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Abstract
We propose a variance reduced algorithm for solving monotone variational inequali-
ties. Without assuming strong monotonicity, cocoercivity, or boundedness of the 
domain, we prove almost sure convergence of the iterates generated by the algorithm 
to a solution. In the monotone case, the ergodic average converges with the optimal 
O(1/k) rate of convergence. When strong monotonicity is assumed, the algorithm 
converges linearly, without requiring the knowledge of strong monotonicity con-
stant. We finalize with extensions and applications of our results to monotone inclu-
sions, a class of non-monotone variational inequalities and Bregman projections.

Keywords Variational inequalities · Stochastic variance reduction · Finite-sum 
structure · Saddle point problems · Monotone inclusions

1 Introduction

We are interested in solving variational inequalities (VI)

where g is a proper lower semicontinuous convex function and F is a monotone 
operator also given as the finite sum F =

1

n

∑n

i=1
Fi.

(1)Find z⋆ ∈ Z ∶ ⟨F(z⋆), z − z⋆⟩ + g(z) − g(z⋆) ≥ 0, ∀z ∈ Z,
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A special case of monotone VIs is the structural saddle point problem

where f, h are proper lower semicontinuous convex functions and Ψ is a smooth 
convex-concave function. Indeed, problem (2) can be formulated as (1) by setting

and F(z) = 1

n

∑n

i=1
Fi(z) (see [2, Section 2], [5, 7] for examples).

Another related problem is the monotone inclusion where the aim is to

where A ∶ Z ⇉ Z and F ∶ Z → Z are maximally monotone operators and F is Lip-
schitz continuous with finite sum form. Monotone inclusions generalize (1) and our 
results also extend to this setting as will be shown in Sect. 4.1. Due to convenient 
abstraction, it is the problem (1) that will be our main concern.

The case when Ψ in (2) is convex-concave and, in particular when it is bilin-
ear, has found numerous applications in machine learning, image processing 
and operations research, resulting in efficient methods being developed in the 
respective areas [6, 14, 15, 33]. As VI methods solve the formulation (1), they 
seamlessly apply to solve instances of (2) with nonbilinear Ψ.

In addition to the potentially complex structure of Ψ , the size of the data in 
modern learning tasks lead to development of stochastic variants of VI methods 
[4, 17, 28]. An important technique on this front is stochastic variance reduction 
[18] which exploits the finite sum structures in problems to match the conver-
gence rates of deterministic algorithms.

In the specific case of convex minimization, variance reduction has been 
transformative over the last decade [13, 16, 18, 21]. As a result, there has been 
several works on developing variance reduced versions of the standard VI meth-
ods, including forward-backward [2], extragradient [7, 20], and mirror-prox [5, 
27]. Despite recent remarkable advances in this field, these methods rely on 
strong assumptions such as strong monotonicity [2, 7] or boundedness of the 
domain [5] and have complicated structures for handling the cases with non-
bilinear Ψ [5].

Contributions In this work, we introduce a variance reduced method with a 
simple single loop structure, for monotone VIs. We prove its almost sure conver-
gence under mere monotonicity; without any of the aforementioned assumptions. 
The new method achieves the O(1/k) convergence rate in the general monotone 
case and linear rate of convergence when strong monotonicity is assumed, with-
out using strong monotonicity constant as a parameter. We also consider natural 
extensions of our algorithm to monotone inclusions, a class of non-monotone 
problems, and monotone VIs with general Bregman distances.

(2)min
x

max
y

Ψ(x, y) + f (x) − h(y),

z = (x, y), F(z) =

[
∇xΨ(x, y)

−∇yΨ(x, y)

]
, g(z) = f (x) + h(y),

find z⋆ ∈ Z such that 0 ∈ (A + F)(x),
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1.1  Related works

Most of the research in variance reduction has focused on convex minimization 
[13, 16, 18, 21], leading to efficient methods in both theory and practice. On 
the other hand, variance reduction for solving VIs is started to be investigated 
recently. One common technique for reducing the variance in stochastic VIs, is to 
use increasing mini-batch sizes, which leads to high per iteration costs and slower 
convergence rates in practice [4, 9, 17].

A different approach used in [25] was to use the same sample in both steps of 
stochastic extragradient method [19] to reduce the variance, which results in a 
slower O(1∕

√
k) rate. The results of [25] for bilinear problems on the other hand 

are limited to the case when the matrix is full rank. The most related to our work, 
in the sense how variance reduction is used, are [2, 5, 7] (see Table 1).

For the specific case of strongly monotone operators, [2] proposed algorithms 
based on SVRG and SAGA, with linear convergence rates. Two major questions 
for future work are posed in [2]: (i) obtaining convergence without strong mono-
tonicity assumption and (ii)  proving linear convergence without using strong 
monotonicity constant in the algorithm as a parameter.

The work by [7] proposed an algorithm based on extragradient method [20] 
and under strong monotonicity assumption, proved linear convergence of the 
method. The step size in this work depends on cocoercivity constant, which might 
depend on strong monotonicity constant as discussed in  [7, Table 1]. Thus, the 
result of [7] gave a partial answer to the second question of [2] while leaving the 
first one unanswered.

An elegant recent work of [5] focused on matrix games and proposed a method 
based on the mirror prox [27]. The extension of the method of [5] for general 
min-max problems is also considered there. Unfortunately, this extension not 
only features a three loop structure, but also uses the bounded domain assumption 
actively and requires domain diameter as a parameter in the algorithm [5, Corol-
lary 2]. This result has been an important step towards an answer for the first 
question of [2].

Table 1  ∗ We say that the algorithm is �-adaptive if it does not require strong monotonicity constant as 
a parameter to obtain linear convergence. [7]) obtains �-adaptivity if cocoercivity constant of the opera-
tor is of the same order as the Lipschitz constant and not in general (see [7, Table 1]). †Our complexity 
matches the rate of deterministic methods [23, 27], however due to worse dependence on n compared to 
[5], it does not improve deterministic method in bilinear cases

Assumptions for convergence �-adaptivity∗ Complexity 
with monoto-
nicity

[2] Strong monotonicity ✗ N/A
[7] Strong monotonicity ✗ N/A
[5] Monotonicity, bounded domains ✗

O

�√
nL∕�

�

This work Monotonicity ✓ O(nL∕�)†
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As highlighted in  Table  1, our complexity bounds have a worse dependence 
on n compared to [5], and do not improve the complexity of deterministic VI 
methods for bilinear games, which was the case in [5]. On the other hand, to 
our knowledge, our result is the first to show the existence of a variance reduced 
method that converges under the same set of assumptions as the deterministic 
methods and also matches the complexity of these deterministic methods. Moreo-
ver, our result is also the first variance reduced method to solve monotone inclu-
sions in finite sum form, without strong monotonicity, increasing mini-batch sizes 
or decreasing step sizes [2].

Finally, our work answers an open problem posed in [23] regarding a stochas-
tic extensions of the forward-reflected-backward method. Our result improves the 
preliminary result in [23, Section 6], which still requires evaluating the full oper-
ator every iteration.

