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Abstract: The amyloid cascade is central for the neurodegeneration disease pathology, including 
Alzheimer’s and Parkinson’s, and remains the focus of much current research. S100A9 protein drives 
the amyloid-neuroinfammatory cascade in these diseases. DOPA and cyclen-based compounds 
were used as amyloid modifers and inhibitors previously, and DOPA is also used as a precursor of 
dopamine in Parkinson’s treatment. Here, by using fuorescence titration experiments we showed 
that fve selected ligands: DOPA-D-H-DOPA, DOPA-H-H-DOPA, DOPA-D-H, DOPA-cyclen, and 
H-E-cyclen, bind to S100A9 with apparent Kd in the sub-micromolar range. Ligand docking and 
molecular dynamic simulation showed that all compounds bind to S100A9 in more than one binding 
site and with different ligand mobility and H-bonds involved in each site, which all together is 
consistent with the apparent binding determined in fuorescence experiments. By using amyloid 
kinetic analysis, monitored by thiofavin-T fuorescence, and AFM imaging, we found that S100A9 
co-aggregation with these compounds does not hinder amyloid formation but leads to morphological 
changes in the amyloid fbrils, manifested in fbril thickening. Thicker fbrils were not observed upon 
fbrillation of S100A9 alone and may infuence the amyloid tissue propagation and modulate S100A9 
amyloid assembly as part of the amyloid-neuroinfammatory cascade in neurodegenerative diseases. 

Keywords: amyloid; binding; cyclen; DOPA; morphology; S100A9 

1. Introduction 

Amyloid formation is a widespread phenomenon based on the generic property of the 
polypeptide chain to self-assemble into a cross-β-sheet containing oligomers and fbrils [1,2]. 
Their growth and accumulation are manifested in numerous amyloid-related diseases [3–5], 
including neurodegenerative diseases, such as Alzheimer’s and Parkinson’s. Despite the 
key clinical signifcance of amyloid formation, the mechanisms of its inhibition, reversal, 
and modifcation remain elusive. The cross-β-sheet structure at the core of amyloid fbrils is 
stabilized by the numerous hydrogen bonds of the polypeptide backbone. In addition, π-π 
stacking of aromatic residues can also contribute to amyloid self-assembly and stability [6]. 
Small phenolic compounds alone or conjugated with various groups were found to be 
effective in targeting the monomeric polypeptides as well as their aggregates. They have 
shown potential activity in animal models of Parkinson’s disease, and some have already 
entered clinical trials [7–10]. 
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Here, we consider the effect of cyclic compounds and their conjugates on the amyloid 
formation of pro-infammatory S100A9 protein, which was found to be a common denomi-
nator in Alzheimer’s and Parkinson’s diseases as well as in traumatic brain injury, which is 
considered to be a pre-cursor state for neurodegenerative ailments [11–13]. Indeed, amy-
loid formation is commonly associated with neuroinfammation, and pro-infammatory 
S100A9 protein acts both as an alarmin, inducing the production of pro-infammatory 
cytokines, and as a highly amyloidogenic protein, which self-assembles into amyloids 
under physiological conditions [14,15]. By combining in vitro, ex vivo, and in vivo studies, 
we have demonstrated that S100A9 may drive the amyloid-neuroinfammatory cascade in 
neurodegeneration both in humans and in a mice model [11–13,16,17]. Moreover, S100A9 
co-aggregates and forms joint complexes with major amyloid polypeptides, such as amy-
loid β (Aβ) peptide in Alzheimer’s disease [11,18] and with α-synuclein in Parkinson’s [12]. 
This would imply that upon altering the aggregation pathways and fnal structures of one 
component of the amyloid cascade, other components and the whole cascade could also 
be modifed. 

Furthermore, growing evidence demonstrates that apart from disease-associated amy-
loids, there are also functional amyloids, which play useful roles in numerous biological 
processes in many organisms, ranging from mammals and insects to fungi and bacte-
ria [19,20]. For example, peptide and protein hormones can be stored in an inert amyloid 
state in secretory granules of the endocrine system [21], transcription and translation can 
be regulated by prion proteins in yeast [22], spidroins enhance spider web tensile strength, 
and bacterial functional amyloids, such as curli and FapC, participate in the formation of 
bacterial bioflms [19]. In recent years, the possibility of cross-seeding of disease-associated 
amyloids by functional bacterial amyloids has received increasing attention as this mecha-
nism can be linked to the gut–brain axis of neurodegeneration disease development upon 
changes of the gut microbiome [23,24]. It has been shown that the aggregation and toxicity 
of Aβ, the pathogenic peptide associated with Alzheimer’s disease, can be seeded by 
FapC amyloid fragments of Pseudomonas aeruginosa, which colonizes the gut microbiome 
through infections [24]. Thus, the link between the gut microbiome, their metabolites, and 
neurological disorders, such as Alzheimer’s and Parkinson’s [23,24], suggests an additional 
pathway that attunes amyloid formation of disease-related proteins via modulation of 
amyloid self-assembly of other amyloid counterparts and their amyloid seeds. 

