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Abstract
Recent years have witnessed a massive increase in the amount of data generated by the Internet of Things
(IoT) and social media. Processing huge amounts of this data poses non-trivial challenges in terms of the
hardware and performance requirements of modern-day applications. The data we are dealing with
today is of massive scale, high intensity and comes in various forms. MapReduce was a popular and
clever choice of handling big data using a distributed programming model, which made the processing
of huge volumes of data possible using clusters of commodity machines. However, MapReduce was
not a good fit for performing complex tasks, such as graph processing, iterative programs and machine
learning. Modern data processing frameworks, that are being popularly used to process complex data
and perform complex analysis tasks, overcome the shortcomings of MapReduce. Some of these popular
frameworks include Apache Spark for batch and stream processing, Apache Flink for stream processing
and Tensor Flow for machine learning.

In this thesis, we deal with complex analytics on data modeled as time series, graphs and streams.
Time series are commonly used to represent temporal data generated by IoT sensors. Analysing and
forecasting time series, i.e. extracting useful characteristics and statistics of data and predicting data, is
useful for many fields that include, neuro-physiology, economics, environmental studies, transportation,
etc. Another useful data representation we work with, are graphs. Graphs are complex data structures
used to represent relational data in the form of vertices and edges. Graphs are present in various
application domains, such as recommendation systems, road traffic analytics, web analysis, social media
analysis. Due to the increasing size of graph data, a single machine is often not sufficient to process the
complete graph. Therefore, the computation, as well as the data, must be distributed. Graph partitioning,
the process of dividing graphs into subgraphs, is an essential step in distributed graph processing of
large scale graphs because it enables parallel and distributed processing.

The majority of data generated from IoT and social media originates as a continuous stream, such as
series of events from a social media network, time series generated from sensors, financial transactions,
etc. The stream processing paradigm refers to the processing of data streaming that is continuous and
possibly unbounded. Combining both graphs and streams leads to an interesting and rather challenging
domain of streaming graph analytics. Graph streams refer to data that is modelled as a stream of edges
or vertices with adjacency lists representing relations between entities of continuously evolving data
generated by a single or multiple data sources. Streaming graph analytics is an emerging research field
with great potential due to its capabilities of processing large graph streams with limited amounts of
memory and low latency.

In this dissertation, we present graph partitioning techniques for scalable streaming graph and time
series analysis. First, we present and evaluate the use of data partitioning to enable data parallelism
in order to address the challenge of scale in large spatial time series forecasting. We propose a graph
partitioning technique for large scale spatial time series forecasting of road traffic as a use-case. Our
experimental results on traffic density prediction for real-world sensor dataset using Long Short-Term
Memory Neural Networks show that the partitioning-based models take 12× lower training time when
run in parallel compared to the unpartitioned model of the entire road infrastructure. Furthermore, the
partitioning-based models have 2× lower prediction error (RMSE) compared to the entire road model.
Second, we showcase the practical usefulness of streaming graph analytics for large spatial time series
analysis with the real-world task of traffic jam detection and reduction. We propose to apply streaming
graph analytics by performing useful analytics on traffic data stream at scale with high throughput
and low latency. Third, we study, evaluate, and compare the existing state-of-the-art streaming graph
partitioning algorithms. We propose a uniform analysis framework built using Apache Flink to evaluate
and compare partitioning features and characteristics of streaming graph partitioning methods. Finally,
we present GCNSplit, a novel ML-driven streaming graph partitioning solution, that uses a small and
constant in-memory state (bounded state) to partition (possibly unbounded) graph streams. Our results
demonstrate that GCNSplit provides high-throughput partitioning and can leverage data parallelism to
sustain input rates of 100K edges/s. GCNSplit exhibits a partitioning quality, in terms of graph cuts and
load balance, that matches that of the state-of-the-art HDRF (High Degree Replicated First) algorithm
while storing three orders of magnitude smaller partitioning state.



v

Sammanfattning

De senaste åren har bevittnat en massiv ökning av mängden data som genereras av Internet of Things
(IoT) och sociala medier. Att bearbeta enorma mängder av denna data innebär icke-triviala utmaningar
när det gäller hårdvaru- och prestandakrav för dagens tillämpningar. De uppgifter vi har att göra
med idag är i stor skala, med hög intensitet och finns i olika former. MapReduce var ett populärt
och smart val av hantering av big data med hjälp av en distribuerad programmeringsmodell, vilket
gjorde det möjligt att bearbeta stora datamängder med kluster av standarddatorer. MapReduce passade
emellertid inte bra för att utföra komplexa uppgifter, såsom grafbehandling, iterativa program och
maskininlärning. Moderna ramverk för databehandling, som ofta används för att bearbeta komplexa
data och utföra komplexa analysuppgifter, övervinner bristerna i MapReduce. Några av dessa populära
ramverk inkluderar Apache Spark för batch- och streambearbetning, Apache Flink för streambearbetning
och Tensor Flow för maskininlärning.

I denna avhandling behandlar vi komplexa analyser av data modellerade som tidsserier, grafer
och strömmar. Tidsserier används ofta för att representera tidsdata som genereras av IoT-sensorer.
Att analysera och prognostisera tidsserier, dvs extrahera användbara egenskaper och statistik och
förutsäga data, är användbart för många områden till exempel neurofysiologi, ekonomi, miljöstudier,
transport etc. En annan användbar datarepresentation vi arbetar med är grafer. Grafer är komplexa
datastrukturer som används för att representera relationsdata i form av hörn och kanter. Grafer finns i
olika tillämpningsdomäner, såsom rekommendationssystem, vägtrafikanalys, webbanalys, och sociala
medianalyser. På grund av den ökande storleken på grafdata är en enskild dator ofta inte tillräcklig
för att bearbeta hela grafen. Därför måste beräkningen såväl som data distribueras. Grafpartitionering,
processen att dela in grafer i subgrafer, är ett viktigt steg i distribuerad grafbehandling av storskaliga
grafer eftersom det möjliggör parallell och distribuerad bearbetning.

Majoriteten av data har sitt ursprung i en kontinuerlig ström, såsom händelseserier från ett socialt
medianätverk, tidsserier genererade från sensorer, finansiella transaktioner etc. Strömbehandlingspara-
digmet hänvisar till bearbetning av dataströmmar vilka är kontinuerliga och möjligen obegränsade. Att
kombinera både grafer och strömmar leder till en intressant och ganska utmanande domän för analys av
strömmande grafer. Grafströmmar hänvisar till data som är modellerad som en ström av kanter eller
hörn med närliggande-listor som representerar relationer mellan enheter för kontinuerligt utvecklande
data som genereras av en eller flera datakällor. Analys för strömmande grafer är ett framväxande
forskningsfält med stor potential på grund av dess möjligheter att bearbeta stora grafströmmar med
begränsade mängder minne och låg latens.

I denna avhandling presenterar vi grafdelningstekniker för skalbar analys av strömmande grafer
och tidsserier. Först presenterar och utvärderar vi användningen av datapartitionering för att möjliggöra
dataparallellism för att hantera skalans utmaning i stora rumsliga tidsserieprognoser. Vi föreslår en
grafuppdelningsteknik för storskalig rumslig tidsserieprognostisering av vägtrafik som användningsfall.
Våra experimentella resultat om trafikdensitetsförutsägelse för verkliga sensordatamängder med
hjälp av Long Short-Term Memory Neural Networks visar att de partitionsbaserade modellerna tar
12×, om de körs parallellt, mindre träningstid jämfört med den opartitionerade modellen av hela
väginfrastrukturen. Dessutom har de partitioneringsbaserade modellerna 2× färre förutsägelsesfel
(RMSE) jämfört med hela vägmodellen. För det andra visar vi den praktiska användbarheten av
strömmande grafanalys för storskalig rumslig tidsserieanalys med den verkliga uppgiften att upptäcka
och minska trafikstockningar. Vi föreslår att man använder strömmande grafanalys genom att utföra
användbar analys på trafikdataströmmar i stor skala med hög genomströmning och låg latens. För
det tredje studerar, utvärderar och jämför vi befintliga toppmoderna partitioneringsalgoritmer för
strömmande grafer. Vi föreslår ett enhetligt analysramverk byggt med Apache Flink för att utvärdera och
jämföra partitioneringsfunktioner och egenskaper hos partitioneringsmetoder för strömmande grafer.
Slutligen presenterar vi GCNSplit, en ny ML-driven partitioneringslösning för strömningsdiagram, som
använder ett litet och konstant tillståndsminne i minnet (finit tillstånd) för att partitionera (eventuellt
obegränsade) grafströmmar. Våra resultat visar att GCNSplit tillhandahåller partitionering med hög
kapacitet och kan utnyttja dataparallellism för att upprätthålla ingångshastigheter på 100K kanter/s.
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GCNSplit uppvisar en partitioneringskvalitet, i termer av grafskärningar och belastningsbalans, som
matchar den toppmoderna HDRF-algoritmen (High Degree Replicated First) medan den lagrar tre
storleksordningar mindre partitioneringstillstånd.

.
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Résumé

Les dernières années ont été témoin d’une augmentation massive de la quantité de données générées
par l’Internet des objets (IoT) et les médias sociaux. Le traitement d’énormes quantités de ces données
pose des défis non triviaux en termes d’exigences matérielles et des performances d’applications
modernes. Les données que nous traitons aujourd’hui sont d’échelle massive, de haute intensité et
se présentent sous diverses formes. MapReduce était un choix populaire et astucieux pour gérer les
données volumineuses à l’aide d’un modèle de programmation répartie, ce qui rendait possible le
traitement d’énormes quantités de données à l’aide de clusters de machines de base. Cependant,
MapReduce n’était pas adapté à l’exécution de tâches complexes, telles que le traitement de graphes,
les programmes itératifs et l’apprentissage automatique. Les plates-formes modernes de traitement de
données, utilisées communément pour traiter des données complexes et effectuer des tâches d’analyse
complexes, surmontent les lacunes de MapReduce. Certaines de ces plates-formes populaires incluent
Apache Spark pour le traitement par lots et par flux, Apache Flink pour le traitement par flux et Tensor
Flow pour l’apprentissage automatique.

Dans cette thèse, nous traitons des techniques d’analyse complexes sur des données modélisées
sous forme de séries temporelles, de graphes et de flux. Les séries temporelles sont couramment utilisées
pour représenter les données temporelles générées par capteurs IoT. L’analyse et la prévision des séries
temporelles, c’est-à-dire l’extraction des caractéristiques et des statistiques utiles des données et la
prédiction des données, sont utiles dans de nombreux domaines, notamment la neurophysiologie,
l’économie, les études environnementales, les transports, etc. Une autre représentation de données utile
avec laquelle nous travaillons est le graphe. Les graphes sont des structures complexes utilisées pour
représenter des données relationnelles sous forme de noeuds et d’arêtes. Les graphes sont présents dans
divers domaines d’application, tels que les systèmes de recommandation, l’analyse du trafic routier,
l’analyse Web, l’analyse des médias sociaux. En raison de la taille croissante des données en forme de
graphes, souvent un seul ordinateur n’est pas suffisant pour traiter tout le graphe. Par conséquent, le
calcul, ainsi que les données, doivent être répartis. Le partitionnement de graphes, c’est-à-dire la division
de graphes en sous-graphes, est une étape essentielle pour le traitement de graphes à grande échelle car
il permet un traitement parallèle et réparti.

La majorité des données générées à partir de l’IoT et des médias sociaux existent comme un flux
continu, telles que les séries d’événements d’un réseau de médias sociaux, les séries temporelles générées
à partir de capteurs, les transactions financières, etc. Le paradigme de traitement de flux fait référence
aux flux de données continus et potentiellement non bornés. Combiner ensemble des graphes et des flux
conduit à un domaine intéressant et plutôt difficile d’analyse. Les flux de graphes font référence à des
données modélisées comme un flux d’arêtes ou de noeuds avec des listes d’adjacence représentant des
relations entre des entités en constante évolution générées par une ou plusieurs sources de données.
L’analyse des graphes en continu est un domaine de recherche émergent avec un grand potentiel en
raison de ses capacités à traiter de grands flux de graphes avec une mémoire limitée et une faible latence.

Dans cette thèse, nous présentons des techniques de partitionnement de graphes pour l’analyse
à grande échelle des graphes en continu et des séries temporelles. Tout d’abord, nous présentons et
évaluons l’utilisation du partitionnement pour permettre le parallélisme des données afin de relever le
défi de l’échelle dans la prévision de grandes séries temporelles spatiales. Nous proposons une technique
de partitionnement de graphes pour la prévision de séries temporelles spatiales à grande échelle du
trafic routier comme cas d’utilisation. Nos résultats expérimentaux sur la prédiction de la densité du
trafic pour l’ensemble de données de capteurs du monde réel à l’aide de réseaux neuronaux récurrent
à mémoire court et long terme (Long Short-Term Memory, LSTM) montrent que les modèles basés
sur le partitionnement prennent 12 fois moins de temps d’apprentissage lorsqu’ils sont exécutés en
parallèle par rapport au modèle non partitionné de l’ensemble de l’infrastructure routière. De plus, les
modèles basés sur le partitionnement ont une erreur de prédiction 2 fois inférieur (erreur quadratique
moyenne, RMSE) par rapport au modèle routier en entier. Deuxièmement, nous présentons l’utilité
pratique de l’analyse des graphes en continu pour l’analyse de grandes séries temporelles spatiales avec
la tâche réelle de détection et de réduction des embouteillages. Nous proposons d’appliquer l’analyse
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des graphes en continu en effectuant des analyses utiles sur les flux de données de trafic à grande échelle
avec un débit élevé et une faible latence. Troisièmement, nous étudions, évaluons et comparons l’état
de l’art des algorithmes de partitionnement de graphes en continu. Nous proposons une plate-forme
d’analyse uniforme construite à l’aide d’Apache Flink pour évaluer et comparer les fonctionnalités de
partitionnement et les caractéristiques des méthodes de partitionnement de graphes en continu. Enfin,
nous présentons GCNSplit, une nouvelle solution de partitionnement de graphes en continu pilotée
par l’apprentissage automatique, qui utilise un état en mémoire petit et constant (un état borné) pour
partitionner des flux de graphes (peut-être non bornés). Nos résultats démontrent que GCNSplit fournit
un partitionnement à haut débit et peut tirer parti du parallélisme des données pour maintenir des taux
soutenus de 100000 arêtes par seconde. GCNSplit présente une qualité de partitionnement, en termes de
coupes de graphes et d’équilibrage de charge, qui correspond à celle de l’algorithme avancé HDRF (High
Degree Replicated First) tout en stockant un état de partitionnement trois ordres de grandeur plus petit.
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chapter

1
Introduction

"You cannot run faster than you run"

— Vladimir Vlassov a.k.a Vlad when I started writing my thesis

1.1 Research Motivation and Context

Analytics on complex and multidimensional data representations, such as graph
streams and spatial time series, is becoming increasingly important today because it
allows extracting knowledge in various useful domains where the traditional flat file
data, i.e., text data, fails to do so. Some of these domains include traffic analysis [1],
social media analysis [2], web analysis [2], machine learning [3], recommendation
systems [4], environmental studies [5] and economics [6]. However, it is difficult
to make these analytics scalable on such complex data representations because
we have to take into account the multiple data dimensions, the size of data, and
the computation that itself is complicated. In this thesis, we are looking into two
types of complex and multidimensional data representations, graph streams and
spatial time series. Moreover, we apply partitioning and Machine Learning (ML)
methods to improve the performance and scalability of analytics on these complex
representations based big datasets. In the rest of the introduction, we introduce
necessary definitions and background.

Big Data. Every day, a large amount of data is being produced through social
media, the World Wide Web and Internet of Things (IoT) devices. The term Big Data

is popularly used to refer to this ever-increasing data in terms of its volume, velocity
and variety [7]. Even though current developments in the data processing domain
have made the handling of Big Data convenient for both industry and academia,
they are still not enough to handle massive data efficiently. In terms of volume, the
available memory and disk space of a single machine fall short to fit the concerned

1



2 1 introduction

data. Considering the current speed (Velocity) at which different types (Variety) of
data is being generated, in the form of raw data, semi-structured and unstructured
data, new frameworks are required to not only combine the data coming from
various sources in different forms but also to process the high-intensity data with
low-latency.

Graph Streams. Modern day data processing systems are evolving to handle com-
plex tasks such as stream processing, machine learning and graph analytics [8, 9, 10].
Graphs are complex data structures used to model and represent relational data
present in various useful application domains such as web analysis, recommen-
dation systems, social networks analysis, road infrastructure data processing and
community detection. Since, the majority of data originates as a continuous stream,
such as series of events from social media, time series generated from sensors,
financial transactions, thus, it is reasonable to represent real-life continuous graphs
as streams. Graph streams are (possibly unbounded) sequences of timestamped
events that represent relationships between entities: user interactions in social
networks, online financial transactions, driver and user locations in ride-sharing
services. Graph streams are continuously ingested from external, often distributed,
sources and are modeled either as streams of edges or as vertex streams with
associated adjacency lists. Streaming graph analytics deals with the processing of
data graphs in motion, i.e., streaming graphs in the form of a stream of vertexes
or edges. Streaming graph processing combines both graph analysis and stream
processing. It is an emerging application area that aims to extract knowledge from
evolving networks modeled as graphs in a timely and efficient manner [11, 12].

Spatial Time Series. Another common type of streaming data representation is
time series data generated largely by IoT sensors. Time series are used to represent
temporal data. Multiple time series that correspond to different spatial locations
are referred to as spatial time series [13]. Analysing and forecasting spatial time
series, i.e. extracting useful characteristics and statistics of data and predicting
data, is useful for many fields that include, neuro-physiology [14], economics [6],
environmental studies [5], transportation [15] etc. Spatial time series often contain
both spatial dependencies (inter-dependencies) and temporal dependencies (intra-
dependencies), that need to be taken into account when analysing time series
data [13, 16, 17]. These spatio-temporal dependencies are challenging to model due
to their dynamic nature and varying ranges, where the range refers to the closeness
in space and time.

Data Partitioning. Processing massive streaming graphs and time series data on
a single machine is not efficient in terms of memory and compute requirements.
Data partitioning is an efficient way of dividing data and computations across
distributed compute nodes. Both graph streams and time series data require
different partitioning strategies. In the context of graphs, graph partitioning is
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Figure 1.1 – Distributed graph analytics; using graph partitioning to do paralleliza-
tion/distribution of work for scalabilty and performance improvement.

the process of dividing a graph into a predefined number of subgraphs. In such
settings, each cluster node operates on one partition in parallel with other nodes
and communicates with other nodes through message-passing [18, 19, 20]. Hence,
partitioning directly affects the communication across nodes and computations of
compute nodes thus making it crucial for graph application performance. Online
graph partitioning methods process graph streams and assign edges or vertices
to the partitions on-the-fly [21, 22, 23, 2, 24]. Whereas, for partitioning spatial
time series, the spatio-temporal dependencies need to be taken into account to
partition the data efficiently by placing correlated time series in the same partition.
Naive partitioning affects the performance of time series analysis tasks by placing
uncorrelated time series in the same partition causing low prediction accuracy
and slow training of Deep Learning (DL) based forecasting methods trained on
partitioned data. Therefore, we identify an emerging need to tackle complexity in
data partitioning.

Partitioning Problem. Figure 1.1 gives a summary of our research topic in the
domain of distributed graph analytics. We embark on the idea of using graph
partitioning to do parallelization and distribution of work, with minimal dependen-
cies for graph and machine learning applications. Graph applications consist of
iterative batch applications, such as Page Rank and aggregation based streaming
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applications. Machine learning applications that we work with consist of neural
networks based forecastingmodelswhich are trained on the subset of data generated
after partitioning. Both graph applications and machine learning applications are
different, but they can benefit from good data partitioning strategies. In this thesis,
we investigate finding efficient techniques for partitioning the data, which in our
case is in time series or graph stream form, for improving the performance and
scalability of machine learning and graph processing applications. We identify
an emerging need to tackle the complexity of data parallelism for time series and
graph data. Time series contain dependencies that need to be preserved during
partitioning for performing efficient analytics. Similarly, for graphs, the data locality
should be preserved during partitioning to reduce the communication cost during
distributed processing.

1.2 Thesis Statement

Partitioning and machine learning methods can help to improve the scalability and
analytics for both

• Streaming Graph Processing by reducing the I/O communication cost;

• Machine learning-based time series prediction by parallelising the training
process and improving the accuracy

1.3 Dissertation Outline

The thesis is structured as follows. The remainder of Chapter 1 contains details on
the research challenges addressed in this thesis, research contributions of this thesis,
research methodology adapted during this work and the publications list. Later,
Chapter 2 gives background on graph partitioning, streaming graph partitioning
and graph embeddings. In Chapter 3 we propose a graph partitioning approach to
partition spatial time series for scalable time series forecasting. Chapter 4 showcases
the practical usefulness of streaming graph analytics for large spatial time series
analysis with the real-world task of traffic jam detection and reduction. In Chapter 5,
we explore the domain of streaming graph partitioning by studying, comparing, and
evaluating various streaming graph partitioning algorithms in detail. In Chapter 6
we propose a novel streaming graph partitioning algorithm that uses elements of
machine learning, in particular, graph convolutional networks, to learn the structure
of graphs for making partitioning decisions. Finally, the conclusion and future
work is presented in Chapter 7.
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bounded Graph Streams - P6

Figure 1.2 – RoadMap highlighting chapters, publications, challenges and respective
contributions

Figure 1.2 presents the road map for this dissertation mapping the chapters
with their related publications, research challenges and contributions. The research
challenges and contributions are mentioned in detail in Section 1.4 and 1.5. The list
of publications is mentioned in Section 1.7.

1.4 Research Challenges

Ever-increasing quantities of data generated by internet users as well as by the
IoT ecosystem makes processing computationally and memory intensive for data-
intensive applications. IoT data is usually in the form of time series generated
from various spatial locations, also it is of massive scale. In this thesis, we deal
with processing large scale spatial time series data generated by huge complex
systems. We use a graph to model these systems. We look into applying graph
analytics and graph partitioning for efficient processing of large spatial time series
data since graph partitioning is useful to parallelize and scale the computations
over time series data. We also work with graphs arriving as streams, referred to
as streaming graphs. Processing streaming graphs add up to the complexity of
our research due to the inherent limitations of the streaming model such as lack
of shared state, iterations and cross-task communication. We focus on developing
efficient partitioning techniques for streaming graphs to deal with the streaming
graph partitioning challenges mentioned later in this section.
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In the course of our research with the aforementioned focus, we address the
following research challenges and the research questions associated with these
challenges. The first challenge is related to spatial time series forecasting using
partitioning (CH1), the second challenge is related to spatial time series analysis
using streaming graph processing algorithms (CH2), and the remaining challenges
(CH3, CH3a and CH3b) are associated with streaming graph partitioning.

1.4.1 [CH1] Scaling Deep Learning Models for Time Series Forecasting

Performing a learning task on large scale spatial time series is a non-trivial task
because it is computationally expensive to do on a single machine. Especially if the
task involves deep learning, it becomes computationally and memory intensive to
train the model. Data parallelism helps to make training and inference parallel, and
can in turn improve training time. We investigate this matter further by studying
the use of graph partitioning for improving the performance not only in terms of
training time but also in terms of accuracy, complexity and scalability. We want to
address the challenge of scale and improve the performance (including training
time, accuracy, scalability and complexity) for DL models using graph partitioning.
Partitioning spatial time series is challenging due to the fact that we need to model
the spatial and temporal dependencies in the data [13, 16, 17] and perform careful
partitioning to preserve these dependencies for accurate time series forecasting.
Careless partitioning causes degradation in the model accuracy. For example,
too small partitions might not provide enough information to train the model;
Placing unrelated data in the same partition might negatively affect the accuracy or
complexity of the model. The negative effect can happen because uncorrelated data
will make it hard for the learning model to learn trends in the data and thus affect
the overall accuracy. Also, adding uncorrelated data will increase the dataset size
and in the case of large scale data, it will increase the parameters of the learning
model, thus making it complex and hard to train. We want to design a partitioning
algorithm that results in data that is correlated and which does not increase the
training complexity of the learning model. We describe in more detail how we
address this challenge in Chapter 3 and Papers P2 [25] and P4 [1].

Research Question. How does graph partitioning help to scale and improve the
performance of deep learning models? P2 [25] and P4 [1].

1.4.2 [CH2] Large Scale Spatial Time Series Analysis

Large scale spatial time series analysis includes processing multiple correlated time
series. These time series often contain spatial dependencies (inter-dependencies)
and temporal dependencies (intra-dependencies). It is challenging to model time
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series data for capturing both spatial and temporal dependencies at scale because
these dependencies are dynamic and are both short and long-range [13, 16, 17].
The range here is the closeness in terms of time and space. For example, spatial
dependency is not always related to the physical closeness of the data source
generating the time series. Also, modern systems have real-time requirements that
require low latency based solutions. In order to address the challenge of scale
and performance, we propose to model spatial time series as graph streams for
capturing time and space dependencies in large scale time series. We use streaming
graph analytics to perform useful analysis of multiple time series at scale because
stream processing models give low latency and high throughput, which is suitable
for real-time analysis tasks. The other challenge is to find a suitable graph stream
processing algorithm for the required application task. We consider a practical
use-case of road traffic analysis. We model traffic data streams as graph streams
and use the streaming connected components algorithm for detecting and reducing
traffic jams in a real-life application of road traffic analytics. More details on how
we address this challenge are explained Chapter 4 and Papers P3 [26] and P5 [27].

Research Question. How does streaming graph processing on time series give
better performance compared to the state-of-the-art analytics methods?

1.4.3 [CH3] Streaming Graph Partitioning

Balanced graph partitioning is an NP-hard optimization problem with two main
objectives: 1) balancing load across partitions and 2) reducing communication cost
(fewer graph cuts) between the partitions. The problem becomes non-trivial when
the graph arrives as a stream and partitioning has to be done on-the-fly without
having prior knowledge of the graph. This online style of partitioning is termed
"streaming graph partitioning". Little work has been done on surveying streaming
graph partitioning algorithms. Also, to our knowledge, no work has been done
considering unbounded streams and single-pass graph stream aggregations, an
emerging application domain with increasing system support [28, 29, 30, 31, 10].
Additionally, few of the state-of-the-art algorithms are open source. We aim for
providing a comparison framework for state-of-the-art streaming graph partitioning
algorithms and survey their shortcomings.

Research Questions. In our survey, we seek to answer the following research
questions. 1) What are the benefits, if any, of using more complex, data-centric
partitioning methods compared to a generic hash-based strategy? 2) What is the
partitioning overhead for an application using each partitioning algorithm? 3) How
does the partitioning quality affect the application performance?
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Based on the experimental results of our survey in Chapter 5 and Paper P1 [24],
we conclude that existing state-of-the-art streaming graph partitioning algorithms,
such as HDRF (High Degree Replicated First) [21], are stateful. They accumulate
some in-memory state to make smart partitioning decisions based on the knowledge
extracted so far from the incoming stream. The problem with an increasing state
is that the state needs frequent updates and is growing with the input graph size,
making them impractical to process high-intensity and unbounded streams. In
our next work Chapter 6, we do research for finding an online graph partitioning
method capable of handling unbounded streams by addressing the challenges
CH3a and CH3b described below.