1.2  Preliminaries and notation

We work in Euclidean space Z = ℝ
d with scalar product ⟨⋅, ⋅⟩ and induced 

norm ‖ ⋅ ‖ . Domain of a function g ∶ Z → ℝ ∪ {+∞} is defined as 
dom g = {z ∈ Z ∶ g(z) < +∞} . Proximal operator of g is defined as

We call an operator F ∶ K → Z , where K ⊆ Z,

• L-Lipschitz, for L > 0 , if   ‖F(u) − F(v)‖ ≤ L‖u − v‖, ∀u, v ∈ K.
• monotone, if   ⟨F(u) − F(v), u − v⟩ ≥ 0, ∀u, v ∈ K.
• �-cocoercive, for 𝜈 > 0 , if  ⟨F(u) − F(v), u − v⟩ ≥ �‖F(u) − F(v)‖2, ∀u, v ∈ K.
• �-strongly monotone, for 𝜇 > 0 , if  ⟨F(u) − F(v), u − v⟩ ≥ �‖u − v‖2, ∀u, v ∈ K.

For example, in the context of  (2) and  (1), F is (strongly) monotone when Ψ 
is (strongly) convex- (strongly) concave. However, it is worth noting that both 
cocoercivity and strong monotonicity fail even for the simple bilinear case when 
Ψ(x, y) = ⟨Ax, y⟩ in (2).

Given iterates {zk}k≥1 , {wk}k≥1 and the filtration Fk = �{z1,… , zk,w1,… ,wk−1} , 
we define �k[⋅] = �[⋅|Fk] as the conditional expectations with respect to Fk.

Finally, we state our common assumptions for (1).

Assumption 1 

(a) g ∶ Z → ℝ ∪ {+∞} is proper lower semicontinuous convex.
(b) F ∶ dom g → Z is monotone.
(c) F =

1

n

∑n

i=1
Fi , with L-Lipschitz Fi ∶ dom g → Z , ∀i.

(d) The solution set of (1), denoted by Z⋆ , is nonempty.

prox g(u) = argmin z∈Z

�
g(z) +

1

2
‖z − u‖2

�
.
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Z

2  Algorithm

Our algorithm is a careful mixture of a recent deterministic algorithm for VIs, pro-
posed by [23], with a special technique of using variance reduction in finite sum 
minimization given in [16] and [21].

It is clear that for n = 1 any stochastic variance reduced algorithm for VI reduces 
to some deterministic one. As a consequence, this immediately rules out the most 
obvious choice — the well-known forward-backward method (FB)

since its convergence requires either strong monotonicity or cocoercivity of F. The 
classical algorithms that work under mere monotonicity [20, 30, 34] have a more 
complicated structure, and thus, it is not clear how to meld them with a variance 
reduction technique for finite sum problems. Instead, we chose the recent forward-
reflected-backward method (FoRB) [23]

which converges under Assumption 1 with n = 1.
When g = 0 , this method takes its origin in the Popov’s algorithm [30]. In this 

specific case, FoRB is also equivalent to optimistic gradient ascent algorithm [12, 
31] which became increasingly popular in machine learning literature recently [11, 
12, 24, 26].

Among many variance reduced methods for solving finite sum problems 
minz f (z) ∶=

1

n

∑n

i=1
fi(z) one of the simplest is the Loopless-SVRG method [21] (see 

also [16]),

(3)zk+1 = prox �g(zk − �F(zk)),

(4)zk+1 = prox �g(zk − �(2F(zk) − F(zk−1))),

zk+1 = zk − �∇f (wk) − �(∇fik (zk) − ∇fik (wk))

wk+1 =

{
zk, with probability p,

wk, with probability 1 − p,
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which can be seen as a randomized version of the gradient and hence forward-
backward methods. The latter is the exact reason why we cannot extend this 
method directly to the variational inequality setting, without cocoercivity or strong 
monotonicity.

An accurate blending of [23] and [21], described above, results in Algorithm 1. 
Compared to Loopless-SVRG, the last evaluation of the operator at step 4 of Algo-
rithm 1 is done at wk−1 , instead of wk . In the deterministic case when n = 1 or p = 1 , 
this modification reduces the method to FoRB (4) and not FB (3). The other change 
is that we use the most recent iterate zk+1 in the update of wk+1 , instead of zk in the 
Loopless-SVRG. Surprisingly, these two small distinctions result in the method 
which converges for general VIs without the restrictive assumptions of the previous 
works.

We note that we use uniform sampling for choosing ik in Algorithm 1 for simplic-
ity. Our arguments directly extend to arbitrary sampling as in [2, 5] which is used for 
obtaining tighter Lipschitz constants.

3  Convergence analysis

We start with a key lemma that appeared in [23] for analyzing a general class of VI 
methods. The proof of this lemma is given in the appendix for completeness. The 
only change from [23] is that we consider the proximal operator, instead of a more 
general resolvent.

Lemma 3.1 [23, Proposition 2.3] Let g ∶ Z → ℝ ∪ {+∞} be proper lower semicon-
tinuous convex and let x1 , U0,U1,V1 ∈ Z be arbitrary points. Define x2 as

Then for all x ∈ Z and V2 ∈ Z , it holds

The benefit of Lemma 3.1 is that it gives a candidate for a Lyapunov function that 
can be used to prove convergence. We will need a slight modification in this func-
tion due to randomization in Algorithm 1.

3.1  Convergence of the iterates

We start by proving the almost sure convergence of the iterates. Such a result states 
that the trajectories of the iterates generated by our algorithm converge to a point in 
the solution set. This type of result is the analogue of sequential convergence results 
for deterministic methods [23].

For the iterates {zk} , {wk} of Algorithm 1 and any z ∈ dom g , 𝛽 > 0 we define

(5)x2 = prox g(x1 − U1 − (V1 − U0)).

(6)
‖x2 − x‖2 + 2⟨V2 − U1, x − x2⟩ + 2⟨V2, x2 − x⟩ + 2g(x2) − 2g(x)

≤ ‖x1 − x‖2 + 2⟨V1 − U0, x − x1⟩ + 2⟨V1 − U0, x1 − x2⟩ − ‖x1 − x2‖2.
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The first expression plays the role of a Lyapunov function and the second is essential 
for the rate.

Lemma 3.2 Let Assumption 1 hold, 𝜏 <
1−

√
1−p

2L
 , � =

1√
1−p

− 1 , and the iterates {zk} 
are generated by Algorithm 1. Then for any z ∈ dom g,

This lemma is essential in establishing the convergence of iterates and sublin-
ear convergence rates that we will derive in the next section. We now continue 
with the proof.

Proof We set in Lemma  3.1 U0 = �Fi(wk−1) , U1 = �F(wk) , V1 = �Fi(zk) , 
V2 = �F(zk+1) , and x1 = zk , with ik = i . Then by (5) and step  4 of Algorithm  1, 
x2 = zk+1 , thus, by (6)

First, note that by Lipschitzness of Fi , Cauchy-Schwarz and Young’s inequalities,

Thus, it follows that

Taking expectation conditioning on the knowledge of zk,wk−1 and using that 
�kFi(zk) = F(zk) , �kFi(wk−1) = F(wk−1) , we obtain

Adding

Φk+1(z) ∶= ‖zk+1 − z‖2 + 2�⟨F(zk+1) − F(wk), z − zk+1⟩

+
�

2
‖zk − wk‖2 +

1

2
‖zk+1 − zk‖2

Θk+1(z) ∶= ⟨F(zk+1), zk+1 − z⟩ + g(zk+1) − g(z).