To target S100A9 and its amyloids, we developed conjugated molecules by combining 
cyclic compounds, which may potentially target aromatic residues and hydrophobic regions 
within the amyloid structures, with charged di-peptides, in order to make the hydrophobic 
moiety more soluble. One group is based on L-DOPA—L-3,4-dihydroxyphenylalanine 
(DOPA), which is an amino acid that is made and used as part of the normal biology in 
humans as well as in animals and plants. DOPA is produced from the amino acid L-tyrosine 
by the enzyme tyrosine hydroxylase and can act as an L-tyrosine mimetic to be incorporated 
into proteins in place of L-tyrosine, generating protease-resistant and aggregation-prone 
proteins [25]. Sufferers from Parkinson’s disease are exposed to DOPA over many years 
as a therapeutic agent for their medical condition as it serves as a pre-cursor for the 
catecholamine neurotransmitter dopamine. Dopamine is produced in the brain and plays 
several important biological roles, acting as both a neurotransmitter and hormone [25–27]. 
Dopamine production and homeostasis in neurons is regulated by α-synuclein through 
the interaction with tyrosine hydroxylase. It has been reported that dopamine can form 
adducts with α-synuclein in vitro, which stabilize the α-synuclein protofbrils and inhibit 
its fbril formation, while certain dopamine derivatives alleviated α-synuclein-engendered 
defects in a Parkinson’s animal model [28–32]. Naphthoquinone–DOPA hybrids inhibit 
α-synuclein and tau aggregation, disrupt preformed fbrils [33,34], and attenuate aggregate-
induced toxicity [33]. DOPA and DOPA-conjugated naphtalenediimides also modulate Aβ 
toxicity [35]. Moreover, recent studies have reported the self-assembly of DOPA-containing 
building blocks into nanometric fbers [36,37], characterized by a unique functionality [38]. 
In addition, a short synthetic pentapeptide, containing two DOPA moieties, D-DOPA-N-
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K-DOPA, retained the ability to spontaneously self-assemble into amyloid-like fbrillar 
assemblies in water, and those assemblies displayed structural properties characteristic 
of amyloids [39]. Here, we linked DOPA to negatively charged aspartic acid residue (D) 
and positively charged histidine residue (H) to produce the following soluble compounds: 
DOPA-D-H, DOPA-D-H-DOPA, and DOPA-H-H-DOPA (Figure 1). 
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Figure 1. Schematic presentation of chemical structures and physico-chemical properties of selected compounds: DOPA-D-
H-DOPA, DOPA-H-H-DOPA, DOPA-D-H, H-E-cyclen, and DOPA-cyclen. Schematic presentations of molecules are shown 
combined with ADME radar diagrams, depicting their six physico-chemical properties and drug likeness, i.e., how much 
the molecular properties fall into the pink area. 
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In addition, DOPA was linked to saturated macrocyclic polyamine cyclen—1,4,7,10-
tetraazacyclododecane (cyclen), which belongs to a class of nitrogen-containing heterocyclic 
compounds, and DOPA-cyclen and H-E-cyclen were used here to compare their effect 
on S100A9 fbrillation vs. DOPA-based conjugates. Macrocyclic polyamines, including 
cyclen, have been very broadly used in medicinal chemistry as therapeutic or diagnostic 
agents [40,41] as well as to target amyloid formation via chelating metal ions [42–45]. Cy-
clen was also linked to recognition of the amino acid sequence KLVFF to target and inhibit 
the aggregation of Aβ peptide [46]. Cyclen increases the solubility of DOPA and provides 
additional modes of interactions with S100A9. Here, we applied a range of experimental 
techniques, such as thiofavin-T (ThT)-based amyloid kinetic monitoring, atomic force mi-
croscopy (AFM) analysis, and S100A9 titration with the compounds of interest, combining 
them with computational analysis performed by ligand docking and molecular dynamic 
(MD) simulation, to draw a broad picture of the inter-molecular interactions between the 
selected compounds and S100A9, and their effect on S100A9 amyloid self-assembly. 

