable of differen-
tiating gray matter from white matter injury in piglets [4].

TBI is man’s most complex disease and is associated with 
a highly complex and dynamic metabolic disruption. One of 
its main components is the energy crisis and energy failure, 
caused by, e.g., ischemia, hypoxia, mitochondrial failure, 
or increased energy need [17, 65, 82, 120]. The brain is 

enriched with different lipids due in part to the complex 
myelin structures, why lipidomic analysis may be espe-
cially useful when analyzing brain disorders. Currently, the 
research of metabolomics in TBI is still in its infancy. Cir-
culating amino acids have differentiated severe TBI from 
milder cases [55] and been able to predict elevated ICP [56]. 
In a pioneer study, human serum metabolites were shown 
to associate strongly both with the severity and outcome of 
TBIs of all severities [90]. Several metabolites have been 
shown to be either up- or downregulated in human severe 
TBI [96]. A metabolite panel has also been able to sepa-
rate patients with acute mild TBI from controls [32], and 
metabolites have been associated with both CT and MRI 
findings in TBI [29, 119].

To conclude, metabolomics holds great promise as a tool 
for diagnosis, monitoring, and prognostication of TBIs of 
all severities. They probably react more quickly upon patho-
physiological changes when compared to proteins and ena-
ble point-of-care diagnostics. Since they also react rapidly 
to, e.g., altered medications, diet, and exercise, substantial 
bioinformatic work-up is needed to establish the best metab-
olite panels for different types of injuries and their temporal 
profile after TBI.

Statistical challenges, artificial intelligence, 
and machine/deep learning

High-throughput omics technology provides a possibility 
to generate large amounts of data from biological samples. 
Much of this rapidly progressive knowledge has been stored 
for access in large and publicly distributed databases [68, 
77]. The amount of generated data creates many opportuni-
ties for better understanding of TBI but also require appli-
cation of robust statistical predictive modeling methods. In 
addition, the exponentially rising amounts of medical data 
produced from clinical research demand firm data stor-
age solutions to guarantee security and patient integrity. 
For individualized precision medicine, data from different 
omics sources (i.e., multiomics) should be integrated and 
combined with clinical information. To date, omics research 
in TBI is still in its infancy, and most studies approach differ-
ent aspects of TBI pathophysiology, leaving little space for 
consolidation of data from multiple sources. Additionally, 
the statistical modeling of TBI poses a challenge in view of 
the heterogeneity of the disease and since data generated by 
high-throughput technology may be measured in thousands 
to millions per sample [22]. This high dimensionality car-
ries statistical difficulties such as sparsity, multicollinearity, 
model complexity, and model overfitting [112]. Multivariate 
statistical approaches to omics data, such as modified ver-
sions of partial least squares regression (PLS) and canoni-
cal correlation analysis (CCA), are required. These models 
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should incorporate multiple biomarkers in multiple disease 
phenotypes. A system biology approach in multiomics, 
advocating integration and analysis of different biological 
processes in the organism simultaneously, poses demands 
on the performance of statistical models. Omics domains 
are not distinct and separable biological systems but rather 
represent different biomolecular data sources measuring the 
expression of various biological processes [122]. Therefore, 
no single omics modality can completely reflect the com-
plexity of TBI, and a system biology approach is needed. 
To accomplish this, multiset techniques based on PLS and 
CCA are available [22]. In addition, network and enrichment 
analysis is valuable to identify molecules of pathophysiolog-
ical significance and to understand the downstream flow of 
information from DNA to physiology [60]. However, there 
is no consensus for modeling, comparing, or benchmark-
ing the performance of the various data analysis strategies. 
The latter is crucial as optimistic scientific opportunism 
increases the risk of inference on possibly “wrong” prog-
nostic assumptions by coincidental statistical significance, 
caused by the existing ample amount of omics variables. 
Method selection is instead based on knowledge about the 
structure of the data and the research questions of interest. 
In the case of TBI, many studies suffer from low sample size 
albeit high dimensionality. Dataset integration is a potential 
mean to increase sample size, although often not feasible 
due to systematic variability in technology, protocols, and 
experimental conditions between studies [112].

Artificial intelligence and deep learning applications have 
huge potential in analyzing information from TBI datasets, 
as they may achieve higher accuracy and speed in data analy-
sis. In deep learning, a subfield of machine learning, a lay-
ered structure of algorithms — an artificial neural network 
— is used to learn the application to draw inference from 
the data [84]. The recent progress is tremendous for image 
recognition and histopathological analysis [50, 143]. In TBI, 
deep learning applications exist for the detection of intrac-
ranial pathology from CT scans, performing in agreement 
with expert assessments [54], as well as for the detection of 
cerebral microbleeds on MRI [75]. Additionally, machine 
learning applications incorporating clinical information have 
been used for stratification of TBI phenotypes and prognosis 
[33, 99]. Deep learning applied to omics data has gained 
great interest, and the number of publications is increas-
ing [141]. The challenges when applying deep learning to 
omics research relate to the data volume and quality needed 
to train the systems. Deep learning applications require large 
amounts of data for training which may not be available, and 
the quality of the learning depends on the quality of the input 
data. In addition, they may provide the desired prediction by 
using the input data but do not explain how the prediction 
was reached, i.e., the “black box” problem [67, 140, 141]. 
Nonetheless, artificial intelligence and deep learning may 

prove useful for omics research to provide clinically valu-
able conclusions as the amount and dimensionality of the 
data are expanding.