(7)�k[Φk+1(z) + 2�Θk+1(z)] ≤ Φk(z).

(8)

‖zk+1 − z‖2 + 2�⟨F(zk+1) − F(wk), z − zk+1⟩ + 2�
�
⟨F(zk+1), zk+1 − z⟩

+ g(zk+1) − g(z)
�
≤ ‖zk − z‖2 + 2�⟨Fi(zk) − Fi(wk−1), z − zk⟩

+ 2�⟨Fi(zk) − Fi(wk−1), zk − zk+1⟩ − ‖zk+1 − zk‖2.

(9)2�⟨Fi(zk) − Fi(wk−1), zk − zk+1⟩ ≤ 2�2L2‖zk − wk−1‖2 +
1

2
‖zk − zk+1‖2.

(10)
‖zk+1 − z‖2 + 2�⟨F(zk+1) − F(wk), z − zk+1⟩ +

1

2
‖zk+1 − zk‖2 + 2�Θk+1(z)

≤ ‖zk − z‖2 + 2�⟨Fi(zk) − Fi(wk−1), z − zk⟩ + 2�2L2‖zk − wk−1‖2.

(11)

�k‖zk+1 − z‖2 + 2��k⟨F(zk+1) − F(wk), z − zk+1⟩ +
1

2
�k‖zk+1 − zk‖2

+ 2��kΘk+1(z) ≤ ‖zk − z‖2 + 2�⟨F(zk) − F(wk−1), z − zk⟩
+ 2�2L2‖zk − wk−1‖2.
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which follows from the definition of wk , to (11), we obtain

The proof will be complete, if we can show that the expression in the second and 
third lines are nonpositive. Due to our choice of � and � this is a matter of a simple 
algebra. As � + 1 =

1√
1−p

 , �

1+�
= 1 −

√
1 − p , and 2𝜏L < 1 −

√
1 − p =

𝛽

1+𝛽
 , we 

have

Then we must show that

which is a direct consequence of ‖u + v‖2 ≤ (1 +
1

�
)‖u‖2 + (1 + �)‖v‖2 . The proof 

is complete.   ◻

Theorem 3.1 Let Assumption 1 hold and let 𝜏 <
1−

√
1−p

2L
 . Then for the iterates {zk} of 

Algorithm 1, almost surely there exists z⋆ ∈ Z
⋆ such that zk → z⋆.

Remark 3.1 It is interesting to observe that for p = 1 , i.e., when the algorithm 
becomes deterministic, the bound for the stepsize is 𝜏 <

1

2L
 , which coincides with 

the one in [23] and is known to be tight. In this case analysis will be still valid if for 
convenience we assume that ∞ ⋅ 0 = 0.

For small p we might use a simpler bound for the stepsize, as the following corol-
lary suggests.

Corollary 3.1 Suppose that p =
1

n
 and � ≤

p

4L
=

1

4Ln
 . Then the statement of Theo-

rem 3.1 holds.

Proof We only have to check that p

2
≤ 1 −

√
1 − p , which follows from √

1 − p ≤ 1 −
p

2
.  ◻

Proof of Theorem 3.1 From Lemma 3.2 we have for any z ∈ dom g

(12)
�

2
�k‖zk − wk‖2 =

�(1 − p)

2
‖zk − wk−1‖2,

(13)

�k[Φk+1(z) + 2�Θk+1(z)] ≤ Φk(z)

+
�
2�2L2 +

�(1 − p)

2

�
‖zk − wk−1‖2 −

1

2
‖zk − zk−1‖2

−
�

2
‖zk−1 − wk−1‖2.

(14)2�2L2 +
�(1 − p)

2
≤

1

2

(
�2

(1 + �)2
+

�

(1 + �)2

)
=

�

2(1 + �)
.

�

1 + �
‖zk − wk−1‖2 ≤ ‖zk − zk−1‖2 + �‖zk−1 − wk−1‖2,
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First, we show that Φk+1(z) is nonnegative for all z ∈ dom g . This is straightforward 
but tedious. Recall that 1 −

√
1 − p =

�

1+�
 and hence 2�L ≤

�

1+�
 . Then by Cauchy-

Schwarz and Young’s inequalities,

Therefore, we deduce

Now let z = z̄ ∈ Z
⋆ . Then by monotonicity of F and (1),

Summing up, we have that Θk+1(z̄) ≥ 0 , Φk(z̄) ≥ 0 and �kΦk+1(z̄) ≤ Φk(z̄) . Unfor-
tunately, this is still not sufficient for us, so we are going to strengthen this inequal-
ity by reexamining the proof of Lemma 3.2. In estimating the second line of ine-
quality  (13) we used that 2�L ≤ 1 −

√
1 − p , however, both in the statements of 

Lemma 3.2 and Theorem 3.1 we assumed a strict inequality. Let

From 2𝜏L < 1 −
√
1 − p =

𝛽

1+𝛽
 it follows that 𝛿 > 0 . Now, inequality  (14) can be 

improved to equality as

This change results in a slightly stronger version of (7)

�k[Φk+1(z) + 2�Θk+1(z)] ≤ Φk(z).

(15)

−2�⟨F(zk+1) − F(wk), z − zk+1⟩ ≤ 2�L‖zk+1 − wk‖‖zk+1 − z‖

≤
�

2(1 + �)

�
‖zk+1 − wk‖2 + ‖zk+1 − z‖2

�

≤
�

2(1 + �)
‖zk+1 − z‖2 + �

2(1 + �)

��
1 +

1

�

�
‖zk+1 − zk‖2

+ (1 + �)‖zk − wk‖2
�

=
�

2(1 + �)
‖zk+1 − z‖2 + 1

2
‖zk+1 − zk‖2 +

�

2
‖zk − wk‖2.

(16)Φk+1(z) ≥ ‖zk+1 − z‖2 − �

2(1 + �)
‖zk+1 − z‖2 ≥ 1

2
‖zk+1 − z‖2.

(17)
Θk+1(z̄) = ⟨F(zk+1), zk+1 − z̄⟩ + g(zk+1) − g(z̄)

≥ ⟨F(z̄), zk+1 − z̄⟩ + g(zk+1) − g(z̄) ≥ 0.

(18)
� =

�

1 + �
−

4�2L2(1 + �)

�

⟺ 4�2L2 =
�2

(1 + �)2
−

��

1 + �
.

(19)2�2L2 +
�(1 − p)

2
=

1

2

(
�2

(1 + �)2
−

��

(1 + �)
+

�

(1 + �)2

)
=

�(1 − �)

2(1 + �)
.
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As Φk+1(z̄) ≥ 0 and Θk+1(z̄) ≥ 0 , we can apply Robbins-Siegmund lemma [32] to 
conclude that {Φk+1(z̄)} converges almost surely and that

It then follows that almost surely, ‖zk − zk−1‖2 → 0 and ‖zk−1 − wk−1‖2 → 0 . Moreo-
ver, due to (16), {zk} is almost surely bounded and therefore by the definition of Φk , 
continuity of F, and (21), we have that ‖zk − z̄‖2 converges almost surely.

More specifically, this means that for every z̄ ∈ Z
⋆ , there exists Ωz̄ with ℙ(Ωz̄) = 1 

such that ∀𝜔 ∈ Ωz̄ , ‖zk(𝜔) − z̄‖2 converges. We can strengthen this result by using 
the arguments from [3, Proposition 9], [8, Proposition 2.3] to obtain that there exists 
Ω with ℙ(Ω) = 1 such that for every z̄ ∈ Z

⋆ and for every � ∈ Ω , ‖zk(𝜔) − z̄‖2 
converges.

