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Abstract

Developing a Graphical Application to Control
Stepper Motors with Sensorless Load Detec-
tion

Mattias Adolfsson

For positioning of linear stages in absolute coordinates, there is a gen-
eral need to find a reference position since the initial one is unknown.
This is commonly called homing. To reduce costs and facilitate assem-
bly, homing can be performed without additional sensors, known as sen-
sorless homing. This thesis delves into sensorless homing, specifically
with respect to stepper motors, and develops a graphical application for
control of them. The commercial technology StallGuard is applied in
conjunction with exploration into how it — and sensorless load detection
in general — functions.

The resulting graphical application can be used to configure the step-
per motors, perform homing using StallGuard, and automatically tune
StallGuard to work despite varying conditions. In addition, rudimentary
sensorless load detection independent from StallGuard is developed,
demonstrating how it could work in practice. Testing shows homing
with StallGuard resulting in a position within a 5 um window in 94%
of cases, less than 1/7 the width of an average strand of human hair. Ad-
ditionally, homing is easily performed with a single button press from
the graphical interface, with optional additional configuration available.
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Populérvetenskaplig sammanfattning

Som en del av att bekdmpa tarmmaskar (eng: soil-transmitted helminths) utvecklas ett
mikroskop hos Etteplan 1 Uppsala som sjdlv kan skanna avforingsprover och ridkna
dgg med hjdlp av bildigenkdnning. Det automatiserade mikroskopet anvinder sig av
linjéra stdlldon for att positionera provet och kunna undersoka olika delar av det. Des-
sa anvinder en plattform monterad pa en gidngad stang som kan roteras med hjélp av
en stegmotor. Eftersom motorn har véldefinierade steg kan plattformen — och ddrmed
provet — positioneras med hog precision relativt till den nuvarande positionen. Dock dr
den initiala positionen ir inte kdnd. For att 16sa detta behdver plattformen forflyttas till
en kénd referensposition, nagot som pa engelska kallas homing. I det nuvarande auto-
matiserade mikroskopet gors detta med optiska sensorer som kénner av nér plattformen
nar dnden pa stangen, s.k. dndstoppssensorer. Detta projekt handlar om att géra samma
sak utan sensorerna, vilket kallas sensorlds homing. Vidare ér ett mal ocksa att skapa en
grafisk applikation for att enkelt kunna konfigurera de linjéra stdlldonen och utfora sen-
sorlos homing. Motivationen bakom att gora sig av med sensorerna &r att det reducerar
den totala kostnaden och att det forenklar tillverkning och montering.

Sensorlos homing bygger pa att lasten blir stor nédr &ndpunkten nas och vidare rorelse
ar blockerad. En kommersiell teknik for detta &r StallGuard fran tyska Trinamic Motion
Control. Denna miter den inducerade spanningen (elektro-motoriska kraften) som upp-
star da motorn roterar och uppskattar utifran det lasten pa motorn. Fran relaterat arbete
ses att detta inte dr en unik eller ny teknik och som en del av att undersoka hur Stall-
Guard fungerar implementeras en grundldggande version av tekniken 1 detta arbete med
hjilp av ett digitalt oscilloskop.

Huvuddelen av arbetet bestar av skapandet av en grafisk applikation skapas som kan
anvindas tillsammans med StallGuard for att utfora sensorlos homing. Denna applika-
tion inkluderar dven annan funktionalitet, exempelvis manuell stegvis motorkontroll,
automatisk instéllning av kénsligheten hos StallGuard, och konfigurering av parametrar
som hastighet, acceleration, strom, etc. Applikationens anvindningsomrade dr som ett
test- och utvecklingsverktyg internt hos intressenten. Den kors pa valfri dator och kom-
municerar 6ver ett ndtverk (exempelvis Wi-Fi) med en Raspberry Pi som styr motorerna
och didrmed stélldonen.

Som en del 1 att forenkla och att till stor del automatisera sensorlos homing har
automatisk instdllning av kénsligheten hos StallGuard utvecklats. StallGuard har en
kanslighetsparameter som avgor vid vilken last ett motorstopp detekteras. Vid for lag
kénslighet kan dndpunkten nés utan att detta uppticks, vilket kan leda till skadad mo-
tor eller mekanik som foljd. Vid for hog kidnslighet kan motorstopp felaktigt detekteras,
exempelvis pa grund av sma laster fran smuts eller ojimn mekanisk konstruktion. Gene-
rellt spelar den exakta kinsligheten mindre roll ju hogre hastigheten dr. Den automatiska
instéllningen av kénslighet bygger dérfor pa att anvédnda lag hastighet och sedan testa

v



lagre och liagre kénslighet tills inget stopp detekteras: alltsa, tills det felaktigt detektera-
de motorstoppet forsvinner.

Resultaten visar att den automatiska instéllningen av StallGuards kénslighet dr fram-
gangsrik for en rad olika nivaer av strom, hastighet, och spanning. Vidare visar tester
att precisionen vid sensorlos homing dr god. Utav 50 testfall kan plattformen stanna pa
en position inom ett omrade av +5 um i 47 fall. Den hogsta avvikelsen dr 20 um, vilket
kan jaimforas med att ett genomsnittligt minskligt harstra dr ungefar 75 um i diameter.
Den ungefirliga av intressenten eftersokta precisionen dr ungefiar 100 um, vilket uppnas
med god marginal. Hela processen av homing sker ocksa automatiskt via ett knapptryck
1 den grafiska applikationen.
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1 Introduction

1 Introduction

1.1 Background

Neglected Tropical Diseases (NTDs) are a set of diseases mainly present in tropical and
sub-tropical regions of the world, affecting more than a billion people across the globe
[1]. Almost exclusively affecting poor regions, many of the diseases can be prevented
or even completely eradicated given proper access to existing technologies and tools.
However, affected population are often of low socio-economic status and of low priority
in public health efforts [2].

One particular class of NTDs are Soil-Transmitted Helminths (STHs): Ascaris,
whipworm and hookworm. These are intestinal, parasitic worms transmitted through
contaminated soil. Each type of STH is estimated to affect between 500 million to 1
billion people on a global scale [3]. As intestinal worms, the eggs of STHs are spread
through the feces of the infected.

1.1.1 Automating diagnosis

Part of the effort to detect STH infections has been to look for parasite eggs under a
microscope. Specifically, stool samples are examined, counting eggs to determine in-
fection status. However, due to long training time of staff and high turnover rate, an
automated solution could prove to be much more efficient. Such a solution is under de-
velopment at Etteplan Sweden, the main stakeholder in this thesis project. The solution
consists of motorized linear stages, a digital microscope camera and an image process-
ing unit. An overview of the arrangement is shown in Fig. 1.1. The sample is mounted
on an XY linear stage moving in the horizontal plane, while the camera is mounted on a
separate linear stage moving vertically. The image processing unit is used to process the
sample’s image from the camera, automatically detecting and reporting parasite eggs.

This thesis project concerns the motorized linear stages in Fig. 1.1 used to scan
across stool samples with the microscope. They consist of stepper motors connected
to lead screws which move a platform when rotated. The platform’s relative position
from startup can be known by counting the number of steps moved in each direction.
However, to be able to position it absolutely, the positions of the linear stages need to be
determined relative to some known reference point. This is commonly called homing.
The scope of this thesis pertains specifically to sensorless homing of the linear stages of
the microscope, which is homing without the use of external sensors.
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Figure 1.1 An illustration of the automated STH egg microscope in development at
Etteplan Sweden. The stool sample is fixed on a platform of an XY linear stage, enabling
it to move in the horizontal plane. A separate linear can adjust the vertical position of
the camera.
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1.1.2 Motivation

One specific commercial tool for sensorless homing is StallGuard from Trinamic Mo-
tion Control [4]. It is a sensorless load torque estimator present in many of their stepper
motor drivers. The stakeholder’s project currently uses such stepper drivers from Tri-
namic and as such, it is of interest to investigate feasibility of StallGuard for sensorless
homing.

In the stakeholder’s project, homing is currently done by using optical switches at the
ends of each axis, which can determine when the platforms have reached their respective
shaft endpoints. However, this incurs an extra cost both in components and in labour to
assemble the device. As such, it is desirable to perform sensorless axis-homing, without
the optical switches.

The motivation behind investigating how StallGuard functions, specifically, is two-
fold: firstly, to gain general insight into sensorless load detection and secondly to pos-
sibly automate some parts of configuration of StallGuard. In addition, it is desirable to
know the limits of StallGuard’s capabilities to see if it can be used in the stakeholder’s
project. Currently, the desired precision of homing is approximately 100 um, which
StallGuard has to fulfill to be considered a viable for homing.

1.2 Purpose and Goals

The purpose of this project is to delve into sensorless load estimation of stepper motors,
as well as applying it practically to detect motor stall for use in sensorless homing. It
both explores literature and previous work on the subject and applies a working product
(Trinamic StallGuard) in a real-world setting. In terms of concrete goals, the project
aims to achieve the following:

* Present theoretically how stepper motors work and methods of sensorless load
estimation.

* Investigate feasibility of — and implement — sensorless homing using Trinamic
StallGuard.