2. Results 
2.1. Computation Analysis of the Physico-Chemical Properties of Molecular Compounds and Their 
Prospective Drug Likeness 

Comparative description of different ligand structures and their general physico-
chemical properties may facilitate an analysis of their interactions with S100A9 protein and 
shed light on their prospective drug likeness [47,48]. Here, we present a summary of the six 
basic molecular properties of our compounds in the ADME radar diagrams [49], as shown 
in Figure 1, which depict: ligand fexibility (FLEX), relative sphere of sp3 carbon atoms 
(INSATU), LogP values, or partition coeffcient, indicating the concentration of solute 
in the organic and aqueous partition (INSOLU), polar surface area (POLAR), molecular 
mass (SIZE), and hydrophobic surface area (LIPO). The pink area in the ADME radar 
diagram represents the optimal Lipinski values [49], while the superimposed bright red 
lines represent the values, which are specifc for each compound [49]. It is important to 
note that many of the DOPA and cyclen-based ligands have closely positioned charged 
groups, which infuences the pKa values for each of these groups [47]. The shifts in pKa 
values were refected in the calculations of the presented pI values and in the compound 
net charge at physiological pH 7.2 as illustrated in Figure 1. Most notably, four closely 
positioned amino groups in the cyclen ring have signifcant effects on the pKa for each 
amine in a sequence of protonation events. The calculated pKa values for two secondary 
amines in cyclen are 9.29 and 8.6, respectively, while the pKa for the third secondary amine 
and last protonation site in the tertiary amine is 5.41 and 3.0, respectively. Consequently, at 
physiological pH, the cyclen ring has a net charge of + 2. The three analyzed compounds 
have pI values close to physiological, while the pI of DOPA-D-H-DOPA and DOPA-D-H 
shifted to acidic pH due to the negative charges of the DOPA rings. 

The prospective drug likeness of the compounds is defned by how much their pro-
fles fall within the optimal region of the ADME radar diagram, though this is a very 
approximate estimate [49]. Among the fve compounds, DOPA-cyclen is characterized by 
the optimal Lipinski values within the radar diagram, while the four others have some 
parameters with relatively low deviation from the optimal Lipinski values. 

2.2. Kinetic Analysis of S100A9 Amyloid Formation in the Absence and Presence of DOPA and 
Cyclen-Based Compounds Monitored by ThT Fluorescence 

The amyloid formation of S100A9 in the absence and presence of DOPA and cyclen-
based compounds was monitored by ThT fuorescence and is presented in Figure 2. The 
amyloid formation correlates with the increase of the ThT fuorescence, and the initial 
parts of the fbrillation kinetic curves were ftted by using an isodesmic polymerization 
model [50,51] to derive the kinetic rates; this model has previously been used in kinetic 
analysis of S100A9 amyloid self-assembly [52,53]. The rates of fbrillation in the presence 
of the compounds do not deviate signifcantly from the rate of self-assembly of S100A9 
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alone (Table 1). An increase of k by a factor of two was observed only in the presence of 
DOPA-H-H-DOPA and DOPA-cyclen at the ratio of S100A9 to compound of 1:10. 
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have also observed previously upon prolonged aggregation of S100A9 [54]. At the molar 
ratio of S100A9 to DOPA-based compounds of 1:10, the height of fibrils became even 
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Figure 2. Kinetics of S100A9 amyloid formation in the absence and presence of DOPA and cyclen-based compounds 
monitored by ThT fuorescence. (a) Amyloid kinetics monitored at the ratio of S100A9 to corresponding compound of 1:1 
and (b) 1:10, respectively. Symbols indicating the experimental data points for S100A9 alone or with respective compounds 
are shown in the caption and the corresponding lines indicate the ftting with the isodesmic polymerization model. The 
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Table 1. Kinetic rate constants of S100A9 amyloid formation in the present of compounds derived 
from the kinetic experiments monitored by ThT fuorescence. 

Protein and Compounds Kinetic Rate Constants and Their Rations 

1:1 1:10 

k, µM−1s−1 k/kS100A9 k, µM−1s−1 k/kS100A9 

S100A9 0.066 1 0.066 1 
DOPA-D-H-DOPA 0.06 0.91 0.066 1 
DOPA-H-H-DOPA 0.077 1.17 0.134 2.03 

DOPA-D-H 0.063 0.95 0.045 0.69 
H-E-cyclen 0.069 1.05 0.048 0.72 

DOPA-cyclen 0.062 0.93 0.133 2.02 

Incubation of each individual compound with ThT over the same period of time did 
not lead to an increase of the ThT signal (Figure S1), indicating that individual compounds 
do not form amyloids themselves under our experimental conditions. 