1.4.4 [CH3a] Scalable Graph Partitioning

Almost all state-of-the-art streaming graph partitioning methods base their parti-
tioning decision using an in-memory state that contains information, such as current
vertex assignment, partition capacities, or vertex degree distributions. This state
is frequently updated with each arriving stream element, i.e., an edge or a vertex,
and on each partitioning decision and it is also shared among parallel partitioning
processes for a global view of state across parallel instances. This requirement
of a global view increases the communication cost between parallel partitioning
instances and it makes such stateful partitioning methods impractical to be used for
a no-shared state architecture that is used by modern stream processing engines.
We investigate developing a class of partitioning algorithms that do not require a
global shared state, are easy to scale and give good partitioning quality.We give
more details on how we address this challenge in Chapter 6 and Paper P6 [32].

Research Question. How to partition graph streams efficiently without a global
shared state?

1.4.5 [CH3b] Partitioning Graph Streams Using Bounded State

State-of-the-art online graph partitioning methods that make high-quality (i.e.
balanced and minimal graph cuts) partitioning, such as HDRF, keep accumulating
in-memory growing state proportional to the number of vertices of the graphs
O(|V |). The state size keeps on increasing during the processing of unbounded
streams. These growing state-based methods are impractical for applications that
continuously process unbounded graph streams and for applications that process
large graphs in rest. Also, the state cannot be re-used to partition unseen graphs.
Every time a graph edge or vertex arrives, the state has to be updated. We intend to
develop streaming graph partitioning methods that give bounded state guarantees
with state size independent of the length of a streaming graph or the size of the
graph in rest. We describe inmore detail howwe address this challenge in Chapter 6
and Papers P6 [32].
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Research Question. How to partition unbounded graph streams with a bounded
state efficiently?

1.5 Contributions

The main contributions of this dissertation addressing the aforementioned chal-
lenges CH1-CH3 are as follows.

C1 A graph partitioning based solution for scalable time series forecasting.
We propose to represent a complex system generating large spatial time series
data in the form of a directed weighted graph for capturing spatio-temporal
dependencies among the time series data generated by the components of
the system. We develop graph partitioning techniques to enable scalable
and accurate time series forecasting of large scale spatial time series data
addressing CH1-Scaling Deep Learning Models for Time Series Forecasting (Papers
P2 [25] and P4 [1]). Our application domain is the analysis of road traffic
data collected by road infrastructure sensors and modelling of traffic flow
behaviour for the task of traffic prediction. Our experimental results on traffic
density prediction show that the partitioning-based models take 12×, if run
in parallel, lower training time, compared to the unpartitioned model of the
entire road infrastructure. Furthermore, the partitioning-based models have
2× lower prediction error (RMSE) compared to the entire road model. Other
works done in this domain [33, 34, 35] on road traffic prediction do not fully
address the issue of scale and model complexity at large scale that we tackle
in our work using graph partitioning.

C2 A framework to detect andmitigate road traffic congestion using streaming
graph analytics. We present a practical application of streaming graph
analytics for modeling spatial and temporal dependencies to control road
traffic jams at scale. In this contribution we tackle CH2-Large Scale Spatial

Time Series Analysis (Papers P3 [26] and P5 [27]). We propose to offer an
end-to-end traffic control framework based on Apache Flink [36], which is a
modern distributed stream processing engine. Our system comprises of 1)
an online traffic jam detection mechanism for detecting jams on streaming
data collected from traffic sensors, and 2) a congestion reduction mechanism
based on streaming graph analytics for reducing the effect of congestion in the
congested area. Existing works on congestion detection [37, 38, 39] mostly use
historic information and require pre-processing, thus making them unsuitable
for real-time processing. In our proposed congestion reduction approach,
we identify correlated traffic jams and essential parts in the road network
on which new traffic light policies are deployed for congestion control. We
develop dynamic traffic light policies based on our congestion reduction
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mechanism that helps in mitigating the impact of congestion by reducing the
travel time of cars during traffic jams. Our experimental results indicate our
dynamic traffic light policies result in 27% less travel time at the best and 8%
less travel time on average compared to the travel time with default traffic
light policies. Our scalability results show that our system is able to handle
high-intensity streaming data collected from 900 sensors every second with a
throughput of 57K records/sec at best.

C3 Aformaldefinitionof streaminggraphpartitioning task as anoptimization
task at the early stage of graphprocessing pipeline/workflow. Wedefine the
domainof online graphpartitioning and its role in graphprocessingworkflows,
decoupling the partitioning step from the application logic computation,
whether staged or pipelined. We are the first ones to define online graph
partitioning as an optimisation task that aims to minimize three objective
functions: 1) minimize replication factor, 2) minimize load imbalance and 3)
minimize the partitioning state dealing with CH3-Streaming Graph Partitioning

(Paper P1 [24]).

C4 A comparison framework and an experimental evaluation of streaming
graph partitioning algorithms. We propose a uniform analysis framework
to evaluate and compare partitioning features and characteristics of streaming
partitioning methods addressing CH3-Streaming Graph Partitioning (Paper
P1 [24]). We classify algorithms with regards to their data model, strategy,
constraints, complexity, state requirements, and objectives. To provide an
unbiased performance comparison, we implement all studied methods on
top of a common evaluation framework based on Apache Flink, a distributed
stream processing engine. We use bulk synchronous and single-pass graph
streaming algorithms to evaluate distributed graph application performance in
terms of partitioning cost amortization. Compared to existing works on graph
partitioning [40, 41, 42, 43, 44, 45], our work is, to our knowledge, the first
dedicated study to online graph partitioning methods that includes stream-
specific properties (e.g., ingestion order) as well as considering single-pass
graph stream aggregations, an emerging application domain with increasing
system support [28, 29, 30, 31, 10]. Our experimental results showcase that
model-dependent online partitioning techniques such as low-cut algorithms
offer better performance for communication-intensive applications such as
bulk synchronous iterative algorithms, albeit with higher partitioning costs
(cost here refers to latency). Otherwise, model-agnostic techniques trade-off
data locality for lower partitioning costs and balanced workloads which is
beneficial when executing data-parallel single-pass graph algorithms.
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C5 Anovel streaminggraphpartitioningalgorithmforpartitioningunbounded
streams. The state-of-the-art streaming graph partitioning algorithms are
unsuitable for unbounded streams because they keep a global state which
becomes a bottleneck when distributing the partitioning logic across parallel
instances. We introduce a novel approach to streaming graph partitioning that
is practical for use with unbounded streams without sacrificing partitioning
quality or load balance tackling CH3a-Scalable Graph Partitioning and CH3b-

Partitioning Graph Streams Using Bounded State (Paper P6 [32]). We propose
the novel application of inductive graph convolutional networks (GCNs) to
the streaming graph partitioning problem for the first time. We provide
a solution to online graph partitioning with a bound-size state that does
not compromise partitioning quality and load balancing performance. We
implement GCNSplit, an extensible framework that unifies the training and
serving partitioning pipelines.Our approach to streaming graph partitioning
generalizes to unseen graphs. GCNSplit ’s models can be used to partition
not just unseen edges of the input graph but also entirely unseen graphs
with similar structure and feature set. Our results demonstrate that GCNSplit

provides high-throughput partitioning and can leverage data parallelism to
sustain input rates of 100K edges/s. At the same time, GCNSplit generates
high-quality and well-balanced partitions that matches that of the state-of-
the-art HRDF algorithm, while storing three orders of magnitude smaller
partitioning state. Furthermore, GCNSplit scales linearly to the number of
parallel processes outperforming HDRF.

1.6 Research Methodology

In this section, we give an overview of the methods used throughout our research
work. We first start by presenting the general approach of our work followed by the
implementation choices and experimental evaluation methods used by us. In the
end, we mention certain challenges we faced during our research.

1.6.1 General Approach

We chose to work with processing complex data representations that include graphs
and time-series data because they allow extracting knowledge that is not possible
to do with simple text data. Our main goal is to provide scalable analytics for
graphs and time series and we mostly consider data arriving as a stream because
the majority of data originates as a continuous stream.

We use a quantitative and empirical approach throughout our research work.
First, we identify the research problem by performing a detailed literature review of
the existing state-of-the-art in our research domain, i.e., time series and streaming
graph processing. We work with quantitative data throughout our work. All data
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is publicly available except for the traffic data, which is owned by the company
that collects the data. Next, we identify the problem after careful observation
and review of the existing related work. To verify our problem empirically, we
implement the existing solutions and perform experiments that help to formulate
the research challenges and the research questions associated with the challenges
(Section 1.4). For example, for time series prediction, we implement various
prediction models using Tensor Flow and also for streaming graph partitioning
we implement existing state-of-the-art partitioning methods on Apache Flink.
Then, we performed experiments using the standard performance metrics that are
domain-specific for time series prediction and analysis of traffic data. Similarly,
for streaming graphs, we computed the quality of partitioning methods using the
quality metrics mentioned in various graph partitioning surveys. After drafting
the challenges and research questions based on our experimental results, we make
careful design decisions to handle the challenges. For example, for time series
prediction in Chapter 3 we observed that the current solutions take too long to
train, thus we decided to reduce the complexity of the model and make it scalable
by using graph partitioning. Similarly, for streaming graph partitioning, after
performing an experimental survey in Chapter 5, we identified the bottlenecks
during online partitioning of unbounded streams. We designed algorithms and
techniques to solve the aforementioned challenges and experimentally compared
our solutions with the existing work. Our solution for scaling road traffic prediction
using graph partitioning in Chapter 3 show promising results in terms of scalability
and performance. Similarly, for unbounded graph stream partitioning, in Chapter 6,
our experimental results show that the algorithm is scalable and provides good
partitioning quality overcoming the bottlenecks that were present in the state-of-the-
art methods. Our results are highlighted as contributions (Section 1.5) addressing
the research challenges and research questions (Section 1.4).

1.6.2 Implementations

We implemented our work using popular open-source stable and modern libraries
and frameworks available. We used Apache Spark [9] to run, and TensorFlow to
implement and train our DL based models in Chapter 3. We used Apache Flink[30]
to implement streaming graph algorithms for data analytics and streaming graph
partitioning algorithms in Chapter 4 and 5. Some of the algorithms of Chapter 4 are
also implemented using Apache Spark. We used Python and Pytorch to implement
our GCN-based streaming graph partitioning algorithms in Chapter 6. We provide
open-source implementations of streaming graph partitioning algorithms that are
part of Chapter 5and 6 and some streaming graph analytics algorithms that are
part of Chapter 4. The provided software is mentioned under section 1.7.2 and is
free for use. The remaining implementations were part of the industrial internship
work and thus cannot be open-sourced.
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1.6.3 Experimental Evaluation

We used the latest stable versions of the aforementioned open-source platforms.
Most of our work with graph datasets in Chapter 5 and 6 is done using open-source
datasets, the majority of which were taken from SNAP [46] data. Other sources of
graph datasets are mentioned in the papers. Work in Chapter 3 and 4 were done
using a traffic dataset taken from the Swedish Transport Administration and it is
kept private. Part of the work in Chapter 4 was done during a research internship
at Huawei and the dataset provided was anonymised for privacy preservation and
kept for private use only by the organisation. The machines used in our work
consist of both on-premises clusters and virtualised environments. In both cases,
the setup was made making necessary software installations. The experiments were
performed carefully avoiding interference from other parallel running programs.
Some of the experiments in Chapter 4 are also done using simulation tools because
the scenarios in the work with traffic light control systems were impractical to test
for experiments on a large scale at the city level.

1.6.4 Challenges

Our first major challenge working with big graphs was the in-availability of on-
premises machines that can process huge graph datasets. We had to buy expensive
virtual machines for that purpose. Besides this, for our work in Chapter 5 and 6,
some of the state-of-the-art streaming graph partitioning methods, i.e., Fennel,
DBH, Grid (details in Chapter 5), were not open source. We had to implement
them from the scratch. In some cases, we emailed the authors but did not get
any response. We decided to carefully study the related work and implement the
necessary ones to the best of our knowledge. After successful implementations,
our experimental results matched the related work-based implemented algorithms
results. We decided to open-source these algorithms for the researchers. During
the experimental environment setup and implementation, we encountered several
challenges, one of the reasons being version updates for a platform like Apache Flink
and Tensorflow. However, the research community for these respective platforms is
very active and they provided us good help to resolve the issues.

1.7 Publications and Software

1.7.1 Papers

The results presented in this thesis are published in journal papers, conference and
workshop papers as the following.
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P1 Streaming Graph Partitioning: An Experimental Study, Zainab Abbas,
Vasiliki Kalavri, Paris Carbone, and Vladimir Vlassov. 44th International
Conference on Very Large Data Bases 2018 (VLDB 2018), Rio De Janeiro, Brazil,
August 27-31, 2018. [24]
Contribution The author of this dissertation designed and developed the
streaming graph partitioning algorithms, performed the experiments, and
participated in writing the paper.

P2 Short-Term Traffic Prediction Using Long Short-Term Memory Neural
Networks, Zainab Abbas, Ahmad Al-Shishtawy, Sarunas Girdzĳauskas,
and Vladimir Vlassov. IEEE International Congress on Big Data (BigData
Congress), San Francisco, CA, USA, July 2-7, 2018. [25]
Contribution The author of this dissertation brainstormed, designed and
developed traffic prediction algorithms, performed the experiments, and
participated in writing the paper.

P3 Evaluation of the Use of StreamingGraph Processing Algorithms for Road
Congestion Detection, Zainab Abbas, Thorsteinn Thorri Sigurdsson, Ahmad
Al-Shishtawy, and Vladimir Vlassov. 16th IEEE International Symposium
on Parallel and Distributed Processing with Applications (IEEE ISPA 2018),
Melbourne, Australia, December 11-13, 2018. [26]
Contribution The author of this dissertation brainstormed, helped in design-
ing and developing traffic congestion detection algorithms and participated
in writing the paper.

P4 Scaling Deep Learning Models for Large Spatial Time Series Forecast-
ing, Zainab Abbas, Jon Reginbald Ivarsson, Ahmad Al-Shishtawy, Vladimir
Vlassov. IEEE Big Data conference (Big Data), December 9-12, 2019, Los
Angeles, CA, USA. [1]
Contribution The author of this thesis brainstormed, helped designing and
developing the traffic prediction models and participated in writing the paper.

P5 Real-time Traffic Jam Detection and Congestion Reduction Using Stream-
ingGraphAnalytics, ZainabAbbas, Paolo Sottovia,MohamadAlHajj Hassan,
Daniele Foroni, Stefano Bortoli. IEEE Big Data conference (Big Data), Decem-
ber 10-13, 2020, USA [27]
Contribution The author of this dissertation brainstormed, designed and
developed traffic congestion detection algorithms and participated in writing
the paper.
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P6 GCN-based Partitioning of Unbounded Graph Streams with Bounded
State, Michał Zwolak, Zainab Abbas, Sonia Horchidan, Paris Carbone, Vasiliki
Kalavri, (under submission). [32]
Contribution The author of this dissertation brainstormed, helped in design-
ing and developing the partitioning algorithms, performed the scalability
experiments, and participated in writing the paper.

Figure 1.2 maps the publications, research challenges and contributions.

1.7.2 Software

We provide the following open-source software which was developed as a part of
this research work.

• Road traffic congestion detection: A framework1 to perform road traffic
congestion detection on traffic data streams using streaming graph analytics.
The software takes time-stamped sensor readings in the form of flow and
speed values of vehicles as input along with the road network topology
information. It feeds these time-stamped measures as a stream of traffic data
to the congestion detection module, which uses the streaming graph analytics
algorithms mentioned in P3 for congestion detection and generates an output
of sensors that are part of the congested region. The algorithms are build
using Apache Spark version 2.5. A sample of input data is also available for
reproducibility purposes.

• Streaming graph partitioning: A framework2 to evaluate and compare parti-
tioning features and characteristics of streaming partitioning methods. The
methods partitioning methods are implemented using Apache Flink version
1.2.0. The partitioning methods implemented consist of several vertex par-
titioning methods, i.e., Fennel, Linear Distribute Greedy (LDG) and Hash.
Also edge partitioning methods, i.e., HDRF, DBH, Greedy, Grid etc. The
details for these algorithms are explained in Chapter 5. The input for vertex
partitioning algorithms is in the form of a list of vertices with their neighbours
and for edge partitioning algorithms the input consists of an edge list. The
output generated from the partitioning algorithms contains vertex or edge
IDs along with partition IDs. The framework also provides graph processing
applications mentioned in the survey paper P1. Our framework is built
using the Gelly-Streaming API3 which was developed as a part of research by
Daniel Bali, Vasikili Kalavri and Paris Carbone [47]. The Gelly-Streaming API

1https://github.com/thorsteinnth/road-congestion-detection
2https://github.com/Zainab-Abbas/gelly-streaming
3https://github.com/vasia/gelly-streaming
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combines features of the graph processing API, i.e., Gelly, and the stream pro-
cessing API of Flink. The author of the thesis also contributed to developing
few functionalities of the API.

• Streaming graph partitioning using Graph Convolutional Networks (GCNs):
We provide the code4 of our GCN based partitioning method called as
GCNSplit as open-source and make all models and experiments publicly
available. GCNSplit is an ML-based streaming graph partitioning framework
that can partition large graph streams keeping very little state in memory and
it generated good partitioning quality in terms of few graph cuts. GCNSplit

work with edge stream as input and generates partitioned graph streams.

1.7.3 Other Papers

Other works published in conferences during the doctoral studies which are not
part of this thesis is the following.

1 Graph Representation Matters in Device Placement, Milko Mitropolitsky,
Zainab Abbas, and Amir H. Payberah. 2020. In Proceedings of the Workshop
on Distributed Infrastructures for Deep Learning (DIDL’20). Association for
Computing Machinery, New York, NY, USA, 1–6. [48]

2 Privacy Preserving Time Series Forecasting of User Health Data Streams,
Sana Imtiaz, Sonia-Florina Horchidan, Zainab Abbas, Muhammad Arsalan,
Hassan Nazeer Chaudhry, Vladimir Vlassov. IEEE International Conference
on Big Data, 2020. [49]

4https://github.com/anonymous7CD/anonymous-repo



chapter

2
Background

"Actually you can run faster than you run"

— Vladimir Vlassov a.k.a Vlad when I wrote substantial part of my thesis.

This chapter presents the necessary background by first introducing graph parti-
tioning and graph partitioning techniques that are applicable for both snapshots of
graphs or graphs at rest and streaming graphs. Next, this chapter gives information
about streaming graph partitioning and its applicability to the load-computer-
store model used in various distributed graph processing systems, that include,
Pregel [50], GraphX [20] and Giraph [51], and the stream processing model used
in systems, such as Flink [30], Storm [52] and Naiad [10]. These systems support
various graph partitioning techniques. In this thesis, we focus more on methods
and corresponding algorithms and use these systems as tools to implement these
algorithms. In the end, we explain ML-driven graph partitioning that leverages
graph representation learning. For convenience, the notations used in this chapter
and Chapters 5 and 6 are presented in Table 2.1.

2.1 Graph Partitioning

Graph partitioning is the process of dividing a graph into a predefined number of
subgraphs. Graph partitioning is essential for graph analysis using parallel and
distributed algorithms. Distributed graph processing has been widely adopted
in recent years and enables knowledge extraction from large and medium-scale
graph-structured datasets using commodity clusters [50, 19, 20, 51, 53]. In such
settings, each cluster node operates on one partition in parallel and communicates
with other nodes through message-passing. Hence, partitioning quality directly
affects communication and computation costs and is crucial for graph application
performance [19, 2].

17
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Table 2.1 – The notation used in this paper

Symbol Description

G input graph
m = |E| number of edges in G
n = |V | number of vertices in G
k number of partitions, k ∈ N
Pi set of vertices or edges in a partition i, i ∈ [1, k]
N(v) set of neighbors of a vertex v
S(v) set of partitions containing vertex v
C partition capacity
L loss function
zv an embedding vector of vertex v
Y assignment probability vector
D degree vector of vertices
Wl embedding model matrices (l layers)

Definition 2.1.1. Given a graphG = (V, E), where V is the set of vertices and E is the
set of edges, and kmachines of capacity C, so that the total capacity kC is sufficient
to store the whole graph, a partitioning algorithm splits G into k partitions, Pi, so
that P1 ∪ . . . ∪ Pk = G and Pi 6= ∅.

For convenience, we often refer to each individual partition by its index i. The
partitions, Pi, are not always disjoint, they can contain a copy of the same vertex or
edge. In definition 2.1.1, Pi ∪ Pj = Vi ∪ Vj, Ei ∪ Ej. An offline graph partitioning
algorithm accepts the complete graph G as input and typically computes the
partitioning in multiple passes. For example, iterative clustering and community
detection methods are often used to compute high-quality partitions. In contrast, a
streaming graph partitioning algorithm processes the graph as a stream, a sequence
of edges or vertices, and maps each element to a partition index i on-the-fly.

2.1.1 Graph Partitioning Techniques

There exist two main approaches to graph partitioning (in a broad spectrum and
not limited to stream ingestion), namely vertex partitioning also know as edge-

cut partitioning, and edge partitioning also know as vertex-cut partitioning. Both
approaches aim to minimize cross-partition dependencies by defining a minimum-

cut optimization objective. In the case of vertex partitioning (edge-cut), the minimal
cut optimization objective is to minimise the number of edges crossing partition
boundaries, i.e., the edges with one end-vertex placed in a partition different from
the other end-vertex; whereas in the case of edge partitioning (vertex-cut), the
objective is to minimise the number of vertices crossing partition boundaries, i.e.,
the vertex which is placed in more than one partition.
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Figure 2.1 – Vertex partitioning (left) assigns vertices to partitions, possibly creating
edge-cuts; Edge partitioning (right) places edges to partitions, possibly creating
vertex-cuts. Both partitioning techniques are done using a greedy algorithm
explained in Chapter 5.

Vertex Partitioning. Vertex partitioning [54] operates on the vertex set V ,
assigning each vertex to a partition i. Edges can cross partition boundaries, as
illustrated in Figure 2.1 (left), where edges (c, d) and (b, z) are cut by the partitioning.
Therefore, vertex partitioning is also know as edge-cut partitioning.

Definition 2.1.2. For a graph G, the edge-cut E ′ ⊆ E is a set of edges, such that
G ′ = (V, E\E ′) is disconnected.

Here, by disconnected we mean that there is no common edge or vertex
between G and G ′. The fewer edges crossing partition boundaries the lower the
communication overhead, considering distributed graph processing using a vertex-
centric model with message-passing along edges. Thus, the main optimization
objective of vertex partitioning methods is the minimum edge-cut.

Edge Partitioning. Analogously, edge partitioning [55] operates on the edge set
E, assigning each edge to a partition i. In the case of edge partitioning, two edges
incident with the same vertex can be assigned to two different partitions that cause
the vertex to be cut as illustrated in Figure 2.1 (right). Therefore, edge partitioning
is also known as vertex-cut partitioning. References to the same vertex in different
partitions are also known as mirrors.

Definition 2.1.3. For a graph G, the vertex-cut V ′ ⊆ V is a set of vertices such
that V\V ′ along with E ′ ⊆ E, the set of incident edges, make G ′ = (V\V ′, E\E ′)

disconnected.
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Here, by disconnected we mean that there is no common edge or vertex between
G and G ′. The fewer mirror vertices the lower the communication overhead,
considering a distributed graph processing with an edge-centric programming
model. Thus, the main optimization objective for edge partitioning is minimum
vertex-cut.

2.2 Streaming Graph Partitioning

Apart from the edge-/vertex-cut optimization, graph partitioning can also include
load balance optimization, i.e., assigning the same number of edges or vertices to
the partitions, by splitting a graph into evenly sized subgraphs to balance the load in
parallel and distributed graph processing. Balanced graph partitioning is an instance
of the graph partitioning problem that tries to optimize for both load balance
and minimum cuts and it is an NP-hard problem [56]. Offline graph partitioning
methods have access to the entire graph and iteratively refine partitions by re-
assigning nodes and edges in each iteration in order to achieve optimal partitioning.
Techniques range fromexact and slow to approximate and fast (heuristics) [57, 58, 45].
Streaming graph partitioningmethods, on the other hand, ingest a graph as a stream
of either vertices or edges and partition it in an online fashion [2, 59, 23, 60, 24, 61].
As edges and vertices arrive continuously, online partitioners cannot iterate over
the entire graph and need to make partition assignment decisions on-the-fly. Thus,
they rely on heuristics and state of streaming graph partitioner that is a function of
the history of earlier partitioning decisions.

A graph input stream can arrive either in the form of edges, as a sequence
of interconnecting edges; or in the form of vertices, as a sequence of vertices
each with a corresponding adjacency list. The edge-centric stream representation
of massive graphs as a stream of edges is more favourable to process than the
vertex-centric stream and does not require prior knowledge of graph properties,
such as the number of nodes, edges and nodes’ degree information. However,
all non-trivial methods suffer from an increasing state size which must be kept
in memory to perform partitioning. Each time the algorithm processes a new
vertex, it must add new data to the state, creating O(|V |) memory complexity. This
memory complexity becomes a bottleneck for modern distributed stream processing
systems as it increases the communication cost between the parallel partitioning
instances since all memory updates are communicated. Thus, neither existing
edge-centric partitioning algorithms nor vertex-centric ones can efficiently handle
truly unbounded data.

Streaming graph partitioning is applicable to both the load-compute-store (batch)
graph computational model, used in systems such as Pregel [50], GraphX [20] and
Giraph [51], and the stream processing model, used in systems such as Flink [30],
Storm [52] and Naiad [10]. Figure 2.2 shows the workflow of staged and pipelined
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1) loading

2) partitioning

3) computation

graph snapshot
graph stream

Figure 2.2 – A general workflow for graph snapshot and stream loading, partitioning,
and computation.

phases for thesemodels. In the case of batch processing, graph loading, partitioning,
and computation, happen in separate consecutive stages. For stream processing,
stages are pipelined and data is continuously passed as a stream from one stage to
the next.

2.2.1 Loading

During the loading phase, graph is read from the disk or other external source and
placed onto the computation cluster. In batch processing, the graph data is bounded
and once loaded it represents a graph snapshot (e.g. the Facebook social network
at a given time). In stream processing, graph data is continuously read from an
external source and can be potentially unbounded (e.g. live user interactions on
Twitter). A graph stream can be represented either as a sequence of edges (edge
stream) or as a sequence of vertices with their adjacency lists (vertex stream). In
essence, the streaming model subsumes the batch model, since a graph snapshot is
merely a bounded graph stream. Hence, graph properties, such as the number of
vertices n, the number of edgesm, and the degree distribution can be computed
before partitioning for a graph snapshot, while these properties continuously evolve
for an unbounded stream.
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2.2.2 Partitioning

During the partitioning phase, the partitioner takes a graph stream as input and
assigns each vertex or edge to a partition. The decision is made on-the-fly by
processing each element only once. In many cases, the partitioning logic can be
implemented inside the graph loader, so that loading and partitioning happen
in a single phase. Partitioners can base their decision on the current element or
they can maintain state. Stateful partitioners [21, 22, 19] consider the history of
the stream seen so far. For example, in order to properly balance the number
of elements per partition, a partitioner might store the current available capacity
per partition. In principle, the state can be distributed among parallel partitioner
instances, where each instance has a partial view of the stream, or a global view
shared across parallel instances. As our analysis reveals, existing stateful streaming
partitioning methods require a shared state, which is a feature not available in
modern distributed stream processors [24, 61]. Thus, partitioning logic needs to be
executed by a single instance. Moreover, many methods often assume that global
graph metrics are available before partitioning. These characteristics pose a major
challenge in adapting existing methods for distributed processing of unbounded
graph streams.

2.2.3 Computation

Computation takes place after loading and partitioning. In the batch model, the
computation starts after the whole graph has been loaded and partitioned, in a
subsequent stage, and it operates in one or multiple passes (e.g. bulk synchronous
model with fixpoint termination). In contrast, in the streaming model, application
logic is triggered on-the-fly, per graph element (a vertex or an edge), in a pipelined
fashion after the partitioning step. In this case, graph elements are only accessed
once. Therefore, applications that employ on-the-fly processing are also referred to
as single-pass streaming applications (the term semi-streaming [62] is also used to
describe a constant number of graph stream passes).