* Investigate factors affecting performance of StallGuard’s load detection and use
results to:

— Automate tuning of StallGuard sensitivity.
— Present how StallGuard presumably functions.
* Develop a small graphical utility to configure various settings of the stepper driver,
both manually and automatically. Specifically, the goal is to automatically tune

Trinamic StallGuard, and to be able to perform calibration, such as axis-homing,
based on other parameters.
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1.3 Tasks and Scope

Based on the purpose and goals, the following are a list of concrete tasks of the project:
1. Research technical background:

(a) Previous and related work
(b) Hardware: Linear stages and stepper motors

(c) Sensorless load detection
2. Choose and assemble hardware. Set up development environment and software.
3. Develop software interface to control hardware, e.g. the stepper drivers.
4. Utilise the above interface to:

* Investigate StallGuard by applying varying conditions, e.g. motor current.
Based on the findings, develop automated tuning of StallGuard.

* Use StallGuard to perform sensorless homing. Evaluate homing with respect
to success rate and precision.

* Perform live measurements of motor current and motor voltage to find char-
acteristics of how StallGuard functions.

* Develop graphical front-end to the functions of the hardware interface.

The scope of the project does not include implementing sensorless homing or load de-
tection in the stakeholder’s product. Instead, the project is an investigation, prototype,
and proof-of-concept of sensorless load detection and sensorless homing, in particular
with respect to StallGuard. Additionally, the project includes a graphical interface be-
cause it is of interest as a means of tuning and testing various linear stages with stepper
motors.

While the end application — the stakeholder’s project — uses linear stages connected
together for multi-dimensional movement, the prototyping and development is done on
3 completely separate linear stages instead of the arrangement in Fig. 1.1. However, the
results are also applicable to the end application.

1.4 Related Work

The concept of sensorless stall detection of stepper motors is nothing new. For example,
stall detection by means of measuring Back-EMF (BEMF) can be seen in an almost 20
year old Siemens patent. Part of contemporary work on the problem seems to be focused
on 3D-printers, where sensorless homing is of interest. This can for example be seen
in open-source 3D-printer software such as Klipper and Marlin, both of which provide
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support for sensorless homing, specifically using StallGuard from Trinamic’s stepper
drivers.

1.4.1 Stall detection methods in patents

A patent particularly similar to StallGuard is from Siemens in 2003 [5]. It is explicitly
based on measuring BEMF during phase off-time, similar to how this work finds Stall-
Guard to behave. By cutting current briefly and giving it time to decay to zero, BEMF
is measured over the leads of the motor and compared using a comparator circuit. If the
BEMF is above a predetermined threshold, a stall is detected. The BEMF threshold is
analogous to StallGuard Threshold (SGT) in StallGuard, tuning at what load torque a
stall is detected. However, StallGuard also incorporates other features, for example a
load measurement, filtering, automatic current scaling, etc.

In addition to the Siemens patent, one can find several later inventions describing at-
tempts at sensorless stall detection [6], [7]. This shows that it is both a common problem
and one that has been in development over some time. For example, a 2007 Texas In-
struments patent describes attempts to overcome some problems with measuring BEMF
by instead measuring phase current directly [6].

1.4.2 Load angle estimation in practice

Another example of sensorless load detection applied in a master thesis is [8]. It ex-
plores sensorless control of a hybrid stepper motor, both with respect to speed and load
detection. The application is low-speed robotics, where other motors (e.g. BLDC mo-
tors) are unsuitable due to requiring high speed to produce large torque. To avoid a con-
stantly high current, sensorless load angle estimation using a Sliding Discrete Fourier
Transform (SDFT) is developed for use in variable current control based on load torque.

Compared to this work, the method used for load angle estimation is different. How-
ever, both methods are based on estimating BEMF. Additionally, both works are exam-
ples of cost- and complexity reduction in stepper motor systems by eliminating extra
Sensors.

1.4.3 Ystruder

One example of sensorless load detection applied practically in an academic context
is Ystruder [9]. Developed at Aalto University, Finland, it is an open-source hardware
project of a syringe pump, which can deliver precise volumes of liquid at specific flow
rates. It features a 3-axis linear stage to position the syringe and the stepper motors are
driven using Trinamic TMC2130 stepper drivers.

Notably, Ystruder does not include limit switches. Instead, it utilizes the StallGuard
functionality of its stepper drivers for sensorless homing. As such, both the complexity
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of assembly and the cost of hardware is reduced. As an open-source hardware project,
these could be key aspects in facilitating its adoption and usage by others.

1.5 Outline

The report is structured as follows. Section 1 present background of the project followed
by purpose, goals, and motivation. Section 2 presents technical background and theory,
mainly on stepper motors, necessary for subsequent sections. Section 3 provides an
overview of the implemented system, followed by detailed descriptions in terms of the
following key areas:

1. (Automatic) StallGuard tuning
2. Homing

3. BEMF measurements

4. Graphical application

Following the implementation, Section 4 presents results and evaluates the system with
respect to the goals. Finally, Section 5 concludes the work, highlighting key findings,
and presents possibilities for future work.
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2 Technical Background and Theory

This section presents relevant technical background and theory about stepper motors and
stall detection. It briefly describes the functionality of linear stages and stepper motors,
details what the load-angle is, how it can be measured, and finally how it can be used
for stall detection. This is necessary to later understand the experiments with a com-
mercial stall detection system (Trinamic’s StallGuard) and to find out how it functions
in practice.

2.1 Linear Stages

Platform

Stepper

a) Ball screw b) Linear stage

Figure 2.1 A sketch of a ball screw’s internals and an example of a motorized linear
stage. The ball screw (a) moves along the shaft by keeping the nut’s rotation fixed while
rotating the shaft. The linear stage (b) uses a stepper motor along with a ball screw to
move a platform with high precision along a single axis.

Using a ball screw as depicted in Fig. 2.1, an object (e.g. a stool sample under a mi-
croscope) can be put on the platform and moved along an axis by spinning the shaft.
When in addition using a high-precision motor, such as a stepper, the sample can be
positioned with high precision. For example, using a screw with a pitch of 2 mm, and a
stepper with 200 steps per revolution, the theoretical step size is 22“17‘5‘ = 10um. Further
precision can also be attained by moving partial steps (micro-stepping). For example,
using 256 microsteps per full step theoretically leads to a step size of 0.04um. While
this assumes perfect mechanical construction and operation, it nevertheless hints at how
good the precision can get. As a comparison, Soil-Transmitted Helminth (STH) eggs
are approximately 50-60 um in diameter at their longest points, more than 1000 times
the theoretical step size.

Since all linear stages used in this project are motorized, the term “linear stage” is
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used with the implication that it is motorized using a stepper motor, unless otherwise
specified.

2.1.1 Sensorless homing

For each linear stage, the relative position from startup can be determined by counting
the step commands sent to the stepper-motors. As such, the position of the platform can
be tracked in an open loop, without any feedback from a sensor. However, to get the
absolute position along the shaft, the initial position still needs to be determined. This
is commonly referred to as homing of the axis. For example, it could be used to position
the platform at a specific distance from the start of the shaft, getting it directly under the
microscope.

One way to home an axis is to move the motor in a single direction until it hits the
physical endpoint of the shaft, where it is unable to move any further. This is exemplified
in Fig. 2.2. Then, the absolute position is known to be the end of the axis and an initial
absolute position has been acquired. To detect the endpoint, a limit switch can be used,
e.g. an optical sensor or physical switch. Alternatively, endpoint detection can be done
without any external sensors. This is called sensorless homing, where for example
measurements on the current and voltage of the motor coils are used instead.

-
Platform with sample
Motor [ (R M B B
L -
( 5 :
Platform with sample
Motor S O Y M B
L -
4 .
Platform with sample
Motor JEES ! M B
\_

Figure 2.2 An illustration of linear stage homing by moving the platform to the physical
endpoint of the shaft.

2.1.2 Trinamic StallGuard

A specific commercial implementation of sensorless endpoint detection is StallGuard
from Trinamic Motion Control [4]. It is a sensorless load estimator present in many of
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their stepper drivers. It can determine the approximate load torque on the motor without
external sensors, measuring up to 1024 discrete levels of load. The project at Etteplan
currently uses stepper drivers from Trinamic, meaning StallGuard is available at hand
for stall detection in this thesis project.

2.2 Stepper Motor
2.2.1 Operating principle

The operating principle of a stepper motor is, similar to many other motors, to apply
a magnetic field to a rotor. An illustration of this is shown in Fig. 2.3. Specifically,
it is showing a Permanent Magnet (PM) stepper motor, which is characterized by a
central PM (rotor) which is moved by the magnetic field of the coils (stator) [10]. By
moving the magnetic field ahead of the rotor, the rotor follows and a rotating motion, a
step, is achieved. By keeping the magnetic field constant, a fixed position can be held
indefinitely. Additionally, the relative position of the rotor can be known by keeping
track of how many steps in each direction it has moved.

In a practical setting, the rotor often has more than two poles, instead using a set of
teeth of alternating magnetic polarity. This is called a hybrid stepper motor. An example
of this is shown in Fig. 2.4. Such a construction achieves a small rotation between steps,
typically 1.8° [10], and less distance between the magnetic poles of the stator and the
rotor. The motor is constructed such that the teeth of the rotor align with at most the
teeth of one phase at a time (coil 1 and 3 or 2 and 4). As such, actuating the other phase
instead will move the rotor one step to align with those teeth. The operating principle
remains the same as shown in Fig. 2.3: actuating alternating stator coil pairs (phases) to
move the rotor. The step size is simply smaller and torque higher.