2.3. AFM Imaging of S100A9 Amyloids Aggregated Alone and Together with 
Corresponding Compounds 

In order to complement the kinetic analysis, we also monitored the S100A9 amyloid 
formation by AFM imaging (Figure 3). The amyloid fbrils of S100A9 alone that developed 
after 100 h of incubation in PBS, pH 7.4, and 42 ◦C were very fexible, relatively short, i.e., 
within 200–600 nm length, and also characterized by a narrow distribution of the heights 
with a median at ca. 1.6 nm in the AFM cross-sections. In the presence of all DOPA-based 
compounds, the fbrils of S100A9 become thicker with median heights of ca. 2.0–2.2 nm, 
and generally longer (Figure 3). In the presence of DOPA-D-H-DOPA and DOPA-D-H, 
S100A9 fbrils tended to clump together, forming large clustered aggregates, which we 
have also observed previously upon prolonged aggregation of S100A9 [54]. At the molar 
ratio of S100A9 to DOPA-based compounds of 1:10, the height of fbrils became even 
thicker, shifting towards 2.2–2.8 nm median height and in the case of DOPA-D-H-DOPA to 
3.0–3.2 nm (Figure 3), while their lengths remained about the same as at the 1:1 molar ratio. 
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Figure 3. AFM imaging of S100A9 fbrils in the absence and presence of DOPA and cyclen-based 
compounds and the analysis of fbril height distributions. (a) Representative AFM image of S100A9 
fbrils incubated alone. (b,c) Distribution of fbril heights measured in AFM cross-sections. The 
same distribution is shown in both columns to facilitate the comparison with the following height 
distributions carried out in the presence of compounds. (d,g,j,m,p) Representative AFM images of 
S100A9 fbrils in the presence of DOPA and cyclen-based compounds at a 1:1 molar ratio of S100A9 to 
compound. (e,h,k,n,q) Distributions of fbril heights measured in AFM cross-sections at the S100A9 
to compound molar ratio of 1:1 and (f,i,l,o,r) at molar ratio of 1:10. Image sizes are 2.5 × 2.5 µm. The 
compounds and molar ratios are indicated above the fgures. Samples were incubated for 50 h in 
PBS, pH 7.4, and 42 ◦C. 
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S100A9 fbrils incubated in the presence of H-E-cyclen at the protein to compound 
molar ratio of 1:1 did not lead to thickening of amyloid fbrils (Figure 3). Some thickening 
of fbrils with a median of 2.0 nm was observed upon incubation at a 1:10 molar ratio 
of S100A9 to compound (Figure 3). This indicates that DOPA-based compounds induce 
more pronounced fbril thickening, even in the presence of cyclen, i.e., in the case of the 
DOPA-cyclen compound. 

2.4. Titration of S100A9 with DOPA and Cyclen-Based Compounds Followed by 
Intrinsic Fluorescence 

S100A9 was titrated by each compound of interest following the changes in intrinsic 
fuorescence intensity, since S100A9 has one aromatic residue: Trp 88. Normalized changes 
of the fuorescence intensity upon corresponding ligand binding are presented in Figure 4. 
The ftting was performed using a single binding site model to determine the apparent 
dissociation constant for each compound. All apparent dissociation constants Kd were 
within the same sub-micromolar range. A twice larger Kd was determined only for DOPA-
D-H-DOPA binding. The fuorescence spectrum maxima in all complexes of S100A9 dimer 
with the corresponding compounds were within 342–343 nm, indicating that there were no 
signifcant changes in the Trp 88 environment upon ligand binding. 
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75 µM S100A9, PBS, pH 7.4, and 20 ◦C. 

2.5. Ligand Docking 

The structures of S100A9 homodimer [55] in complex with DOPA and cyclen-based 
compounds (Figure 1) were described by using a combination of ligand docking and 
all-atom MD simulation [56]. Molecular docking was used for the initial search of the 
binding sites of those ligands on S100A9 homodimer [57]. Docking showed that the ligands 
can bind to three distinct areas on S100A9 homodimer, with the initial limit for potential 
binding sites set to 9 (Figure 5). 