2.3 ML-driven Graph Partitioning

ML-driven graph partitioning is a new exciting research area, which refers to
using machine learning for the purpose of graph partitioning [63, 64]. Recent
breakthroughs in representation learning, such as GraphSAGE [65], have enabled
effective dimensionality reduction for large graphs and shown promising predictive
performance capabilities. The essence of inductive Graph Convolutional Networks
(GCN) is to exploit features associated with vertices and edges as well as the graph
structure to build convolutional neural networks that summarize the graph. GAP
papers [63, 64] make use GCNs to perform graph partitioning offline. Other than the
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offline approaches outlined in the GAP papers [63, 64], we are not aware of closely
related work. In the remaining part of this section, we explain graph representation
learning followed by a popular GCN method GraphSAGE. In the end, we present
the use of GraphSAGE for graph partitioning from the GAP paper [63, 64].

2.3.1 Graph Representation Learning

Graph representation learning methods automatically learn to encode graph struc-
ture and properties into n−dimensional vectors [66, 65, 67]. These low-dimensional
embeddings can be then handled by task-specific downstream ML algorithms. Em-
beddings can encode nodes, edges, subgraphs or the entire graph. Node embedding
techniques encode graph vertices so that node similarity is preserved in the em-
bedding space. As such, their objective function aligns with that of partitioning
algorithms, which aim to assign similar nodes to the same partition.

Due to the streaming nature of our problem, we apply inductive graph representa-
tion learning based on GCNs. This approach is capable of successful generalization
to instances unseen during the training. Convolutional inductive methods represent
nodes as functions of their neighborhood while utilizing node features or attributes.
Given certain neighborhood of an unseen node, such encoders can generate a useful
embedding, making them scalable and amenable to parallelism [65].

GraphSAGE. We briefly describe GraphSAGE [65], the inductive GCN that lies
at the core of our proposed ML-driven graph partitioning framework, i.e., GCN-

Split. GraphSAGE has been successfully applied in various real-world scenarios
[68] and relies on fixed-sized uniform neighborhood sampling. Restricting the
neighbourhood size makes it practical for large and skewed graphs.

GraphSAGE and similar GCN frameworks rely on the notion of neighborhood
aggregation. Let us consider the generation of an embedding vector zv for a node
v. zv is first initialized using the raw input features of v and subsequently, its
embedding is refined in an iterative manner as follows. At every iteration, v
gathers the embeddings of a subset of its neighbors and aggregates them into a
single vector. The aggregated vector is further combined with node v’s embedding
vector zv that is updated through a fully connected neural network. As iterations
proceed, the embeddings capture topological and feature information from distant
neighbors [65].

The training procedure can be supervised or unsupervised. In unsupervised
base case of GraphSAGE, the aim is to optimize a graph-based loss function which
utilizes negative sampling. Such a function leads to representations of nodes which
are similar if the nodes of the original network are close and dissimilar if the nodes
are distant:

L = − log(σ(zTuzv)) −Q · Evn∼Sn(v) log(σ(−zTuzvn) (2.1)
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where node v is close to node u during a fixed-length random walk, Sn is a
distribution of negative sampling, σ is the sigmoid function, and Q represents the
number of negative samples. Here, the loss function can be replaced by a different
loss function depending on the training goal.

2.3.2 GCN-based partitioning

The use of GCNs for partitioning is a recent research topic with very promising
results. Next, we briefly present GAP [63, 64], the first work that formulated a
cut-based loss function that GCNSplit relies upon.

Naive formulationof a cut-based loss function cangenerateunbalancedpartitions
as it favors the disconnection of small sets of isolated nodes. GAP avoids this
situation by adding a normalizing factor to reduce bias. The cut cost is a fraction
of the total number of edge connections to all nodes, called association [69] or
volume [70]. The formula for the normalized cut cost with k partitions is as follows:

Ncut(P1, P2, ..., Pk) =

k∑
i=1

cut(Pi, P̄i)

vol(Pi, V)
(2.2)

The vol(Pi, V) is defined as the total number of edge connections between nodes
in Pi and V , which can be represented as the total degree of nodes belonging to Pi
in graph G.

vol(Pi, V) =
∑
v∈Pi

dv (2.3)

where dv represents the degree of node v. To utilize the normalized cut for model
training, we apply several transformations to Equation 2.2. The output of the
model is Y∈ Rn×k. First, we represent the Ncut in terms of Y. In the output of
the partitioning network, Yai represents the probability that a node va is part of a
partition Pi. The probability that the node va is not part of the partition Pi is equal
to 1− Yai. Therefore, the expected value of a cut is defined as follows:

E[cut(Pi, P̄i)] =
∑

va∈Pi; vb∈N(va)

k∑
j=1

Yaj(1− Ybj) (2.4)

where N(va) represents the sampled neighborhood of node va. Using adjacency
matrix notation (A), Equation 2.4 can be rewritten as follows:

E[cut(Pi, P̄i)] =
∑

reduce−sum

Y:,i(1− Y:,i)
T �A (2.5)

Equations 2.4 and 2.5 are equivalent, because the element-wise multiplication
with adjacency matrix (�A) guarantees that only the nodes of the sampled neigh-
borhood are taken into account. The result of such a product is a square matrix
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whose side length equals the number of nodes in the graph. The final value is a
sum over the elements of this matrix.

Although we have managed to incorporate Y into the cut equation we still need
the normalizing factor. From Equation 2.3 we know that we need to utilize the
degrees of the nodes to perform normalization. Therefore, suppose that D is a
column vector where each value a corresponds to node va’s degree. Using the
product of the matrices Y and D, we compute the expected value of volume for
each partition as E[vol(Pi, V)] = Γi, where Γ = YTD and Γi is the ith element in the
vector Γ .

According to Equation 2.2 we have both parts of the normalized cut, i.e., the
minimum cut and the volume. Combining both lead to an equation as follows:

E[Ncut(P1, P2, .., Pk)] =
∑

reduce−sum

(Y� Γ)(1− Y)T �A (2.6)

where � represents an element-wise division. Minimizing the loss function of
Equation 2.6 could lead to unbalanced partitions and even assign all nodes to the
same partition. To address this issue, GAP introduces a balancing term, which acts
as regularization. Given |V | nodes and k partitions, perfectly-balanced partitions
would contain exactly |V |

k
nodes. The sums of the columns of Y represent the

expected number of nodes in each partition. The equation which considers the
perfectly-balanced partition size looks as follows:

k∑
i=1

(

n∑
a=1

Yai −
n

k
)2 =

∑
reduce−sum

(1TY −
n

k
)2 (2.7)

We get the loss function by combining the normalized load equation 2.6 and the
equally loaded partition error equation 2.7.

L =
∑

reduce−sum

(Y� Γ)(1− Y)T �A+
∑

reduce−sum

(1TY −
n

k
)2 (2.8)

The model and loss function we have described so far can be used to partition
static graphs by assigning nodes to partitions.
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3
Scalable Large Spatial Time Series
Forecasting Using Graph Partitioning

"First golden rule of writing; Don’t lie..."

— Peter Van Roy during our thesis writing discussion session.

A large amount of data is being generated mainly through social media, the
World Wide Web (WWW), and the Internet of Things (IoT) devices. IoT data
is usually in the form of time series generated from various spatial locations.
Performing a learning task on a large scale spatial time series is a non-trivial task
because it is computationally expensive to do on a single machine. Especially if the
task involves deep learning, it becomes computationally and memory intensive to
train the model. Data parallelism helps to make training and inference parallel, and
can in turn improve training time. In this chapter, we work with processing large
scale spatial time series data generated by huge complex systems. We use a graph to
model these systems. We apply graph partitioning for efficient processing of large
spatial time series data since graph partitioning is useful to parallelize and scale the
computations over time series data. Partitioning spatial time series is challenging
due to the fact that we need to model the spatial and temporal dependencies in the
data [13, 16, 17] and perform careful partitioning to preserve these dependencies
for accurate time series forecasting. We provide an efficient time series partitioning
solution to scale time series forecasting with improved performance.

3.1 Introduction

Deep neural networks (NN) have shown promising results for different machine
learning and data mining tasks, such as classification and prediction, in various
application domains. Modelling of a large complex system requires a large dataset

27
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to train a deep NN with many parameters [71]. At scale, training deep NNs is
computationally and memory intensive. Partitioning and distribution is a general
approach to the challenge of scale in NN-based modelling. A number of methods
have been proposed to achieve scalability, such as distributed and collaborative
machine learning [72, 73] that rely on dividing the problem into smaller tasks.
These tasks comprise smaller models working on subsets of data.

In this work, we address the scalability and improve the performance of deep
learning models in large-scale spatial time series forecasting. Spatial time series
are multiple time series that correspond to different spatial locations [13]. There
are dependencies between spatial time series that need to be taken into account
when building an NN-based prediction model. Moreover, often there are real-time
requirements for traffic data analysis and forecasting that put constraints on the
training and inference time. This requires a scalable solution for processing a large
amount of data with low latency. Our approach to tackling the scalability problem
is to partition time series data while preserving essential dependencies between
them in order to perform training in parallel on the partitioned data. To improve
the performance in terms of prediction accuracy we aim to place correlated data in
the partitions.

Application. Our application domain is the analysis of road traffic data collected
by road infrastructure sensors and modelling of traffic flow behavior for the task of
traffic prediction. Accurate traffic predictions can further help in route planning,
traffic congestion reduction, air pollution reduction, infrastructure planning, and
other tasks. We believe that our proposed partitioning technique, to achieve
scalability and better performance for traffic prediction, is general and can be
applied to partition and model a complex system that can be represented as a
directed weighted graph of dependencies between spatial time series generated
by components of the system. Other systems where we believe we can apply
our partitioning approach include air traffic control systems, fitness trackers’ data
networks etc.

We work with real-life large data-sets generated by traffic sensors deployed
in Stockholm and Gothenburg, Sweden. The number of sensors and the number
of measurements from the sensors are increasing. For example, the number
of infrastructure sensors in the Motorway Control System (MCS) deployed on
highways in Stockholm and Gothenburg, Sweden, has increased from about 800 in
2005 to more than 2000 in 2016. The number of measurements has also increased
from 400 million to about 1 billion per year, as shown in Figure. 3.1.

Sensor data are spatial time series, and having a large number of sensors causes
a scalability problem in traffic time series forecasting. Due to real-time requirements
for traffic data analysis and forecasting, a scalable solution for processing a large
amount of data with low latency is required. In some cases, to achieve scalability,
the data is partitioned in order to perform mining or modelling tasks in parallel.
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Figure 3.1 – Number of sensors’ measurements over years.

Careless partitioning causes degradation in the model accuracy. For example,
too small partitions might not provide enough information to train the model;
Placing unrelated data, such as traffic data from unconnected road segments, in
the same partition might negatively affect the accuracy or complexity of the model.
The negative effect can happen because uncorrelated data will make it hard for the
learning model to learn trends in the data which will affect the overall accuracy.
Also, adding uncorrelated data will increase the dataset size and in the case of large
scale data, it will increase the parameters of the learning model, thus making it
complex and hard to train. Careful partitioning is especially important for grouping
time series data of multiple sensors (spatial time series), because of dependency
between the sensor readings. One example of such a dependency is that a moving
car counted by one sensor will be counted by the next sensor in the flow direction.
Another example is that a traffic queue growing in the opposite direction of the
traffic flow causes a slowdown of cars and, as a consequence, a dependency between
sensor readings. The dependency is strong between sensors which are closely
placed and there is a path between them; the dependency is weak between sensors
which are far apart or have no path between them. Taking these dependencies into
account is important for the partitioning of sensors, meaning that a partition should
include correlated sensors.

We propose a partitioning technique to tackle the scalability problem that
enables parallelism in training and prediction: 1) We represent the sensor system
as a directed weighted graph based on the road structure, which reflects dependen-
cies between sensor readings, and weighted by sensor readings and inter-sensor
distances; 2) We propose an algorithm to automatically partition the graph taking
into account dependencies between spatial time series from sensors; 3) We use the
generated sensor graph partitions to train a prediction model per partition.
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Figure 3.2 – The fundamental curve of road traffic flow

3.2 Preliminaries

In this section, we present the necessary background on the traffic flow theory, along
with details of the NN-based prediction model we use in this work for predicting
road traffic, and the input representation fed to the prediction model for capturing
spatio-temporal dependencies between road traffic data.

3.2.1 Traffic Flow Theory

Traffic flow theory is the study of vehicles’ behaviour on road; it helps to explain
the vehicle flow and the interaction of vehicles with each other. Mainly three traffic
variables are used to explain the vehicles’ movements on road, namely [74]: 1) traffic
flow q (number of vehicles per unit time) that is the number of vehicles passing a
particular point on road, 2) density k (number of vehicles per unit distance) that
is the concentration of vehicles on road, and 3) speed v (distance covered per unit
time). The three variables are related as:

q = k× v (3.1)

The fundamental traffic flow theory diagram, as shown in Figure 3.2, gives us a
useful relation between the three traffic flow theory variables. At the start of the
curve, the flow q of cars increases along with the density k; during this phase the
vehicles move with free-flow speed Vf, represented by a positive slope on the curve.
When q increases further the density k reaches its critical value kcritical. At this
point, the flow is maximum, i.e., qmax. Beyond kcritical the vehicles’ movements
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become restricted because their concentration is increasing on the road, thus we see
a decrease in the speed with a negative slope. kjam indicates the traffic jam density,
at this point the speed is very low due to congestion.

3.2.2 Long Short-Term Memory NN-Based Prediction Model

Traditional time series forecasting techniques for traffic prediction, including flow
theory-based models and statistical techniques, such as Bayesian analysis [75],
Markov chains [76] and ARIMA [77], have been replaced by neural networks. NNs
perform better for time series forecasting than the traditional techniques because the
latter are incapable of handling missing andmultidimensional data. NNs have been
employed in forecasting time series data [78, 79]. In particular, Long Short Term
Memory (LSTM) networks [80] have shown promising results for traffic prediction
due to their deep hierarchical structure which enables the extraction of non-linear
and stochastic characteristics of the traffic data [81, 82].

In this work, we use LSTM-based predictionmodels. LSTM is a type of Recurrent
Neural Network (RNN) architecture that is capable of learning long term trends in
the data. In our previous work [25], we compared a 2 layered stacked LSTM based
architecture with various statistical and neural networks based models. The stacked
architecture containing 2 layers gave better accuracy compared to other models.

Complexity. The basic LSTM architecture consists of three layers: the input layer,
LSTM (hidden) layer, and output layer. Data from the input layer is fed to the
LSTM layer which contains memory blocks comprising of memory cells with self-
connections and gates. These self-connections are from the cell’s output unit to the
input unit and gates. These gates, namely the input, output and forget gate control
the flow of data across these cells which represent the state of LSTM. The output
units of cells are connected to the output layer. The computational complexity of an
LSTM network per time stamp and weight is O(1) [80]. Therefore, the complete
learning complexity of LSTM with a total ofW number of parameters is O(W). W
is computed by the equation [83]:

W = n2c × 4+ ni × nc × 4+ nc × no + nc × 3 (3.2)

Here, nc is the number of memory cells, ni is the number of input units and no
is the number of output units in the LSTM layer. A large number of input, output
and memory units can increase the computational complexity of LSTM.
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Figure 3.3 – Data representation of spatial time series

3.2.3 Data Representation for Spatial Time Series Forecasting

Time series data collected from road traffic sensors contain both spatial and temporal
dependencies. To capture these dependencies, we need to take into account the
sensor’s previous readings, the readings of neighbouring sensors and neighbouring
sensors’ previous readings. Therefore, we model the sensor data using Equation 3.3,
which represents the time series dependencies in space and time. Using this
equation, we consider that the predicted reading of a sensor Si at time t+ 1 is given
by the following equation:

Si,t+1 = f(Si−n,t, Si−(n+1),t, ..., Si,t, Si+1,t, ..., Si+j,t,

Si−n,t−1, Si−(n+1),t−1, ..., Si,t−1, Si+1,t−1, ..., Si+j,t−1,

..., Si−n,t−h, Si−(n+1),t−h, ..., Si,t−h, Si+1,t−h, ..., Si+j,t−h)

(3.3)

Here, Si+1, ..., Si+j are readings of the sensors placed downstream, i.e., in the
direction of traffic flow, Si−1, ..., Si−n are readings of the sensors placed upstream,
i.e., in the opposite direction of traffic flow, and t, ..., t− h refers to h time units in
the past from the current time t. Figure 3.3a shows that the prediction of the sensor
reading Si at time t+ 1 depends on the readings from neighbouring sensors placed
downstream (Si+1 and Si+2 shown in yellow), sensors placed upstream (Si−1 and
Si−2 shown in green) and sensor Si’s previous readings in time intervals t, ..., t− h
(in red).
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Figure 3.4 – Sensor graph creation

We map Equation 3.3 to a space-time window which is fed as an input to train
the prediction model. For a sensor Si on a particular point in the highway, the
space-time window contains sensor readings, i.e., the density of vehicles computed
using the flow and average speed recorded by the sensor, from i− n sensors placed
upstream and i + j sensors placed downstream. These readings are taken for a
history of h time stamps from the current time t. As shown in Figure. 3.3b, the first
row of the window contains sensor readings from Si−n...Si...Si+j at a current time
interval t. Similarly, the next row is for readings at t− 1, i.e., the previous minute.
The rows following this contain previous readings till t− h time interval. Once the
input is fed, the prediction model is trained to predict for t+n future time intervals
traffic density.

3.3 Graph Representation of Road Traffic Network

We represent the traffic infrastructure sensors in the form of a directed weighted
graph to capture the spatio-temporal dependencies between the time series from
the sensors. We construct the graph G based on the road paths and the traffic
direction between the sensors. Next, we weight the graph using sensor readings
and distance between the sensors. Sensors that are at the same location but on
different lanes are represented as a vertex in V . The paths between these vertices are
represented as edges in E. The direction of the traffic flow determines the direction
of the edges. Figure 3.4 shows the sensors on parallel lanes at the same location
grouped together as sensor site vertices (in blue) and the road between them are
represented as directed edges (in red). Figure 3.5 depicts a high-level view of the
sensor graph of the Stockholm centre.
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Figure 3.5 – Graph representation of road sensors in Stockholm

Once the graph is constructed, the edges are weighted based on the travel time
of the cars. The edge weight is equal to the time it takes a vehicle to travel the road
segment corresponding to that edge. The weight w(i, j) represents the weight of
an edge directed from the vertex vi to vj. w(i, j) is calculated using the average
speed v of vehicles recorded by the sensors corresponding to the vertex vj during
rush hours and distance d between the sensors corresponding to vertices vi to vj.
Equations 3.4 [84] are used to compute the distance d and travel time t for weighting
the edges.

d = 2r arcsin(
√

sin2(a) + cos(ϕ1) cos(ϕ2) sin2(b))

t = d/v

where a = (ϕ2 −ϕ1)/2 and b = (λ2 − λ1)/2

(3.4)
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ϕ1 is start latitude in radians, λ1 is start longitude in radians, ϕ2 is end latitude
in radians, λ2 is end longitude in radians, r is Earth radius (6371 km), d is distance
between sensor sites.

3.4 Road Network Graph Partitioning

We partition the directed weighted graph, that represents the traffic infrastructure
sensors, in order to find groups of correlated sensors. The partitioning algorithm
consists of three stages: 1) Creation of base partitions; 2) Creation of the base
partitions graph; 3) Addition of partitions from the front and behind to capture the
dependencies of sensors located behind (in the direction of traffic flow towards the
point of interest) and in front of the selected point of interest (in the direction of
traffic queue growing or moving in the opposite direction of traffic flow towards
the point of interest) in the graph.

Creation of Base Partitions: The base partitions are created using backward
traversal of the graph from the starting point which is a vertex with no outgoing
edge. The backward traversal is made to capture the dependencies between sensor
readings caused by cars moving in the direction of traffic flow. For example, a
moving car counted by one sensor will be counted by the next sensor in the flow
direction.

The algorithm starts by taking an input parameter time t, and chooses a starting
point, which is a node/vertex with no outgoing edge from it, in the graph. The
traversal is made in the opposite direction of the incoming edge towards the node.
The weights of edges along the traversal are added up until they reach the threshold
t. Once the threshold is reached, the edges are added to a partition and the next
partition starts from the last edge visited. The algorithm terminates when all edges
are visited. This results in creating base partitions.

Algorithm 1 defines the steps to create base partitions. G is the input sensor
graph, v is a vertex and e(v,w) represents an edge. getStartingVertices(G) returns
starting vertices in G. getBackwardVertices(v) is used to get vertices visited when
traversed backwards from v and getMaxWeight(v) is used to get maximum weight of
the partition containing vertex v.

Figure 3.6a shows an example of the directedweighted graph created to represent
the road sensors, where theweights are based on travel times of vehicles. Figure 3.6b
shows the base partitions created over the weighted sensor graph with an input
parameter t = 2 min and the starting vertex in red.

Creation of Base Partitions Graph: Once we have the base partitions, they are
connected to form a base partitions graph, where the partitions are vertices and the
flow directions between them are edges (Figure 3.6c).
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Algorithm 1 Backward Graph Partitioning Algorithm for Creation of Base Partitions
1: P={} . Parititions initialized
2: functionmain(G, s) . G - graph, t - input time
3: starting_vertices=getStartingVertices(G)
4: for each (v in starting_vertices)
5: partition(G,v,t,0)
6: end for
7: collect all partitions in P
8: return P
9: function partition(G, v, t, sum) . G - graph, v - vertex, t - input time, sum -

accumulated sum
10: if v is in P then
11: return
12: if t ≤ sum then
13: add v to starting_vertices
14: return
15: add v to a partition in P
16: next_vertices = getBackwardVertices(v)
17: for next_vertex in next_vertices do
18: weight = weight of e(v, next_vertex)
19: if next_vertex not in P then
20: partition(G, next_vertex, t, sum + weight)
21: else if t+weight <=getMaxWeight(next_vertex) then
22: merge the current partitionwith the partition containingnext_vertex.
23: else if sum+weight <= t then
24: add vertices of partition containing next_vertex to starting_vertices.
25: partition(G, next_vertex, t, sum + weight)

Additions of Partitions from Front and Behind: After we get the base partitions
graph, first, we add some partitions from behind to capture the dependencies
between sensor readings caused by the cars moving towards the tail of the base
partition. Then, we add partitions from the front to capture dependencies between
sensor readings caused by the traffic queue, created during a traffic jam, moving
towards the head of the base partition. The number of partitions added from front
and back affects the size of our final partitions.

A partition size is determined in such a way that it covers all correlated sensors
reachable within the prediction time horizon by a car travelling at an average
speed in each segment of the partition, i.e., the sensors affected by the same traffic
stream are placed in the same partition if the travel time between them lies within
the prediction horizon. This allows partitioning of large sensor networks while
preserving dependencies between spatial time series generated by the sensors.
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(a) Directed weighted graph (b) Base partitions

(c) Base partitions graph
(d) Critical partitions with forward and back-
ward partitions

Figure 3.6 – Partitioning steps

Table 3.1 – Configuration parameters of the prediction models

Model Input units Output units Memory units
Single Sensor 1 1 50
Entire Sensor Infra-
structure

2058 2058 1000

Partitioning-Based partition size critical partition size 1000

In our experiments, we make predictions for up-to 30 min. Therefore, we add
partitions from the back that cover at least the distance travelled by the cars coming
towards the base partition in 30 min time interval. Similarly, we add partitions at
the front of the base partition by almost half the number of the ones added at the
back, because the traffic queue builds up slowly and few sensors are covered by
the traffic queue moving backwards, i.e., towards the head of the base partition.
Figure 3.6d shows the addition of partitions from the front (in blue) and behind (in
green) of the current base partition or the critical partition (in red).
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3.5 Traffic Prediction Models

The prediction models we use for evaluation consist of 1) The single sensor models,
2) the entire sensor infrastructure model and, 3) the partitioning-based traffic
network models. In this section, we explain various features of these models, such
as the number of input units, the memory units, and the output units. Table 3.1
contains the configuration parameters of the prediction models.

Single Sensor Models. The single sensor models (SSMs) are trained per sensor,
where the input is only one sensor’s readings and the prediction is also done for the
same sensor. These models, when considered individually, have low complexity as
the input and output is only one. However, these SSMs result in a very large number
of models and they collectively require high computational power for training and
serving. The prediction results of this model will be based only on the readings of a
single sensor and no information from neighbouring sensors is taken into account.
This might result in less accurate predictions because less information is fed to train
the prediction model.

Entire Sensor InfrastructureModel. The entire sensor infrastructure model (ESIM)
is a huge un-partitioned model trained on readings from all infrastructure sensors
and makes predictions for all the sensors. Using all sensors’ readings during model
training can help the model learn the correlations between the sensor readings
because of their spatio-temporal dependencies. The complexity of this model is
directly dependant on the number of input and output units of this model. In our
case, the number of input units and output units for this model are equal to 2058,
which is the total number of sensors in the road sensor infrastructure.

Partitioning-Based Models. The partitioning-based models (Bt) are trained with
sensors in the partitions created after partitioning the road infrastructure graph. The
partitioning algorithm creates partitions to group the correlated sensors. Creating
partitions helps in reducing the number of sensors used for training the prediction
model, which results in a less complex model per partition compared to the
entire sensor infrastructure model. The number of input and output units for the
partitioning-based model depends on the size of the partition. In our experiments,
we use various input parameters for creating partitions of different sizes. More
details about the input parameters used in our work are given in the evaluation
section 3.6.1.

3.6 Experimental Evaluation

We evaluate the accuracy and performance of our proposed approach to predict
road traffic density. We compare the proposed partitioning-based predictionmodels
with the entire sensor infrastructure model and the single sensor models.
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3.6.1 Experimental Setup

Metrics. We use the following metrics for evaluation:

• Accuracy: We measure the accuracy of models in terms of the Root Mean
Square Error (RMSE) and Mean Absolute Error (MAE). RMSE and MAE
between predicted density values k̂inm and observed density values kinm for
ith interval, N number of sensors overMminutes of the days are computed
using the following equations:

MAE =
1

NM

N∑
n=1

M∑
m=1

|kinm − k̂inm| (3.5)

RMSE =

√√√√ 1

NM

N∑
n=1

M∑
m=1

(kinm − k̂inm)
2 (3.6)

• Performance: We measure the performance of prediction models in terms of
prediction and training time.

LSTM Network-Based Traffic Prediction Model. Our prediction model is based
on the stacked LSTM network architecture with two LSTM layers. In our previous
work [25], we compared the 2 layerLSTMnetwork-basedmodelwith other prediction
models including classical baseline statistical models, such as ARIMA, Support
Vector Regression (SVR), and neural network-based models, such as RNNs with
two layers, Feed Forward Neural Network (FFN) with two layers and LSTM-1 with
a single LSTM layer. LSTMs with 2 layers proved to give better prediction accuracy
than the aforementioned mentioned models. Therefore, in this work, we use the
same stacked 2 layers-based LSTM prediction model and address the scalability
problem.