We now pick a realization � ∈ Ω and note that zk(�) − zk−1(�) → 0 and 
zk−1(�) − wk−1(�) → 0 . Let us denote by z̃ a cluster point of the bounded sequence 
zk(�) . By using the definition of zk and convexity of g, as in the proof of Lemma 3.1, 
we have for any z ∈ Z

Taking the limit as k → ∞ and using that g is lower semicontinuous and ∀i , Fi is 
Lipschitz, zk(�) − zk−1(�) → 0 and zk−1(�) − wk−1(�) → 0 , we get that z̃ ∈ Z

⋆ . 
Then, as we have that ‖zk(𝜔) − z̃‖2 converges and we have shown that ‖zk(𝜔) − z̃‖2 
converges to 0 at least on one subsequence, we conclude that the sequence (zk(�)) 
converges to some point z̃ , where z̃ ∈ Z

⋆.  ◻

3.2  Convergence rate for the general case

In this section, we prove that the average of the iterates of the algorithm exhibits 
O(1/k) convergence rate which is optimal for solving monotone VIs [27]. The stand-
ard quantity to show sublinear rates for VIs is gap function which is defined as

As this quantity requires taking a supremum over the whole space Z which is poten-
tially unbounded, restricted versions of gap functions are used, for example in [22, 
29]

(20)
�k[Φk+1(z̄) + 2𝜏Θk+1(z̄)]

≤ Φk(z̄) −
𝛿

2

�
‖zk − zk−1‖2 + 𝛽‖zk−1 − wk−1‖2

�
.

(21)
∞�

k=1

�
�
‖zk − zk−1‖2 + ‖zk−1 − wk−1‖2

�
< ∞.

g(z) ≥ g(zk(�)) +
1

�
⟨zk−1(�) − zk(�), z − zk(�)⟩ − ⟨F(wk−1(�)), z − zk(�)⟩

− ⟨Fik−1
(zk−1(�)) − Fik−1

(wk−2(�)), z − zk(�)⟩.

G(z̄) = sup
z∈Z

⟨F(z), z̄ − z⟩ + g(z̄) − g(z).
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where C ⊂ dom g is an arbitrary bounded set. It is known that GC(z̄) is a valid merit 
function, as proven by [29, Lemma 1]. As we are concerned with randomized algo-
rithms, we derive the rate of convergence for the expected gap function �

[
GC(zk)

]
.

Theorem 3.2 Given {zk} generated by Algorithm 1, we define the averaged iterate 
zav
K
=

1

K

∑K

k=1
zk . Let C ⊂ dom g be an arbitrary bounded set. Then under the hypoth-

eses of Theorem 3.1 it holds that

where � =
�

1+�
−

4�2L2(1+�)

�
.

Remark 3.2 If we set p =
1

n
 , � =

p

3
√
2L

 , and � =
1√
1−p

− 1 , the rate will be bounded 

by nL
K

�
3
√
2 supz∈C ‖z0 − z‖2 + 12

√
2 dist (z0,Z

⋆)2
�
 , hence it is O( nL

K
).

The high level idea of the proof is that on top of Lemma 3.2 we sum the result-
ing inequality and accumulate terms Θk(z) . Then we use Jensen’s inequality to 
obtain the result.

There are two intricate points that need attention in these kind of results. First, 
the convergence measure is the expected duality gap �[GC(z

av
K
)] that includes 

the expectation of the supremum. In a standard analysis, it is easy to obtain a 
bound for the supremum of expectation, however obtaining the former requires 
a technique, which is common in the literature for saddle point problems [1, 28]. 
Roughly, the idea is to use an auxiliary iterate to characterize the difference two 
quantities, and show that the error term does not degrade the rate.

Second, as duality gap requires taking a supremum over the domain, the rate 
might contain a diameter term as in [5]. The standard way to adjust this result for 
unbounded domains is to utilize a restricted merit function as in (22) on which the 
rate is obtained [29]. We note that the result in [5] not only involves the domain 
diameter in the final bound, but it also requires the domain diameter as a param-
eter for the algorithm in the general monotone case [5, Corollary 2].

Proof of Theorem 3.2 First, we collect some useful bounds. Consider (20) with a spe-
cific choice z̄ = PZ

⋆(z0) . Taking a full expectation and then summing that inequality, 
we get

which also implies by Young’s inequality that

(22)GC(z̄) = sup
z∈C

⟨F(z), z̄ − z⟩ + g(z̄) − g(z),

�
�
GC(z

av
K
)
�
≤

1

K

�
1

𝜏
sup
z∈C

‖z0 − z‖2 + 2𝜏L2(1 + 𝛽)

𝛿𝛽
dist (z0,Z

⋆)2
�
,

(23)
𝛿

2

∞�

k=0

�
�
‖zk − zk−1‖2 + 𝛽‖zk−1 − wk−1‖2

�

≤ ‖z0 − PZ
⋆(z0)‖2 = dist (z0,Z

∗)2,
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Next, we rewrite (10) as

Let �k = �(Fik
(zk) − Fik

(wk−1) − (F(zk) − F(wk−1))) , then �k

[
�k
]
= 0 . We define the 

process {ẑk} by ẑ0 = z0 and

Note that for Fk = �{z1,… , zk,w1,… ,wk−1} , ẑk is Fk-measurable. It also follows 
that ∀z ∈ Z

which after summation over k = 0,… ,K − 1 yields

With the definition of �k we can rewrite (25) as

We use (12), the definition of Φk , and the arguments in Lemma 3.2 to show that the 
last line of (13) is nonpositive, to obtain

Summing this inequality over k = 0,… ,K − 1 and using bound (28) yields

(24)
��

2(1 + �)

∞�

k=0

�‖zk − wk−1‖2 ≤ dist (z0,Z
∗)2.

(25)

2�Θk+1(z) + ‖zk+1 − z‖2 + 2�⟨F(zk+1) − F(wk), z − zk+1⟩ +
1

2
‖zk+1 − zk‖2

≤ ‖zk − z‖2 + 2�⟨F(zk) − F(wk−1), z − zk⟩ + 2�2L2‖zk − wk−1‖2

+ 2�⟨Fik
(zk) − Fik

(wk−1) − (F(zk) − F(wk−1)), z − zk⟩.

(26)ẑk+1 = ẑk + 𝜈k.

(27)‖ẑk+1 − z‖2 = ‖ẑk − z‖2 + 2⟨𝜈k, ẑk − z⟩ + ‖𝜈k‖2,

(28)
K−1�

k=0

2⟨𝜈k, z − ẑk⟩ ≤ ‖z0 − z‖2 +
K−1�

k=0

‖𝜈k‖2.

2𝜏Θk+1(z) + ‖zk+1 − z‖2 + 2𝜏⟨F(zk+1) − F(wk), z − zk+1⟩ +
1

2
‖zk+1 − zk‖2

≤ ‖zk − z‖2 + 2𝜏⟨F(zk) − F(wk−1), z − zk⟩ + 2𝜏2L2‖zk − wk−1‖2

+ 2⟨𝜈k, z − ẑk⟩ + 2⟨𝜈k, ẑk − zk⟩.