To depict the binding sites and cavities on the molecular surface more clearly, we 
showed S100A9 molecules in three different presentations, including the ribbon diagrams 
and two Connolly surface models refecting the corresponding electric felds [58] and the 
surface polarities [57]. Only one site, involving the central shallow diagonal groove at the 
S100A9 homo-dimer interface, accommodates all DOPA and cyclen-based ligands. The 
diagonal groove is formed by the frst 27 amino acid residues of each monomer N-termini, 
including the frst helices (residues 6–27) (Figure 5a). At each end, the groove is limited by 
the last 20 amino acid residues of each monomer C-termini. 
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Since the ligands differ in their sizes, charges, and conformations (Figure 1), all these 
are refected in their binding to S100A9 dimer. The ligands have a few groups, which can 
act as H-bond donors and acceptors, while the S100A9 surface is highly polar and charged 
(Figure 5b,c); therefore, the ligands can form three to six H-bonds upon their binding to the 
protein surface. In the major site in the central diagonal cavity, only one DOPA-D-H-DOPA 
binds to this cavity, closely matching its shape (Figure 5). It forms H-bonds with Ser 3, Gln 
7, Arg 10, Thr 14, Asn 17, and His 106 in the S100A9 monomer denoted as chain A and 
with Glu 13 and Thr 14 in the monomer denoted as chain B. DOPA-H-H-DOPA has two 
binding sites in the S100A9 diagonal cavity, which partially overlap. One site involves Gln 
7, Arg 10, and Thr 113 in chain A and Met 5, Gln 7, Arg 10, and Thr 14 in chain B while the 
second site consists of Glu 13, Thr 14, and Asn 17 in chain A, as well as Gln 7, Arg 10, and 
Thr 113 in chain B. Therefore, only one DOPA-H-H-DOPA molecule can bind to S100A9 
homodimer at a time. DOPA-cyclen and H-E-cyclen are smaller in size (Figure 1), and 
each of them has two binding sites in the S100A9 diagonal cavity. In the frst binding site, 
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DOPA-cyclen forms H-bonds with Gln 7and Thr 14 in chain A and with Arg 10 and Glu 13 
in chain B while in the second site, it forms H-bonds with Thr 14 in chain A as well as Lys 
93 and Met 94 in chain B. H-E-cyclen forms H-bonds with Arg 10 and Thr 14 of chain A, 
and Glu 13 and Thr 14 of chain B in one binding site, and with Lys 93 and His 105 of chain 
A in the second site. By contrast, three DOPA-D-H can bind in the S100A9 diagonal groove, 
interacting with Thr 14 in chain A and Arg 10 in chain B in one site, Glu 96 and Thr 113 in 
chain A and Asn 17 in chain B in the second site, and the third site partially overlaps with 
the second one, including Met 94 and His 95 in chain A. 

Other ligand-binding regions on the S100A9 homodimer found by molecular docking 
are positioned at the interfaces between the second and third helices on each monomer 
(Figure 5). These sites involve a convex protein surface with a strong positive electric feld 
and no defned cavities. The ligands bound to these sites form only one H-bond in each site. 
DOPA-H-H-DOPA is the only ligand that does not bind at these sites as it is also positively 
charged. Dopa-D-H-Dopa and Dopa-D-H tend to bind to only one of these weak binding 
sites, since only one H-bond is involved in the binding, and slight deviation in the ligand 
positioning breaks this bond. Thus, few ligands, especially if they are smaller in size, can 
bind to the S100A9 dimer simultaneously, mostly in the diagonal groove. 

2.6. MD Simulation 

In the MD studies, we analyzed the stability of the binding interactions between 
the corresponding ligands and S100A9 homodimer by calculating the root mean square 
deviation (RMSD) values for bound ligands and [59] the number of H-bonds between 
corresponding ligands and S100A9 (Figure 6). 
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corresponding ligands and S100A9 dimer. The color coding in (b) is the same as in (a). 

RMSD values are shown for 100 ns, indicating how long the ligand positioned by 
molecular docking on the S100A9 surface can remain in the corresponding binding site. 
The ligands are denoted in order of their mobility on the protein surface as ligands 1 
and 2, respectively. If the ligands did not stay on the protein surface longer than 5 ns, 
their RMSD and H-bonds were not depicted. One molecule of DOPA-D-H-DOPA and 
DOPA-H-H-DOPA are characterized by RMSD around 5 Å and in general below 10 Å 
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(Figure 6a). They both bind to the diagonal grove and adopt to its conformation well 
(Figure 5). Another DOPA-H-H-Dopa, which can bind to the diagonal groove, also stays 
in the binding site over 100 ns, though its RMSD reaches 20 Å. DOPA-D-H-DOPA, which 
binds to the low-affnity site formed by the second and third helices, does not stay in this 
site and its RMSD increases to above 25 Å after ca. 40 ns. DOPA-D-H rapidly dissociates 
from all binding sites as demonstrated by the rapid growth of their RMSD values. Two 
molecules of H-E-cyclen are characterized by RMSD below 25 Å over 100 ns, indicating 
that, while they are mobile, they still stay within the diagonal binding cavity. One molecule 
of DOPA-cyclen binds and stays in the middle of the diagonal cavity over the 100 ns period, 
displaying RMSD below 25 Å, while the second DOPA-cyclen dissociates from the diagonal 
groove binding site after ca. 15 ns. 