ﬂ,@?&zr - ﬂ&%lf -
~” N w g{‘,}, S ‘;l)
—O—| m+ z EVJ —O— « g Z +m
S (} N <J [} t
R - - -

Figure 2.3 An illustration of the principle of operation of a 2-phase PM motor. The
stator consists of two pairs of coils, each pair being one phase.
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Figure 2.4 An illustration of a 2-phase stepper motor with teeth on the rotor and stator.

2.2.2 Micro-stepping

Micro-stepping is a technique to divide each step into several smaller steps, an illustra-
tion of which is shown in Fig. 2.5. By using more current levels than coils just being on
or off, a smoother motion is achieved. A step is divided into a fixed number of micro-
steps, commonly up to 256, where the current levels of the micro-steps together form a
sinusoidal shape. The rotor can also be held at a fixed micro step position. For example,
actuating neighbouring coils both with the same current, the rotor will be pulled to a
position precisely in between them.

- I~ - -

~ N /A N v
S ]

- - - -

Figure 2.5 An illustration of micro-stepping, dividing a full step into 3 micro-steps

2.3 Load Angle

The load angle of the motor is the angle between the magnetic fields of the rotor and
the stator. It is also a measurement of the mechanical load being driven by the motor,
meaning it is an indication of the force counteracting the rotor’s current position. As
the load angle increases, the rotor will increasingly lag behind the magnetic field of the
stator.

If there is no load, the rotor will align itself with the stator such that all magnetic
forces are aligned with the rotor normal and cancel out, thus producing no torque. This
is shown to the left in Fig. 2.6 and Fig. 2.7. By rotating the rotor (e.g. by applying a
load), the rotor will no longer be aligned with the stator’s magnetic field. The effect is
that the magnetic forces produce a net torque counteracting the rotation. This is shown

10
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in the middle of Fig. 2.6 and Fig. 2.7. To the right is shown the maximum load angle
in a hybrid stepper motor: 90°. Any increase in load angle at this point will cause the
rotor teeth to align with the previous ones of the stator, moving backwards with respect
to the stator, which is called a step loss.

U~

Y

0=0° 6 = 30° 0 =90°
Figure 2.6 An illustration of load angle 6 on a PM stepper motor. Vectors W, and i
show the rotor magnetic flux and stator current resultant respectively.

s8] s BESOROEIEORCRE

N N N m m m N N N
Figure 2.7 An illustration of load angle on a toothed stepper motor, with dotted lines
indicating magnetic attraction. From left to right: 0, 45, and 90 degrees.

As shown by [11], for a hybrid stepper motor the produced torque 7" depends on the
resulting stator current i, rotor flux V,., and load angle ¢ by the following equation:

Li—L
T = U,i,sin(8) + %f sin(20) @2.1)

where L, and L, respectively are the resulting inductance along ¥, and perpendicular
to it. As further demonstrated, the first term is the dominant component, and thus the
produced torque is roughly proportional to the sine of the load angle. Additionally,
the load angle increases with load torque until reaching an equilibrium point where the
produced torque (due to increased load angle) precisely counteracts to the load torque.
That is, the steady-state load angle is roughly proportional to the sine of the load torque.

2.3.1 Use-cases

The idea of sensorless load angle estimation is to, without any external sensors, estimate
the load angle of the motor during operation of varying load. It has both been covered in

11
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research, e.g. by [12], and is available in commercial products such as Trinamic Motion
Control’s StallGuard [4]. Since, as shown, the load angle is roughly proportional to the
sine of the load torque, load angle estimation is in effect also load torque estimation.
This has several potential use cases, such as:

* Reducing current for low load, saving energy and producing less heat.
* Detecting step-loss by the load angle becoming too large.

Specifically of interest to this work is detection of step-loss, since this is what happens
during stalling of the motor; the load torque becomes too large for the produced torque
to keep the rotor in sync with the magnetic field of the stator. By estimating the load
angle, a motor step-loss can be detected by the load angle becoming large.

2.4 Sensorless Load-Angle Estimation From BEMF

When the rotor is rotating, its magnetic poles are moving and applying a varying mag-
netic field to the stator’s coils, essentially acting as a generator. By Faraday’s law, this
induces an electro-motive force in the coils, also known as Back-EMF (BEMF). For a
given stator phase, the BEMF will be a sinusoidal voltage over that coil. As shown by
[12], the load angle can be effectively estimated with knowledge of the phase difference
between BEMF and the coil current (also sinusoidal).

A\

-~

Figure 2.8 Illustration of how phase difference between coil current and relates to load
angle ¢, as presented by [12]. Graph shows BEMF &, flux U, and current ¢, for a single
coil over time. The rotor rotates with angular velocity w and the dotted lines highlight
value of BEMF when flux and current cross zero respectively.

An illustration of how the phase difference between coil current and BEMF relates to
the load angle is shown in Fig. 2.8. The phase of the BEMF (Z€) is 90° ahead of the
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phase rotor flux (£W,.), which is fixed to the actual rotor rotation. The phase of the coil
current (/1) is fixed to the stator’s magnetic field. Thus, the phase difference between
the two magnetic fields (the load angle 9) can be determined from the phase difference
between the BEMF and the coil current as follows:

0= Lis— LV, = Lis +90° — LE (2.2)

To determine &, the voltage u over a stator coil can be modelled as [13]:

u= Rig + L% +& (2.3)
dt

where i, is current, R is coil resistance, L coil inductance, and £ is BEMF, the variable
of interest. Measuring u and i is trivial, but as suggested by [11], simply solving for
& does not work in practice due to taking the derivative Zis of a noisy signal. Addi-
tionally, I? and L are possibly unknown for the used motor or may change significantly
with temperature. To overcome these problems, several methods have been presented,
two of which are detailed in the following sections. One measures £ at the precise mo-
ments when % = 1, = 0 and one uses a Fourier transform to extract the fundamental
sinusoidal component of £ without noise.

24.1 Current zero-crossing method

Measuring BEMF & during current zero-crossings has been suggested by [12] and [14].
Once every full step one of the phases will change direction of current, passing zero.
Giving the current time to settle (the coil’s magnetic field collapsing), the current and
its rate of change is zero: EZS = 15 = 0. This simplifies Eq 2.3 to u = £, meaning the
BEMF can be measured directly as the voltage over the phase coil.

Measuring £ during current zero-crossing does not directly include information
about the phase and thus load angle as per Eq 2.2. However, it can be calculated given
knowledge of the motors BEMF constant K.. For a two-phase hybrid stepper motor,

the exact BEMF that will be measured for the first phase is [12]:

E=K. w-sin(—p-0) (2.4)

where p is number of pole pairs (typically 50),  is rotational angle, and w is rotational
speed. For a given current zero-crossing of the first phase, the angle 6 is every odd full
step, with an offset (lag) equal to load angle 4:

(2n+1)90 — 6

0 [deg] = ; , n=0,1,23,.. 2.5)

which gives the expected BEMF & for a given load angle § as:

£=—K,. w-sin(180n + 90 — §) (2.6)
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or simplified as the absolute value regardless of n:
€| = K. - w-sin(90 — §) (2.7)

and conversely load angle as a function of BEMF:

§ [deg] = 90 — sin™! ( ] ) (2.8)

K, -w

A plot of Eq 2.7 is shown in Fig. 2.9. As load increases, the measured BEMF decreases
from K. -w atno load (0 = 0) to 0 at maximum load (6 = 90). Except for low load, there
is a close to linear relationship. The same can be seen previously in Fig. 2.8, where the
point at which current 2, = 0 (rightmost dotted line) is offset to the right based on load
angle J: the farther to the right (up to load angle & = 90), the smaller the magnitude of
BEMF.

Ke* W 1

£ (V)

0

0 90
6 (deg)

Figure 2.9 Theoretical BEMF &£ from load angle § when coil current crosses zero. The
steady-state load angle is roughly proportional to the sine of the load torque, meaning
BEMF decreases with increasing load torque.

2.4.2 SDFT method

An alternative method, as suggested by [11], is to use a Sliding Discrete Fourier Trans-
form (SDFT) to continually estimate the fundamental sinusoidal components of the
BEMF and current, thus finding their phase difference. The advantage of this method
is that load angle can be estimated at a higher frequency than once per full step and
without additional information about the motor and load. However, it is more complex
and incurs a higher computational cost.
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3 Method and Implementation

This section outlines the overarching approach taken. The overall method consists of
experiments and research on the chosen stepper motor driver, in particular its stall-
detection feature (StallGuard). Included is also implementation of a graphical appli-
cation used to interface with the driver. Detailed in following sections are the chosen
hardware, the approach taken to automatic and manual StallGuard tuning, automatic
homing, and methods of measurements on StallGuard in determining how it functions.

3.1 System Overview

Stepper %
Driver <

Raspberry Pi

Graphical
Application

Software Hardware

Figure 3.1 An overview of the developed system: A Raspberry Pi interfacing with a
stepper driver over SPI, driving stepper motor M with two phases A and B. The software
runs as a graphical application on a separate computer, e.g. a laptop.