(29)
2𝜏Θk+1(z) + Φk+1(z) +

𝛽

2

�
�k‖zk − wk‖2 − ‖zk − wk‖2

�

≤ Φk(z) + 2⟨𝜈k, z − ẑk⟩ + 2⟨𝜈k, ẑk − zk⟩.
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We now take the supremum of this inequality over z ∈ C and then take a full 
expectation. As ẑk is Fk-measurable, �[�k[⋅]] = �[⋅] , and �k�k = 0 , we have 
�k

�
⟨𝜈k, ẑk − zk⟩

�
= 0 . Using this and that ΦK(z) ≥ 0 by (16), we arrive at

It remains to estimate the last term 
∑K−1

k=0
�‖�k‖2 . For this, we use a standard ine-

quality �‖X − �X‖2 ≤ �‖X‖2 and Lipschitzness of Fik

Plugging this bound into (31), we obtain

Finally, using monotonicity of F, followed by Jensen inequality, we deduce

(30)

2𝜏

K−1�

k=0

Θk+1(z) + ΦK(z) +
𝛽

2

K−1�

k=0

�
�k‖zk − wk‖2 − ‖zk − wk‖2

�

≤ Φ0(z) + 2

K−1�

k=0

⟨𝜈k, z − ẑk⟩ + 2

K−1�

k=0

⟨𝜈k, ẑk − zk⟩

≤ Φ0(z) + ‖z0 − z‖2 + 2

K−1�

k=0

‖𝜈k‖2 + 2

K−1�

k=0

⟨𝜈k, ẑk − zk⟩

= 2‖z0 − z‖2 + 2

K−1�

k=0

‖𝜈k‖2 + 2

K−1�

k=0

⟨𝜈k, ẑk − zk⟩.

(31)��

�
sup
z∈C

K−1�

k=0

Θk+1(z)

�
≤ sup

z∈C

‖z0 − z‖2 +
K−1�

k=0

�‖�k‖2.

(32)

K−1�

k=0

�‖𝜈k‖2 =
K−1�

k=0

�𝜏2‖Fik
(zk) − Fik

(wk−1) − (F(zk) − F(wk−1))‖2

≤ 𝜏2
K−1�

k=0

�‖Fik
(zk) − Fik

(wk−1)‖2 ≤ 𝜏2L2
K−1�

k=0

�‖zk − wk−1‖2

(24)

≤
2𝜏2L2(1 + 𝛽)

𝛿𝛽
dist (z0,Z

⋆)2.

(33)
𝜏�

�
sup
z∈C

K−1�

k=0

Θk+1(z)

�

≤ sup
z∈C

‖z0 − z‖2 + 2𝜏2L2(1 + 𝛽)

𝛿𝛽
dist (z0,Z

⋆)2.

sup
z∈C

K−1�

k=0

Θk+1(z)

≥ sup
z∈C

K�

k=1

�
⟨F(z), zk − z⟩ + g(zk) − g(z)

�
≥ KGC(z

av
K
),
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which combined with (33) finishes the proof.   ◻

It is worth mentioning that even though our method is simple and the con-
vergence rate is O(1/k) as in [5], our complexity result has a worse dependence 
on n, compared to [5]. In particular, our complexity is O(n∕�) instead of the 
O(

√
n∕�) of [5]. This is because our step size has the factor of p which is of the 

order 1
n
 in general and it appears to be tight based on numerical experiments. This 

seems like the cost of handling a more general problem without bounded domain 
assumption. We leave it as an open question to derive a method that works under 
our general assumptions and features favorable complexity guarantees as in [5].

3.3  Convergence rate for strongly monotone case

We show that linear convergence is attained when strong monotonicity is 
assumed.

Theorem 3.3 Let Assumption 1 hold and let F be �-strongly monotone. Let z⋆ be the 
unique solution of  (1). Then for the iterates {zk} generated by Algorithm  1 with 
� =

p

4
√
2L

 , it holds that

Remark 3.3 We analyzed the case when F is strongly monotone, however, the same 
analysis would go through when F is monotone and g is strongly convex. One can 
transfer strong convexity of g to make F strongly monotone.

Proof of Theorem 3.3 We start from (8) with ik = i,

Setting z = z⋆ and using strong monotonicity of F,

Hence, we have

(34)�‖zk − z⋆‖2 ≤
�
1 −

𝜇p

8
√
2L

�k

‖z0 − z⋆‖2.

‖zk+1 − z‖2 + 2�⟨F(zk+1) − F(wk), z − zk+1⟩ + 2�g(zk+1) − 2�g(z)

+ 2�⟨F(zk+1), zk+1 − z⟩ ≤ ‖zk − z‖2 + 2�⟨Fi(zk) − Fi(wk−1), z − zk⟩
+ 2�⟨Fi(zk) − Fi(wk−1), zk − zk+1⟩ − ‖zk+1 − zk‖2

⟨F(zk+1), zk+1 − z⋆⟩ + g(zk+1) − g(z⋆) ≥ ⟨F(z⋆), zk+1 − z⋆⟩ + 𝜇‖zk+1 − z⋆‖2

+ g(zk+1) − g(z⋆) ≥ 𝜇‖zk+1 − z⋆‖2.

(1 + 2𝜏𝜇)‖zk+1 − z⋆‖2 + 2𝜏⟨F(zk+1) − F(wk), z
⋆ − zk+1⟩ + ‖zk+1 − zk‖2

≤ ‖zk − z⋆‖2 + 2𝜏⟨Fi(zk) − Fi(wk−1), z
⋆ − zk⟩

+ 2𝜏⟨Fi(zk) − Fi(wk−1), zk − zk+1⟩.
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Then, we continue as in the proof of Theorem 3.1 until we obtain a stronger version 
of (20) due to the strong monotonicity term

Let ak+1 =
1

2
‖zk+1 − z⋆‖2 and

Note that we have bk+1 +
1

2
‖zk+1 − z⋆‖2 = Φk+1(z

⋆) ≥
1

2
‖zk+1 − z⋆‖2 by (16), hence 

bk+1 ≥ 0.
Using the definitions of ak and bk in (35), it follows that for any � ≤ �,

Next, we derive

where the last inequality follows from  (15) with a shifted index k. Then,  (36) 
becomes

Since � ≤ � is arbitrary, we can choose � such that 1 + 4𝜇𝜏 > 1 +
3𝜀

2
 . For instance, 

we can set

that results in

(35)

�k

�
(1 + 2𝜇𝜏)‖zk+1 − z⋆‖2 + 2𝜏⟨F(zk+1) − F(wk), z

⋆ − zk+1⟩

+
𝛽

2
‖zk − wk‖2 +

1

2
‖zk+1 − zk‖2

�
≤ ‖zk − z⋆‖2 + 2𝜏⟨F(zk) − F(wk−1), z

⋆ − zk⟩

+
𝛽

2
‖zk−1 − wk−1‖2 +

1

2
‖zk − zk−1‖2 −

𝛿

2

�
‖zk − zk−1‖2 + 𝛽‖zk−1 − wk−1‖2

�
.

bk+1 =
1

2
‖zk+1 − z⋆‖2 + 2𝜏⟨F(zk+1) − F(wk), z

⋆ − zk+1⟩ +
1

2
‖zk+1 − zk‖2

+
𝛽

2
‖zk − wk‖2.