The changes in RMSD values correlate well with the changes in the number of H-
bonds between the ligands and S100A9 homodimer (Figure 6b). Docking studies showed 
that all fve compounds form three to six H-bonds with the S100A9 homodimers at the 
beginning of the MD calculation. MD simulations for one molecule of DOPA-D-H-DOPA 
and DOPA-cyclen, as well as for both DOPA-H-H-DOPA molecules showed that H-bonds 
keep the ligand bound to protein over 100 ns, though they can perform small motions 
within the corresponding binding site (Figure 6). H-bonds keeping other molecules of 
those types on the S100A9 surface decline to zero after 20 to 40 ns, and molecules become 
detached from the protein surface. Both molecules of H-E-cyclen maintain H-bonds up till 
70–80 ns and then they may dissociate from the S100A9 dimer. By contrast, both molecules 
DOPA-D-H do not stay bound via H-bonds to the S100A9 surface and may detach after 
10–40 ns. 

The binding of all DOPA and cyclen-based compounds to the binding sites on S100A9 
homodimer derived from MD simulation is depictured in Figures S2 and S3. Here, the 
representative time frames show both details of the ligand binding via H-bonds and van 
der Waals interactions in the corresponding binding sites (Figure S2) and also zoomed 
images of the binding sites in 3-D presentation to more precisely locate the binding regions 
on the homodimer surface (Figure S3). Two ligands (ligand 1 and 2) are depicted in order of 
their mobility on the S100A9 homodimer surface in accord with the RMSD plot (Figure 6). 
The MD simulations correlate well with the docking studies (Figure 5). Only the second 
ligand of DOPA-D-H-DOPA binds to the alternative weak binding site rather than the 
major groove. All other ligands in order of their mobility bind in the major groove. Four 
representative videos (Videos S4–S7) demonstrate the mobility of DOPA-D-H-DOPA and 
DOPA-H-H-DOPA in their corresponding binding sites, respectively, which visually depict 
what is presented in the RMSD plots (Figure 6). As there are no steric hindrances or 
signifcant cavities on the protein surface, ligands are able to move and bounce backward 
and forward in the binding site, forming multiple contacts over the 100 ns of MD simulation. 
Interestingly, all DOPA and cyclen-based compounds can interact with the same set of 
amino acid residues in the major groove, while other binding interactions between polar 
groups of the compounds and polar protein surface residues may vary signifcantly and 
involve multiple H-bond and van der Waals contacts, which form and break due to ligand 
and protein surface motility. 

We compared the RMSD values for one ligand vs. two or more ligands bound to the 
S100A9 homodimer in the diagonal groove to evaluate whether there is cooperativity in 
their binding. We found no statistically signifcant differences in the RMSD or H-bonds 
regarding whether one or two ligands bind simultaneously in the diagonal groove (data 
not shown), indicating that there is no cooperativity between consequent ligand binding. 

3. Discussion 

DOPA and cyclen-based compounds have been studied intensively in research tar-
geting amyloid formation of α-synuclein, Aβ, and tau, polypeptides involved in neu-
rodegenerative diseases, and these compounds have shown some potency in amyloid 
inhibition [28–35]. DOPA is a precursor of the neurotransmitter dopamine and Parkinson’s 
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sufferers have received DOPA as disease-modifying treatment for years [25,26]. Therefore, 
it was important to examine the effect of DOPA and cyclen-based compounds modifed 
by conjugated amino acid residues on the amyloid self-assembly of the pro-infammatory 
protein S100A9, which has been shown to be a central component of the amyloid neuro-
infammatory cascade in Alzheimer’s, Parkinson’s, and traumatic brain injury [11–13]. 
The kinetic analysis of S100A9 amyloid’s self-assembly in the presence of each DOPA and 
cyclen-based compound taken at both molar ratios of protein to ligand of 1:1 and 1:10 
did not show any signifcant effects on the rate of amyloid formation (Figure 2). This 
contrasts with previous fndings of the inhibiting effects of DOPA and cyclen-based ligands 
on the amyloid fbrillation of α-synuclein, Aβ, and tau [28–35], indicating that there is no 
single silver bullet able to inhibit and reverse all the diversity of amyloids. Interestingly, 
by comparison to Aβ and α-synuclein, S100A9 undergoes amyloid aggregation without 
a pronounced lag phase, corresponding to a nucleation or oligomerization process, and 
cannot be seeded by preformed homo or hetero-amyloids [12,15,18,54]. The kinetics of 
S100A9 amyloid formation are described well by the generic Finke–Watzky autocatalytic 
model, in which initial protein misfolding and β-sheet formation are defned as the ‘nucle-
ation’ step, spontaneously taking place within individual S100A9 molecules at a higher 
rate than the subsequent amyloid assembly. Therefore, amyloid self-assembly, described as 
an autocatalytic process, will proceed if misfolded amyloid-prone S100A9 is populated on 
a macroscopic time scale [15]. This suggests that dynamic binding of DOPA and cyclen-
based derivatives of S100A9 homodimer did not promote S100A9 misfolding, which would 
consequently affect its amyloid kinetics; however, this effect was not observed here. 