An overview of the system is illustrated in Fig. 3.1. It consists of a Raspberry Pi con-
nected over Serial Peripheral Interface (SPI) to a stepper driver which in turn is con-
nected to a stepper motor. The stepper motor is attached to a small platform on a ball
screw (a linear stage), thus being able to move the platform back and forth by rotation
of the motor.

A Graphical User Interface (GUI), developed as part of the project, is used to con-
figure and move the motor according to user input. By using the library pigpio, control
over SPI on the Raspberry Pi is networked (here denoted /P, e.g. over Wi-Fi) and the
graphical application can remotely access the stepper driver. This enables the graphical
application to run on a separate host, e.g. a laptop, should that be desired.
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3.2 Hardware

The hardware consists of a Raspberry Pi, a Trinamic TMC5160 stepper driver [15] and
hybrid stepper motor from Casun Motor (model 42SHD0034-226NTP) [16]. The client
running the graphical application is a Windows 10 x86-64 computer, but it can be any
host capable of running Python programs and the Tk GUI library.

3.2.1 Stepper motor

The stepper motor is a NEMA 17 stepper motor (i.e. 43mm frame diameter) with 200
steps per revolution. It has the following electrical and mechanical properties [16]:

* Motor phases: 2

Holding torque 7" = 0.3 N/m

Motor peak current [pq; = 1.28 A

Phase resistance R = 5.0 Q + 10%

Phase inductance L = 6.2 mH + 20%

3.2.2 Stepper drivers

Chip TMC2130 | TMC2209 TMC5160
Voltage (V) 5.5-46 5.5-36 10-35
Current (A) 0.96 1.7 3.0
Interface SPI UART SPI
StealthChop No Yes No

Step generator No Velocity target | Position target
Price $12.73 $15.58 $15.00

Table 3.1 A high-level comparison of StallGuard-capable Trinamic SilentStepstick step-
per drivers

The driver is required to be capable of Trinamic StallGuard, since it is part of the pur-
pose of this work to investigate it. The SilentStepStick series [17] from Trinamic is cho-
sen for its plug-and-play capability between different models and due to not requiring
any extra components. Table 3.1 shows a comparison between the StallGuard-capable
SilentStepStick models. All feature acceptable voltage and current capabilities. The
Raspberry Pi features both SPI and UART, and as such the interface does not matter.
Neither does StealthChop, which is a silent operating mode, but not a crucial feature.
Lastly, the price difference is small. The only relevant difference is the step generator.
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It is internal driver circuitry capable of generating step pulses, where TMC2209 can
generate pulses accelerating the motor to a velocity target, and TMC5160 can generate
pulses to smoothly move to a target position. To avoid implementation of such a step
pulse generator, the TMC5160 is the chosen driver for the system.

3.2.3 Linear stages

Two separate linear stages are used: one with mostly metal construction and one plastic.

For reference, photos of the stages are shown in Appendix A in Fig. A.1 and Fig. A.2

respectively. The difference in mechanical construction is relevant in some in testing of

the system. However, due to the metal stage being more rigid and closer to the linear

stage used in the main project, the metal stage is the one used if not otherwise specified.
The lead screw (shaft) pitch of the linear stages are the following:

Metal 2mm (10um per step)

Plastic 1mm (5um per step)

3.2.4 Raspberry Pi

Raspberry Pi is a series of single board computers developed by the Raspberry Pi foun-
dation based on SoCs (system-on-a-chip) from Broadcom. In particular, the Raspberry
Pi 4 model B, which is used in this project, uses Broadcom BCM2711 and has a quad-
core A72-Cortex ARM processor and 1 to 8 GB of RAM [18]. The Raspberry Pi 4 is
chosen mainly due to also being used in the main microscope project. Additionally, it
enables remote access to General-Purpose Input/Output (GPIO) pins and SPI using the
library pigpio.

3.3 Software and Development Tools

The main software and development tools used are the programming language Python,
in version 3.8.6 of which the GUI application is written, and Raspberry Pi OS, which is
the Linux distribution running on the Raspberry Pi.

3.3.1 Raspberry Pi OS

Raspberry Pi OS (previously Raspbian) is a linux distribution and the officially sup-
ported operating system of the Raspberry Pi [19]. It is released as three versions: with
desktop and recommended software, with desktop, and lite, which is a minimal version
without recommended included software or a graphical desktop environment. In this
project, the version with graphical desktop and recommended software is used. How-
ever, the only requirement on it is support for interfacing with the GPIO pins using

pigpio.
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3.3.2 Python

Python is an interpreted, dynamically and strongly typed, object-oriented programming
language published by the non-profit Python Software Foundation [20]. It is a general-
purpose language with a large standard library, of which asyncio and tkinter are of
particular importance to this project. Additionally, third party libraries can be installed.
Following are short descriptions of the main libraries used:

tkinter is a Python library providing an interface to Tcl/Tk, which is not strictly part
of python [21]. Tcl is a separate programming language of which Tk is the de-
fault GUI toolkit [22]. Both Tcl/Tk and tkinter are available on most unix and
windows platforms and thus together provide a highly cross-platform compatible
GUI toolkit in Python.

asyncio is a Python library for running asynchronous tasks and concurrent code in a
single thread using cooperative multitasking [23]. Using an async/await syntax,
control can be deferred during long-running tasks such as disk 10. However, the
important feature for this project is the ability to create background tasks which
can be cancelled.

pigpio is a third-party Python library with an accompanying system service to inter-
face with the GPIO and SPI of the Raspberry Pi [24]. The library is included by
default in the Raspberry Pi OS version used in this project. It runs a background
daemon on the Raspberry Pi, which a Python program can connect to over a net-
work socket (using the corresponding Python library) and issue commands. For
example, it could be transferring data over SPI or configuring GPIO pins. As
such, pigpio enables the graphical application to be run on a different device
from the Raspberry Pi.

3.4 Stepper Motor Control

A schematic of the complete hardware setup is shown in Fig. 3.3, while a photo of it can
be found in Fig. 3.2. The drivers (TMC5160) are communicating with the Raspberry Pi
using daisy-chained SPI. The motors are powered from an external 18V power supply,
whereas the Raspberry Pi directly supplies IO voltage (VIO) to the drivers.
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Pi 4— Protection Resistors Stepper Drivers

, e
Figure 3.2 Labeled photo of physical setup of Raspberry Pi and stepper drivers. Motors
are not included in the picture, but the four wires to each motor can be seen to the far
right.
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Figure 3.3 Schematic of the hardware setup of Raspberry pi and stepper drivers.
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3.4.1 Daisy chaining SPI

To simplify wiring and to reduce the number of SPI channels needed, the stepper drivers
are daisy chained. The procedure consists of connecting data output (SDO) of each
driver to data input (SDI) on the next driver [15]. The first driver in the chain receives
data directly from the master (Raspberry Pi) and the last driver in the chain outputs data
directly to the master. Data is moved along the chain by sending empty data, which
pushes data currently in the chain along to the next drivers and finally the master.

3.4.2 Accessing driver registers over SPI

An SPI datagram of the TMC5160 is 40 bits, where the first 8 bits are address and the
rest 32 bits are data. In general, registers are integers (signed or unsigned) or 1-bit flags.
Register access is performed by sending a datagram where the first 8 bits are set to the
register address as given by the datasheet. Setting the most significant bit of the address
to 1 writes the datagram data to the register, whereas if it is O the driver will ignore the
datagram data and send the register contents as a response.

Data on the SDI pin (slave data in) is shifted out on SDO (slave data out) using an
internal 40-bit shift register. As such, to reach e.g. the second device, first the 40 bit
datagram is sent and then the clock (SCK) is pulsed 40 times to shift the datagram from
the first device to the second. During this whole process, Chip-Select (CS) must be
held low. Otherwise, the devices earlier in the chain will act on the datagram as if it is
intended for them. Finally, when CS is released, the drivers receive and act on the data
currently in their respective shift registers.

The SPI communication is implemented using the library pigpio. It does not
provide an option to manually control the CS pin. Instead, to force it to hold CS low
while shifting data through the daisy chain, datagrams are padded with dummy bits
(zeroes) after its data. A padding of 40 - & bits is used to make data reach the kth device
in the chain. Response from the kth device, if required, is subsequently read by sending
40(n — k + 1) dummy bits for a chain of n total devices.

Sign extension While datagrams have 32 bits of data, some registers are less than
32 bits in size. For unsigned integers, this poses no problem since the data can be
unpacked as a 32-bit unsigned integer, zeroing the extra upper bits. However, some
registers contain signed integers (in two’s complement). To allow the datagrams to be
generically unpacked as 32-bit unsigned integers, regardless of underlying register, sign
extension is performed in the special cases of signed integers.

In two’s complement, if the most significant bit is set, the number is negative. If it
is not negative, the binary representation is the same as for an unsigned number and no
sign extension is needed. The implementation is done in Python, which does not have
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fixed bit-length or explicit signedness of its integers. To overcome this limitation, the
sign extension is performed in the following way:

1. Negate by flipping bits and adding 1, obtaining positive counterpart.
2. Negate using -’ operator, making Python understand that it is a negative number.

In a language with fixed size and defined signedness of integers, sign extension can
instead be done by simply casting to a signed type, padding the extra upper bits with the
value of the most significant bit of the value to be sign-extended.