Dataset. The traffic dataset used in this work was provided by the Swedish
Transport Administration [85]. The dataset consists of readings from radar sensors
on Stockholm and Gothenburg highways during the period 2005-2016. The sensors
are placed a few hundred meters apart from each other on each lane. They collect
data per minute, that results in a large and microscopic dataset compared to data
aggregated per hour or over multiple lanes. The sensor readings include the flow
and average speed of vehicles per minute. The dataset used for prediction consists
of more than 88 million data points collected by 2058 sensors (Figure 3.1) over a
period of one month in 2016.
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(a) 3 minutes partitions (b) 5 minutes partitions

(c) 10 minutes partitions (d) 20 minutes partitions

Figure 3.7 – Partitioned road graph using different input parameters

Partitioning Parameters. We partition the road sensor network graph to create
base partitions for various values of parameter t. Figure 3.7 shows the results of
partitioning for values of t = 3 min, 5 min, 10 min and 20 min. Partitions are shown
in different colors, where colors of two partitions representing traffic in opposite
directions may overlap. The higher the base partition creation input parameter, the
bigger the partition size. Also, the total number of partitions becomes less with
the increase in the input parameter. In Figure 3.7d, we can see that almost all the
highway is covered with the partition shown in black color. This partition further
has one more similar partition for the traffic in the opposite direction.
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Figure 3.8 – RMSE (veh/km) of traffic density

Table 3.2 – Accuracy of Prediction Models

Model RMSE
10 min

RMSE
20 min

RMSE
30 min

MAE
10min

MAE
20min

MAE
30min

SSM 5.9 6.5 6.9 3.0 3.2 3.5
ESIM 6.1 6.2 6.5 3.1 3.1 3.2
B2 5.4 6.2 6.5 2.7 3.0 3.1
B5 5.4 5.7 6.2 2.7 2.8 2.9
B10 5.5 6.0 6.1 2.7 2.8 3.0
B15 3.2 3.5 3.7 1.8 1.9 2.0

Experimental Environment. We used on-premises nodes consisting of Intel(R)
Xeon(R) CPU E5-2650 v2 @ 2.60GHz, 256GB of RAM and 16.6 TB disk. We used
Apache Spark version 2.4.0. with Python 2.7.15 and Tensor Flow version 1.11.0.

3.6.2 Traffic Prediction

Accuracy. Table 3.2 shows the RMSE and MAE values for the Single Sensor Models
(SSMs), the Entire Sensor Infrastructure Model (ESIM) and the Partitioning-Based
models (Bt) using base partitions with the input parameter t = 2 min, 5 min, 10 min
and 15 min, denoted as B2, B5, B10 and B15, respectively. SSMs have lower errors
compared to ESIM for short prediction intervals, such as 10 min; whereas, ESIM has
slightly less error for 20 min and 30 min intervals. Btmodels show better accuracy
compared to the base-line SSMs and ESIM. Overall, B15 shows the best accuracy.
Figure. 3.8 shows RMSE for the base-line SSMs and ESIM compared to B15. B15 has
about 2x lower RMSE compared to the base-line approaches. Furthermore, RMSE
and MAE increase with the increase in the prediction horizon.
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Figure 3.9 – Prediction time (sec) of different prediction models

(a) Training time (sec), if run sequentially (b) Training time (sec), if run in-parallel

Figure 3.10 – Training time (sec) for the sequential and parallel run of different
prediction models

Table 3.3 – Performance of Prediction Models

Model Parallel train-
ing time (sec)

Sequential train-
ing time (sec)

Prediction
time (sec)

No. of
models

SSM 100.3 205600 <1 2058
ESIM 6300.2 6300 130.2 1
B2 4696.4 291152 55.3 62
B5 1776.1 33746 17.6 19
B10 838.2 10897 9.6 13
B15 522.1 4699 6.3 9
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Performance. The performance of the predictionmodels is measured by computing
the sequential training time, parallel training times, and the prediction time.
Figure 3.9 shows the prediction times and Figure 3.10 shows the training times
of SSMs, ESIM and Bt models. One SSM has the prediction time < 1 sec, thus
it is omitted from the plot in Figure 3.9. SSMs have shorter parallel training and
prediction times compared to other models. However, there are 2058 sensors and
training/serving SSMs sequentially for all these sensors take long time and makes
SSMs inefficient in terms of performance. Therefore, the training and prediction
time for SSMs, if run sequentially, is very high.

ESIM has the highest training time if run in parallel, and prediction time because
of a large number of sensor data being processing to train this huge network. On
the other hand, the Btmodels have shorter training time, if run both in parallel and
sequentially with B15, and less prediction time compared to ESIM. The training and
prediction time for the partitioning-based models decreases with the increase in
the input parameter for base partitions creation. Table 3.3 shows the performance
comparison of these models. The number of partitions for B15 is only 9 and it has
less training and prediction time compared to other models. Hence, it is suitable
for large-scale traffic prediction. Overall, partitioning-based models Bt take 2x,
if run sequentially, and 12x, if run in parallel, less training time, and 20x less
prediction time compared to ESIM. The partitioning-based models take 100x less
total sequential training time compared to SSMs.

Findings. Our results for comparing SSMs, ESIM and partitioning-based models
show that we can achieve a scalable traffic prediction solution using partitioning-
based models. Our experimental results show that: 1) SSMs are better for very
short prediction horizons compared to ESIM and become less accurate with the
increase in prediction horizon. At scale, the number of SSMs gets large which
makes them inefficient for use in terms of overall high training and serving time. 2)
ESIM albeit high training time yields better accuracy compared to SSMs for long
prediction horizons. 3) Partitioning-based models with B15 shows overall best
accuracy compared to SSMs and ESIM. The performance is also better compared to
ESIM, in terms of the training and prediction time. Also, compared to SSMs the
performance of partitioning-based models is better in terms of the training time if
run sequentially.

3.7 Related Work

Fouladgar et.al. [33] worked on scalable deep neural networks for urban traffic
congestion prediction. However, they did not focus on addressing the scalability
issue. Moreover, they use aggregated data over 5 min for only 58 locations. The
issue of scale is still un-addressed. Other works [34, 35] done on large-scale
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traffic estimation and prediction do not fully address the issue of growing model
complexities at scale.

3.8 Acknowledgments

I would like to thank Ahmad Al-Shishtawy for working with us on this task of
road traffic prediction. Ahmad has been a great support throughout this project
and has provided immense knowledge on working with big and complex traffic
datasets. Furthermore, I would like to thank our master student Jon Reginbald
Ivarsson for his hard work in implementing the partitioning techniques. This work
was co-supervised by Vladimir Vlassov and Sarunas Girdzĳauskas who provided
constant useful feedback and also helped us in shaping and writing the papers for
this work.

3.9 Summary

In this work, we address the challenge of CH1 Scaling Deep Learning Models for

Time Series Forecasting, mentioned in Chapter 1. We address the scalability problem
in a real-life task of large-scale road traffic prediction using real-life large data
sets generated by traffic sensors deployed in Stockholm and Gothenburg, Sweden.
We propose a partitioning technique with corresponding algorithms to tackle the
scalability problem that enables parallelism in both training and prediction, and
hence reduces the training and model serving times while improving the accuracy
of LSTM-based prediction models. We represent the road sensor infrastructure as
a directed weighted graph to capture the spatio-temporal dependencies between
the sensor readings; We propose a graph-based partitioning algorithm to group
correlated sensors reachable within a given time horizon into partitions, to capture
dependencies between spatial time series of data collected by sensors in partitions,
and to train and serve prediction models for partitions in parallel. The partitioning-
based prediction models are fast and more accurate compared to single-sensor
models and a single non-partitioned model for the entire road sensor infrastructure.

With this real-life case study, we have illustrated that partitioning is feasible
and effective to address the scalability challenge in modelling complex systems
using deep learning, given that structural partitioning of data sources preserves
the data dependencies, e.g., dependencies between sensor readings in the road
infrastructure.

Our proposed partitioning technique in general can be applied to partition and
model a complex system that can be represented as a directed weighted graph of
dependencies between spatial time series generated by components of the system.
For example, air traffic control systems generating spatial time series, which are
correlated, can be partitioned using our proposed approach.



chapter

4
Streaming Graph Analytics for Large
Spatial Time Series Analysis

"Sometimes I’ll start a sentence and I don’t even know where it’s going.

I just hope I find it along the way"

—Michael Scott, The Office.

In the previous chapter, we applied graph partitioning to scale DL models
for large spatial time series forecasting generated from components of a complex
system, where we modelled the complex system as a graph. Here, we present
our work on performing useful analytics on large spatial time series. Large scale
spatial time series analysis includes processing multiple correlated time series.
These time series often contain spatial dependencies (inter-dependencies) and
temporal dependencies (intra-dependencies). It is challenging to model time series
data for capturing both spatial and temporal dependencies at scale because these
dependencies are dynamic and are both short and long-range [13, 16, 17]. The range
here is the closeness in terms of time and space. For example, spatial dependency
is not always related to the physical closeness of the data sources generating the
time series. Taking into account the aforementioned challenges, we propose to
model spatial time series as graph streams because graphs provide a structural
representation that enables complex analytics algorithms [86, 87]. We use streaming
graph analytics to perform useful analyses of multiple time series at scale.

4.1 Introduction

Streaming graph analytics is an emerging application area that aims to extract
knowledge from evolving networks in a timely and efficient manner [11, 12]. Graph
streams are (possibly unbounded) sequences of timestamped events that represent

45
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relationships between entities: user interactions in social networks, online financial
transactions, driver and user locations in ride-sharing services. Graph streams are
continuously ingested from external, often distributed, sources and are modeled
either as streams of edges or as vertex streams with associated adjacency lists. In
this chapter, we illustrate and support the practical importance and usefulness of
applying streaming graph analytics to a real-life use case.

We propose to use streaming graph analytics to detect road traffic congestion and
control traffic jams by processing road traffic streams as a use case to demonstrate
the importance of streaming graph analytics. Streaming graph analytics, being
a relatively new field of research, should be explored further for other use-cases.
Few such use-cases mentioned in [12] include predicting traffic and demand for
a ridesharing service and management of networks online in software-defined
network controllers.

Application. Our application domain is road traffic analytics for the task of traffic
congestion detection andmitigation using both real-life and synthetic data. Real-life
data is collected from a region in one of the largest metropolitan cities in China. We
proposed an end-to-end framework built on top of a modern stream processing
system, i.e., Apache Flink. Our system comprises of 1) an online traffic jam detection
mechanism for detecting jams on streaming data collected from traffic sensors using
streaming graph analytics, and 2) a congestion reduction mechanism for reducing
the effect of congestion in the congested area by deploying dynamic traffic light
policies.

With the plethora of vehicles used to commute every day, traffic congestion
has become a common sight. It is important to monitor traffic flows to prevent
congestion to avoid a multitude of problems. Some of these problems include:
increase in fuel consumption and pollution [88], decrease in economy [89] and
traffic safety that is caused by a speed variance between cars in the congested region
compared to cars moving freely [90], and harmful effects on the mental and physical
health of people [91, 92].

Mitigating congestion is thus an essential task of a traffic control system. More-
over, there are real-time requirements of modern traffic control systems that require
a traffic monitoring and congestion control mechanism with low latency. In this
work, we investigate on real-time traffic jam detection and congestion reduction over
traffic streams. Real-time congestion detection can help in sending safety warnings
to drivers approaching the congested region to avoid accidents, to do daily route
planning, and to deploy various policies for mitigating congestion. Once congestion
is detected in real-time, congestion mitigation can be done by setting up speed
limits for the vehicles approaching the congested region and by controlling the
traffic lights for limiting incoming traffic towards the congested region. Therefore,
an online traffic stream processing based solution is necessary in order to efficiently
mitigate traffic congestion by measuring the current traffic conditions.
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Most of the existing congestion detection algorithms [37, 38, 39] use historic
data and are thus suitable to work offline. An online system is required to process
possibly unbounded streams with low-latency, making congestion detection and
mitigation challenging. One example of such offline technique is [37], which uses
link journey times of vehicles to detect congestion. It requires historic information on
past link journey times to detect non-recurrent congestions. Hence, it is not efficient
for real-time use. In order to detect traffic jams caused by congestion in real-time,
we represent the traffic infrastructure network in the form of a directed weighted
graph to capture correlations between traffic sensors based on the dependencies
between their generated data streams. An example of such a dependency is that
a vehicle detected by one sensor will also be detected by another sensor a few
moments later in the traffic flow direction. Another example of a dependency is a
traffic queue moving in the opposite direction of the traffic flow during the traffic
jam that causes slow down of cars approaching the end of the queue, resulting in
dependency between readings of the sensors placed in the opposite direction of the
traffic flow. These dependencies are taken into account by us in measuring traffic
flow variables that are used for the detection of traffic jams and tracking of traffic
jams’ propagation.

In this work, we use traffic flow theory [74] combined with graph analytics
to detect traffic jams in the streaming traffic data. Next, we develop a streaming
graph-based algorithm to find correlated traffic jams in the network. We also
propose a congestion mitigation/reduction mechanism by dynamically changing
traffic light policies to control the traffic flow moving towards the congested region.

4.2 Preliminaries

In this section, we provide the necessary background by introducing congestion
detection using fundamental traffic flow theory (cf. Chapter 3, Section 3.2.1).

4.2.1 Traffic Congestion

Traffic congestion is a state of the traffic on the road in which the vehicles cannot
move freely on road, their movements are restricted, i.e., vehicles cannot easily
overtake each other, change lane, or move at high speed. Congestion can be caused
by a poorly designed road infrastructure that is unable to meet the traffic demand.
It can also be caused by external factors, such as rainy weather, accidents, and road
repair work. On the contrary to congestion, "free-flow" state is the one in which
vehicles can easily overtake, change lane and increase speed [93, 94].

Congestion Detection. The fundamental traffic flow curve can be used to find
important measures, that include, maximum free-flow qmax, free-flow speed Vf
and critical density kcritical which are used to differentiate between the free-flow
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Figure 4.1 – Empirical fundamental traffic flow diagram

traffic and the congested traffic. Figure 4.1 represents the empirical fundamental
traffic flow diagram generated using one of our real-life datasets. It shows the
classical traffic flow curve behaviour. For estimating a congestion threshold, a line
(shown in red) is drawn from the empirically computed qmax point to the origin.
All the sensor readings on the left side of the line represent free-flow traffic and all
the sensor readings on the right side represent congested traffic.

The magnitude of congestion can be determined depending on the distance
from the congestion threshold line. The points farther from the line indicate traffic
gettingmore andmore congested. Different congestion levels are shown by different
shades of red. Dark red color indicates high congestion. High congestion is the
state in which traffic jams appear with jam density kjam. Traffic density is an
important measure to determine traffic jams on road. We use density in our work
as an indicator of traffic jams.

4.3 Traffic Jam Detection

Here, we present an overview of our traffic jam detection and congestion reduction
system. Next, we explain the graph representation of the dataset used in our work
for computing various traffic metrics over the traffic streaming data and we explain
how it is used for traffic jam detection. In the end, we present the streaming graph
processing based algorithm to find connected traffic jams from the traffic stream.
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Figure 4.2 – Traffic jam detection and congestion control system

4.3.1 Traffic Jam Detection and Congestion Reduction System Overview

Our traffic jam detection and congestion reduction system, shown in Figure 4.2, is
built using Apache Flink [36] and Kafka [95]. First, the input stream from various
cameras placed on road intersections is fed to the system. A Flink job then 1)
processes the camera data stream along with the road infrastructure information to
compute traffic metrics, such as, average speed and density of vehicles; 2) detects
traffic jams in the streams using the computed traffic metrics; 3) identifies the
traffic jams that are connected; 4) detects the paths containing traffic jams in the
traffic graph and their neighboring paths from which the traffic is incoming to the
congested paths. These paths’ information, i.e., paths with traffic jam and their
neighboring paths, is written on the Kafka topics as output. This data helps in
creating traffic light policies for congestion reduction in the congested region. We
will explain the congestion reduction mechanism in detail in the next section.
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Figure 4.3 – Graph representation of traffic data

4.3.2 Graph Representation of Traffic Dataset

The traffic dataset used in our work is taken from a region of Shenzhen city in China
containing traffic cameras deployed across various intersections of the roads in the
city. Each intersection contains at least one camera in every direction, which detect
the number of vehicles passing that particular part of the intersection. The camera
data source is sending traffic data stream per second to the system, making it a
high-intensity stream. To detect traffic jams and to find connected traffic jams, the
input data is represented in the form of a graph. A graph is useful to represent
relationships between various entities in a network. In our case, the relationship
exists between various camera sensors that are deployed across the same intersection
in the network or are connected with a path in the traffic network graph.

Figure 4.3 presents the road network of one of the regions from a city in
China, which contains eight intersections, namely, A, B, C, D, E, F, G and H. Each
intersection has at least one camera in every direction depending upon the number
of directions from which the vehicles are passing these intersections. In order to
create a graph of this network, we represented the camera sensors placed over
intersections as vertices of the graph and possible paths that vehicles can take
between these intersections as directed edges of the graph.
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Figure 4.4 – Vehicles detected across various intersections on the road

The traffic graph is created using the road infrastructure data information. The
edges of the graph are then labelled dynamically using the camera data stream,
which contains the sensor ID, the timestamp, the number of vehicles passing the
sensor in the direction of the directed edge and their number plates.

4.3.3 Traffic Jam Detection

We detect traffic jams on the streams by computing the traffic density. The stream
we receive, per second, from cameras contains the number of vehicles that pass the
sensor, i.e., the traffic flow, and their number plates. First, we use this information
to compute the average speed of the vehicles that are detected by the sensors, then
we use the flow and speed values to compute the density of vehicles for detecting
traffic jams using equation 3.1.

We explain our approach to compute traffic density with a simple scenario
given in Figure 4.4, where we assume, for simplicity, that the distance between
each intersection connected is 0.5 km. Figure 4.4a shows that two cars, with
number plates Car x and Car y, were detected at intersection D coming from the
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north direction. Later at 08:02 am in Figure 4.4b, Car x and Car y are detected at
intersection F. In order to compute the average speed of cars at the intersections
we keep one-hop records of the vehicles that cross the intersections. In the given
scenario, Car x and Car y made one-hop from intersection D to F coming from
the north direction in 2 min (08:00 am to 08:02 am). The average speed of vehicles
crossing the sensor detecting vehicles from the north on intersection F at 08:02
am is computed using the travel time of Car x and Car y coming from D to F and
the distance between D to F. In this case, the average speed is ≈ 15 km/h. This
average speed value v is then used along with the aggregated traffic flow q value,
that is aggregated per minute, to estimate the traffic density at the path from D to F
using equation 3.1. Similarly, traffic density values are computed over the stream
at various intersections using the one-hop speed of vehicles at a particular time
interval. We only keep one-hop trip information for speed computation of vehicles,
as soon as the speed is computed we replace this information with the next-hop
data to keep the state in memory minimal. Based on our empirical results, the
traffic density ≥ 140 veh/km [96] indicates a traffic jam on the road. We use this
threshold to identify the paths in the graph containing traffic jams.

4.3.4 Connected Traffic Jams

Once we detect the paths containing traffic jams in the graph, we use a streaming
graph-based algorithm to track the propagation of traffic jams across the network
and to find the traffic jams that are connected. Figure 4.5a shows two paths in the
graph, i.e, BD, and EC, labelled as congested (red edges). These paths indicate the
presence of traffic jams across them at 08:30 am. Figure 4.5b shows another path AB
labeled as congested at 08:47 am. This path is connected to the previous congested
path BD, thus the traffic across them are part of the same traffic jam. We adapted the
connected components algorithm [97] over streaming graphs to find the connected
traffic jams in our graph of traffic streams and track their propagation in time.

Algorithm 2 is for the connected traffic jam detection on graph streams. A graph
stream is created in the form of streaming edges [24], where each edge (x, y) has
two-end vertices x and y. In our case, the end-vertices represent the intersection
IDs and we create a weighted edge, (x, y,w), with the weight w equal to the traffic
density value on the destination vertex. For example, for the path BD (in Figure 4.5),
assuming it has a density 150 veh/km at 08:30 am at D, an edge representing this
information will be created as (B,D,150). After creating these edges, they are first
filtered based on our traffic density threshold, i.e., 140 veh/km. These filtered edges
are denoted as congested edges in the algorithm. For each incoming edge in the
stream, the end vertices x and y are assigned to a set j with j.id, where id indicates
the traffic jam id and j represents a set containing vertices that belong to the traffic
jam with the assigned id. The end vertices are assigned based on the given rules: 1)
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Figure 4.5 – Traffic jams detected across the network

If all of the sets, j ∈ J, does not contain x and y, then create a new set j with id that
is minimum of x.id and y.id. 2) If either of x and y and present in j, then add the
other vertex to the same j. 3) If both x and y are present in the same j, do nothing.
4) If both x and y and present in different sets then merge the two sets and set id to
the minimum value of both set ids.

In the case of the aforementioned scenario in Figure 4.5, our algorithmwill result
in giving two groups of traffic jams, i.e., group 1 (B, D, A) containing intersection
IDs for paths AB and BD, and group 2 (E, C) containing intersection IDs for the path
EC. Once we detected the connected traffic jams, they are used in the congestion
reduction policies that we discuss next.

4.4 Congestion Reduction

In this section, we present our congestion reduction scheme. We first explain the
identification of paths in the traffic network that are selected for deploying new
traffic light policies and then explain the changes we make to the traffic lights along
these paths in the road network.



54 4 streaming graph analytics for large spatial time series analysis

Algorithm 2 Algorithm for detecting connected traffic jams
Input: Incoming stream of congested edges (x, y,w)
Output: Traffic Jam IDs for each vertex x and y
1: for all edges (x, y,w) in set E do
2: for all sets j ∈ J do
3: if Set j contains both x and y then

. x and y have been seen before
4: return

end if
5: else if x and y are in different sets then
6: merge the two sets and set the id of the new set to minimum of both set

ids
7: end else if
8: else
9: if x is in a set, add y to the same set, and vice versa
10: . Only one of the vertices has been seen before
11: end else

end for
12: create new set jwith id min(x.id, y.id) and assign x and y to it
13: . x and y vertices have not been assigned before

end for
14: Return J

4.4.1 Selection of Paths for Deploying New Traffic Light Policies

For reducing the effect of traffic jams, once they are detected in the traffic network,
we identify the links that are essential to reduce the overall travel time of the cars
in the congested area. The aim of identifying these links is 1) to control the traffic
that is moving towards the congested region to avoid further congestion in that
region and, 2) to reduce the travel time of cars that are in the congested region.
Figure 4.6 shows two traffic jams detected at 08:47 am. Path AB and BD are part of
the first traffic jam and the EC is part of the second traffic jam. The traffic moving
towards the first traffic jam is coming from path AC (highlighted in green) and
the traffic moving towards the second traffic jam is coming from paths FE and GE
(highlighted in green). In order to find these paths highlighted in green, we do
one-hop backward propagation in the graph from the intersections that are part of
traffic jams (highlighted in red and yellow) and get the ids of the sensors located
along these backward propagation paths (highlighted in green). Policies for traffic
lights placed on these backward propagation paths along with the paths that are in
the congested region are then changed to reduce the overall effect the congestion.
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Figure 4.6 – Paths in traffic network containing vehicles moving towards the
congested regions

4.4.2 Traffic Light Policies

The traffic light policies are built to control the red and green signal time of traffic
lights. Typically the traffic light policies are fixed and do not react dynamically to
the changes in traffic. In our work, we dynamically change the traffic light policies to
control the green signal time of the traffic lights placed on roads under congestion,
marked in red and yellow in Figure 4.6, and the roads containing traffic moving
towards the congested area marked in green in Figure 4.6. We change the green
signal time either by increasing it with bonus addition or by decreasing it with
bonus removal. Adding a bonus gives more green time for the vehicles to pass
the intersection. Alternately, subtracting a bonus gives less green time for the cars
to pass the intersection. A bonus is added to the traffic lights green signal time
in the congested region to allow more cars to pass the intersection to reduce the
concentration of vehicles stuck in a traffic jam. A bonus is subtracted from the green
signal time of traffic lights placed on roads containing traffic moving towards the
congested region to allow fewer cars to move towards the congested regions. The
bonus is computed using the given formula:
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bonus = ((knode − kjam) ∗ bonus factor)/100 (4.1)

Here, bonus factor here is 0.3 times the green time, where green time is the
time during which the traffic signal is green. knode is the traffic density value at
the node in the graph which selected for bonus application, and kjam is the density
value threshold during traffic jam set to 140 veh/km based on empirical results and
theoretically suggested traffic jam density threshold [96].

4.5 Experimental Evaluation

In this section, first, we explain the experimental setup and datasets used in ourwork
to evaluate the performance of our proposed traffic jam detection and congestion
control framework. Then, we present the experimental results of our work. The
aim of our experiments is to measure, 1) the performance of our system in terms of
reducing the effect of congestion on roads, and 2) the scalability of system in terms
of handling high-intensity streams from a large number of camera detectors.

4.5.1 Experimental Setup

Datasets. Datasets used in our experiments consist of both real-life and synthetic
datasets. Information about the datasets used in our experiments is given in
Table 4.1. The first dataset, which we refer as Region 1, is a real-life dataset taken
from a region of one metropolitan city, namely Shenzhen, in China. This dataset
is collected from various traffic sensors deployed across intersections of the roads.
The type of sensors from which data is collected is cameras. The cameras send per
second information about the vehicles crossing the intersection. This per second
stream consists of a timestamp, number of vehicles crossing, their number plates
and the direction from which they arrive. Region 1 consists of 8 road intersections
containing 28 number of traffic sensors, where each intersection has a camera in
every direction. Region 1 dataset consists of a total of ≈ 2 million records that are
collected over a period of 24 hrs. The records consist of vehicle detections sent
per second by the sensors. The second dataset, which is bigger, is used to test the
scalability of the system. It is a synthetically generated Grid dataset using SUMO
simulator tool [98] based on the traffic behaviour of our real traffic datasets. The
road network for this large dataset is a squared grid with 225 intersections. Each
intersection is connected to its neighboring intersections with two lanes (one per
direction) of 400 meters length. Grid consists of a total of 900 sensors generating
per second streaming data. This makes more than 137 million data points in the
data for a period of 12 hrs. The size of this dataset is around 50 GB.
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Table 4.1 – Datasets with their attributes used in experiments

Attributes Region 1 Grid
# intersections 8 225
# sensors 28 900
# records 2,419,200 137,721,600
size of storage 1GB 50GB

Experimental Environment. We performed our experiments on a physical on-
premises machine. Its specs are Intel (R) Xeon(R) CPU E5-2680 v3 @ 2.50GHz,
Linux OS and 32 GB of RAM. We used Apache Flink v1.10.0 with a local cluster
consisting of one job manager and one task manager consisting of 8 parallel task
slots. Furthermore, we used Kafka v2.12. The traffic jam detection and congestion
control framework is written in Java 8.

Metrics. Wemeasure the performance of our system in terms of reducing the effect
of congestion on road in Section 4.5.2. We compute the travel time of cars after
applying changes to the traffic light polices once the traffic jam is detected. We
compare this travel time to the base-line travel time of cars with default traffic light
policies. Next, we measure the scalability of our framework, in Section 4.5.3, by
computing the throughput, i.e, the number of records processed by the system per
second with an increasing traffic stream, and the latency, i.e, the time to process
one record by the system with an increasing traffic stream.

4.5.2 Congestion Reduction

In this section, we explore the effect of the bonuses that are applied to the traffic
lights dynamically as a part of our congestion reduction policies after detecting
congestion. We generated three different disruption scenarios in the simulation to
capture the effect on travel times of cars. The scenarios were created by blocking
two links in the graph of Region 1 for 10 min, 20 min and 25 min. Figure 4.7 is a
snapshot taken from the SUMO simulator tool that contains two cars shown in red
creating disruption on the road network.