Importantly, the AFM-cross-section analysis of co-aggregates of S100A9 with the 
above compounds, apart from H-E-cyclen, clearly demonstrated that the amyloid fbrils 
became two to three times thicker compared to S100A9 fbrillated alone (Figure 3). This 
indicates that the ligand bindings and encapsulation into amyloid fbrils altered the protein 
conformation and therefore the packing of proteinaceous material at the fbrillar interface, 
leading to their thickening. Amyloid formation is generally characterized by signifcant 
polymorphism, which may be relevant to a specifc type of disease and disease develop-
ment [60,61]. Thicker fbrils may also slow down the tissue propagation of amyloids as 
it was suggested previously, as the clumping and thickening of amyloid co-aggregates 
of S100A9 with NCAM constructs has been observed [54]. Thus, analysis of the amyloid 
fbril morphology and structural studies of amyloid aggregates may provide additional 
insight into the potential development of the amyloid disease pathology and amyloid 
propagation [62], which were shown for Aβ peptide [61] and prions [63,64]. 

All DOPA and cyclen-based ligands were shown to bind to S100A9 homodimer upon 
titration as monitored by intrinsic fuorescence (Figure 4). Their complex formations were 
characterized by similar apparent dissociation constants in a sub-micromolar range as 
determined by ftting the titration curves to a single site binding model. Molecular docking 
and MD simulation provided additional and important insight into the nature of the 
binding sites and mechanisms of ligand binding, enabling us to differentiate between the 
ligand binding modes for each ligand. Indeed, S100A9 is a small protein with no deep 
cavities on its surface, which makes it a challenging target for drug design [48]. All fve 
studied ligands were docked on the protein surface in the relatively shallow diagonal 
groove and some additional low-affnity binding sites at the convex interface between 
the 2d and 3d helices on each monomer (Figure 5). All ligands are characterized by high 
H-bond donor and acceptor capacities (Figure 1) and are able to make three to six H-bonds 
with the protein surface at the initial docking (Figure 6). RMSD analysis showed that some 
complexes with DOPA-H-H-DOPA and DOPA-D-H-DOPA were characterized by less than 
5 Å values, indicating their limited mobility and good ft to the binding site. However, 
other bound ligands were more mobile or even dissociated from S100A9 homodimer if 
RMSD increased beyond 25 Å. Overall, the binding of various ligands to the major diagonal 
groove resulted in rather similar apparent Kd values as determined in the fuorescence 
titration experiments. 
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It is important to note that S100A9 may exist as a homo- and heterodimer, forming 
complex with S100A8 [14]. The thermal stability of S100A9 homodimer is somewhat lower 
than S100A8/S100A9 heterodimer as reported previously [65], which may make it more 
amyloid prone by facilitating its misfolding [15]. Previously, in studies of ex vivo brain 
tissues in Alzheimer’s and Parkinson’s disease, mild cognitive impairment, and traumatic 
brain injury, we observed the extra and intracellular amyloid deposits of S100A9, but 
not S100A8 [11–13,66]. Moreover, in mice models of Alzheimer’s disease and traumatic 
brain injury, we also detected depositions of S100A9, but not S100A8 [16,17]. Furthermore, 
S100A9 forms amyloid complexes with Aβ, by templating on the Aβ fbrillar surface, 
which may also contribute to the development of joint amyloid deposits in Alzheimer’s 
disease [11,18], though these polypeptides do not form a mixed cross-β-sheet [67]. By 
contrast, in the aging prostate, we observed the co-localization of amyloid deposits of 
both S100A9 and S100A8 [68]. Even though amyloid development in the brain tissues 
could be the primary target for DOPA-based compounds, and therefore, here, we studied 
their interactions with S100A9, it remains an open possibility that in some other functional 
or pathological conditions in other organ and tissues than the brain, binding of DOPA 
and cyclen-based compounds to S100A9 may affect its interaction and co-aggregation 
with S100A8. 

It is important to note that DOPA and cyclen-based ligands did not interact with the 
region on the S100A9 surface, including Lys 50 to Lys 54, which has been shown previously 
to be critical for S100A9 amyloid self-assembly and by blocking this specifc amino acid 
sequence by polyoxoniobates, we were able effectively hinder S100A9 amyloid growth [53]. 
However, as the S100A9 amyloid surface is important for its quaternary complex formation 
and amyloid co-aggregation with Aβ peptide [18] and potentially with other proteins 
and disease-related and functional amyloids, the amyloid morphology-modifying effect 
of DOPA and cyclen-based compounds co-aggregated together with S100A9 into fbrils 
should be taken into account in future studies of protein hetero-aggregation. 