3.5 Tuning StallGuard

As part of the goals, sensorless stall detection using Trinamic StallGuard is demon-
strated and automatic tuning of StallGuard’s sensitivity is developed. During operation,
StallGuard can measure up to 1024 discrete levels of load, where 1023 is minimum load
and 0 is maximum load, 1.e. motor stall. StallGuard’s sensitivity is tuned by a single
value: StallGuard Threshold (SGT). This works as an offset for the result, where lower
SGT gives a lower StallGuard value for the same load. In other words, StallGuard is
more sensitive the lower the value of SGT. If SGT is set too low, the StallGuard result
will always be 0 (maximum load). If it is set too high, the result will never reach 0 and
detect a stall, even with the motor being overloaded and skipping steps.

In order to develop understanding of stall detection and in particular tuning of SGT,
it is of interest to find the factors affecting StallGuard sensitivity. This is both to aid in
developing automatic tuning of SGT and to extrapolate knowledge of stall detection in
general.

As per the datasheet, optimal SGT is affected by the following factors [15]:

e Back-EMF constant of the motor (/,)
* Motor coil inductance

* Motor coil resistance

* Load angle

* Angular velocity

* Current

* Supply voltage
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The first 3 factors are constants and can not be varied to examine their effect. The load
angle is variable, but is difficult to precisely control. As such, angular velocity, current,
and supply voltage are examined. More precisely, StallGuard’s load measurement is
recorded for a range of values of these 3 factors.

Supply voltage is commonly set to at least 3 times the rated motor voltage [10],
which for the selected motors is 3 - 6.4 = 19.2V. This is thus used as a starting point
in the tests of supply voltage. The motor is rated for at most 1.28A, which is used as
the upper limit for tests of motor current. Lastly, StallGuard performs poorly at too low
or high velocities [4]. As the driver datasheet suggests, best homing performance is
achieved at 1 to 5 revolutions per second, which is used as a basis for angular velocity
tests.

3.5.1 SGT tuning background

Trinamic provides two suggestions for tuning of StallGuard via SGT [15]. It can be
tuned manually by first choosing fixed values for current and speed and then changing
SGT until the StallGuard result is close to 0 with load close to stall. Additionally, an au-
tomatic method is suggested, which finds the highest value of SGT (least sensitivity) at
low speed where StallGuard result remains at 0. The high-level algorithm is as follows:

1. Move at a low speed, at most 10 Revolutions Per Minute (RPM).

2. Sample StallGuard result for some amount of time.

3. If StallGuard result is consistently O (maximum load), increase SGT and go to 2.
4. Otherwise, set SGT to current SGT - 1.

The automatic algorithm is used as basis for developing automatic tuning with the
chosen components. To evaluate the automatic tuning, it is compared with respect to
manual tuning. In particular, the range of SGT values for which StallGuard can detect
increased load are manually found. The range is defined as follows:

Maximum The value of SGT where maximum load without stall is required to trigger
StallGuard.

Minimum The value of SGT where only a minuscule increase in load is enough to
trigger StallGuard.

If the automatically tuned SGT is within this range, StallGuard will work to successfully
detect increasing load and stop before a stall. If SGT is too high, StallGuard will never
(or unreliably) detect a stall. If SGT is too low, StallGuard will detect false positives.
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3.5.2 Implementing automatic SGT tuning

This section aims to provide concrete implementation details of the automatic tuning
of SGT. The implementation is based on the high-level algorithm (see Section 3.5.1).
However, a few modifications are made and certain values are decided on, e.g. sampling
rate. The result is the following algorithm, which finds a valid value of SGT for a target
operational current i:

1. Set SGT to 0, current to 7, velocity to v and acceleration to any positive value.

2. To reduce effect of noise, activate sfilt option on the stepper driver, which is a low
pass filter of StallGuard result.

3. Wait until motor has reached target speed.
4. Sample StallGuard result 4 times with ¢, interval.
5. If any sample is O:

(a) Increase SGT by 1
(b) Wait 4 - 1
(c) Goto4.

6. Otherwise, current SGT is the tuning result.

Time per full step is Zep = ﬁ for n steps per revolution (usually 200). Since StallGuard
result is only updated once per full step [15], a delay equal to the step time is introduced
between samples to avoid sampling the same value multiple times. Additionally, since
StallGuard result is filtered over 4 full steps with sfilt, and 4 full steps is a full period of
the (sinusoidal) coil current, StallGuard result is sampled 4 times. This reduces effect
of noise and other random variables, increasing consistency of tuning.

The tuning procedure can be sped up by reducing delay in 5b). However, doing
so decreases tuning consistency and erroneously increases resulting SGT, drastically so
for low delays. The delay is needed between changing SGT and sampling StallGuard
result. Waiting for a full filter/current period (4 steps) appears to give good results.

Although the suggested high-level algorithm states that SGT should finally be de-
creased by 1, this is not done in the implementation. Generally, adding the negative
offset on SGT produces values that are too low to work on low velocities. As such, it
is omitted in the implemented tuning algorithm. However, if it should be kept or not is
possibly dependent on mechanical construction.
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Choosing StallGuard velocity threshold The driver includes the ability to set a ve-
locity threshold above which StallGuard is active. That is, the motor will only be
stopped if StallGuard result becomes 0 while the motor velocity is above a pre-defined
value. This is especially useful to avoid false positives at low velocities, where BEMF
is low and StallGuard works less reliably. Additionally, load torque is higher while
initially accelerating from standstill since static friction must be overcome.

Generally, from testing, it seems that increasing the velocity threshold allows a more
sensitive StallGuard tuning (lower SGT) without false positives, thus making it easier
to tune. However, if StallGuard velocity threshold is chosen too high, the motor could
spend considerable time moving into e.g. the axis endpoint before StallGuard becomes
active and stops it. As a middle ground, the threshold is set to half the operating velocity.

Choosing tuning velocity The velocity v in the tuning algorithm is neither specified
by the datasheet nor the high-level algorithm described as part of the method. The
recommended speed is at most 10 RPM. To be able to see the effect of different speeds,
a tool is built to automatically sweep through a range between 1 to 10 RPM, recording
the average out of 5 automatically tuned SGT values for each speed. Since the tuning
algorithm has delays proportional to speed v, a higher value gives faster run time. The
lower limit of the range is chosen based on lower speeds causing the tuning to take
excessively long time.

The range of values of v are tested at 18V and between 150mA to 500mA. An
excerpt of the results is shown in Table 3.2 together with a comparison to manually
found values of SGT at low speed (0.35 Revolutions Per Second (RPS)). Based on the
result, a higher tuning velocity generally produces lower tuning values, especially so
for high velocity. Additionally, a lower tuning velocity results in more accurate values
of SGT as compared to the viable range found manually. As a trade-off between fast
tuning run time and tuning accuracy, v = 2.5 RPM is chosen.
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Current (mA) Automatic Manual

1.5RPM 25RPM 5RPM 10RPM | Min Max
500 11 11 11 10.4 11 12
450 10 10.2 10 9 10 11
400 9 9.2 9 8 9 10
350 8 8 7.8 7 8 9
300 7 7 6.8 6 7 8
250 6 6 6 5 6 7
200 5 5 5 4.6 5 6
175 4 5 4 4 4 6
150 4 4 4 34 4 5

Table 3.2 Automatic tuning of SGT for different tuning velocities, average of 5 itera-
tions. Manual minimum and maximum of SGT are determined at 0.35 revolutions per
second.

3.6 Sensorless Homing

Once StallGuard has been configured to successfully detect motor stall, it is ready to be
used in homing. For this purpose, the following driver registers/flags are configured:

sg_stop Setting to 1 to cause driver to stop motor movement when detecting a stall
(when StallGuard result sg_result = 0)

en_softstop Setting to 0 to cause driver to perform a hard, immediate stop when stop-
ping due to stall detection.

tcoolthrs Sets a lower velocity threshold, below which StallGuard is disabled.

thigh Sets an upper velocity threshold, above which StallGuard is disabled. Set to
maximum such that StallGuard is always active above lower threshold.

With sg_stop active, once a stall is detected and velocity is within configured thresholds,
the driver stops the motor and sets a flag event_stop_sg. The motor remains stopped
until the flag is cleared, and thus the program interfacing with the driver does not need
to immediately react to the motor stalling.

To home the axis, once stall detection is set up, the following sequence is performed:

1. Tune SGT for a given homing current and homing speed
2. Move in one direction until StallGuard triggers a motor stop
3. Set current position to 0

4. Move in other direction until StallGuard triggers a motor stop
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5. Set current position to maximum position (axis length)

The driver’s step pulse generator (also called ramp generator) is used to move the
motor. It provides automatic movement based on desired position, velocity and accel-
eration, removing the need to accurately generate step pulses on the Raspberry Pi. To
keep track of position, the driver includes a register with a signed value counting the
number of microsteps moved. By setting this to a known value (e.g. 0), it enables ac-
curately knowing exact relative position at which StallGuard stopped the motor, even
without immediately reacting to the stall event. For example, this is used to move from
one end of the axis to the other, measuring the length of the axis.