In the disruption scenarios, we measure the average travel time of cars during
their trips after applying the congestion reduction policies, denoted as TTR, and
compare it to the average travel time of cars during the trips without the congestion
reduction policies, denoted as TTC. The normal travel time of cars on the same trips
with no disruption is denoted as TTN.

10 min disruption. Figure 4.8 shows the average trip times of vehicles with (TTR)
and without (TTC) congestion reduction policies after a 10 min disruption is created.
TTN is the average travel time without disruption. A traffic jam is detected after
08:30 am. Overall TTR is lower compared to TTC, resulting in fewer travel times
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Figure 4.7 – Disruption created using two blocking vehicles shown in red

Figure 4.8 – Average travel time of vehicles with 10 min disruption

of all cars with the application of congestion reduction policies. During the traffic
jam interval from 08:30 onwards till 09:10, the average travel time of all cars is
reduced by ≈ 15%, at the best at 08:50. After the traffic jam interval, 09:10 onwards,
the reduction in travel time is even more as TTR is lower compared to TTC. The
average time reduced after 09:10 is ≈ 27%, at the best. Overall during disruption,
vehicles have ≈ 8% less travel time after bonuses are applied to traffic lights during
congestion reduction, compared to travel time with default traffic light policies.
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Figure 4.9 – Average travel time of vehicles with 20 min disruption

Figure 4.10 – Average travel time of vehicles with 25 min disruption

20 min disruption. Figure 4.9 shows the average trip times of vehicles with (TTR)
and without (TTC) applying congestion reduction policies on traffic lights after a
traffic jam is detected around 08:30 am for the 20 min disruption scenario. Overall
cars take less travel time with congestion reduction policies since TTR is lower
compared to TTC. During the traffic jam interval, i.e., from 08:30 onwards till 09:10,
the average travel time of all cars is reduced by ≈ 15%, at the best at 09:10. After
09:10, TTR continues to be lower than TTC. The average travel time reduced after
09:10 is ≈ 18%, at the best. Overall all cars take 5% less travel time after applying
congestion reduction policies compared to travel time with default policies.
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25 min disruption. Figure 4.10 plots the average trip times of vehicles with (TTR)
and without (TTC) applying congestion reduction policies to the traffic lights for
the 25 min disruption. A traffic jam is detected after 08:30. Overall TTR is lower
compared to TTC indicating fewer travel times of all cars with the application of
congestion reduction policies. On average all cars take ≈ 5% less travel time, and at
the best ≈ 22% less travel time, after congestion reduction policies are applied to
the traffic lights, compared to travel time with default policies.

Comparison. We compare the congestion results for all three disruption scenarios
by measuring the travel time of vehicles that were only in the congested region
during the disruption scenario, i.e., the region where the traffic jam is detected.
We take into account the vehicles for which the travel time was reduced after
applying bonuses to the traffic lights. Figure 4.11a plots average travel times of
the aforementioned vehicles with bonuses applied to traffic lights and the average
travel times of these vehicles with the default static traffic light plans. For 10 min
disruption scenario, the average travel time of 4242 vehicles is ≈ 35% less with
bonuses applied to traffic lights compared to the default static policies. Similarly,
for 20 min disruption, the average travel time of 4163 vehicles is ≈ 31% less with
bonuses. Lastly, for 25 min disruptions, the average travel time of 6663 vehicles is ≈
36% less with bonuses applied to traffic lights compared to static plans.

Figure 4.11b shows the travel time of cars during the three aforementioned
disruption scenarios that had the most travel time gain. Travel time gain is the
difference in trip time during static traffic light policies from the trip time during
bonus based policies. Our results for the best single vehicle trips show that the
vehicle takes almost 3× less travel time for 10 min, 4× less travel time for 20 min,
and more than 6× less travel time for 25 min disruption scenario when bonuses are
applied to traffic lights compared to the default traffic light policies.

4.5.3 Scalability

We now evaluate the scalability of our traffic jam detection and congestion reduction
system by measuring the throughput and latency. The input dataset used for the
scalability test is the Grid dataset comprising of total 137,721,600 records. In order
to process the dataset in a distributed manner, we used a Taskmanager in Flink with
8 parallel task slots. It took a total of ≈ 40 min to process the complete dataset. We
measured the throughput and latency of our system during the complete processing
job of the dataset.

Throughput. Figure 4.12a shows the throughput of our system on the y-axis in
terms of records processed per second and the x-axis shows the percentage of stream
processed from the total dataset. Throughput of the system slightly increases with
the increase in processing of the data stream. Throughput curve starts with around
56000 records/sec when 10% data is processed and goes up till 57056 records/sec at
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(a) Average travel time of cars in congested
region for different disruption scenarios

(b)Maximum travel timegain in the congested
region for different disruption scenarios

Figure 4.11 – Comparison of travel time gains for 10 min, 20 min and 30 min
disruption

(a) Throughput (b) Latency

Figure 4.12 – Throughput and latency of the system

70% processed stream. Finally, the throughput is the highest, i.e., 57104 records/sec,
when the complete stream is processed. The throughput curve shows that our
system is capable of achieving high throughput during the processing of the stream.

Latency. Figure 4.12b shows the latency of our system on the y-axis in terms of
milliseconds and the x-axis shows the percentage of stream processed from the total
dataset. Our plot depicts that latency of the system, in general, decreases with the
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increase in the percentage of the processed stream. Latency slightly increases at 30%
processing of data, then goes low again at 60% processing of data. The throughput
curve shows that our system has a very low latency during the processing of a big
data stream.

4.5.4 Findings.

Our results indicate that 1) applying dynamic traffic light policies in the congested
regions and its neighboring regions yields less travel time of cars. The average
travel time of all cars is reduced at the best by 27% in 10 min, 18% in 20 min and
22% in 25 min disruption scenario and, 2) our traffic jam detection and congestion
reduction system gives high throughput and low latency by keeping minimal state
in memory yielding high-speed processing of large scale streaming data. From
these results, we can deduce that considering the real-time requirement of traffic
optimization, using our proposed framework, a simple consumer machine would
allow us to monitor and help mitigating congestion in large urban areas.

4.6 Related Work

Several interesting research has been done on traffic monitoring, more specifically
for congestion detection. One of the most popular and widely used congestion
detection systems is Google Maps [99]. It uses probe vehicles and data collected
from cellphones with GPS to monitor traffic. However, this method is based on
massive data collection and raises privacy concerns according to the General Data
Protection Regulation (GDPR) laws [100].

Existing work done on congestion detection by Anbaroglu et al. [37, 38] detects
congestion using link journey times of cars. Soylemezgiller et. al [39] proposes a
road pricing model for reducing congestion on the road. These approaches make
use of historic data that includes past link journey times and other past statistics of
the road at a specific hour of the day. In a pure streaming system, this historic data
is not available, making these approaches not suitable to be implemented for online
processing.

Other techniques include vision-based congestion detection [101, 102, 103,
104]. These techniques require computationally expensive pre-processing steps
that include feature extraction, background subtraction etc., thus making them
unsuitable for real-time congestion detection system with low latency requirements
over large scale streaming data. Recently various studies [105, 106, 107] have been
done on using vehicular ad hoc networks (VANETs) for local congestion information
propagation in real-time. In this approach, a vehicle collects its surrounding
information about speed, position etc, and sends messages to surrounding vehicles.
There are several problems with VANETs based techniques that still need to be
addressed. Firstly, information disseminating on urban roads is challenging due to
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their complex topology. Secondly, cooperation among vehicles is not very effective
making congestion detection imprecise and challenging in real-time. Moreover, we
use fixed-point dataset in our work, VANETs based approaches cannot work on our
dataset. Besides this, several neural network-based techniques [108, 109, 110, 25, 1]
are being explored to detect and predict congestion. Since they all require historic
data for training, we are unable to use them in our work for building a stream
processing based traffic control system.

Another activity related to congestiondetection is incident detection. An incident
happens due to congestion on unusual times. INGRID [111] and RAID [112], to
name a few, are systems developed for incident detection. Both these systems
make use of inductive loop detectors. In order to monitor traffic with induction
loops, multiple of them need to be installed on the roads for accuracy of traffic
metrics measured. Furthermore, they are expensive to install, which makes them
not economic to use in large cities. Our congestion detection mechanism works only
with a camera installed on the intersections of the road. Which are less in number
and cheaper compared to induction loops.
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4.8 Summary

In this work, we address the challenge of CH2 Large Scale Spatial Time Series Analysis,
mentioned in Chapter 1. In particular, we tackle the problem of large scale time
series analysis on a practical use-case of traffic congestion detection and mitigation
on real-life data collected from a region in one of the largest metropolitan cities in
China. We proposed an end-to-end framework built on top of a modern stream
processing system, i.e., Apache Flink. Flink is used because of its high throughput
and low-latency guarantees. Our framework comprises of two mechanisms: 1)
an online traffic jam detection mechanism for detecting jams on streaming data
collected from traffic sensors, and 2) a congestion reduction mechanism based on
streaming graph analytics for reducing the effect of congestion in the congested
area. In our proposed congestion reduction approach, we identify correlated traffic
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jams and essential parts in the road network on which new traffic light policies
are deployed for congestion control. With the proposed framework, we are not
only able to detect traffic jams in real-time, but we also apply dynamic traffic light
policies that yield less travel time for vehicles in the congested region. Moreover,
our system is capable of processing high-intensity and large scale traffic streams
with low latency and high throughput because the memory state is kept minimum.

Our work, which is based on a real-life case study, is effective in giving the
desired performance and scalability in traffic congestion detection and mitigation.
This work can help in monitoring and reducing congestion considering the real-time
requirement of traffic optimization in a large urban area.

For future work, we consider investigating more into dynamic traffic light policy
adaption. The policy adaption and removal strategies can be deeply investigated to
bring more effective results.



chapter

5
Streaming Graph Partitioning

"This paper needs some love and care and then we go to Rio"

— Paris Carbone, when we were working on our survey paper for VLDB.

5.1 Introduction

Graph partitioning, the process of dividing a graph into a predefined number of
subgraphs, is essential for graph analysis using distributed algorithms. Distributed
graph processing has been widely adopted in recent years and enables knowledge
extraction from large andmedium-scale graph-structured datasets using commodity
clusters [50, 19, 20, 51]. In such settings, each cluster node operates on one partition
in parallel and communicates with other nodes through message-passing. Hence,
partitioning quality directly affects communication and computation costs and is
crucial for graph application performance [19, 2].

The problem of graph partitioning has been thoroughly studied and several
methods have been proposed in the past few decades, each with a particular graph
type, ingestion model or application objective in mind. Among existing methods,
we study streaming graph partitioning algorithms. As opposed to offlinemethods,
which first load the complete graph in memory and then divide it into partitions,
streaming graph partitioning operates online, while ingesting the graph data as a
stream [2].

We examine two practical use-cases of streaming graph partitioning. First, in
the context of the load-compute-store computational model (e.g., MapReduce [113],
Spark [114, 20], Giraph [51]), partitioning can be performed in a streaming manner
during the load phase, by treating the bounded input graph dataset as a stream
of vertices or edges. Second, it is appropriate for distributed streaming and semi-
streaming algorithms [62, 115, 116, 117] that compute graph summaries and perform

65
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aggregations on possibly unbounded edge streams, and systems supporting native
graph-as-a-stream computations [28, 29, 30, 31, 10].

Partitioning methods vary significantly in terms of their heuristics, assumptions,
and respective performance, thus making it difficult for developers to compare them
and assess their characteristics. Choosing the right technique for the computational
problem at hand is non-trivial, especially because each method adopts a limited set
of application objectives and constraints. As in offline graph partitioning, streaming
partitioning typically defines two main objectives: load balancing and minimum

cuts (vertex or edge). These correspond to aiming for fair load distribution and
minimized communication overhead, respectively. Optimizing for both objectives,
also known as the balanced graph partitioning problem, is an NP-hard problem [54].

Past studies [45, 44] have focused on offline graph partitioning techniques or
heuristics used for streaming graph partitioning [2]. However, in the context of the
stream ingestion model, the question of identifying factors that influence perfor-
mance and quantifying their effects is still open. We specifically examine sensitivity
to stream ingestion order, the number of partitions, suitability for unbounded pro-
cessing, and cost amortization of applications, including bulk synchronous iterative
processing [50] and stream or semi-streaming graph approximations [115, 62].

The necessary preliminaries for this chapter are presented in Chapter 2. In this
chapter, we classify algorithmswith regards to their datamodel, strategy, constraints,
complexity, state requirements, and objectives. To provide an unbiased performance
comparison, we implement all studied methods on top of a common evaluation
framework based on Apache Flink [118, 30], a distributed stream processing engine.
Finally, we use bulk synchronous and single-pass graph streaming algorithms to
evaluate distributed graph application performance in terms of partitioning cost
amortization.

5.2 Online Partitioning Methods

Streaming graph partitioning algorithms are quite diverse in their objectives, as-
sumptions, and runtime complexities. We summarize eight partitioning algorithms
that can be used in the streamingmodel and categorize them based on the following
criteria: 1) data model, 2) partitioning strategy, 3) possible constraints regarding input
boundness or a priori knowledge etc., 4) computational and space complexities, 5) state
requirements while partitioning, and 6) optimization objectives. Table 5.1 summarizes
the algorithms across all criteria. In Section 5.2.4 we highlight the main findings.

5.2.1 Model-Agnostic Methods

Data-model agnostic partitioning algorithms can be employed in both vertex and
edge-centric models. Hash partitioning is probably the most representative and
widely-used method in this category.
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5.2.1.1 Hash Partitioning

The idea of using a consistent hashing function to map elements with distinct
keys to different partitions is widespread outside the domain of graph processing
(e.g., for load balancing content in distributed key-value stores [119] and managed
stream state [118]). In the context of vertex partitioning, a consistent hashing
function can be used to assign vertices with unique identifiers to a physical partition
index V → N uniformly at random. Similarly, in the case of an edge data model
hashing maps a set of edges to partitions E→ N. For brevity, if we assume a vertex-
centric model, hash-based partitioning can be defined as the mapping function
f(v) = hash(v) mod (k).

Discussion: Hashpartitioning is simple anddoes not require any apriori knowledge
of the graph structure (only the number of partitions needs to be known), making
it generally applicable to unbounded streams. Hashing is also stateless since it
requires no history synopsis during partitioning, thus it can be trivially parallelized
and be used to partition large-scale graphs.

5.2.2 Vertex Partitioning Methods

In the category of vertex partitioning algorithms, we analyze Linear Determin-
istic Greedy [120, 2] and Fennel [121, 23] as good representatives of partitioning
mechanisms that can be applied online on a stream of vertices.

5.2.2.1 Linear Deterministic Greedy (LDG)

Linear Deterministic Greedy partitioning (LDG) tries to place neighboring vertices
to the same partition, in order to yield fewer edge-cuts [2]. It uses a greedy
heuristic that assigns a vertex to the partition containing most of its neighbors while
respecting certain capacity constraints.

More specifically, given a range of partitions in [1, k] ∈ N, let Pi represent the set
of vertices placed in partition i ∈ {1, ..., k}. For N(v), the known set of neighbors of
v, the LDG heuristic is given by f(v) in the following Equation:

f(v) =argmaxi∈[1,k] {g(v, Pi)}

g(v, Pi) = |Pi ∩N(v)|w(i)

w(i) = 1−
|Pi|

C

(5.1)

LDG selects the partition that maximizes |Pi ∩N(v)|, the number of neighbors
already assigned to a partition while enforcing the capacity constraint C = n

k
.

The algorithm is shown in Pseudocode 1. The heuristic is continuously applied
until the load of a partition reaches the threshold g(v, Pi) < g(v, Pj), j ∈ {1, ..., k}
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Pseudocode 1 LDG
Input: v, N(v), k
Output: partition ID
1: procedure partition(v, N(v), k)

2: for all partitions i = 1 to k do
3: Pi ∩N(v) . neighbors in partition i

4: w(i) = 1− |Pi|

C
. load penalty

5: g(v, Pi) = |Pi ∩N(v)|w(i) . partition scoring
end for

6: for all partitions i = 1 to k do
7: ind = argmaxi{g(v, Pi)}

end for
8: Return ind

and j 6= i. The load penalty enforces load balancing to avoid the extreme case where
all vertices end up in the same partition.

Discussion: LDG requires the number of vertices n to be known a priori for
calculating the capacity constraintC. Hence, it is generally unsuitable for unbounded
processing. The algorithm requires keeping track of all partitioning decisions made
so far, saved as the partitioning assignment state, which is accessed for every vertex
in the input stream.

5.2.2.2 Fennel

Fennel [23] is a partitioning strategy whose heuristic combines locality-centric
measures (low edge-cut) [2] with balancing goals [122]. Fennel’s core idea is
to interpolate between maximizing the co-location of neighbouring vertices and
minimizing that of non-neighbours. Pseudocode 2 presents the Fennel logic in
more detail. As in LDG, Fennel computes the number of neighbors present in each
partition for every input vertex. In addition, the load limit per partition which sets
a threshold for the maximum number of assigned vertices. The score δg(v, Pi) is
computed according to Equation 5.2 for each partition whose load is below the
threshold and the input vertex is assigned to the partition with the maximum score.

f(v) = argmaxi∈[1,k] {δg(v, Pi)}

δg(v, Pi) = |Pi ∩N(v)|− αγ|Pi|
γ−1

(5.2)

Here, α =
√
k m
n3/2 and the load limit = νn

k
. The parameters α, γ, and ν are tunable

and control the weights associated with maximizing the number of neighbors and
minimizing the number of non-neighbors for the input vertex during partition-
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ing. In our experiments (Section 5.5) we picked the values used in the original
evaluation [23], γ = 1.5, ν = 1.1.

Pseudocode 2 Fennel
Input: v, N(v), k
Output: partition ID
1: procedure partition(v, N(v), k)

2: load limit = νn
k

. load limit
3: for all partitions i = 1 to k do
4: if |Pi| < load limit then
5: Pi ∩N(v) . neighbors in partition i
6: δg(v, Pi) = |Pi ∩N(v)|− αγ|Pi|

γ−1

end if
end for

7: for all partitions i = 1 to k do
8: ind = argmaxi{δg(v, Pi)}

end for
9: Return ind

Discussion: Similar to LDG, Fennel requires the parameters n andm to be known a
priori, andmaintaining a persistent state of the assigned partitions during execution,
that makes it unsuitable for partitioning unbounded streams.

5.2.3 Edge Partitioning Methods

Many partitioning mechanisms operate on the edge-centric model. We select the
following techniques that can operate online on an edge stream: Greedy [19],
HDRF [21], DBH [22], and Grid [123], which are presented next.

5.2.3.1 Greedy

Greedy is a rule-based partitioning mechanism introduced in PowerGraph [19]. It
aims to minimize vertex-cuts while also assigning balanced load across partitions.
Let S(vi) denote the set of partitions containing the vertex vi. Pseudocode 3 presents
the rules employed by the Greedy algorithm, where the leastLoad(S(v))method
returns the least loaded partition ID form the set S(v).

For each edge in the input stream, Greedy examines the participation of the
endpoint vertices to existing partitions by applying the following rules: 1) Rule 1: If
both endpoint vertices have been previously assigned in any common partition pick
the least loaded common partition. 2) Rule 2: If both endpoint vertices have been
previously assigned in different partitions pick the least loaded from the union of
all assigned partitions. 3) Rule 3: In case either vertex has been previously assigned,
pick the least loaded partition from the assigned partitions of that vertex. 4) Rule
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Pseudocode 3 Greedy
Input: v1, v2, k
Output: partition ID
1: procedure partition(v1, v2, k)

2: if S(v1) ∩ S(v2) 6= ∅ then
3: partitionID = leastLoad(S(v1) ∩ S(v2)) . leastLoad() returns
least loaded partition ID

end if
4: if S(v1) ∩ S(v2) = ∅ && S(v1) ∪ S(v2) 6= ∅ then
5: partitionID = leastLoad(S(v1) ∪ S(v2))

end if
6: if S(v1) = ∅ && S(v2) 6= ∅ then
7: partitionID = leastLoad(S(v2))

end if
8: if S(v1) 6= ∅ && S(v2) = ∅ then
9: partitionID = leastLoad(S(v1))

end if
10: if S(v1) = ∅ && S(v2) = ∅ then
11: partitionID = leastLoad(k)

end if
12: Return partition ID

4: If none of the vertices has been previously assigned, then pick the least loaded
partition overall.

Discussion: Greedy does not require any knowledge of graph properties before
processing the stream. Therefore, it can potentially process an unbounded edge
stream. However, it requires maintaining the current partition assignment as a
synopsis, which, in case of an unbounded stream would also grow without bound.

5.2.3.2 HDRF

HDRF [21] is particularly tailored for power-law graphs. It is based on PowerGraph’s
heuristic [19], which targets workloads with highly skewed graphs. The key idea
that since power-law graphs have few high degree nodes and many low degree
nodes, it is beneficial to prioritize cutting the high degree nodes to radically reduce
the number of vertex-cuts. Pseudocode 4 summarizes the logic of HDRF.

In more detail, for an input edge e = (v1, v2), the partial degrees of its endpoint
vertices are recorded as δ1 and δ2 . These values are then normalized using:

θ(v1) =
δ(v1)

δ(v1) + δ(v2)
= 1− θ(v2) (5.3)
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Pseudocode 4 HDRF
Input: v1, v2, k
Output: partition ID
1: procedure partition(v1, v2, k)

2: δ1 = getDegree(v1)
3: δ2 = getDegree(v2) . getting partial degree values

4: θ(v1) =
δ(v1)

δ(v1)+δ(v2)
= 1− θ(v2) . normalizing the degree values

5: for all partitions i = 1 to k do
6: CHDRFBAL (i) = λ× maxsize−|i|

ε+maxsize−minsize

7: CHDRFREP (v1, v2, i) = g(v1, i) + g(v2, i)
8: CHDRF(v1, v2, i) = C

HDRF
REP (v1, v2, i) + C

HDRF
BAL (i)

end for
9: for all partitions i = 1 to k do
10: ind = argmaxi{C

HDRF(v1, v2, i)}
end for

11: Return ind . returning id of the partition

12: procedure g(v, i)

13: if partition i ∈ S(v) then
14: Return 1+ (1− θ(v))
15: else
16: Return 0

end if else

HDRF works using Equation 5.4. Each edge is assigned to the partition iwith
highest value of CHDRF(v1, v2, i).

CHDRF(v1, v2, i) = C
HDRF
REP (v1, v2, i) + C

HDRF
BAL (i) (5.4)

CHDRFREP (v1, v2, i) = g(v1, i) + g(v2, i) (5.5)

g(v, i) =

{
1+ (1 − θ(v)) if i ∈ S(v)

0 otherwise

CHDRFBAL (i) = λ× maxsize− |i|

ε+maxsize−minsize
(5.6)

Here,maxsize is the size of partition with maximum load,minsize is the size of
partition with minimum load, S(v) here is set of partitions containing vertex v, ε is
a constant value, and λ controls load imbalance [21]. When λ ≤ 1, the algorithm
behaves similarly to Greedy. When the input stream is ordered in breadth-first or
depth-first search order, each incoming edge is placed in the partition containing
most of its endpoint vertices’ neighbors. As a result, the algorithm can yield
imbalanced partitions. Setting λ > 1 solves this issue by accommodating for
load balance. If λ approaches ∞, then the algorithm behaves like random hash
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partitioning. In our experiments (Section 5.5), we set the value of λ = 1 to optimize
for minimum vertex-cuts.

Discussion: Similar to Greedy, HDRF does not require any graph parameters to be
computed before partitioning, and thus, it can potentially process an unbounded
edge stream. On the other hand, it requires maintaining the state of partitions for
computing the load and S(v). HDRF uses degree information for making partition-
ing decisions, however, instead of pre-computing degrees offline before partitioning,
it can maintain partial degree information and update it while processing the input
stream.

5.2.3.3 DBH

Degree Based Hashing (DBH) [22] is quite similar to
HDRF, because it prioritizes cutting those vertices that have the highest degree.
However, unlike HDRF, DBH employs hashing for partitioning. Pseudocode 5
presents the algorithm in more detail. For an input edge e, DBH computes the
partial degree of its endpoint vertices v1 and v2, δ1 and δ2. After that, e is assigned
to the partition ID computed as the hash of the vertex with the lowest degree.

Pseudocode 5 DBH
Input: v1, v2, k
Output: partition ID
1: procedure partition(v1, v2, k)

2: δ1 = getDegree(v1)
3: δ2 = getDegree(v2)
4: if δ1 < δ2 then
5: Return Hash(v1)mod(k)
6: else
7: Return Hash(v2)mod(k)

end if else

Discussion: DBH algorithm keeps partial degree information of vertices as a state
synopsis. Since it uses hashing, it can compute the current partitioning assignment
on-the-fly, thus reducing the state requirements. DBH can potentially process
unbounded streams because no global graph properties are required prior to
partitioning.

5.2.3.4 Grid and PDS

The Grid [123] algorithm also uses hashing for partitioning. Prior to employing
hashing, all partition IDs are arranged in a square matrix, termed the Grid. For
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each incoming edge e = (v1, v2), a constrained set of partitions S(v) for each
end vertex v is formed by taking all the partitions in the row and column of the
partition where v hashes to in the grid. The edge is assigned to the least loaded
partition in the set S(v1) ∩ S(v2). The main limitation of Grid is that it limits the
possible number of partitions to logarithmic degrees for constructing a square
matrix (rows × columns = N), where N is the total number of partitions. An
alternative algorithm to Grid is PDS [123] that computes the set of partitions using
Perfect Difference Sets. It requires (p2 + p+ 1) number of partitions, where p is a
prime number.

Discussion: Both Grid and PDS place a constraint on the number of partitions, but,
they require no pre-computation on the input graph and they can both potentially
sustain unbounded streams. With regards to the state, both algorithms need to
maintain the partitioning assignment to compute the least loaded partitions.

5.2.4 Comparison Summary

The streaming graph partitioning algorithms presented so far in this section have
various objectives and characteristics. We summarize their main features and design
choices and point the reader to their categorization in Table 5.1.

Strategy: Except for hash-based partitioningwhich is the only stateless algorithmwe
consider, the strategy used by a partitioning method generally also defines the state
it needs to maintain during partitioning. The current partitioning assignment and
degree information are used across algorithms to reduce cuts. Vertex partitioning
algorithms check the partitioning assignment to compute the number of existing
neighbors and non-neighbors of a vertex, while few edge partitioning algorithms
also use degree-based strategies.

Constraints: All stateful vertex partitioning algorithms considered are designed for
partitioning bounded streams of vertices, while edge partitioning algorithms are
more flexible in general. Greedy, HDRF, and DBH have no constraints whatsoever
and couldpotentially process unbounded edge streams. However, this is challenging
in practice, due to state requirements discussed next.

State: The state kept and accessed for decisionmaking by the partitioning algorithms
affects their computational and space complexities, as well as their applicability to
processing unbounded graph streams. All stateful algorithms considered require
a way to inspect the current partition assignment or degree, whether for load
balancing or for minimizing cuts. As a result, they need to maintain a synopsis
that can be queried for vertex or edge membership and current partition size at the
very least. Such synopses can grow beyond memory limits for unbounded streams,
and also complicate distributed implementations, as they need to be consistent and
accessible by all parallel instances of the partitioner.
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5.3 Applications

We evaluate the partitioning methods with applications that operate on graph
snapshots (batch) and graph streams. We have chosen bulk iterative algorithms
and single-pass streaming summaries which we briefly describe next.

5.3.1 Iterative Applications

Connected Components: The connected components algorithm identifies sub-
graphs within which every vertex is reachable from every other vertex [124]. In the
iterative, vertex-centric implementation of this algorithm [125, 126], each vertex is
initially assigned a value equal to its own ID. Then, in every iteration, the vertex
gathers values from its neighbors and picks the lowest value, which it then scatters
back to its neighbors. When the algorithm converges, vertices with the same ID
belong to the same component.