(36)
�k

�
(1 + 4��)ak+1 + bk+1

�
≤ ak + bk −

�

2

�
‖zk − zk−1‖2 + �‖zk−1 − wk−1‖2

�
,

(37)RHS of (36) = ak + bk −
�

2
‖zk − zk−1‖2 −

�

2
�‖zk−1 − wk−1‖2

(38)

=
�
1 +

𝜀

2

�
ak +

�
1 −

𝜀

2

�
bk

−
𝜀

4
‖zk − zk−1‖2 −

𝜀𝛽

4
‖zk−1 − wk−1‖2

+ 𝜀𝜏⟨F(zk) − F(wk−1), z
⋆ − zk⟩ ≤

�
1 +

3𝜀

2

�
ak +

�
1 −

𝜀

2

�
bk,

(39)�k

[
(1 + 4��)ak+1 + bk+1

]
≤

(
1 +

3�

2

)
ak +

(
1 −

�

2

)
bk.

(40)� = min {�, 2��},
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Taking a full expectation and using that �
2
= min{

�

2
,��} and b0 = 0 , we obtain

Now it only remains to compute the contraction factor. By our choice of � , we have 
�L =

p

4
√
2
≤

1−
√
1−p

2
√
2

=
�

2
√
2(1+�)

 , and hence,

From � ≤ L it follows that 4𝜇𝜏 =
𝜇p√
2L

≤
p√
2
< 1 and, hence, ��

1+4��
≥

��

2
=

�p

8
√
2L

 . 
Thus, we obtain

which finally implies

  ◻

A key characteristic of our result is that strong monotonicity constant is not required 
in the algorithm as a parameter to obtain the rate. This has been raised as an open ques-
tion by [2] and a partial answer is studied by [7] (see Table 1). Our result gives a full 
answer to this question without using strong monotonicity constant in all cases.

We next discuss the dependence of � in the convergence rate. Our rate has a depend-
ence of 1

�
 compared to 1

�2
 of non-accelerated methods of [2] and the method of [7]. This 

difference is important especially when � is small. On the other hand, in terms of n, our 
complexity has a worse dependence compared to [5] and accelerated method of [2] as 
discussed before (see the discussions in Sect. 1.1 and Section 3.2).

(41)

�k

[
(1 + 4��)ak+1 + bk+1

]
≤ (1 + 3��)ak +

(
1 −

�

2

)
bk

=

(
1 −

��

1 + 4��

)
(1 + 4��)ak +

(
1 −

�

2

)
bk

≤

(
1 −min

{
��

1 + 4��
,
�

2

})(
(1 + 4��)ak + bk

)
.

�
[
(1 + 4��)ak+1 + bk+1

]
≤

(
1 −min

{
��

1 + 4��
,
�

2

})
�
[
(1 + 4��)ak + bk

]

≤

(
1 −min

{
��

1 + 4��
,
�

2

})k+1

(1 + 4��)a0.

(42)� =
�

1 + �
−

4�2L2(1 + �)

�
≥

�

2(1 + �)
≥

1 −
√
1 − p

2
≥

p

4
.

min

�
��

1 + 4��
,
�

2

�
≥ min

�
�p

8
√
2L

,
p

8

�
=

�p

8
√
2L

,

�‖zk+1 − z⋆‖2 ≤
�
1 −

𝜇p

8
√
2L

�k+1

‖z0 − z⋆‖2.
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3.4  Beyond monotonicity

Lastly, we illustrate that our method has convergence guarantees for a class of non-
monotone problems. There exist several relaxations of monotonicity that are used in 
the literature [10, 17, 22, 24]. Among these, we assume the existence of the solutions to 
Minty variational inequality given as

Under (43), we can drop the monotonicity assumption and show almost sure subse-
quential convergence of the iterates of our method. Naturally, in this case one can no 
longer show sequential convergence as with monotonicity (see Theorem 3.1).

Theorem 3.4 Suppose that Assumption 1 (a), (c), (d) and the condition  (43) hold. 
Then almost surely all cluster points of the sequence {zk} generated by Algorithm 1 
are in Z⋆.

Proof We will proceed as in  Theorem  3.1 and [22, Theorem  6]. We note that 
Lemma 3.2 does not use monotonicity of F, thus its result follows in this case. In the 
inequality

we plug in z = ẑ for a point satisfying (43).
Then, by (43), we have

We then argue the same way as in Theorem 3.1 to conclude that almost surely, {zk} 
is bounded and cluster points of {zk} are in Z⋆.

Note that the steps in Theorem 3.1 for showing sequential convergence relies on 
the choice of z as an arbitrary point in Z⋆ , which is not the case here, therefore, we 
can only use the arguments from  Theorem  3.1 for showing subsequential conver-
gence.  ◻

4  Extensions

We illustrate extensions of our results to monotone inclusions and Bregman projec-
tions. The proofs for this section are given in the appendix in Section 7.

4.1  Monotone inclusions

We have chosen to focus on monotone VIs in the main part of the paper for being 
able to derive sublinear rates for the gap function. In this section, we show that 
our analysis extends directly for solving monotone inclusions. In this case, we are 

(43)∃ẑ ∈ Z ∶ ⟨F(z), z − ẑ⟩ + g(z) − g(ẑ) ≥ 0, ∀z ∈ Z.

�k[Φk+1(z) + 2�Θk+1(z)] ≤ Φk(z).

Θk+1(ẑ) = ⟨F(zk+1), zk+1 − ẑ⟩ + g(zk+1) − g(ẑ) ≥ 0.
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interested in finding z such that 0 ∈ (A + F)(z) , where A,  F are monotone opera-
tors and each Fi is Lipschitz with the form F =

1

n

∑n

i=1
Fi . In this case, one changes 

the prox operator in the algorithm, to resolvent operator of A which is defined as 
J�A(z) = (I + �A)−1(z) . Then, one can use Lemma  3.1 as directly given in  [23, 
Proposition 2.3] to prove an analogous result of Theorem 3.1 for solving monotone 
inclusions. Moreover, when A + F is strongly monotone, one can prove an analogue 
of Theorem 3.3. We prove the former result and we note that the latter can be shown 
by applying the steps in Theorem 3.3 on top of Theorem 4.1, which we do not repeat 
for brevity.

Theorem 4.1 Let A ∶ Z ⇉ Z be maximally monotone and F ∶ Z → Z be monotone 
with F =

1

n

∑n

i=1
Fi , where Fi is L-Lipschitz for all i. Assume that (A + F)−1(0) is 

nonempty and let the iterates {zk} be generated by Algorithm 1 with the update for 
zk+1

Then, for 𝜏 <
1−

√
1−p

2L
 , almost surely there exist z⋆ ∈ (A + F)−1(0) such that zk → z⋆.

4.2  Bregman distances

We developed our analysis in the Euclidean setting, relying on �2-norm for simplic-
ity. However, we can also generalize it to proximal operators involving Bregman dis-
tances. In this setting, we have a distance generating function h ∶ Z → ℝ , which is 
1-strongly convex and continuous. We follow the standard convention to assume that 
subdifferential of h admits a continuous selection, which means that there exists a 
continuous function ∇h such that ∇h(x) ∈ �h(x) for all x ∈ dom �h . We define the 
Bregman distance as Dh(z, z̄) = h(z) − h(z̄) − ⟨∇h(z̄), z − z̄⟩ . Then, we will change 
the proximal step 4 of Algorithm 1 with

We prove an analogue of Lemma 3.2 with Bregman distances from which the con-
vergence rate results will follow.