3.6.1 Selecting velocity and current

The two main parameters needed for homing, outside of StallGuard configuration, are
motor current and velocity. If current is low, there is a risk of torque being too low
and motor stalling prematurely. A high current ensures enough torque is available, but
can make the motor movement stiff and jerky, possibly causing damage if stall detection
malfunctions. If velocity is too low, StallGuard does not work reliably [4]. However, too
high velocity comes with potential problems: The high momentum can cause damage
when hitting the axis end and friction increases, thus also increasing amount of needed
torque and current.

For best homing results, the Trinamic suggests using 30% to 70% of nominal motor
current (for the used motor: 272mA to 634mA RMS) and velocity 1 to 5 RPS [15]. For
the metal stage, friction is low and current can be kept low. A current of 300mA is cho-
sen, at it provides enough torque while still being in the lower range of the recommended
current. Homing velocity chosen is 3 RPS, which is in the middle of the recommended
range and provides fast homing without requiring unnecessarily high current.

3.6.2 Relevance of mechanical construction

From testing during implementation, it is apparent that mechanical construction of the
linear stage affects precision of homing. If non-rigid, bendy material is used (e.g. plas-
tic), the stop when the axis hits the physical endpoint is more gradual and soft. The load
torque increases more slowly, leading to a slower decline in StallGuard result and thus
the exact point at which StallGuard detects a stall is less precise. The time and distance
between endpoint contact and motor stop is also increased, leading to lower accuracy.

3.7 BEMF Measurements

In an effort to gain insight into how StallGuard functions, measurements are taken on
the voltage and current of the motor phases and correlated with known methods of sen-
sorless load detection. Given that the driver takes one StallGuard sample per full step
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[15], and that StallGuard is explicitly stated to be based on measuring BEMF [4], the
hypothesis is that the method used is that of measuring BEMF during zero-current cross-
ing (as detailed in Section 2.4.1). The phase voltage during zero current is examined
for indications of such measurements. For example, as shown by [12], then there would
be phase voltage (BEMF) when current is zero, the magnitude of which would decrease
with increasing load.

3.7.1 Measuring current

The phase voltage is measured trivially as the voltage over the two wires of one of the
motor’s two phases. The current could be measured by connecting a small resistor in
series with the phase. However, since the driver already includes a current sense resistor,
for simplicity it is used instead. Due to the way the resistor is connected and the way
the driver uses the H-bridge, shown in Fig. 3.4, the phase current does not always go
through the resistor (i.e. during slow decay). Additionally, the direction of current
through the phase is not consistent with direction of current through the sense resistor.
Nevertheless, it can still be used to measure magnitude of current and when it is zero.

On Phase: Fast Decay Phase:
current flows in current flows in
direction of target opposite direction
current of target current

Slow Decay Phase:
current re-circulation

Figure 3.4 H-bridge and current sense resistor Rsgnsg of the stepper driver for one motor
phase, along with the three stages of the chopper, as shown in TMC5160/A Datasheet
[15]. The chopper is used to keep current through the motor constant, regardless of
supply voltage, BEMF, etc.

3.7.2 Theoretical BEMF during current zero-crossing

The motor’s BEMF constant K, is equal to torque constant K, which is given as fol-
lows:

T 0.3 Vv
Ke = Kt = = 138 ~~ 0.33146 |: :| (31)
[RMS W rad/s
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To find the expected BEMF when the current crosses zero, Eq 2.8 is used with the
calculated value for K. If there is no load on the motor, load angle 6 = 0 and the
BEMF is maximized: £ = K .w. As the load angle increases, the BEMF is expected to
fall to 0 along a sinusoidal shape.

3.7.3 Practical measurements of BEMF during current zero-crossing

In addition to theoretical derivation, practical measurements of BEMF are also done.
The measurements are done in part to verify the theoretical BEMF of the unloaded mo-
tor and in part to correlate it with simultaneous samples of StallGuard result. A digital
oscilloscope (Digilent Analog Discovery 2) is used along with its Software Develop-
ment Kit (SDK) to automatically measure phase voltage and find BEMF.

n e ﬂ i
m 7
| [

A 3}

Figure 3.5 An example of the voltages in measured at each side of a phase (in relation
to ground) when the current crosses zero. The two pulses to the left and right showcase
non-zero current operation: one side of the phase active at a time, with the other being
grounded.

Probes are attached to each side of one of the motor phases. Fig. 3.5 shows an
example of the probe measurements before, during, and after the phase current crossing
zero. The pulses to the left and right show the driver regulating a non-zero current
(as per the chopper states shown in Fig. 3.4). The central pattern, where both probes
measure non-zero voltage, is assumed to be the driver floating both sides of the coil to
be able to measure BEMF. All states of the chopper (current regulation) described in
the datasheet have at at least one side of the phase connected to ground.

To automatically measure BEMF, the central pattern in Fig. 3.5 must be found. The
oscilloscope can capture a set of samples based on a trigger, but only supports triggering
on one of the channels rising or falling. To solve this problem in software, samples are
instead continuously captured and examined using the oscilloscope SDK. Based on the
figure, to get a BEMF measurement from a set of samples, the objective is to find point
at which the lower voltage of the two channels is maximized while both channels are
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non-zero (floating). Here, the lower channel is given by the red curve, but they alternate
since the coil polarity alternates. The following algorithm is used:

1. Set V1 max = 0 and vy max = 0
2. Capture a set of voltage samples using oscilloscope
3. For each sample pair (vy, v5) for channel 1 and 2 respectively:

* For a threshold v, if v; > v; and vy > v;: Sample is valid

o If sample is valid and min(vy, v9) > min(v1 max, U2,max)"
Set U1,max — V1 and V2 max — U2

4. If at least n valid samples: BEMF = |0} max — U2 max|

The voltage threshold v; is used to discard samples outside of the BEMF measurement
window: the central pattern in the figure. By counting the number of valid samples, a
BEMF measurement can be discarded if not at least a given portion of the measurement
window was captured. For example, sampling could start or end in the middle of the
window.

3.8 Graphical Application

The graphical application is developed using Python since it is the language used in
the main microscope project. This facilitates merging parts of the work with the main
codebase further on, should that be desired. To interface with the GPIO and SPI of the
Raspberry Pi, the library pigpio is used, which is included by default in the Rasp-
berry Pi Linux distribution Raspberry Pi OS. It runs a daemon as a systemd service on
the Raspberry Pi, which a Python program can connect to over a network socket (using
the corresponding Python library) and issue commands. For example, it could be trans-
ferring data over SPI or configuring GPIO pins. As such, pigpio enables the graphical
application to be run on a different device from the Raspberry Pi.

To be able to use tuning results in other programs, it is optionally written to a file. For
portability and since it is the format used in configuration of the main project, JavaScript
Object Notation (JSON) is used to store tuning results. For example, one tuning result
is SGT.

3.8.1 Program structure

An overview of the structure of the graphical tuning application is shown in Fig. 3.6.
The main goal of the application structure is to reduce coupling between the GUI and
hardware by defining an intermediary hardware interface. A low-level interface handles
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SPI data transfer and register access, while a higher-lever interface provides e.g. cali-
bration routines and motor movement. Some parts of the GUI need only access specific
registers, for example to read motor velocity, and are thus interfacing with low-level
functions directly. However, everything beyond simple SPI data transfer and register
configuration is done using the high-level functions, keeping GUI logic relatively sim-
ple.

: \ ) Y SR :
: ! i High-level 4 Low-level A 4 :
' ! ! functions functions i
! E < ' — :
1 - < N R I '
| S || settings |[€— < <«—>{ " SPiData ) [€»  PiGPIO :
l = - e o L . ' __transfer __ :
: SN~——r——A L N \ iyl :
' ' ' ' . | Direct register '
i — . . : Moving ' : access ' !
| o\ )\ AN :
1 O Calib- 1 1 1
E ration ' ' i
: GUI ! Hardware interface

Figure 3.6 Overview of the structure of the graphical tuning software. Generally, it is
divided into a front-end (using TKinter) and a hardware interface (using pigpio), which
in turn is divided into a high-level and a low-level one.

3.8.2 Scaling to multiple drivers

The low-level interface, as well as most GUI components, are generalised to be able to
be instantiated multiple times: one time for each axis. This allows per-axis control with-
out much extra work in implementation. Additionally, axes can be enabled and disabled
from a configuration file before without any code changes. At startup, the program sim-
ply checks which axes are enabled and instantiates GUI widgets and hardware interface
objects for the given axes.

There is some interdependence between the drivers that needs to be considered.
Most of it stems from hardware configuration, for example daisy chaining SPI. In order
for any SPI communication to work, a driver interface instance most know how many
other drivers there are, and in which position it is in the SPI chain. Additionally, since
SPI communication is a two-part process (sending datagram, receiving response), care
must be taken to avoid any other driver interface instances accessing the SPI bus in the
meantime. In the implementation, this is simply done with a global lock (mutex) for any
GPIO or SPI access. While more granular locking could be used, for example allowing
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concurrent GPIO access on different pins, a single lock is used for simplicity as the
performance is not needed.

3.8.3 Driver event system for GUI reconfiguration

An architectural problem encountered in development was updating GUI based on driver
state without too much coupling. In several cases where the stepper driver’s state
changes, multiple parts of the GUI need to be updated. For example, many buttons
and inputs are disabled until user connects to the driver and at the end of calibration
routines, several configuration inputs need to refresh their values. Most of the time, the
driver state changes are from user action, but keeping track of what other GUI compo-
nents are affected by an action is not feasible without high coupling.