PageRank: The PageRank algorithm is an iterative vertex ranking algorithm that
assigns weights to vertices based on their importance and their connectivity to
other well ranked vertices [127]. The algorithm assigns an initial uniform rank to
all vertices. Then, in each iteration, a vertex updates its rank by summing up the
partial ranks from its incoming neighbor vertices. The new rank is then evenly
distributed across outgoing edges to outgoing neighbors. The algorithm converges
when the difference between the vertex rank form the current iteration and the rank
in the previous iteration is less than a specified threshold.

Single Source Shortest Paths: The SSSP algorithm finds the shortest path between
the source vertex and all connected vertices [128]. It initially assigns a zero value
to the source vertex and ∞ to all other vertices. Then, each vertex updates its
distance or path length to the source, until it does not change anymore across two
consecutive iterations.

5.3.2 Single-Pass Applications

Bipartiteness: The bipartiteness algorithm continuously checks whether a graph
stream forms a bipartite graph [129]. As long as the vertices seen so far can be
divided into two groups such that there are no edges within those groups, then the
graph is bipartite. The single-pass implementation maintains the current groups
as state and assigns them a positive or negative sign. Then, the algorithm tries
to place the vertices of each incoming edge to the existing groups by maintaining
or flipping the signs. The distributed implementation maintains a partial state
per processing instance and periodically merges the states into a combined state
reflecting the history of the graph stream. The number of operations during the
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merge of partial state corresponds to cross-partition communication and thus we
expect good partitioning algorithms to result into smaller partial states and more
efficient merging.

Connected Components: The single-pass Connected Components [97] algorithm,
also known as union-find, operates online over an edge stream. The algorithm
maintains a disjoint set data structure to keep track of components. For each
incoming edge, it checks whether the endpoint vertices belong to an existing
component and merges components accordingly if the endpoints already exist in
disjoint components. The distributed implementation maintains a partial disjoint
set per partition and periodically merges states similarly to the bipartiteness check
implementation.

5.4 Evaluation Methodology

We design our experimental analysis by separating concerns among the system
runtime, partitioning algorithms, and application on top. With that goal, we
implement a comparison framework that can isolate partitioning costs and applica-
tion performance under different iterative and pure streaming workloads. More
concretely, in our experiments, we seek answers to the following questions:

Q1What are the benefits, if any, of usingmore complex, data-centric partitioning
methods compared to a generic hash-based strategy?

Q2 What is the partitioning overhead for an application using each partitioning
algorithm?

Q3 How does the partitioning quality affect the application performance?
Next, we describe the implementation, datasets, parameters, metrics and experi-

mental setup we use.

5.4.1 Implementation

Apache Flink [30, 118] is a streaming-first distributed analytics platform which
executes complex applications by generating a DAG of logical operators and
connecting the data streams to it. Bounded computation in Flink (in this case
a graph snapshot) is also ingested internally as a stream, which makes Flink a
convenient platform to build any graph as a stream ingestion scenario and implement
complex partitioning logic. For the purposes of our evaluation framework, we have
effectively implemented on Flink the general graph processing workflow presented
in Figure 2.2. For staged and iterative tasks, we use theDataSetAPI to implement all
respective transformations and application logic (i.e. iterative algorithms). Similarly,
we use theDataStreamAPI to implement all pipelined workflow steps. That includes
all partitioning algorithms presented, as well as the single-pass stream processing
applications.
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Table 5.2 – Datasets information

Dataset Vertices Edges Category
RMAT 500,000 9,127,486 Synthetic
RMAT 1,000,000 18,540,007 Synthetic
RMAT 1,500,000 28,181,948 Synthetic
RMAT 2,000,000 37,547,390 Synthetic
RMAT 2,500,000 47,411,497 Synthetic
RMAT 4,000,000 80,000,000 Synthetic
RMAT 5,000,000 100,000,000 Synthetic
DBLP 317,080 1,049,866 Collaboration
Flickr 1,715,255 15,551,250 Social
Skitter 1,696,415 11,095,298 Computer

MovieLens 80,555 10,000,054 Rating
Twitter 41,652,230 1,468,365,182 Social

Friendster 65,608,366 1,806,067,135 Social

5.4.2 Datasets

Table 5.2 shows the characteristics of the datasetsweuse in our experiments. Wehave
generated synthetic graphs of varying sizes using the RMAT (Recursive Matrix)
model [130] implemented in Gelly [131], Flink’s graph processing API. RMAT
produces skewed graphs that follow a power-law degree distribution. Such graphs
commonly appear in social network problems [19] and are thus interesting for our
analysis. We also use real-world datasets, including the Flickr graph [132] from
the Online Social Networks Research web portal [133] produced by [134], several
graphs from SNAP [46] (DBLP and Skitter), the MovieLens 10M datasets from
GroupLens [135], large Twitter graph [136] and Friendster [137].

5.4.3 Order

For the real datasets, we have used the original order in which they were generated
by their source, usually ordered by IDs. Otherwise, we consider three stream
orderings for iterating through our datasets: 1) BFS [138], in a breadth-first search
traversal, a vertex of the graph is selected at random, then the neighbors of that
vertex are processed first. After that, the next level neighbors (the neighbors of
the neighbors) are processed. 2) DFS [138], similar to BFS, after selecting a vertex
at random, depth-first search is performed starting from that vertex. 3) Random
[139], this order assumes that the vertices or the edges arrive at random from the
streaming source. All partitioning algorithms behave similarly for BFS and DFS

orderings, thus we only present results with DFS in Section 5.5.2.1.
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5.4.4 Metrics

We use the following metrics for evaluation:

Partitioning Performance. Wemeasure the throughput of a partitioning algorithm
as the number of edges or vertices it can process (assign to a partition) per second.

Partitioning Quality. We evaluate partitioning quality using three metrics. Load
balancing indicates how well the computation load is divided across partitions.
Specifically, we calculate the normalized load for the highest loaded partition using
the following formula:

ρ =
Load on highest loaded partition

n
k

(5.7)

where n is the input size (number of edges for edge stream partitioning or
number of vertices for vertex stream partitioning) and k is the total number of
partitions.

Edge-cutmeasures the fraction of edges cut from the resulting partitions. We
calculate it using the following formula:

λ =
No. of edges cut by the partitions

Total no. of edges
(5.8)

This metric applies to vertex partitioning algorithms only.
Finally, the replication factor indicates how many vertex copies an edge parti-

tioning algorithm creates. We calculate it as follows:

σ =
Total vertex copies

Total no. of vertices
(5.9)

Application Performance. We evaluate the partitioning quality and performance
for both vertex and edge partitioning methods, but the application performance is
evaluated using edge partitioning because it partitions power-law graphs better
in terms of low communication cost than vertex partitioning. Also, some vertex
partitioning algorithms require a priori knowledge, i.e, |V | and |E|, making them
unsuitable for processing continuous streams.

Next, we evaluate the effect of partitioning algorithms on the performance of
graph analysis applications. Particularly, for iterative applications we measure
complete application execution time which consists of partitioning time spent
during the stream ingestion phase and computation time spent during the compute
phase of the staged workflow. We report the ratio of partitioning time over total
application execution time. This metric provides a good indication of the impact a
partitioning method can make to the performance of an application. We also report
the ratio of total application execution time when using a partitioning method over
the execution time when using hash partitioning as a baseline. It is a meaningful
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metric to infer the cases where the partitioning cost is amortized. In the case
of single-pass stream processing applications, we measure the number of edges
processed during the whole pipelined workflow. This indicates which algorithm
yields lower end-to-end latency. Additionally, for both these applications, we
measure the communication cost as the ratio of the network traffic when using a
partitioning method over the network traffic when using hash partitioning as a
baseline.

5.4.5 Environment Setup

We deployed our experiments both on-premises on a university cluster as well
as using a virtualized environment at Amazon EC2. The specs of the physical
on-premises nodes are 2x Intel(R) Xeon(R) CPU @ 2.80GHz, 44GB of RAM and
Linux OS. This setup applies to all experiments in Sections 5.5.1 and 5.5.2. For the
experiments in Section 5.5.3 we used up to 17x r3.2xlarge EC2 instances. The exact
number of virtual instances in the latter case is experiment-specific and depends on
the dataset size and the application type.

For our on-premises deployment, we set up Flink with one Job Manager (master
node) and two Task Managers (workers). We further shared equally the amount of
slots (allocated tasks) throughout workers. Regarding the virtual EC2 deployment
we used one instance as the JobManager and the rest as TaskManagers. Finally, we
used Flink v1.2.0 with Java 8 (Oracle JVM).

5.5 Evaluation Results

In order to answerQ1 proposed in Section 5.4, we present partitioning performance
results in Section 5.5.1 and partitioning quality (edge-cuts, replication factor and
load balancing) results in Section 5.5.2. We give answers to Q2 and Q3 by results
related to application performance in Section 5.5.3.

5.5.1 Partitioning Performance

Wemeasure the throughput of vertex and edge partitioning algorithmswith varying
graph sizes. We use synthetic RMAT graphs and set the number of partitions to 4.

Vertex Partitioning. Figure 5.1(a) shows throughput measurements in vertices
processedper second for vertexpartitioningmethods. Throughput initially increases
with the graph size for all algorithms and then drops sharply for graphswith 20×105
vertices or larger. Overall, Hash partitioning demonstrates superior performance,
while Fennel and LDG behave worse but similar to each other.
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(a) Vertex partitioning (b) Edge partitioning

Figure 5.1 – Throughput of partitioning algorithms using 4 partitions. Input: RMAT
graphs.

Edge Partitioning. Figure 5.1(b) plots throughput for edge partitioning algorithms.
Hash partitioning shows the highest throughput as compared to all other methods.
DBH has the second best throughput, followed by Greedy and HDRF which show
almost identical performance. Finally, the Grid partitioner ranks last in terms of
throughput.

Findings. Our results so far demonstrate that Hash partitioning outperforms all
other evaluated methods in terms of throughput. However, the difference in
performance is not dramatic. In both experiments, Hash shows at most 2x higher
throughput than that of the second best partitioning method and the gap shrinks
for larger graphs.

5.5.2 Partitioning Quality

A good partitioning method is not only fast but also produces high-quality parti-
tions. We evaluate partitioning quality by first measuring the edge-cut for vertex
partitioners and the replication factor for edge partitioners using different datasets.
Then we measure the load balancing for these datasets. Next, we evaluate how
stream order affects these results in Section 5.5.2.1. Finally, we examine how the
number of partitions affects these results in Section 5.5.2.2.

We measure the partitioning quality using different input graphs. We use
the Friendster, Twitter, largest RMAT, and Flickr graphs. We set the number of
partitions to 16 for Friendster and Twitter and to 4 for the two smaller graphs. We
stream all graphs in the order in which they are generated by their source. The
power-law exponent that controls skewness is 1.7 for Flickr and has a very low
value for RMAT making it highly skewed.
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(a) λ for vertex partitioning (b) σ for edge partitioning

Figure 5.2 – Fraction of edges cut λ and replication factor σ for different types of
graphs.

Table 5.3 – Normalized maximum load ρ for vertex partitioning algorithms.

Dataset Hash Fennel LDG
Twitter 1.0 1.1 1.13
RMAT 1.0 1.1 1.5
Flickr 1.0 1.0 1.0

Edge-Cuts. Figure 5.2(a) shows the fraction of edges cut, i.e., λ for Twitter, RMAT,
and Flickr. Hash has the highest λ value for all three datasets, since it does not take
into account vertex locality. In fact, more than 70% of edges are cut for RMAT and
Flickr, while on Twitter Hash generates 90% edge-cut. Fennel has the lowest cuts
for Twitter and RMAT and it is only slightly outperformed by LDG for Flickr. In
the case of RMAT, LDG produces more cuts than Fennel because RMAT is highly
skewed compared to the other datasets.

Replication Factor. Figure 5.2(b) shows the replication factor, σ, for Friendster,
Twitter, and Flickr. Hash has the highest σ of all methods across all datasets. The rest
of the algorithms perform quite similarly, with Grid performing worst for Twitter
and DBH for Friendster. We also observe that overall Greedy and HDRF perform
better than other algorithms for all the datasets by giving lower σ. Specifically, for
Flickr, Greedy and HDRF have σ ≈ 1.

Vertex Partitioning Load Balance. Table 5.3 shows the normalized load, ρ, defined
in Section 5.4.4, using vertex partitioning algorithms. Hash gives perfectly balanced
partitions because of its random placement. Fennel and LDG have nearly perfect
load balance for Twitter and Flickr. However, LDG does not balance RMAT well
compared to Fennel because LDG uses a greedy placement of vertices, and RMAT is
highly skewed.
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Table 5.4 – Normalized maximum load ρ for edge partitioning algorithms.

Dataset Hash DBH Greedy Grid HDRF
Friendster 1.0 1.001 1.0 1.0 1.0
Twitter 1.0 1.001 1.0 1.0 1.0
Flickr 1.001 1.002 3.98 1.0 3.98

Edge Partitioning Load Balance. Table 5.4 shows the results for ρ using edge
partitioning algorithms. All algorithms yield almost perfectly balanced partitions
with ρ ≈ 1 for all graphs except Flickr. When partitioning Flickr with HDRF and
Greedy the result has a lower replication factor compared to others, hence generating
unbalanced partitions.

5.5.2.1 Sensitivity to Order

We now investigate how stream ordering affects the partitioning quality in terms
of cuts and load balance. Some algorithms are particularly sensitive to the order
in which they receive edges and vertices for processing. For example, BFS order
is bad for Greedy because all neighboring vertices that arrive together might end
up in the same partition. As a matter of fact, neighboring nodes do often arrive
together in a graph stream. For instance, nodes grouped based on location in social
graphs and links connecting web pages. We simulate this locality using BFS and
DFS ordering and also use Random order as a baseline. To measure the effect of
order on the partitioning quality in terms of λ, σ and ρ, we stream the Twitter and
Friendster graphs in different orders and set the number of partitions to 16.

Edge-Cuts. Figure 5.3(a) shows the results for λ using ordered streams. Hash
performs worst with highest λ for all orders. Moreover, λ remains the same using
Hash despite of the change in order. LDG has higher λ for Random order compared
to theDFS order. In the case of Fennel, we see that λ is not affected by the order. This
can actually be controlled by changing the γ parameter values. In this experiment,
we have set γ = 1.5, which according to [23] makes the algorithm less sensitive to
the order. Overall, Fennel also has lower λ values than both Hash and LDG.

Replication Factor. Figure 5.3(b) contains the results for σ using ordered streams.
Hash has the highest σ, while the other algorithms perform better and similar to
each other. Hash and Grid are unaffected by order. HDRF has lower σ using Random

order compared to the DFS order.

Vertex Partitioning Load Balance. Table 5.5 displays results for ρ using vertex
partitioning algorithms on different stream orders. Hash and Fennel give well
balanced partitions for all orders. LDG has slightly better results for Random order.
Overall, we conclude that none of the studied algorithms is highly sensitive to order
when balancing partitions.
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(a) λ for vertex partitioning (b) σ for edge partitioning

Figure 5.3 – Fraction of edges cut λ and replication factor σ for different input
orders, using 16 partitions. Input: Twitter (vertex partitioning) and Friendster (edge
partitioning).

Table 5.5 – Normalized maximum load ρ values for vertex partitioning algorithms
using 16 partitions. Input: Twitter.

Order Hash Fennel LDG
Random 1.0 1.1 1.12
DFS 1.0 1.1 1.13

Table 5.6 – Normalized maximum load ρ values for edge partitioning algorithms
and 4 partitions. Input: MovieLens.

Order Hash DBH Greedy Grid HDRF
Random 1.001 1.005 1.0 1.0 1.0
DFS 1.001 1.006 4.0 1.0 4.0

Edge Partitioning Load Balance. Table 5.6 contains the result for ρ using edge
partitioning algorithms on different stream orders for the MovieLens graph. We
omit the results for the Friendster graph, as they were almost identical for both
orders and all algorithms produced well-balanced partitions. For MovieLens,
Greedy and HDRF show imbalance because they greedily place the neighboring
edges arriving in the stream, together in the same partition.

5.5.2.2 Sensitivity to The Number of Partitions

We evaluate the effect of the increase in the number of partitions on λ, σ and ρ by
taking the Twitter graph and partitioning it across a range of partitions from 2 to 32.
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(a) λ for vertex partitioning (b) σ for edge partitioning

Figure 5.4 – Fraction of edges cut λ and replication factor σ for different number of
partitions (2 to 32). Input: Twitter.

Edge-Cuts. Figure 5.4(a) plots λ for vertex partitioning algorithms with increasing
number of partitions. λ increases with more partitions for all the algorithms. While
Hash performs poorly for a high number of partitions, LDG approaches 0.8 for 32
partitions and Fennel produces few edge-cuts even with many partitions, with λ
slightly above 0.6.

Replication Factor. Figure 5.4(b) plots σ for edge partitioning algorithms using
different number of partitions. For all algorithms, σ increases with the increase in
the number of partitions. Hash shows a steep increase, while Grid shows the second
worst behavior. σ for DBH, HDRF, and Greedy does not exceed a value of 4 even for
32 partitions.

Vertex Partitioning Load Balance. When examining how the number of partitions
affects load balancing, we find that both Hash and Fennel have ρ ≈ 1, thus we omit
the results for these methods. Figure 5.5 plots ρ for LDG on Twitter, which is the
only algorithm with different behavior. We see that LDG is affected by the number
of partitions and its load factor increases, reaching a value of 1.15 for 32 partitions.

Edge Partitioning Load Balance. Increasing the number of partitions does not
significantly affect load balancing for the Twitter graph regardless of the edge
partitioning algorithm. All methods produce almost perfectly balanced partitions
with ρ ≈ 1.

Findings. We can summarize our results so far into the following observations: 1)
Hash gives well-balanced partitions in all cases but produces many edge-cuts and
high vertex replication. It is not sensitive to order and it behaves worse in terms of
cuts when increasing the number of partitions. In the next section, we investigate
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Figure 5.5 – Normalized maximum load ρ for different number of partitions (2 to
32). Input: Twitter.

how the low partitioning quality it provides in some cases affects application
performance and when its perfect load balancing proves to be beneficial. 2) Fennel
and LDG provide low edge-cuts; LDG is sensitive to order; Fennel is tunable. 3)
HDRF and Greedy give low vertex-cuts, but both are sensitive to order. 4) Grid
and DBH give moderate vertex-cuts; Grid and DBH give almost perfectly balanced
partitions.

5.5.3 Application Performance

Considering our previous observations regarding partitioning algorithms, we
would like to understand how the partitioning quality of different algorithms affects
the performance of applications. We examine two factors that can have an impact:
(a) the partitioning performance, i.e, the one-time overhead of the partitioning
algorithmwhen the graph stream is ingested and (b) the partitioning quality, i.e, the
load balance and cuts that the partitioning method produces. Good load balancing
is important for distributed execution because it lowers the probability of straggler
workers and computation skew. On the other hand, a low number of cuts usually
enables distributed algorithms to perform as much computation as possible locally
and minimize cross-partition communication. To evaluate these factors we use the
Twitter and Friendster graphs and partition them across 16 partitions. We examine
the effects of partitioning on performance both on the batch, iterative applications,
as well as on single-pass distributed streaming applications.

5.5.3.1 Iterative Applications

We first measure the ratio of network traffic as the communication cost for different
partitioning methods. Next, we measure the application execution time and report
the ratio of partitioning time over the total application execution time. We also



86 5 streaming graph partitioning

(a) Twitter (b) Friendster

Figure 5.6 – Communication cost of partitioning algorithms as compared to Hash
for iterative applications on Twitter and Friendster.

compare the total application execution time for different partitioning methods
with that of Hash. We run 10 iterations for the considered applications.

Communication Cost. Figure 5.6 plots the results for the ratio of network traffic
using a partitioning method over the network traffic using the baseline Hash
partitioning. In the case of SSSP and Connected Components (CC), data exchanged
between the partitions using other partitioning algorithms is lower compared to
Hash. All algorithms perform similarly with Greedy and HDRF being slightly better.
With regards to PageRank on Twitter, DBH shows poor behavior and even exchanges
more data than the baseline.

Execution Time. Figure 5.7 plots the ratio of partitioning time over the total
execution time (partitioning time and computation time) for iterative applications.
Here, we want to compare the effect of different partitioning algorithms on the
execution time. Greedy, Grid and HDRF have high ratio for all applications; whereas
the ratio of DBH is almost as low as of Hash. The ratio is much lower for PageRank
than for SSSP and CC across all methods.

Figure 5.8 shows the ratio of total execution time for applications using different
partitioning algorithms over the total execution using the baseline Hash. Here, we
want to examine whether the partitioning time for expensive partitioning methods
can be amortized by improved application performance. For both datasets, Grid
results in the highest total execution time for all applications. After Grid, Hash
yields higher execution time compared to others followed by DBH, for SSSP and
Connected Components; whereas, for PageRank, the total execution time using DBH
is higher than that of Hash. Finally, Greedy and HDRF result in lower total execution
time for all applications. Overall, HDRF and Greedy improve the performance of
iterative applications by reducing computation times.
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(a) Twitter (b) Friendster

Figure 5.7 – Partitioning time over execution time ratio for iterative applications on
Twitter and Friendster.

(a) Twitter (b) Friendster

Figure 5.8 – Total application execution time of partitioning algorithms as compared
to Hash for iterative applications on Twitter and Friendster.

5.5.3.2 Single-Pass Applications

We ingest the Twitter and Friendster graph streams without using any a priori
information to emulate the behaviour of unbounded streams and partition them.
Next, we run the applications over the incoming partitioned streams for an interval
of 15 min. After this, we measure: 1) the communication cost as the ratio of network
traffic, and 2) the number of edges processed per second during the execution of the
application to indicate which partitioning algorithm improves the latency of edges.

Communication Cost. Figure 5.9 shows the ratio of network traffic using a parti-
tioning method over the network traffic using the baseline Hash. Grid minimizes
network traffic for Bipartiteness check, while none of the partitioning algorithms
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(a) Bipartiteness check (b) Connected components

Figure 5.9 – Communication cost of partitioning algorithms as compared to Hash
for streaming applications on Twitter and Friendster.

(a) Bipartiteness check (b) Connected components

Figure 5.10 – Average throughput (edges/s) for streaming applications on Twitter
and Friendster.

provides impressive results for Connected components. For this application, HDRF
has low communication cost for both Friendster and Twitter.

Number of Edges Processed. Figure 5.10 plots the average throughput in edges
per second for Bipartiteness check and Connected components. Hash results
in significantly superior performance for Bipartiteness check, where the state
requirements are lower. In the case of Connected components, HDRF and Greedy
either match or exceed the performance of Hash. Grid partitioning results in poor
throughput for both applications and both datasets.

Findings. Our last results demonstrate that HDRF and Greedy, which have lower
replication factor, yield higher partitioning cost that is amortized by lower compu-
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Figure 5.11 – Cuts, load balance and partitioning cost comparison of edge partition-
ing algorithms.

tation time for iterative applications and better end-to-end latencies for single-pass
stream processing applications where data locality significantly affects the com-
munication cost. Hash, with lowest partitioning time, improves the performance
of applications when data locality does not significantly affect communication
cost. In most cases, Hash results in higher communication cost; however, its
partitioning overhead is negligible. HDRF and Greedy are effective at minimiz-
ing communication costs; however, they are more beneficial for computation and
communication-intensive applications, since their partitioning costs cannot be easily
amortized.

5.5.4 Discussion

We have arranged the partitioning algorithms based on our findings in Figure 5.11.
The partitioning cost is indicated by shades of gray. Hash has the lowest partitioning
cost; it is shown in the darkest color. Grid with highest partitioning cost is shown
in lightest shade. For load balancing, DBH, Grid, and Hash give well-balanced
partitions. Finally, HDRF provides the lowest vertex-cuts. Overall, the trade-off
between balancing and reducing cuts remains. None of the studied algorithms
provides both low cuts and perfect load balancing.

Among these algorithms, the low-cut partitioning methods, such as HDRF and
Greedy, improve the performance of iterative applications, which have frequent
communication between partitions during the compute phase. On the other hand,
the impact seems to be less significant for streaming graph applications. Low-cost,
partitioning algorithms, such as Hash appear more beneficial, probably because
they have a pipelined compute phase and no state requirements.
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5.6 Related Work

A number of surveys [40, 41, 42, 43] have focused on offline partitioning algorithms
in the past. Besides, several online partitioning methods have been surveyed in
the context of the load-compute-storemodel and bounded graphs (snapshots) [45].
A survey by Guo et.al. [44] exclusively covers vertex partitioning algorithms. Our
work is, to our knowledge, the first dedicated study to online graph partitioning
methods that includes stream-specific properties (e.g., ingestion order) as well
as considering single-pass graph stream aggregations, an emerging application
domain with increasing system support [28, 29, 30, 31, 10].
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5.8 Summary

In this chapter, we address the challenge of CH3-Streaming Graph Partitioning,
mentioned in Chapter 1 and made contributions in this domain by providing C3-a
formal definition of streaming graph partitioning task as an optimization task at the
early stage of graph processing pipeline/workflow, andC4-a comparison framework
andan experimental evaluationof streaminggraphpartitioning algorithms. Wehave
studied streaming graph partitioning algorithms andwe have empirically compared
them using a framework based on Apache Flink [30]. We have evaluated the
partitioningquality andperformance andwehavemeasured the effect of partitioning
on application performance, using both iterative and streaming applications. We
conclude that algorithms aiming for optimal cuts, such as HDRF and Greedy, exhibit
higher online partitioning cost that is otherwise amortized throughout the graph
computation when that computation is sensitive to data locality and associated
communication costs. Otherwise, when the computation is not directly affected
by data locality, it is preferred to use online partitioning algorithms that aim for
load balancing and performance (e.g., Hash and DBH). Several open challenges
remain in the area of streaming graph partitioning. We highlight the need for
developing new, scalable online partitioning algorithms, with relaxed constraints
on the graph properties and fewer state requirements. The next chapter focuses
on addressing the aforementioned challenges. We believe that the development of
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such algorithms is crucial for making graph partitioning practical for applications
ingesting continuous streams on top of modern distributed streaming engines.





chapter

6
Partitioning Un-bounded Graph
Streams

"I need a meme for when your paper gets rejected twice with the comment

’starts a new line research’ yet the meta-review claims low novelty"

— Vasiliki Kalavri a.k.a Vasia on Twitter @vkalavri.

6.1 Introduction

Online graph partitioning methods [21, 22, 23, 2, 24] process graph streams and
assign edges or vertices to partitions on-the-fly. To make high-quality partitioning
decisions on streaming graphs, state-of-the-art algorithms either accumulate grow-
ing states or optimize for load balancing, sacrificing data locality. Existing solutions
for online partitioning fall in one of two extremes, as depicted in Figure 6.1. On one
end, stateful methods, such as HDRF [21], yield the best-known performance in
terms of minimum IO cost and good balance but have O(|V |) state complexity or
higher, where |V | is the number of unique vertices. The size of the accumulated state,
as well as the necessity to frequently access and update it, become a bottleneck for
high-throughput streams. However, due to their unbounded model size complexity
and lack of ability to infer partitions on unseen data, such methods are impractical
for applications that continuously process unbounded graph streams. At the other
end, stateless approaches such as the hash-based partitioner achieve good balance
at the expense of degraded partitioning quality.