Lemma 4.1 Let Assumption 1 hold and

Moreover, suppose 𝜏 <
1−

√
1−p

2L
 , � =

1√
1−p

− 1 , and the iterates {zk} are generated by 
Algorithm 1 with the update (45) for zk+1 . Then for any z ∈ dom g,

(44)zk+1 = J�A(zk − �F(wk) − �(Fik
(zk) − Fik

(wk−1))).

(45)

zk+1 = argmin z

�
g(z) + ⟨F(wk) + Fik

(zk) − Fik
(wk−1), z − zk⟩ +

1

�
Dh(z, zk)

�
.

Φk+1(z) ∶= Dh(z, zk+1) + �⟨F(zk+1) − F(wk), z − zk+1⟩ +
�

4
‖zk − wk‖2

+
1

2
Dh(zk+1, zk).
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5  Numerical verification

In this section, we include preliminary experimental results for our algorithm. We 
would like to note that these results are mainly for verifying our theoretical results 
and are not intended to serve as complete benchmarks. We suspect that for an exten-
sive practical comparison, some practical enhancements of our method similar to 
proximal-point acceleration from [2] or restarting from [7] may be useful. We leave 
such investigations for future work.

First, we apply our method to the unconstrained bilinear problem. It was shown 
in [7] that this simple problem is particularly challenging for stochastic methods, 
due to unboundedness of the domain, where the standard methods, such as stochas-
tic extragradient method [19], diverges. Our assumptions are general enough to 
cover this case and we now verify in practice that our method indeed converges for 
this problem by setting d = n = 100 and generating Ai ∈ ℝ

d×d randomly with distri-
bution N(0, 1)

For this experiment, we test the tightness of our step size rule by progressively 
increasing it. Recall that our step size is � =

p

cL
 , where c = 4 is suggested in our 

analysis, see Corollary 3.1. We try the values of c = {0.5, 1, 2, 4} and observe that 
for c = 0.5 the algorithm diverges, see Fig. 1(left). The message of this experiment 
is that even though slightly higher step sizes than what is allowed in our theory 
might work, it is not possible to significantly increase it.

The second problem we consider is constrained minimization, which is an 
instance where the dual domain is not necessarily bounded. We want to solve

�k[Φk+1(z) + �Θk+1(z)] ≤ Φk(z).

(46)min
x∈ℝd

max
y∈ℝd

1

n

n�

i=1

⟨Aix, y⟩.

min
x∈C

f (x) s.t. hi(x) ≤ 0, i = 1,… ,m,

Fig. 1  Left: bilinear problem. Middle: Constrained minimization with data generated by normal distribu-
tion. Right: Constrained minimization with data generated by uniform distribution
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where f (x) = 1

2
‖x − u‖2 for some u ∈ Z and hi(x) = ‖Aix − bi‖2 − �i for Ai ∈ ℝ

d×d , 
bi ∈ ℝ

d , �i ∈ ℝ++ , and C is a unit ball. In other words, we want to find a projection 
of u onto the intersection given by C and the constraint inequalities {x ∶ hi(x) ≤ 0}.

Introducing Lagrange multipliers yi for each constraint, we obtain (see Sec-
tion 7.3 for further details)

As the Lipschitz constant in this problem does not admit a closed-form expres-
sion, we first estimate the Lipschitz constant by finding an L such that deterministic 
method converges. Next, we note that even though we analyzed the algorithm with 
a single step size � for both primal and dual variables x, y, one can use different step 
sizes for primal and dual variables (see [22, Section 4.1]). Therefore, we tuned the 
scaling of primal and dual step sizes for both methods with one random instance and 
we used the same scaling for all tests for both methods.

We set p = 1∕m . Every iteration, the deterministic method needs to go through 
all m constraints to compute 

∑m

i=1
yi∇hi(x) , whereas our method computes ∇hi(x) 

for only one i. First setup is with m = 400 , d = 100 , and the data is generated with 
the normal distribution N(0, 1) . Second setup is with m = 400 , d = 50 , and the data 
is generated with the uniform distribution U(−1, 1) . We ran both setups with 10 dif-
ferent instances of randomly generated data and plotted all results, see Fig. 1. We 
observe that in one instance, the tuned scaling diverges for deterministic method, 
whereas our method with the same tuning converged in all cases.

6  Conclusion

In this work, we proposed a variance reduced algorithm for solving monotone VIs 
without assuming bilinearity, strong monotonicity, cocoercivity or boundedness. 
Even though our method is the first to converge under the same set of assumptions 
as deterministic methods, a drawback of our approach is the lack of complexity 
improvements.

In particular, previous approach of [5] showed complexity improvements for 
bilinear games, while needing more assumptions than deterministic methods to 
converge. Thus, an important open problem is to obtain a method that i) converges 
under the minimal set of assumptions as our algorithm, ii) features improved com-
plexity guarantees compared to deterministic methods, while solving structured 
problems such as bilinear games such as [5] to obtain the best of both worlds.

min
x∈ℝd

max
y∈ℝm

+

f (x) +

m∑

i=1

yihi(x).
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7. Appendix

7.1 Proofs for Sect. 3

Proof of Lemma 3.1 By using the definition of proximal operator and convexity of g, 
we have for all x ∈ Z

Since 2⟨a, b⟩ = ‖a‖2 + ‖b‖2 − ‖a − b‖2 , ∀a, b , it follows that

Simple rearrangements give

and

Using the last three equalities in (47) completes the result.   ◻

7.2 Proofs for Sect. 4

We first need a generalized version of Lemma  3.1. In fact, this is the exact form 
proven in [23], therefore we do not provide its proof.

Lemma 7.1 [23, Proposition 2.3] Let A ∶ Z ⇉ Z be maximally monotone and let 
x1,U0,U1 , V1 ∈ Z be arbitrary points. Define x2 as

Then for all x ∈ Z , V2 ∈ Z , and U ∈ −A(x) , we have

7.2.1 Proof of Theorem 4.1

Proof We will start similar to Lemma  3.2. After setting U0 = �Fi(wk−1) , 
U1 = �F(wk) , V1 = �Fi(zk) , V2 = �F(zk+1) , x1 = zk , x2 = zk+1 with ik = i and plug-
ging into Lemma 7.1, we have

(47)
g(x) ≥ g(x2) + ⟨x1 − U1 − (V1 − U0) − x2, x − x2⟩

= g(x2) + ⟨x1 − x2, x − x2⟩ − ⟨U1, x − x2⟩ − ⟨V1 − U0, x − x2⟩.

2⟨x1 − x2, x − x2⟩ = ‖x1 − x2‖2 + ‖x − x2‖2 − ‖x − x1‖2.

−⟨U1, x − x2⟩ = ⟨V2 − U1, x − x2⟩ − ⟨V2, x − x2⟩

−⟨V1 − U0, x − x2⟩ = −⟨V1 − U0, x − x1⟩ − ⟨V1 − U0, x1 − x2⟩.

(48)x2 = JA(x1 − U1 − (V1 − U0)).