Clinical applications and treatment 
possibilities

The study of the different biological domains of the organ-
ism in depth by omics technology is a concept of relevance 
for TBI. The implementation of omics in the clinic to aid 
decision-making, and to enable highly individualized medi-
cine, has begun. Genome sequencing is in use to diagnose 
rare disorders [131], and multiomics approaches are devel-
oped to build predictive models of disease in the healthy 
individual [3, 14]. However, there are challenges to over-
come before omics technology can become an integral part 
of clinical TBI practice. Although genomics has successfully 
been used to dissect genetic diseases [60], the pathophysi-
ology of TBI is far more complex. Experimental studies of 
omics in TBI thus far use mainly lissencephalic animal mod-
els. Relevant animal models are essential for TBI research 
to enable exploration of pathophysiology and biomarkers. 
Nevertheless, the brains of humans and those of the lissen-
cephalic rodents are vastly different and form a major barrier 
for successful translation of experimental research, particu-
larly in the omics field in view of the tissue and cell speci-
ficity of the molecular alterations. To date, omics studies 
in TBI have not generated diagnostically or prognostically 
useful biomarkers to the clinics. Nonetheless, protein panels 
including S100B, neuron-specific enolase (NSE), ubiquitin 
C-terminal hydrolase L1 (UCH-L1), GFAP, and NF-L [97] 
have been tested in TBI for classification into severity type 
or prognostic purposes. Similarly, panels of metabolites in 
biofluids are being developed for diagnostic purposes [29]. 
The integration of omics and clinical data could further aug-
ment the diagnostic and/or prognostic accuracy [45]. Never-
theless, translation of preclinical biomarkers to the clinical 
setting has been hampered by lack of homogenization of 
target cohorts, inconsistency of study design, and reporting 
as well as lack of standardization of techniques for sampling 
and analysis of biological specimens [87]. Consequently, it 
is essential that future studies streamline study design, meth-
odology, and reporting to allow reproducibility and pooling 
of data for effective translation into meaningful clinical use.

To date, omics analysis is still too expensive and labo-
rious for bedside use. Nonetheless, technologies for fast, 
easy-to-use analytical devices able to provide on-site test-
ing of different molecules are emerging and could prove 
valuable for TBI in the future [30]. Such devices, capable 
of high-throughput point-of-care analysis of DNA, RNA, 
proteins, and metabolites, would be particularly beneficial in 
resource-limited settings. High-throughput omics provides 
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the advantage of integration of various biological domains 
to potentially augment diagnostic and prognostic specificity. 
However, in certain clinical situations, less strenuous single 
marker solutions may be more cost-efficient and adequate 
for the endpoint of interest [23].

In addition to the potential of omics to allow discovery of 
novel biomarkers or for the monitoring of secondary injury 
development, omics research may also generate candidate 
pharmacological compound. HDAC inhibitors, such as 
valproic acid and lithium, acting via histone modification, 
and overexpression of the miRNA let-7c-5p, have proven 
efficacy in rodent animal models [24, 110, 117, 135]. Non-
hypothesis-driven in silico (computer stimulations) network 
approaches to drug discovery, using omics data to generate 
candidate pharmacological therapies, are promising in AD, 
PD, and epilepsy [6, 26, 35, 85, 111]. In TBI, this strat-
egy has been tested using transcriptomics data [73], albeit 
without efficacy in an in vivo TBI model. Still, with further 
refinements, there is potential for further steps toward new 
therapeutic strategies.

Conclusions

Traumatic brain injury is a devastating disease affecting 
millions worldwide, and there is a lack of effective thera-
pies. Numerous studies evaluating pharmacological com-
pounds in the treatment of TBI have failed, plausibly due to 
an incomplete knowledge of the underlying pathophysiol-
ogy and disease heterogeneity. The rapidly evolving field of 
high-throughput omics technology such as genomics, epi-
genomics, transcriptomics, proteomics, and metabolomics 
enables detailed “big data” analysis of differential altera-
tions in the molecular domains affected by TBI. Research 
on omics in the TBI context is merely emerging, and studies 
thus far are small, heterogenous, and do not allow gener-
alized conclusions. Nonetheless, the development is rapid, 
and the potential is vast. Omics may provide opportunities 
for diagnosis, monitoring, and prognosis in TBI, as well as 
aid in the search for novel biomarkers and pharmacological 
therapies, with caution that prognostic modeling needs to be 
guided carefully by independent statisticians and outcome 
epidemiologists. Continuously increasing studies providing 
new data from larger cohort will pave the way for the use of 
omics as an integral part of an individualized approach to 
the TBI patient.
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