Instead, we propose GCNSplit, the first in a new class of graph partitioning
algorithms that can operate online under unbounded executions. Motivated by the
recent work of GAP [63, 64] that leverages GCNs for offline graph partitioning, we
examine how ML-aided graph partitioning can be applied in an edge streaming
setting. To achieve this goal several challenges need to be addressed. First, as GAP
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Figure 6.1 – Objectives of graph partitioning and corresponding methods. GCNSplit

uses a cut-minimization loss function to reduce I/O alongside a load balance
constraint. At the same time, it relies on bounded partitioning models whose size is
independent of the graph stream’s length.

requires prior knowledge of the full graph during the training phase, it cannot be
directly used on continuously ingested graph streams. Further, GAP is a vertex
partitioning method and applying its loss function to edge partitioning leads to
high load imbalance. GCNSplit overcomes these limitations by providing (i) offline
training on a small graph sample coupled with continuous and scalable online
inference, (ii) two assignment heuristics that combine vertex embeddings to make
edge assignment decisions and (iii) load constraints to ensure good load balance
across partitions. The ability of GCNs to effectively encode graph characteristics
into fixed-size models allows GCNSplit to partition graph streams with a bounded
state. By employing inductive graph representation learning, GCNSplit produces
high-quality partitions for parts of the graph stream unseen during the training
phase, as well as for entirely unseen graphs.
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Figure 6.2 – GCNSplit Overview - Training and live Partitioning

6.1.1 Approach Overview

Recent breakthroughs in representation learning, such as GraphSAGE [65], have
enabled effective dimensionality reduction for large graphs and shown promising
predictive performance capabilities. The essence of inductive Graph Convolutional
Networks (GCN) is to exploit features associated with vertices and edges as well
as the graph structure to build convolutional neural networks that summarize the
graph.

GCNSplit targets attributed graphs encountered in several domains, including
social networks, IoT applications, natural and medical sciences, citation networks,
and online transaction systems [140, 65, 141, 142, 143]. Figure 6.2 summarizes its
design and application setting. The framework we describe in this paper consists of
1. an offline training pipeline and 2. an online partitioning pipeline.

Training. The GCNSplit training pipeline supports both unsupervised and super-
vised training from a sample or snapshot of the target graph or another graph
that exhibits the same features and similar structure. Unsupervised training is
supported through a multi-objective loss function. Whereas, supervised model
training builds upon the assignments instrumented by a given offline partitioning
method (e.g., HDRF). In both cases, the resulting model is optimized to provide
high-quality partitioning decisions by minimizing cuts.
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Figure 6.3 – Online graph partitioning framework components and example

Serving. The networks resulting from the training pipeline are then used as a
fixed-size serving model to perform online partitioning decisions on unseen data
(i.e., attributed edge streams). The size of the model is determined by the number
of vertex features and layers of the GCN model in use while being independent of
the size of the graph, as we explain in Section 6.2. For each input edge, GCNSplit

first extracts two vectors in the embedding space, one for each endpoint vertex.
These embeddings are then used as an input to the partitioning network, which has
been trained using the same cost function. Next, GCNSplit determines the target
partition for the edge as follows. It extracts vertex assignment probabilities for each
endpoint vertex of an edge from the partitioning network (softmax function) and
ranks them according to a pre-selected heuristic that ensures the fulfillment of a
load balancing constraint.

6.2 Design of GCNSplit

GCNSplit is a GCN-based partitioning framework for graph streams that can scale
to unbounded inputs. In this section, we explain how GCNSplit’s design addresses
GAP’s limitations to make GCNs applicable to the streaming setting. We provide an
overview of GCNSplit’s functionality and architecture in Section 6.2.1. Section 6.2.2
describes how the offline training phase generates fixed-size models that can be
used for partitioning unbounded edge streams. Finally, we discuss GCNSplit’s
online operation and heuristics in Section 6.2.3. The necessary preliminaries for
this chapter are presented in Chapter 2 Section 2.3 and related work is highlighted
in Section 6.7.

6.2.1 Framework Overview

To extend GAP’s model to the edge streaming setting, GCNSplit involves two core
modules in taking online partitioning decisions: a 1. graph embedding and 2.
graph partitioning module, as shown in Figure 6.3. The Graph Embedding Module is
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responsible for the continuous encoding of the non-euclidean input graph stream
into vectors of defined size in latent space. The Partitioning Module consists of an
ML-based partitioning algorithm that assigns incoming edges to partitions. The
partitioning objective function aims to minimize the replication factor while taking
into account load balancing constraints via its assignment heuristics.

Both models used in the embedding and partitioning of the graph stream are
trained jointly offline on a sample of the graph stream using the same objective
function. For generality, the GCNSplit framework supports two distinct methods
of training the two models, a supervised and an unsupervised one. Each method
results in a different objective function, however, both of them have the same
goal: to lead to an embedding representation and online partitioning model which
minimizes cuts while not overloading partitions. After discussing the components,
we discuss the two corresponding training approaches in detail. It is worth
mentioning that in certain scenarios, the node embedding and partitioning modules
could potentially be trained separately or replaced without the need to adjust other
parts of the framework. At the final partition selection step, a set of heuristics is
used in order to incorporate load metrics known at runtime to ensure good long-
term balance while avoiding partition overloading constraints during unbounded
executions.

Graph Embedding Module. The graph embedding module uses GraphSAGE
to encode input edges and their corresponding vertices into numerical, vector
representations. It is therefore important that the input graph stream is annotated
with features for our scheme to work efficiently. GCNSplit uses an element-wise max
function to aggregate vertices’ vector representations and vector concatenation as
the combine function. The trainable parameters of the node embedding generation
module include theWl matrices of all the l layers of GraphSAGE. The dimension
of the matrix from the first layer of the network (W1) is defined by the size of
the feature set used by vertices in the training dataset. The sizes of the matrices
from the following layers are equal to the embedding size, which is controlled
by a hyperparameter. Thus, the number of the trainable parameters depends on
the dimensions of the feature set and the chosen embedding size while being
independent of the size and scale of the data it is served. The last layer of the
embedding model yields a vector representing a particular vertex in a latent space
that is passed as an input to the partitioning module. The list of parameters,
including the number of network layers and the embedding size can be found in
the project repository [144].

Partitioning Module. The partitioning module converts graph input data from its
vector representation in the embedding latent space to vectors Y ∈ Rn×k, where Yij
represents the probability that a corresponding vertex vi belongs to the partition
j ∈ {1, 2, · · · , k}; n is the number of items and k is the total number of partitions.
This module is implemented as a fully connected neural network containing a
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softmax function at its end that turns the k-dimensional vector into a probability
distribution over the k partitions. For each element i, the softmax function is
represented as follows:

Softmax(xi) =
exp xj∑

j={1,2,···k} exp xj
(6.1)

The trainable parameters of the partitioning module are the weights of the
connections between neurons of consecutive layers in the neural network. Whereas,
the number of parameters depends on the number of layers, the size of the vector
and the number of partitions. The first layer of the partitioning network consumes
the output of the embedding module, thus, the number of neurons in the first layer
is equal to the vector length. The number of neurons in the last layer of the network
is equal to the number of partitions.

6.2.2 Model Training

GCNSplit allows training a partitioning model offline in either supervised or
unsupervised mode. In the unsupervised mode, a loss function drives the model
training towards edge-cut minimization. Whereas, in supervised mode, a given
existing graph partitioner is used to produce labels that correspond to partition
assignments. Despite the mode of operation GCNSplit generates both embedding
and partitioning networks in the training process (loss function re-use), while not
restricting the training and application graphs to be of the same origin, as long as
they have matching feature sets.

Loss Function Re-use. The training module produces two models using the same
loss function: an embedding and a partitioning network. These can potentially
be trained separately depending on the encoder used. However, we chose to
execute the training of the two components jointly for simplicity and performance
using the same loss function to obtain their parameters. As a result, we could
exploit GraphSAGE’s ability to optimize its parameters based on a differentiable
loss function.

Training Graph. Training in GCNSplit is executed offline on a snapshot or sample
of a streaming graph. The training data is extracted using a fixed-size window or
snapshot of the graph stream but it can also be a random sample. Furthermore, the
training data does not need to come from the same origin graph that is partitioned.
An entirely different graph can also be used for training as long as it shares a similar
feature set with the graph that the model is applied for partitioning. In Section 6.2.4
we provide further insights on the generalization to unseen graphs.
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Given the differences across the two respective modes of operation, such as the
loss function used to optimize the models, we further explain the most distinct
parts of each approach in detail.

Algorithm 3 Unsupervised Partitioning Model Training
Input: dataset X ∈ Rm, embedding size d, number of partitions k, batch size b
1: while Loss not converged (eq 6.2) do
2: b=sample(X), D←degree matrix, A←adjacency matrix . Generate
embedding by passing the feature vectors through the GraphSAGE
network

3: z1, ..., zb; zi ∈ Rd← GraphSAGE(v1, ..., vb; vi ∈ Rm) .
Obtain assignment probabilities by passing the embeddings through
the partitioning neural network (PNN)

4: Y← PNN(z1, ..., zb), Y ∈ Rk . Minimize the expected normalized
cuts (eq 6.2)

5: Γ = YTD, L← update(Y, Γ, A)
6:

6.2.2.1 Unsupervised training

The main challenge in the unsupervised mode is that there is no indication of what
a good partition assignment can be in any given unlabeled graph data. The training
function itself is responsible for automatically discovering the partition assignments
that provide good cuts and balance.

In Algorithm 3, we summarize the unsupervised training execution logic which
is based on mini-batch gradient descent for fast convergence. A set of configurable
coefficients (α,β) were used to regulate the importance of 1. a normalized cut and
2. cross-partition balance. This yields the following loss function, after applying
necessary transformations :

L = α
∑

reduce−sum

(Y� Γ)(1− Y)T �A+ β
∑

reduce−sum

(1TY −
n

k
)2 (6.2)

The resulting embeddingmodule (GraphSAGE) generates a single node embedding
while the partitioning network (PNN in Algorithm 3) is used to generate the
assignment probabilities (Algorithm 3 Line 4). The unsupervised loss is based
on vertex-based partitioning (edge-cut), however, our target use-case of edge-
partitioning targets optimal vertex-cut. As explained in detail in Section 6.2.3, we
derive edge assignments by applying this model to the endpoint vertices of every
edge in a stream.
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Neighborhood Sampling. The sampling method used on each step of the mini-
batch execution (Algorithm 3 Line 2) is instrumental to the model training. Due
to the multiplication with the adjacency matrix, if nodes were sampled arbitrarily,
the probability of choosing non-adjacent nodes would be high. Therefore, for
each vertex within a mini-batch, we also ensure to include its direct neighborhood
in the sample. This way, we update the model effectively without nullifying the
normalized cut of the loss function.

6.2.2.2 Supervised Training

The supervised model bases model training on edge assignments that are generated
using a provided algorithm on the training dataset. In this mode of operation, the
embedding module receives edges and generates embeddings for both endpoint
vertices. Then, embeddings are merged and processed by the partitioning module
which outputs the assignment probabilities. In our prototype and evaluation
section 6.4 we used the HDRF algorithm (described in Section 6.4.3) due to its best-
known minimum cut performance, however, the reference algorithm is pluggable
and could be replaced by another online or even offline partitioner.

The loss function for supervised training is based on the well-studied cross-
entropy loss. Cross-entropy measures the performance of the model’s inferences
according to the known labels. The further the inferences are from the labeled
attributes, the higher the value of the cross-entropy. In our case, the loss value
decreases if the model gives the assignments equal to the assignments of HDRF.
The formula for the supervised loss for each item is as follows:

L = −

k∑
i=1

ei log(Yi) (6.3)

ei is a binary indicator for the particular element if it belongs to the partition i and
Yi is equal to the probability that this element belongs to the partition i inferred by
the model.

As with the unsupervised approach, it is possible to train this model using a
mini-batch execution. However, in this case, the loss function only requires training
edges and their labels. Hence, every training step consists of a chosen number
of edges without any neighborhood sampling. For each mini-batch, we take the
average of the loss of all items in the mini-batch.
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6.2.3 Model Serving

Since both the supervised and unsupervised training approaches result in two
different models, their application methods to partition edge streams are also
different. Nevertheless, for both approaches, we introduce the notion of maximum

load. Enforcing load constraints is a critical extension we made to GAP’s model. As
we show in Section 6.5.4, GAP’s loss function leads to 50-226% higher normalized
load (load imbalance) compared to GCNSplitwhen partitioning the same graph. To
ensure that all partitions sizes stay within limits during continuous inference, we
control their sizes using assignment heuristics.

6.2.3.1 Assignment heuristics

Wepropose twoheuristics namelyHighestOrLeastLoaded andHighestAvailable
to partition the edge stream using the partitioning models.

HighestOrLeastLoaded. TheHighestOrLeastLoaded heuristic first tries to assign
an edge to the partition with the highest assignment probability. If the assignment
exceeds the load limit, we assign the edge to the currently least loaded partition.

HighestAvailable. The HighestAvailable heuristic handles the maximum load con-
straint differently. First, the edge assignment probabilities are sorted in descending
order. Then, we go through the sorted list of partition indices one by one, until we
find the first partition where we can place the new edge without exceeding the load
limit.

6.2.3.2 Model Application

In online partitioning, edges are processed one at a time, or window-by-window,
where a window is a group of consecutive edges. Thus, each edge assignment is
performed independently of the other assignments. In Algorithm 4, we show the
steps of the model serving process for the unsupervised-trained model. To put
everything together, the model application scheme ofGCNSplit receives unbounded
edge streams and partitions edges by first converting their counterparts (vertices)
into latent space vectors (Algorithm 4 Lines 2-3) and then feeding them into
the partitioning network (Algorithm 4 Lines 4-5). Moreover, during the model’s
application to graphs (which are evolutions of a training dataset) training graphs
can be used for inference. Namely, for the time of partition inference, an edge (or a
window of edges) can be added to the training graph and later removed, as if it was
a part of the graph from the beginning (Algorithm 4 Lines 1 and 6). As a result, the
embedding network is able to generate more informative embeddings because it
has information about the node’s neighborhood rather than only the attributes of
the edge endpoints.
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In the case of the unsupervised-trained model, inference derives from corre-
sponding assignment probabilities of the endpoint vertices generated from the
partitioning network which takes two separate embeddings of the endpoint vertices
as input and generates two corresponding assignment probability vectors. Whereas,
in the supervised-trained model assignment probabilities are made directly to the
input edge by combining the two embeddings of the endpoint vertices into one
embedding that is fed to the partitioning network for generating an assignment
probability vector.

Algorithm 4Model Serving with Heuristic
Input: training graphG, number of elements in the partitions S1, S2, ..., Sk, vertices

v1, v2, maximum loadM
Output: partition ID i
1: procedure appendEdge(G, v1, v2) . getting embeddings
2: z1 = GraphSAGE(v1)
3: z2 = GraphSAGE(v2) . getting assignment probabilities
4: Y1 = PNN(z1)
5: Y2 = PNN(z2)
6: removeEdge(G, v1, v2)
7: i = applyHeuristic(Y1,Y2, S,M)

We have modified the assignment heuristics to operate on both vertices (un-
supervised model) and edges (supervised model) as follows: In the case of the
unsupervised model, HighestOrLeastLoaded first attempts to assign the edge to
the partition with the highest assignment probability of the endpoint vertices and
then to the least loaded partition if the maximum load exceeds with the current
assignment. For the supervised model, the same heuristic attempts to assign
the edge to the partition with the highest assignment probability and if such an
assignment exceeds the maximum load, the edge is assigned to the least loaded
partition. HighestAvailable sorts the assignment probabilities in descending
order and iterates through the partitions until it encounters one with the capacity
to accommodate the new edge. For the unsupervised model, the assignment
probabilities of endpoint vertices are merged and then sorted.

Example: In Figure 6.3 we summarize the partitioning logic in an end-to-end
example of model application from the ingestion of an edge to its final assignment.
For an edge with corresponding vertices, a and b, a set of vectors are produced
by the embedding module. Each vector is then passed to the PNN that outputs a
Yi vector of probabilities, corresponding to the likelihood of assigning vertex i to
each target partition. The example demonstrates the assignment choices using the
respective heuristic. With aHighestAvailable policy a sorted vector is first created
out of Ya and Yb. Then, each partition is tested against the load constraints and the
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first partition that does not violate the constraint is selected for assignment (orange).
Similarly, with the HighestOrLeastLoaded strategy only the partitions with the
top-most probabilities are first selected across Ya and Yb. In this example, both of
these (purple and blue) violate the load constraint so the least loaded partition is
chosen for assignment (green).

6.2.4 Partitioning Quality and Applicability

Like any ML-driven application, GCNSplit’s effectiveness depends on the quality
of the training data and the characteristics of the examples it will be applied on.
The graph embedding process is tuned so that similar vertices are represented by
vectors that are close to each other in the embedding space. Similarity refers to
the structural position of nodes in the graph, as well as the statistical similarity of
their associated features. As a result, we expect GCNSplit to be particularly effective
on graph streams whose structural characteristics and feature distribution remain
relatively stable over time. Nevertheless, if GCNSplit is applied on a graph stream
with major concept drift, it will—in the worst case—behave like hash partitioning.
The partitioning classifier will be assigning vertices to partitions at random, yet it
will still be guaranteed to produce balanced partitions, due to the enforcement of
the load balance constraint. We empirically verify this claim in Section 6.5.2.

With regards to generalization, GCNSplit is applicable to any unseen graph
with the same feature set as the graph used for model training. As in the case of
partitioning unseen vertices of the same graph, high structural and feature similarity
between the target and training graphs is instrumental to high partitioning quality.
Our evaluation results (cf. Sec. 6.5.3) indicate that a richer set of features leads to
better generalization, however, we believe this requires a further investigation that
is beyond the scope of this work.

6.3 Implementation

We now briefly outline the implementation of the GCNSplit framework. GCNSplit

operates in two modes. Training is a batch process that takes place offline, before
partitioning. The user needs to provide a training graph and select either the
supervised or the unsupervised method. In the former case, they also need to
provide a plug-in partitioner, which is set to HDRF by default. Partitioning is an
online process that ingests a graph stream either edge-by-edge or in a micro-batch
fashion. The ingestion window size is configurable. In this mode, the user needs to
set the number of target partitions and select the partitioning model and heuristic
to use.
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Model implementation. We implement our GCN-based partitioning models
using PyTorch. Our partitioning models are comprised of two components: 1)
the GCN component, which generates node embeddings of the incoming graph
stream using GraphSAGE and, 2) the partitioning component, which generates a
probability vector for assigning the incoming edges to given partitions based on the
previously generated embeddings using a 3-layered neural network. We adapted
the GraphSAGE implementation from an existing code-base1. Both the GraphSAGE
network and the partitioning network are built using PyTorch building blocks that
provide support for implementing neural networks. Furthermore, PyTorch strong
support for GPU makes operations such as matrix and vector multiplication fast for
our neural network-based models.

Parallel model serving. Since models are immutable, GCNSplit can leverage
data parallelism to allow for scalability and sustain high-throughput streams. In
contrast to stateful algorithms like HDRF, GCNSplit does not need to remember past
partitioning decisions and partitioner processes can operate independently of each
other. The serving pipeline of GCNSplit is implemented as a set of processes that
communicate via queues. At the top of the pipeline, a stream producer process ingests
edge streams from a streaming source and pushes them into an ingestion queue.
Next, a set of parallel stream consumer processes pull edges from the queue and
invoke the partitioningmethod on them, going through the steps shown in Figure 6.3.
Partitioning decisions are then written into an output queue that can be consumed
by a downstream graph streaming application. These partitioning decisions are
based on load values that are kept local by each partitioning process to ensure that
the load does not exceed the set load limit. To implement the multi-process system
and inter-process communication we utilized the torch.multiprocessing package,
which is a wrapper around the Python’s multiprocessing package optimized towards
workingwith torch.Tensor. To ensure equal distribution of computing power between
the processes running on the same machine, we limit each process to a single core.

State size configuration. Stateful streaming graph partitioning algorithms like
HDRF keep partial vertex degrees and the previous assignments of the processed
nodes so far as in-memory state. This state grows as more distinct vertices appear
in the input stream. Instead, GCNSplit keeps a constant state in memory which
depends only on the size of the machine learningmodel it produced during training.
The model size depends on the number of training parameters (which depend
on the number of layers in the model’s network), the embedding size, and most
importantly on the dimensions of the feature set. A dataset with a rich feature set
will have a model size larger than that of another dataset with a less rich feature
set. In all of our experiments, we found that effective models are no larger than a
couple ofMBs, and in most cases, they took only a few KBs of space in memory.

1https://github.com/twjiang/graphSAGE-pytorch
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Table 6.1 – Graph datasets used for evaluation

Dataset Nodes Edges No. of features
Twitch PTBR 1.9K 31K 2.5K
Twitch ENGB 7.1K 35K 2.5K
Twitch RU 4.3K 37K 2.5K
Twitch ES 4.6K 59K 2.5K
Twitch FR 6.5K 112K 2.5K
Deezer RO 41K 125K 84
Twitch DE 9.4K 153K 2.5K
Deezer HU 47K 222K 84
Bitcoin 203K 234K 165
Deezer HR 54K 498K 84
Reddit 230K 5.9M 602
Synthetic 930M 1.3B 64
Papers100M 110M 1.6B 128

6.4 Evaluation Methodology

We evaluate GCNSplit’s efficiency, scalability, and partitioning quality in various
scenarios. Before presenting the results, we first describe our experimental setup
and evaluation methodology in this section. We present the datasets and baseline
algorithms we use for our experiments and the partitioning quality evaluation
metrics. The configuration parameters used during model training can be found in
the Appendix [144].

6.4.1 Environment Setup

We trained ourmodels using an on-premises physicalmachine consisting of a Nvidia
RTX 2070 Super GPU with 8GB of internal memory. We served the models using
a machine comprising of an AMD Ryzen Threadripper 2920X 12-Core processor
with 128GB RAM. All modules of the system are implemented using Python 3.8.
We used Pandas 1.0.2 [145] to read the CSV files containing graph data and NumPy
1.16.2 [146] to leverage its support for working with arrays containing the node’s
features. We used PyTorch 1.4 [147].
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6.4.2 Datasets

Table 6.1 shows the characteristics of the datasets we use to evaluate GCNSplit,
ordered by their number of edges. GCNSplit expects an input graph with associated
features, as well as timestamps. Of those publicly available, we have selected graphs
from different domains to evaluate partitioning quality and of various sizes to verify
that the quality of partitioning does not degrade for large graphs. We have also
chosen graphs with different feature sets to study how the state size changes.

Twitch: The Twitch graph dataset [148] represents a user-to-user network of the
platform where streamers broadcast their activities live. The dataset consists of
six different networks based on the user’s language. The node attributes consist
of a user’s location, streaming habits, and activity information and all networks
have the same feature set representation. This dataset is interesting because it has
a usually large number of features. Further, we can use one of the networks for
training and the rest to evaluate the generalization performance of GCNSplit.

Deezer: The Deezer graph dataset [149] represents the user’s friendship network
on a music streaming service. The dataset contains three different networks based
on the user’s country and the features consist of users’ preferred music genres.
This dataset can also be used to evaluate the generalization of GCNSplit’s models
by selecting one network for training. As it has a much smaller set of features
than Twitch (84 vs. 2.5K), it can provide insights on the effect of features on the
generalization quality.

Bitcoin: The Bitcoin graph dataset [143] represents Bitcoin transactions mapped
to real entities. A node in the graph represents a transaction and edges represent
the flow of Bitcoins between these transactions. The features of the node contain
information, such as the time-stamp associated with each transaction, the number
of inputs/outputs and transaction fees etc.

Reddit: The Reddit graph dataset [65] represents a post-to-post network of Reddit.
Reddit is a social media platform where users post and comment on topics of their
interest. Edges represent comments between posts and node features consist of the
post title and the number of comments.

Papers100M: The Papers100M graph dataset [150] represents the citation network
between computer science arXiv papers. Each node has a feature vector of 128
dimensions created by embedding the paper’s title and abstract. We order the edges
of the dataset using their publication year to have a time-based set of edges.

Synthetic: To evaluate the performance of GCNSplit in a more challenging scenario,
we generate a large random graph with 1.3B edges and 930M nodes. The graph
has 64 random synthetic features and we use a subset of 10K edges for model
training. We use this graph to demonstrate that GCNSplit’s throughput and state
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size is independent of the graph size. Materializing its partitioning mapping
exceeds the available memory of the machine we use for evaluation. Further, we
use this synthetic graph to empirically confirm that GCNSplitwill perform like hash
partitioning in the worst case (cf. Section 6.2.4). The randomly generated features
do not capture any useful information about the graph structure or vertex similarity,
thus, they present an adversarial example for GCNSplit.

6.4.3 Baseline partitioning methods

We compare GCNSplitwith two baseline methods that prioritize different quality
metrics. A hash-based stateless method that favors load balancing and a stateful
method that optimizes cuts. Our goal with GCNSplit is to strike a balance between
the two, providing both well-balanced and high-quality partitions.

Hash Partitioning: The first baseline we consider is the stateless hash partitioning
method. It uses a consistent hashing function to map items, vertices or edges,
with distinct identifiers to partitions. Hash partitioning leads to highly balanced
partitions but it does not optimize for the number of cuts.

HDRF: The second baseline we consider is the HDRF [21] state-of-the-art edge-
centric streaming graph partitioning method. HDRF yields the best results amongst
similar methods [24] and performs especially well with power-law graphs. HDRF
prioritizes splitting high degree nodes first, leading to low vertex-cuts. HDRF uses
degree information of the vertices and the partition information of the already
assigned vertices to make partitioning decisions. Information regarding already
seen vertices has to be stored in memory and constantly updated. HDRF is
parametrized by λ and ε, where λ controls the extent of partition imbalance in
the score computation, while ε is a small positive constant that ensures a positive
denominator in the score formula. We set λ = 1 and ε = 10−5. We use the original
implementation of HDRF available in the public repository 2.

6.4.4 Quality Metrics

We evaluate the quality of partitioning methods with the following metrics. To
evaluate loadbalance, weuse thenormalized load(ρ) on the highest loadedpartition.
It is defined as

ρ =
load on the highest loaded partition

n ∗ k−1
(6.4)

2https://github.com/fabiopetroni/VGP
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where n is the number of edges in the graph and k is the number of partitions.
ρ ≈1 indicates that the load is well-distributed across the partitions.

To evaluate partitioning quality, we use the replication factor(σ), which indicates
how many vertex copies are created by the partitioning algorithm. It indicates
the resulting vertex-cuts. The lower the σ, the better the partitioning quality. It is
defined as

σ =
Total number of vertex copies

Total number of vertices
(6.5)

6.4.5 Model Parameters

In our experiments, we trained models using different configurations for each
dataset. Appendix [144] contains model’s training configurations. The training
sets are created based on dataset’s granularity that includes, years, epochs and
time-stamps etc. For example, the Reddit dataset models were trained on the first
10,000 edges based on timestamp order and Bitcoin models were trained on the first
9,164 edges based on the first dataset epoch. All models used Adam optimizer [151]
with a learning rate equal to 0.0001. The embedding size is 64. The number of layers
of the embedding network is 2. The number of layers in the partitioning network is
3 and the number of neurons in a hidden layer of the partitioning network is 64.

In most of the experiments, the maximum load parameter is set to 1.01, keeping
the ratio between the number of edges in the highest loaded partition and the ideal
(n
k
) partition always below 1.01. This setting is different for experiments regarding

the trade-off between the maximum load value and the replication factor. Lastly,
the HDRF algorithm has the λ parameter set to 1 and the ε = 10−5, based on its
default configurations.