(49)
‖x2 − x‖2 + 2⟨V2 − U1, x − x2⟩ + 2⟨V2 − U, x2 − x⟩

≤ ‖x1 − x‖2 + 2⟨V1 − U0, x − x1⟩ + 2⟨V1 − U0, x1 − x2⟩ − ‖x1 − x2‖2.
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We use monotonicity for the last term and get

The rest of Lemma 3.2 follows in this case the same way with the lack of the terms 
with Θk+1(z) . Then, similar arguments as in Theorem 3.1 with the changes of i) not 
having Θk+1(z) , ii) using the definition of resolvent instead of proximal operator to 
show cluster points are solutions, will give the result (see also [23, Theorem 2.5]).  
 ◻

We now present a version of Lemma 3.1 with the proximal operator using Bregman 
distance.

Lemma 7.2 Let g ∶ Z → ℝ ∪ {+∞} be proper lower semicontinuous convex and let 
x1,U0,U1 , V1 ∈ Z be arbitrary points. Define x2 as

Then, for all x ∈ Z , V2 ∈ Z we have

Proof By the definition of x2 , it follows from [35, Property 1] that

For the bilinear term, we argue the same as Lemma 3.1.   ◻

7.2.2 Proof of Lemma 4.1

Proof We will follow the proof of Lemma 3.2 with suitable changes for Bregman 
distances.

First, set U0 = �Fi(wk−1) , U1 = �F(wk) , V1 = �Fi(zk) , V2 = �F(zk+1) , x1 = zk , then 
x2 = zk+1 with ik = i and we plug these into (53) to get

(50)

‖zk+1 − z‖2 + 2�⟨F(zk+1) − F(wk), z − zk+1⟩ ≤ ‖zk − z‖2

+ 2�⟨Fi(zk) − Fi(wk−1), z − zk⟩
+ 2�⟨Fi(zk) − Fi(wk−1), zk − zk+1⟩ − ‖zk+1 − zk‖2

− 2�⟨F(zk+1) − F(z), zk+1 − z⟩.

(51)
‖zk+1 − z‖2 + 2�⟨F(zk+1) − F(wk), z − zk+1⟩ ≤ ‖zk − z‖2 − ‖zk+1 − zk‖2

+ 2�⟨Fi(zk) − Fi(wk−1), z − zk⟩ + 2�⟨Fi(zk) − Fi(wk−1), zk − zk+1⟩.

(52)x2 = argmin z∈Z

�
g(z) + ⟨U1 + (V1 − U0), z − x1⟩ + Dh(z, x1)

�
.

(53)
Dh(x, x2) + ⟨V2 − U1, z − x2⟩ + ⟨V2, x2 − x⟩ + g(x2) − g(x)

≤ Dh(x, x1) + ⟨V1 − U0, x − x1⟩ + ⟨V1 − U0, x1 − x2⟩ − Dh(x2, x1).

g(x) ≥ g(x2) − ⟨U1 + V1 − U0, x − x2⟩ − Dh(x, x1) + Dh(x, x2) + Dh(x2, x1).
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First, note that by Lipschitzness of Fi , Cauchy-Schwarz, Young’s inequalities, and 
since 1

2
‖zk − zk−1‖2 ≤ Dh(zk, zk−1),

Thus, it follows that

Taking expectation conditioning on the knowledge of zk,wk−1 and using that 
�kFi(zk) = F(zk) , �kFi(wk−1) = F(wk−1) , we obtain

Adding

which follows by the definition of wk , to (56), we obtain

To show that the last line is nonpositive, we use  (14), Young’s inequality as in 
Lemma 3.2 and 1

2
‖zk − zk−1‖2 ≤ Dh(zk, zk−1).

Nonnegativity of Φk follows as in  Theorem  3.1 after using 
1

2
‖zk − zk−1‖2 ≤ Dh(zk, zk−1) .   ◻

Dh(z, zk+1) + �⟨F(zk+1) − F(wk), z − zk+1⟩ + �(⟨F(zk+1), zk+1 − z⟩
+ g(zk+1) − g(z)) ≤ Dh(z, zk) + �⟨Fi(zk) − Fi(wk−1), z − zk⟩
+ �⟨Fi(zk) − Fi(wk−1), zk − zk+1⟩ − Dh(zk+1, zk).

(54)

�⟨Fi(zk) − Fi(wk−1), zk − zk+1⟩

≤ �2L2‖zk − wk−1‖2 +
1

4
‖zk − zk+1‖2

≤ �2L2‖zk − wk−1‖2 +
1

2
Dh(zk+1, zk)

(55)
Dh(z, zk+1) + �⟨F(zk+1) − F(wk), z − zk+1⟩ +

1

2
Dh(zk+1, zk) + �Θk+1(z)

≤ Dh(z, zk) + �⟨Fi(zk) − Fi(wk−1), z − zk⟩ + �2L2‖zk − wk−1‖2.

(56)

�kDh(z, zk+1) + ��k⟨F(zk+1) − F(wk), z − zk+1⟩

+
1

2
�kDh(zk+1, zk) + ��kΘk+1(z)

≤ Dh(z, zk) + �⟨F(zk) − F(wk−1), z − zk⟩ + �2L2‖zk − wk−1‖2.

(57)
�

4
�k‖zk − wk‖2 =

�(1 − p)

4
‖zk − wk−1‖2,

(58)

�k[Φk+1(z) + Θk+1(z)] ≤ Φk(z)

+
�
�2L2 +

�(1 − p)

4

�
‖zk − wk−1‖2 −

1

2
Dh(zk, zk−1) −

�

4
‖zk−1 − wk−1‖2.
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7.3 Experiment details

Only for this section, we will use superscripts for iterates rather than subscripts 
that we have used up to now. Recall that our problem is

This problem is equivalent to the following variational inequality

where

The notation reads: h(x) = (h1(x),… , hm(x)) and ∇h(x) = (∇h1(x),… ,∇hm(x)) . Let 
us note h ∶ ℝ

d
→ ℝ

m , ∇h(x) ∈ ℝ
m×d . We note that the residual in y-axes of Fig. 1 is 

computed as ‖xt − prox g(xt − F(xt))‖.
We split F as follows

where (�i)mi=1 is a standard basis in ℝm.
Hence, Algorithm 1, with different step sizes for primal and dual, will be
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min
x∈ℝd

max
y∈ℝm

+

f (x) +

m∑

i=1

yihi(x).

⟨F(z∗), z − z∗⟩ ≥ 0 ∀z ∈ C ×ℝ
m
+
,

z = (x, y), F(z) =

�
∇f (x) +

∑m

i=1
yi∇hi(x)

−h(x)

�
=

�
F(1)(z)

F(2)(z)

�

F(z) =
1

m

m∑

i=1

Fi(z) with Fi(z) =

(
f (x) + myi∇hi(x)

−mhi(x)�i

)
=

(
F
(1)

i
(z)

F
(2)

i
(z)

)
,

(59)

xk+1 = PC

(
xk − �F(1)(uk, vk) − �(F

(1)

i
(xk, yk) − F

(1)

i
(uk−1, vk−1))

)

yk+1 = P
ℝ+

m
(yk − �F(2)(uk, vk) − �(F

(2)

i
(xk, yk) − F

(2)

i
(uk−1, vk−1))

)

(uk+1, vk+1) =

{
(xk+1, yk+1) with probability p

(uk, vk) with probability 1 − p
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