The solution used is to introduce a central event system in the driver interface layer
(“hardware interface” in Fig. 3.6). All actions on the driver go through the hardware
interface and as such, it works as a central point at which the actions can be observed.
Events are subsequently dispatched based on actions taken. For example, when starting
a calibration routine (such as homing the axis) an event is dispatched that calibration
has started. The GUI components themselves listen to the event take action, in this case
(most of them) disabling themselves until the event is dispatched that calibration has

ended.
3.8.4 Cancellable calibration routines

Calibration routines are long-running tasks, calibrating or tuning one or more values of
the stepper driver. The following are implemented:

* Automatic tuning of StallGuard Threshold (SGT)
* Homing axis

* Measuring axis length (finding both endpoints)

* Full calibration with JSON output:

— SGT for normal operation
— SGT for homing
— Axis length

While most other actions simply access one or more register values, the calibration
routines move the motor and thus generally take noticeable time (10 to 60 seconds). Due
to the time taken and since moving the motor possibly has undesired consequences, all
calibration routines are explicitly made cancellable. This means that at any point during
calibration, the user can cancel it, returning the driver to a valid, predictable state.
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The calibration routines are implemented and made cancellable using Python’s li-
brary asyncio. An asyncio coroutine (here: the calibration routine) is used to create
an asyncio task, which when cancelled throws a CancelledError exception in the
coroutine. Thus, to make the calibration functions into cancellable asyncio coroutines,
the following is done:

» Use asyncio equivalents for 10, delays (t ime . sleep), etc. These are the can-
cellation points at which CancelledError can be thrown.

* When modifying driver settings, catch CancelledError to restore driver state
on cancellation, then re-raise it to propagate cancellation upwards in the stack.

For most coroutines implemented, restoring driver state simply involves restoring
some previously saved values to a set of driver registers. Some coroutines also set the
motor in motion. When cancelled, these coroutines stop the motor and wait until the
driver has decelerated the motor to standstill before re-raising the CancelledError.
Effectively, this incorporates motor stopping in cancellation using a feature of asyncio’s
tasks: that coroutines can delay or even suppress cancellation by catching the corre-
sponding generated exception.
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4 Results and Discussion

4.1 Prototype

The resulting prototype setup is shown in Fig. 4.1. The graphical application is con-
nected over a local network to a Raspberry Pi, which in turn controls 3 TMC5160 drivers
on a breadboard. One of the 3 stepper motors are showed above, connected to a metal
linear stage. A detailed view of the raspberry pi and drivers are shown earlier in Fig. 3.2.
3 separate linear stages are connected simultaneously.

Stepper |

Linear stage
Motor ;

Stepper |\
_ Drivers

Raspberry Pi

:&k o
ndmetgﬂ

3rd motor
-

Router

Figure 4.1 An illustration of the complete prototype. Shown is the GUI together with a
labelled photo of the hardware. The router symbolises any configuration of a local area
network.
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4.2 Homing Precision

To evaluate performance of the sensorless homing with respect to precision, it is per-
formed several times while recording the resulting position. The result of 50 samples
is shown in Table 4.1 and illustrated in Fig. 4.2, where distance is measured with Sum
precision. Number of microsteps is recorded as reported by the stepper driver. From
the results, it can be seen that the sensorless homing has high precision. The resulting
position is the same in 94% of cases and the highest recorded offset is 20 um. As a com-
parison, the approximate desired precision as per the stakeholder is 100 um. However,
it should be noted that this does not imply good accuracy, which could also be desirable.
It is possible that the time and distance from the point of contact to stopping the motor
is large.

um | microsteps | Count | Relative
0

0 47 94%
20 | 1024 1 2%
-10 | -509 1 2%
-5 | -253 1 2%

Total | 50 100%

Table 4.1 Resulting position, in both ym and microsteps, from sensorless homing of
the metal linear stage. Position is relative and zero point is chosen as the most frequent
result. Positive direction is toward the axis endpoint. Homing was done at 200mA and
3 RPS with automatic tuning of SGT each time.

== Position (um) == Position (usteps)

20 1500
10
A 500
° V
V -500 .
-10 :

-20 -1500
10 20 30 40 50

Sample

Position (um)
Position (usteps)
Human hair

Figure 4.2 Resulting sensorless homing position from Table 4.1 shown as a graph with
a to-scale average strand of human hair (75um diameter) for reference.
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The microstep count at each homing position is close to a multiple of 256. During
testing, the stepper driver was configured to use 256 microsteps per full step. This shows
that, as is already known, StallGuard can only detect a stall each full step, which with
the given motor is 200 per revolution.

With a pitch of 2mm and 200 steps per revolution, each full step is theoretically
10um. This is confirmed to be the case in practice, except when the linear stage platform
is close to the endpoint. As can be seen from the homing results, each full step offset
(256 microsteps) produces approximately Sum real offset. The reason is possibly that
the linear stage platform makes uneven contact with the endpoint, as can be seen in
Figure 4.3. This leads to slower increase in load torque after contact, increasing the
time it takes until StallGuard stops the motor. Additionally, it is possible that during
this time, softer parts flex and bend, such as the plastic connector between the stepper
and the linear stage.

: Point of first contact

@Dlstance sensor

Figure 4.3 Photo of distance sensor and end of linear stage. Due to a rounded corner,
the platform makes uneven contact with the linear stage endpoint, leading to a slightly
softer stop.

4.3 Automatic Tuning of SGT

The results of the developed automatic tuning of SGT are shown in Fig. 4.4 and Fig. 4.5.
The value of SGT found automatically is compared to SGT found manually, demon-
strating the viability of the automatically tuned value. Minimum and maximum are the
limits defined as per the method in Section 3.5.1.
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4.3.1 Effect of velocity
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Figure 4.4 Comparison of automatic vs manual tuning for fixed current and different
velocities. Max is the highest SGT at which a stall can at all be detected. Min is the low-
est SGT before false positive stalls are detected. An acceptable SGT must be between
these values. Motor current is 400mA.

Fig. 4.4 shows dependency on velocity for the range of viable values of SGT, where
the motor is run at a fixed velocity in a single direction. Since the automatic SGT is
found using a fixed velocity during tuning, it is constant for the whole range of velocity
values. From the figure, it can be seen that the automatic tuning finds SGT close to the
minimum for low velocities. It is also known from testing during implementation that
increasing the velocity during tuning decreases tuned SGT. Both of these observations
are to be expected from the way the tuning works: moving at a low velocity and finding
the highest SGT (lowest sensitivity) where StallGuard no longer thinks the motor is
stalled. In other words, the automatic tuning finds the minimum SGT needed to not
trigger a false-positive stall, which by definition is the minimum manual SGT.

As the velocity increases, the range of acceptable values for SGT increases. The
figure shows that an acceptable value of SGT for low velocities is also acceptable for
the higher velocities tested. The increased range of acceptable values could, in part,
be due to the generated BEMF increasing in magnitude, increasing range of BEMF
values and thus also being less sensitive to noise. The maximum value shows a close
to linear increase with velocity, similar to BEMF. Although not shown in the figure, the
minimum value is mostly affected by the StallGuard velocity threshold, below which
StallGuard is disabled. As determined in the implementation, it is half the operational
velocity (x-axis in figure).

The automatic tuning finds a single value of SGT that works for a wide range of
velocities. However, it can still be manually tuned for more control over how sensitive
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the stall detection is. For example, to avoid damage it is possibly desirable to stop the
motor on slightest increase in load. This would not be achieved with the automatic
tuning of SGT, but instead require some manual offset or adjusted tuning process.

4.3.2 Effect of current

== Automatic 0.35 RPS e wmmms (0,71 RPS m= = 1,42 RPS == == ) 9 RPS

25

200 300 400 500
Current (mA)

Figure 4.5 Comparison of automatic vs manual tuning of SGT for different velocities at
400mA. Max is the highest SGT at which a stall can at all be detected. Min is the lowest
SGT before false-positive stalls are detected. An acceptable SGT must be between these
values.

Fig. 4.5 shows dependency on chosen motor current for both automatic and manual
tuning of SGT. In general, it shows that the automatic tuning of SGT produces an ac-
ceptable value for a wide range of currents. It also shows that the margin for error
is much larger for higher velocities, whereas the current does not affect the range of
acceptable values significantly.

Both the lower and upper limit increase with current, especially for lower velocities.
One possible reason is that the motor movement is more “stiff” the higher the current
and the lower the velocity. Magnetic forces from the coils are higher and the rotor
reaches the position of the next step faster. This produces more friction (load torque),
higher acceleration, more variance in velocity, and thus more variance in BEMF. De-
creasing the current reduces the forces on the rotor, reducing acceleration and velocity
of a step. When continually stepping, as is done in testing, it produces a smoother
motion instead of a step-wise one. However, consideration must be taken that it also
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reduces motor torque. At the highest velocity, low torque issues can be seen at less than
200mA, where SGT needs to be increased to avoid false-positives.

4.3.3 Effect of supply voltage
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Figure 4.6 Comparison of maximum and minimum values of SGT for different supply
voltages and motor currents, using the plastic linear stage. Max is the highest SGT at
which a stall can at all be detected. Min is the lowest SGT before false-positive stalls

are detected. An acceptable SGT must be between these values. Motor velocity is 1.42
RPS.