6.5 Evaluation Results

We organize the evaluation section in the following three parts. First, we evaluate
partitioning quality and show that GCNSplit is on par with HDRF in terms of
replication factor, while it maintains well-balanced partitions (Sec. 6.5.1.). Second,
we present performance results that demonstrate how GCNSplit provides high-
throughput partitioning and scales with the number of parallel processes while
having small and constant state requirements (Sec. 6.5.2.). Third, we evaluate
the model generalization and demonstrate that GCNSplit not only produces high-
quality partitions for unseen graphs but also outperforms HDRF in multiple
instances (Sec. 6.5.3). Last, we provide comparison with GAP result where we
compare GCNSplit partitioning quality with GAP (Sec. 6.5.4). For convenience,
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Figure 6.4 – Partitioning quality of GCNSplit and baselines. Load limit = 1.01 ,
k = 6.

we refer to the unsupervised model as GCNSplit and to the supervised model as
GCNSplit-s. In several of the experiments we omitted the results of GCNSplit-s since
the observed performance was equal or sometimes worse than that of GCNSplit.

6.5.1 Partitioning Quality

We evaluate GCNSplit’s partitioning quality in terms of replication factor and load
balance and compare it with HDRF, hash partitioning, and a baseline approach
that uses GAP’s loss function. We also study how the replication factor is affected
by the maximum load constraint, the number of edges in the graph stream, and
the number of partitions. Finally, we evaluate how the heuristics we introduce in
Section 6.2.3 affect the replication factor.

Replication factor. We use HDRF, Hash, and GCNSplit to partition the Reddit,
Papers100M, Bitcoin, and synthetic graphs into 6 partitions. We set the maximum
load limit for GCNSplit to 1.01, effectively forcing the creation of well-balanced
partitions. We measure the replication factor of the resulting partitions and plot the
results in Figure 6.4. GCNSplit outperforms Hash on all real graphs and exhibits
marginally higher σ than HDRF on the Reddit and Bitcoin graphs. The HDRF
baseline ran out of memory before completing the partitioning of Papers100M
and Synthetic graphs. The synthetic graph represents a worst-case scenario for
GCNSplit, having random structure and features, yet, its worst-case performance
falls back to that of hash partitioning (cf. Section 6.2.4).
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Figure 6.5 – Reddit (p = 16). Figure 6.6 – Reddit (k = 3).

Effect of the number of partitions. Next, we evaluate the sensitivity of σ to the
number of partitions. We partition the Reddit graph into an increasing number
of partitions, using GCNSplit, HDRF, and Hash, and we measure the replication
factor of the resulting partitions. Figure 6.5 shows that σ increases with the number
of partitions across approaches. Hash produces the highest σ value, while HDRF
and GCNSplit (unsupervised) perform similarly with the best cut ratio and lowest
σ. GCNSplit-s, which is trained using HDRF, has a slightly greater σ compared to
GCNSplit.

Effect of the number of edges. We now study how the replication factor changes
over time, as the streaming algorithms partition continuously arriving edges from
the graph stream. We stream the Reddit graph in timestamp order and fix the
number of partitions to k = 3. We measure the σ after certain intervals based on
the x-axis ticks as shown in Figure 6.6. As expected, σ increases with the number of
edges for all algorithms. However, once again, GCNSplit performs as well as HDRF,
producing the lowest number of cuts.

Load Balance. In our experiments so far, we set the maximum load limit constraint
to 1.01. We now study how much further we can improve GCNSplit’s replication
factor by increasing the maximum load constraint to control the normalized load,
ρ. Hash partitioning exhibits ρ ≈1, while HDRF achieved 1 ≤ ρ ≤ 1.0314, in
our experiments, depending on the dataset and number of partitions. For this
experiment, we use the Reddit graph and we set the number of partitions to k = 3

for GCNSplit and GCNSplit-s. We measure the effect of changing the maximum
load limit constraint on the replication factor σ and plot the results in Figure 6.7.
Overall, σ decreases with an increasing maximum load limit. Further, we see that
the effect is greater for the unsupervised mode of GCNSplit.
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Figure 6.7 – Effect of the maximum load constraint (left) and the heuristic (right) on
the replication factor. Reddit unsup., k = 3.

Effect of heuristics. Our experiments so far have used the HighestOrLeastLoaded

heuristic. In this section, we evaluate how this choice compares with the Highes-

tAvailable heuristic and how both methods behave on different graphs. Figure 6.7
plots the replication factor on the Reddit graph in a streaming scenario where edges
arrive continuously and are assigned to 3 partitions. This experiment uses GCNSplit

in unsupervised mode. HighestOrLeastLoaded performs consistently better than
HighestAvailable throughout the duration of the experiment. We obtained similar
results for 6 partitions on the Twitch graph and the supervised mode of GCNSplit.

6.5.2 Partitioning Performance

We evaluate performance in terms of throughput and state size and compare
GCNSplit with HDRF using graphs from Table 6.1.

Throughput. Any efficient streaming graph partitioning algorithm needs to be
capable of making decisions online, as edges arrive at its input. A traditional stateful
algorithm, like HDRF, makes decisions by performing state lookups and computing
a heuristic to rank partitions. For GCNSplit, however, the partitioning decision
relies on model inference and entails producing graph embeddings for both edge
endpoints before computing the heuristics. Nonetheless, as GCNSplit’s state is
immutable, we can leverage data parallelism to increase its throughput by adding
partitioner processes.

For this experiment, we partition the 0.2B edges of Papers100Mdataset into k = 6

partitions with HDRF and GCNSplit and measure the number of edges processed
per second. The reason to select 0.2B edges was that HDRF runs out of memory
with more edges. We set GCNSplit’s input window size to 1K edges and increase
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(a) Scalability. Input: Papers100M (b) Effect of window size. Input: Reddit

Figure 6.8 – Partitioning throughput on with k = 6.

Table 6.2 – Partitioning state size (k=6) and training times.

Dataset GCNSplit state HDRF state Training (min)
Twitch DE 1.6MB 4.1MB 22
Deezer RO 126KB 5.4MB 38
Bitcoin 166KB 19MB 10
Reddit 385KB 47MB 36
Papers100M 147KB >116GB 233
Synthetic 115KB >116GB 13

the number of parallel partitioner processes from 2 up to 32. Figure 6.8a shows
how GCNSplit scales with the number of parallel partitioners while outperforming
HDRF with 8 or more processes. GCNSplit’s throughput peaks at 111K edges/s
with 32 processes, while HDRF cannot scale to more than 70K edges/s.

Effect of window size. The throughput of streaming applications largely depends
on the input batch size of the streams they process. We examined GCNSplit’s
throughput in respect to window size, using the Reddit graph with k = 6 partitions
and p = 16 processes. In Figure 6.8b it is observed that in this setting throughput
caps at 1K edge windows, which we adopt as a constant in all experiments.

State size. We compare GCNSplit and HDRF model state size for various graphs.
Table 6.2 shows the results for 6 partitions. We only include numbers for GCNSplit’s
unsupervised model since the supervised models were of similar size. As expected,
HDRF accumulates much larger state than GCNSplit, proportional to the size of
the graphs. GCNSplit, on the other hand, has orders of magnitude smaller state
requirements, requiring just 115KB for Synthetic(1.3BM edges) and 147KB for
Papers100M(1.6BM edges) to store the models corresponding to the biggest graphs.
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(a) Memory usage. (b) Throughput.

Figure 6.9 – Partitioning performance for HDRF and GCNSplit on the large synthetic
graph.

(a) Memory usage. (b) Throughput.

Figure 6.10 – Partitioning performance for HDRF and GCNSplit on the Papers100M
graph.

Figure 6.9a and Figure 6.10a plot the system memory usage over time while
using 32 processes to partition the synthetic graph and the Papers100M graph,
respectively. GCNSplit successfully partitions the entire synthetic graph using
up to 11GB of memory, while maintaining a throughput of 100K edges/s, as
shown in Figure 6.9b. Whereas, HDRF’s state requirements outgrow the available
memory during ingestion and the partitioning fails before completion for both
datasets. Figure 6.10b shows that GCNSplit partitions the Papers100M dataset with
a throughput of 430K edges/s, using up to 14GB of memory. Note that Figure 6.10a
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includes disk access time along with the partitioning time thus, the time to partition
Papers100M exceeds 40K sec. Whereas Figure 6.10b does not include disk accesses,
it is only the throughput of the partitioning processes. Similarly, for the synthetic
graph, Figure 6.9a and Figure 6.10a do not include disk accesses because the
synthetic graph is being generated on the fly. It is also noteworthy to attribute the
effect of the graph structure on the partitioning throughput. As detailed in Table 6.1
the Papers100M dataset contains 9 orders of magnitude fewer nodes compared
to the highly dense synthetic graph. Combined with the fact that Papers100M is
streamed in timewindows, the probability of encountering duplicate graph nodes in
the samewindow is much higher than that of the synthetic graph, therefore, leading
to less unique embedding lookups per batch and higher throughput. In a matter
of fact, the lower computational cost in the case of Papers100M (Figure 6.8a) even
amortizes the read disk access involved in this scenario, contrary to the synthetic
graph which is generated on the fly. Evidently, the synthetic graph prescribes a
worst-case throughput performance scenario due to its sparsity and randomized
edge ordering. Finally, to compare GCNSplit against HDRF under equal state usage
we conducted an additional experiment on the Reddit graph with k = 6. HDRF’s
memory was throttled and reset at ∼ 400KB which led to a significant increase in σ
from ∼ 3.66 to 4.93 (Fig 6.4), and reduced quality compared to GCNSplit.

Training time. GCNSplit performs training offline on a snapshot of the streaming
graph and re-training is not required when partitioning graphs with the same
feature set (c.f. Section 6.2.2). Table 6.2 reports the training times for the models we
use in this work. We found that the training performance primarily depends on
the snapshot size rather than the resulting model size. Training the largest model
(Reddit) takes 36 minutes on a snapshot of 16K nodes. Training the Papers100M
model takes 6.5× longer for a 62.5× bigger snapshot with 1M nodes.

6.5.3 Generalization to Unseen Graphs

So far we have shown GCNSplit’s capability of producing high-quality partitions
for unseen nodes of a streaming graph, using a fixed-size model. Here, we evaluate
GCNSplit’s ability to effectively partition completely unseen graphs. Specifically, we
train GCNSplit on a subset of a graph and then use its model to partition a different
graph stream, albeit with a common feature set.

For this experiment, we use the Twitch and Deezer networks and set k = 6. We
train the models on the complete Twitch-DE graph and 10K edges of the Deezer-RO
graph and use the rest of the networks for inference. Figure 6.11 plots the replication
factor of GCNSplit in supervised and unsupervised mode, alongside that of HDRF
and Hash. GCNSplit generalizes well to unseen graphs having matching feature sets
and has a low replication factor across experiments. More importantly, GCNSplit
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(a) Twitch (k = 6). (b) Deezer (k = 6).

Figure 6.11 – Generalization: partitioning quality on unseen graphs.

outperforms HDRF for all but one instance of the Twitch network. A comparison
across graphs also provides an insight into the effect of the feature set, suggesting
that the richer the features the better the partitioning quality. Recall that Twitch
contains 2.5K features, while Deezer exhibits a mere 83 features per node.

Our observations showcase an important finding. GCNSplit is capable of
producing high-quality partitions for entirely unseen graphs whose feature set
matches that of the training graph. Whereas, the state of the art algorithms
accumulate state tailored to a single graph and cannot be re-used in other partitioning
instances.

6.5.4 Comparison with GAP’s loss function.

We now compare GCNSplit’s partitioning quality to a baseline that represents an
adaptation of GAP to the streaming setting. As vanilla GAP is an offline vertex
partitioning method, we cannot directly use it to partition edge streams. Instead,
we incorporate its loss function into our framework and compare its load balance
to that of GCNSplit. Figure 6.12 shows the results for the Twitch (T-*), Deezer
(D-*), and Reddit graphs. The GAP baselines exhibit significant imbalance, up to
226% and 205% higher than GCNSplit for unsupervised (GAP-base) and supervised
(GAP-base-s) models, respectively
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Figure 6.12 – Maximum normalized load of the GAP-baseline approach for
supervised and unsupervised models. In all cases, the baseline models produce
highly unbalanced partitions, greatly exceeding GCNSplit’s 1.01 load constraint.

6.6 Discussion and Limitations

The partitioning quality of GCNSplit shows good performance results compared to
the state-of-the-art partitioning methods. It uses node features and neighborhood
information to create node embeddings that are used for partitioning. Due to
the window based mechanism, only neighbors that are part of the window are
considered during partitioning.

The partitioning quality of GCNSplit depends on the training sample size. For
large datasets, i.e., Papers100M with ≈ 1B edges, the partitioning model trained on
a sample containing only≈ 0.6M edges generates partitioning quality that degrades
with time, but still better than Hashing. Online training with periodic updates will
improve the partitioning quality.

Since GCNSplit uses GraphSAGE for embedding, there are some limitations that
exist due to the aggregation technique of GraphSAGE. GraphSAGE cannot work
well for featureless graphs. In the worse case when random features are added
for a featureless graph GCNSplit partitioning quality is similar to Hashing. Also,
GraphSAGE cannot distinguish between certain structures of graphs. For example,
if two nodes in the graph have the same neighbourhood structure, GraphSAGE
would end up generating the same embeddings for these nodes [152].
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6.7 Related Work

ML-driven graph partitioning is a new exciting research territory. To the best of our
knowledge, GCNSplit is the first attempt to leverage the power of inductive graph
representation learning for online partitioning. Other than the offline approaches
outlined in the GAP papers [63, 64], we are not aware of closely related work.

Within the broader context of the recent ML-enabled data management and
systems research, our work is similar in essence to learned indexes and data
structures [153, 154, 155]. GCNSplit relies on learned characteristics of the input
data (the graph) to improve the performance of a data management task, which in
our case is partitioning rather than search, as in existing work.

Finally, we summarize work from two adjacent areas we believe will be instru-
mental in future research: (1) streaming graph partitioning algorithms that can
serve as ground truth for supervised learning, and (2) graph representation learning
approaches that can serve as alternatives to GraphSAGE.

Streaming graph partitioning. The performance of streaming graph partitioning
algorithms has recently been studied in experimental surveys [24, 156]. Among
vertex partitioning methods, Linear Deterministic Greedy partitioning [2] and
Fennel [23] could aid the supervised learning phase of GCNSplit. The first approach
relies on a greedy heuristic that assigns a vertex to the partition containing most of
its neighbors while respecting certain capacity constraints. The latter interpolates
between maximizing the co-location of neighboring vertices and minimizing that of
non-neighbors. Among edge partitioning methods, while HDRF performs best in a
recent study [24], we believe that training with Degree Based Hashing (DBH) [22]
is also worth exploring. DBH is a hybrid approach that employs hashing for
partitioning while also prioritizing cutting high-degree vertices.

Other graph representation learning approaches. Transductivemethods [142, 141,
157, 158, 159] are of little use in the streaming context, as they can only generate
representations for nodes used during the training phase. Nevertheless, they
could be leveraged in static graph scenarios and when node features are absent.
On the other hand, inductive methods are more suitable for a streaming setting
and numerous methods exist that could replace GraphSAGE in GCNSplit. The
algorithms differ in the way they aggregate and sample neighbors, as well as in
their approach to generating and combining representations. With regards to
the problem of partitioning, we believe that graph attention networks [160] and
position-aware graph neural networks (P-GNN) [152] are particularly interesting.
The first approach utilizes the attention strategy to conduct neighborhood aggregation.
Trainable parameters are applied to a node’s neighbors to weight contributions
from neighbors differently. In P-GNNs, nodes are represented using their distances
to an anchor set, which consists of randomly chosen one or more nodes serving as
point of reference for other nodes.
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6.9 Summary

In this chapter, we address the challenge of providing a CH3a-Scalable Graph

Partitioning and CH3b-Partitioning Graph Streams Using Bounded State mentioned
in Chapter 1 by providing C4-a novel streaming graph partitioning algorithm
for partitioning unbounded streams. We presented and evaluated GCNSplit, an
ML-driven streaming graph partitioning method that overcomes the problem of
increasing state size for unbounded streams without sacrificing quality. GCNSplit

bases its partitioning decisions on the attributes of the nodes. Thus, in real-world
applications, the feature set should be carefully analysed in order to increase the
quality of the data, and consequently, the quality of the partitioning. Moreover,
thanks to the capabilities of GCNs, the model incorporates the structural context
of every node as well. As a result, it benefits from the information about the
connections between the items. Hence, it is important to produce a representative
sample of the whole network in the training dataset.

Our results show that GCNSplit exhibits partitioning quality as good as state-
of-the-art streaming partitioning algorithms, while it maintains well-balanced
partitions. Further, it sustains high throughput and scales linearly to the number
of parallel processes, while having small and constant state requirements. Finally,
GCNSplit generalizes well and can effectively partition unseen graphs, as long as
they share feature set characteristics with the samples used for model training.



chapter

7
Conclusion

"Shout-out to all PhD students dissertating during the pandemic

and the typos that still survived after multiple proof readings"

— Me.

Throughout the course of this thesis, we proposed graph partitioning techniques
to improve the scalability and performance of graph-based and machine learning
applications. First, we developed a graph partitioning algorithm to partition spatial
time series data for large-scale time series forecasting. Second, in order to study and
evaluate the use of streaming graph processing algorithms for analysis of a complex
large-scale distributed system, we applied streaming graph analytics for a practical
use-case of road traffic congestion detection and mitigation at a large scale with low
latency. Third, we surveyed, evaluated and compared state-of-the-art streaming
graph partitioning algorithms and highlighted their shortcomings. In the end, we
proposed amachine learning-based scalable streaming graph partitioning algorithm
that uses a small and constant in-memory state (bounded state) to partition (possibly
unbounded) graph streams.

7.1 Summary of Results

In the first part of this thesis presented in Chapter 3, we address the scalability in
training deep learning models in a real-life task of large-scale road traffic prediction
using real-life large data sets generated by traffic sensors deployed in Stockholm
and Gothenburg, Sweden. We developed a graph-based partitioning technique
that resulted in enabling parallelism for both training and prediction and improved
the scalability and performance of deep learning models. Our partitioning-based
models using LSTMs take 2x if run sequentially, and 12x, if run in parallel, lower
training time, and 20x lower prediction time compared to the unpartitioned model

119
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of the entire road infrastructure. The partitioning-based models take 100x lower
total sequential training time compared to single sensor models, i.e., one model
per sensor. Furthermore, the partitioning-based models have 2x lower prediction
error (RMSE) compared to both the single sensor models and the entire road model.
Since the sensors network topology remained constant during the time frame of our
dataset, we assume that the sensor network is static. Although, in real-life sensors
are added or removed in the network over time.

In our next work presented in Chapter 4, we provide a practical and useful
real-life application of streaming graph analytics on graph steams. We addressed the
problem of traffic congestion detection and mitigation using real-life data collected
from a region in one of the largest metropolis cities of China. We developed an
end-to-end framework built on top of a modern stream processing system, i.e.,
Apache Flink. With the proposed framework, we successfully detected traffic jams
in real-time and deploy new traffic light policies which result in 27% less travel
time at the best and 8% less travel time on average compared to the travel time with
default traffic light policies. Our scalability results show that our system is able
to handle high-intensity streaming data collected from 900 sensors every second
with a throughput of 57K records/sec at best. The traffic jam detection on streams
is done using single-pass connected components algorithm [97], which works only
for edge additions in a graph stream. Dynamic graph stream processing algorithms
with edge deletions are beyond the scope of this work.

Next, we present our work in Chapter 5 on streaming graph partitioning
algorithms. We have studied streaming graph partitioning algorithms and we have
empirically compared them using an evaluation comparison framework that we
developed based on Apache Flink [30]. We have evaluated the partitioning quality
and performance of the partitioning algorithms and we have measured the effect
of partitioning on the performance of iterative and streaming applications. Our
experimental results show that in terms of performance, Hash shows 2x higher
throughput than the second-best partitioning method and can generate up to
90% edge-cuts keeping no state in memory. Whereas, all studied algorithms are
stateful, i.e., they base their partitioning decision using an in-memory state that
contains information, such as current vertex assignment, partition capacities, or
vertex degree distributions. Stateful algorithms produce 20% edges-cuts and very
low vertex cuts compared to Hash and they require the state to be shared among
parallel partitioning instances, for a global view of state shared across parallel
instances. Due to their shared state requirements, they are unsuitable for continuous
processing of unbounded streams. We note the advantage of low-cut partitioning
methods for iterative applications, while low-cost (cost refers to the partitioning
latency) partitioning mechanisms seem preferable for streaming applications. We
highlight the need for developing new, scalable online partitioning algorithms, with
relaxed constraints on the graph properties and fewer in-memory state requirements.
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We believe that the development of such algorithms is crucial for making graph
partitioning practical for applications ingesting continuous streams on top of
modern distributed streaming engines. The streaming applications are based on
the semi-streaming model [97] and only edge insertions are considered in this work.
We do not consider edge deletions in this work, they are beyond the scope of this
work and a subject to future work.

Finally, we propose and evaluate a novel, graph convolutional network (GCN)-
based graph partitioning algorithm, GCNSplit, presented in Chapter 6. GCNSplit is
an ML-driven streaming graph partitioning method that overcomes the problem of
increasing state size for unbounded streams without sacrificing partitioning quality.
GCNSplit learns the structure of the graph by using node features and neighboring
nodes’ features to make partition assignment decisions and benefits from recent
advances in GCNs. It supports both supervised and unsupervised training and
generalizes to unseen nodes and graphs, as long as they bear common features. Our
results demonstrate GCNSplit generates high-quality and well-balanced partitions
with small and constant state requirements. It exhibits a replication factor that
matches that of the state-of-the-art HRDF algorithm while storing three orders
of magnitude smaller partitioning state. At the same time GCNSplit provides a
high-throughput of 400K edges/s compared to HDRF that provides a throughput
of 70K edges/s. We also compared GCNSplit to a GCN-based baseline GAP. GAP
exhibited up to 226% higher imbalance compared to GCNSplit. Further, owing to
the power of GCNs, we show that GCNSplit can efficiently and effectively partition
entirely unseen graphs with the same feature set as the trained model. When
applied on unseen graphs with a rich feature set, GCNSplit outperforms HDRF
in multiple cases. Limitations of GCNSplit are that it cannot work for featureless
graphs and a dynamic number of partitions.

We conclude from our aforementioned results that graph streams and graph
partitioning have helped improve the performance and scalability of spatial time
series forecasting and analytics, and streaming graph applications. Also, machine
learning-based graph partitioning methods are useful for efficiently processing
possibly unbounded streaming graphs. Our solutions have addressed the challenges
mentioned in Chapter 1, Section 1.4.

7.2 Generalization to Other Application Areas and Graph Streams

In this section, we discuss how our proposed solutions related to large scale time
series analysis and forecasting can be applied to other application areas. Also, how
our streaming graph partitioning solution can be generalised to partition unseen
graph streams with a similar feature set.

Our proposed graph partitioning techniques to scale deep learning-based time
series forecasting models albeit been applied to road traffic use-case, in general, can
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be applied to other application domains. The graph representation and partitioning
technique we proposed can be applied to other complex systems containing sensors
generating correlated spatial time series. One example is the air traffic control
systems containing geographically distributed sensor-based infrastructure [161].
The sensors monitoring the air traffic produce a correlated stream of data. Another
example is a spatially distributed fitness tracker network, where closely located
users generate correlated time series of health activities [49].

Streaming graph analytics is a general data processing domain that can be
applied to analyse graph streams in a variety of applications. Graph streams
comprise of continuous timestamped events modelled either in the form of a
stream of edges or vertices with associated adjacency lists [11, 12]. The events can
be user interactions in social networks, online financial transactions, driver and
user locations in ride-sharing services. One of the application areas presented in
Chapter 4 is traffic congestion detection in a road traffic stream. Other prominent
use-cases include prediction of traffic and demand for a ridesharing service and
management of networks online in software-defined network controllers.

Our proposed graph convolutional network-based streaming graph partitioning
algorithm, i.e., GCNSplit (Chapter 6) is applicable to all timestamped graph datasets
containing node embeddings. GCNSplit generalizes to partition unseen graphs with
similar structure and matching feature set dimensions of the training graph. The
generalisation capability of graph convolutional networks makes them a powerful
tool for creating a general partitioner which is capable of partitioning completely
out of domain graphs without re-training.

7.3 Social and Environmental Aspects

We consider the following social and environmental aspects in our research work.

• Privacy. Our work does not use any kind of private or sensitive information in
the datasets. The datasets used in the traffic analytics work were anonymised
by the domain experts who collected them and contained no information that
can harm society. Also, the graph datasets that we used are publicly available
and are anonymised by the providers. In some cases the data providers
mention the privacy preserving techniques used to hide sensitive information
and in other cases they do not. Therefore, we cannot say much about the
effectiveness of the privacy preserving techniques that have been applied to
the data used in this thesis.

• Environmental Sustainability. We aim to contribute towards the advance-
ment of stream processing systems. Stream processing systems contribute
to low-latency mission-critical applications that can also save compute and
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memory-based resources. The low compute and memory requirements exist
because generally in a stream processing model the data is visited once
and only the aggregates are stored in memory compared to other offline
approaches where complete data is pre-processed in memory. Our work
presented in Chapter 3 and 4 makes use of graph partitioning and streaming
graph analytics to efficiently forecast, detect and mitigate traffic jams. Traffic
congestion reduction has a great amount of positive impact because nowadays
with the increasing number of vehicles used to commute every day, traffic
congestion has become a common sight. It is important to monitor traffic
flows to prevent congestion to avoid a multitude of problems. Some of these
problems include: increase in fuel consumption and pollution [88], decrease
in economy [89] and traffic safety that is caused by a speed variance between
cars in the congested region compared to cars moving freely [90], and harmful
effects on the mental and physical health of people [91, 92].

7.4 Future Work

In futurework, wewould like to address the limitations of ourwork by extending our
streaminggraphpartitioning algorithms andapplications towork for dynamic graph
streams, which not only include edge additions but also edge deletions. Another
dimension is towards the improvement of graph stream processing frameworks.
Our proposed graph convolutional network-based partitioning can be exploited
to develop distributed graph query engines and databases with stream ingestion.
Furthermore, the quality of our techniques can be improved via feature analysis or
online learning methods to allow the periodic update of the model to learn recent
trends in the data stream when significant changes are detected (new features and
structural properties). An interesting direction is exploring how to dynamically
change the number of partitions over time. Elasticity could be achieved by training
with a large number of virtual partitions. An additional layer could then be used to
map physical partitions to virtual ones without updating the model.

Our work on machine learning-based partitioning with the potential to partition
unseen graphs gives us an interesting future work directed towards a perfect
graph partitioner. In a hypothetical world, we think of an oracle that suggests
the best partitioning strategy to partitioner for any input graph dataset. Some
useful characteristics of this oracle can be: 1) Processing input graphs from various
application domains. 2) Finding similarities between the recent input graph features
and the graphs partitioned in the past. 2) Suggesting the best partitioning strategy
based on feature set similaritymeasure of the input graph. 3) Guiding the partitioner
with a different partitioning strategy in the case of a drift in the input graph stream
or a drop in the partitioning quality. 4) Keeping track of the most used partitioning
strategies and least used ones and give priority to the most frequently used ones. 5)
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Learn from recent history and predict a partitioning strategy. 6) Take into account
application performance requirements, such as low latency and high throughout
etc., and update the partitioning strategy based on the application’s requirement.

The main expectations from a perfect partitioner itself are of high partitioning
quality, adaptability in terms of support for dynamic number of partitions, low com-
putational and memory cost, scalability and ability to partition possibly unbounded
streams.
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