Fig. 4.6 shows dependency on supply voltage for the range of acceptable values of
SGT. The figure results are from the plastic linear stage. Thus, they do not directly
show the effect of supply voltage for StallGuard when using the metal stage. However,
the difference is mainly in friction and rigidity of construction and the results therefore
are assumed to be indicative of that of the metal stage as well.

Generally, the range increases with decreasing supply voltage, mostly affecting the
upper limit (lowest viable sensitivity). Thus, it is likely easier to tune StallGuard for
lower supply voltage. Current has a negligible effect compared to supply voltage for all
tested levels. However, the range of tested currents is relatively small.

Although lower supply voltage gives better performance for StallGuard, 12V is pos-
sibly too low. Commonly, 3 to 25 times the rated motor voltage (here: 6.4V) is used
as supply voltage for a stepper driver [10]. The higher the motor speed, the faster the
driver needs to be able to change the phase current. Furthermore, the higher the ap-
plied voltage, the faster the current through the motor coils rises or falls. If the motor is
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run slowly, a lower supply voltage is possibly feasible, but StallGuard will also perform
worse due to the lower speed. As such, supply voltage must be chosen on a case-by-case
basis, taking into account the inductance of the motor used and the required speed.

4.4 BEMF Measurements

As part of understanding StallGuard, measurements with the motor active are taken on
voltage and current of one of the motor phases. Measured values as the current crosses
zero are shown in Fig. 4.8. While the current measurement is noisy and inexact (as
detailed in Section 3.7), the magnitude still corresponds to magnitude of phase current.
It can be seen that, as is expected from the driver chopper phases, the phase voltage
fluctuates between positive, negative, and zero. However, as the current reaches zero, a
special pattern emerges: the phase voltage slowly decays (demagnetizes) and reaches a
stable point. Subsequently, normal chopper operation resumes and current rises again.

The demagnetizing pattern is similar in shape to that of previous research [12],
where BEMF was measured as current crossed zero. Given that StallGuard and the
method in research measures load once per full step [15], which is the same frequency
at which current crosses zero, it is likely that StallGuard is implemented using a similar
method. If that is the case, the point of lowest phase voltage before normal chopper op-
eration resumes is the motor BEMF, which is confirmed by correlating measurements
with theoretical BEMF in Fig. 4.7.

Fig. 4.7 shows BEMF as a function of velocity at no load, using measurements from
oscilloscope SDK as per Section 3.7.3. For each velocity tested, an average over several
samples is automatically taken. As can be seen, the measured values closely match the
theoretical BEMF of the motor, indicating that the measured values are indeed the motor
BEMEF. The slight decrease at higher velocities is possibly caused by higher load torque
due to friction.
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Figure 4.7 Measured BEMF in relation to rotational speed. Theoretical value shown is

from linear relationship using BEMF constant K, = 2.0826 11/8
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Figure 4.8 Oscilloscope measurements of the voltage and current of one motor phase

during current zero-crossing. Current is measured as passing through driver’s sense

resistor, and polarity thus does not reflect actual direction of coil current. Additionally,

it is noisy as it only shows high side of resistor. BEMF marks the point at which BEMF

is measured as the voltage over the coil.
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4.4.1 Correlating BEMF and StallGuard result

Fig. 4.9 shows a comparison of StallGuard result and BEMF measured at current zero-
crossing. Except during acceleration and motor stall, there is a close correlation between
StallGuard result and measured BEMF. Assuming StallGuard is accurate in measuring
load torque, this shows that the measured BEMF, too, is indicative of the load on the
motor. Further, it shows that even without the StallGuard feature on the motor driver,
reasonable estimates of load torque (and thus stall detection) can be done with the de-
veloped program and the digital oscilloscope. In effect, it is a standalone, external Stall-
Guard. However, to measure BEMEF, it relies on the stepper driver floating the phase
terminals as the current crosses zero. It should also be noted that the BEMF shown in
the figure is filtered using a moving average, and thus not as accurate or quick as the
StallGuard result. This can especially be seen during stall where the motor vibrates and
StallGuard results vary quickly between full load and no load.

Back-EMF vs StallGuard result
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Figure 4.9 StallGuard result and BEMF as measured concurrently over a period of time.
After an initial acceleration period, the motor shaft is subjected to increasing load until
it stalls. Lastly, varying levels of load are applied. Back-EMF values are filtered using
a 6-sample moving average.

41



4  Results and Discussion

4.5 Graphical Application

The resulting graphical utility developed as part of the project is a GUI featuring:
* 3-axis joystick for movement control
* Real-time status of motor and driver
* Configuration of useful registers, some of which are:

— Current
- Velocity
— StallGuard threshold

¢ Several automatic calibration routines, some of which are:

— Finding axis length

— Homing axis

— StallGuard tuning
A screenshot of the application is shown in Fig. 4.10. In terms of deliverable goals, the
application fulfills the requirements as set out by the project aims. The desired features
are present, and it works as a graphical interface to configure and tune various settings

of the stepper driver. Additionally, it is a useful tool in performing the other tests on the
system and gathering data, e.g. for development of StallGuard tuning.
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Figure 4.10 Screenshot of the graphical tuning application.
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5 Conclusions and Future Work

5.1 Conclusions

In this thesis, the aim has been to delve into sensorless load estimation of stepper mo-
tors and its use in sensorless homing for cost and complexity reduction of linear stages.
The end result is a graphical application able to simultaneously control one or more
stepper motors, automatically tune sensitivity of load estimation and, using Trinamic
StallGuard, home the linear stages. Evaluation shows high precision of sensorless hom-
ing. In 94% of cases, the resulting position is within a +5 pm interval, demonstrating
sensorless load detection as a promising alternative to limit-switches. The maximum
deviation was 20 um out of 50 attempts, which compared to the stakeholder’s desired
precision — 100 pm — is acceptable by a large margin.

Additionally, general technical background on sensorless load estimation has been
presented, coupled with a practical demonstration of one such method. From measure-
ment of motor Back-EMF (BEMF) using a digital oscilloscope, a custom-made sensor-
less load detection is able to be realised with characteristics similar to that of StallGuard.

A large part of the work has involved investigation into what conditions are optimal
for StallGuard and how it can best be tuned for a given motor current. It has been found
that increasing velocity generally has little to no downside with respect to detecting
motor stall with StallGuard. Using an algorithm from the stepper driver manufacturer
as a basis, StallGuard is able to be automatically tuned to successfully detect motor stall
for a wide range of conditions. The result is a sensorless homing that can be performed
automatically and precisely with little to no manual input or configuration. Additionally,
through the graphical interface, the process is easily performed and monitored by a user.

5.2 Future Work

Promising results have been shown both with respect to the automatic StallGuard tuning
and using BEMF measurements as sensorless load detection. It would be interesting to
develop these areas more and this section presents some ideas for potential further work.

5.2.1 Load detection using microcontroller with ADC

Measuring BEMF using a digital oscilloscope and a software-based trigger has been
shown in this work to deliver promising sensorless load detection. A potential fur-
ther development could be to use a microcontroller with an analog-to-digital converter
(ADC) to, using the same method, sample BEMF and detect load. A microcontroller
could react more quickly and possibly sample faster than the oscilloscope-based solu-
tion. However, it is still dependent on the stepper driver disconnecting the phase termi-
nals to allow measurement of BEMF. It can not sample load without the correct stepper
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driver configured in a specific way. Nevertheless, such a system could be interesting,
especially so if it could be made to work with stepper drivers incapable of load detection
natively.

Alternatively, additional circuitry (e.g. MOSFETSs) could be added to enable the
microcontroller to on its own periodically disconnect the phase terminals and measure
BEMF. It would then be interesting to see if this could be developed to be an add-on for
sensorless load detection to existing stepper drivers without such functionality.

5.2.2 Applying controllable and measurable load

As part of an improved tuning algorithm for StallGuard, a way of applying a controllable
and measurable load could be incorporated into the system. This would possibly enable
tuning it to detect stalling at a specific load torque. By applying a constant torque,
StallGuard Threshold (SGT) could be varied until a StallGuard reliably signals a stall.

Additionally, if the controllable load included a sensor of the shaft rotation, it would
enable automatically finding the limits of viable values of SGT. It would provide a
ground truth of whether the motor is stalled or not, which could then be compared to
StallGuard’s result to tell if it is too sensitive or not sensitive enough.

5.2.3 Finding area of motion and path finding

A potential further development of homing is to apply it to all linear stages to automat-
ically find an area of motion. For example, one could find the linear stage endpoints
and put them together into a 3-dimensional cuboid-shaped area. Further, it could then
be possible to map physical obstacles inside the cuboid in the way of the linear stage
platform. This would enable developing automatic path finding to avoid the obstacles.
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A Physical test setup

Appendix A Physical test setup
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Figure A.1 Photos of the metal stage from the side and above. Everything is metal
except the white angle bracket, which is 3D printed plastic, and the black central part of
the motor.
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Figure A.2 Photos of one of the plastic stages from the side and above. Most parts are
3D printed plastic. The hot-glued orange wire is an old limit switch not used in this
project.
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