4. Materials and Methods 
4.1. Amyloid Fibril Formation 

S100A9 protein was expressed in E. coli and purifed as described previously [65]. 
Freshly dissolved S100A9 in PBS, pH 7.4 was used in all measurements. Lyophilized 
S100A9 was dissolved on ice in PBS buffer at pH 7.4. Then, S100A9 samples were fltered 
using a 0.22 µm spin membrane flter to remove any preformed aggregates. These solutions 
were directly subjected to experiments. To produce amyloids, S100A9 was incubated in 
PBS, pH 7.4, and 42 ◦C. The cyclic compounds (Figure 1) were dissolved in PBS at pH 7.4, 
and their stock solutions were kept frozen prior to measurements. 

4.2. ThT Fluorescence Assay 

ThT dye is known to bind specifcally to β-sheet-containing amyloid structures and 
thus enables quantifcation of the kinetics of amyloid self-assembly. ThT assay was per-
formed as described previously [69]. First, 75 µM S100A9 was transferred into Nunc 
96U black well plates with transparent bottoms and then 20 µM ThT was added to each 
well. The compounds dissolved in PBS were added to S100A9 solution with molar ratios 
of 1:1 and 1:10, respectively. Sample volumes were kept at 200 µL per well. The plates 
were immediately covered, placed into a Tecan F200 PRO plate reader, and incubated at 
42 ◦C with 432 rpm orbital shaking every 10 min. ThT fuorescence was recorded every 
10 min. Filters at 430 and 495 nm wavelengths with a 20 nm band width each were used 
for excitation and emission, respectively. Each sample was incubated in triplicate. ThT 
fuorescence intensities were normalized. 
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4.3. Kinetic Curve Fitting 

An isodesmic polymerization model was used to ft the kinetic dependencies of 
S100A9 amyloid formation monitored by ThT fuorescence as described previously [53], 
since these curves displayed hyperbolic dependences characteristic of this model [45,46]. 

4.4. AFM Imaging 

AFM imaging was performed by using a BioScope Catalyst AFM (Bruker; Phoenix, AZ, 
USA), operating in a peak force mode in air. The scan rate was 0.51 Hz and the resolution 
was 512 × 512 pixels. Bruker MSLN and SLN cantilevers were used in all measurements. 
Imaging was also conducted using a PicoPlus AFM (Molecular Imaging), equipped with 
a 100 µm scanner, operating in tapping mode in air. The resonance frequency was set in 
170 to 190 kHz range, scan rate of 1 Hz, and resolution of 512 × 512 pixels. For ambient 
imaging, 20 µL of each sample were diluted 200× in deionized water, deposited on the 
surface of freshly cleaved mica, kept for 15 min, washed 4 times with 200 µL of Milli-Q 
deionized water, and left to dry overnight at room temperature. The height distributions of 
amyloid fbrils were measured by a Bruker Nanoscope Analysis v. 1.5 cross-section tool for 
at least 50 fbrils for each sample. 

4.5. Titration of S100A9 with DOPA and Cyclen-Based Compounds Monitored by 
Intrinsic Fluorescence 

First, 1 µM S100A9 was incubated in PBS, pH 7.4, room temperature for 3 h in the 
absence or presence of 5 nM to 2.4 µM of the studied compounds prior to fuorescence 
measurements. The fnal volume was kept at 400 µL for all samples. The fuorescence 
emission spectra were recorded using a Jasco spectrofuorometer FP 6500 (Japan), setting 
the excitation at 296 nm and emission at 350 nm wavelengths, respectively, with a 3 nm 
band-width on both the excitation and emission. The measurements were performed in 
triplicates. Fitting of the normalized titration curves was performed by using a single site 
binding model. 

4.6. Ligand Docking Studies 

The S100A9 structure used in this study was the average from a set of 10 NMR 
structures downloaded from the protein data bank, ref PDB: 5I8N [55]. The ligands were 
hydrogenated and charged at pH 7.2, using the Gasteiger protocol [56]. S100A9 was 
protonated at pH 7.2 using the AMBER98S force feld [57]. Ligand docking studies started 
with a search box that enclosed the entire protein [57]. 

4.7. All-Atom MD Studies 

S100A9 homodimers in complex with corresponding ligands prepared in molecular 
docking studies were used as starting structures for MD simulations [70], including from 
one to nine bound ligands. These complexes were prepared for MD calculations using 
CHARMM-GUI solution builder [71]. Ligand parametrization used the CHARM36 force 
feld with LigPrep protocols [71]. In a typical calculation, protein-ligand complex was 
placed in a water box that had about 132,000 atoms. TIP3 models for water molecules 
were combined with sodium and chloride ions adjusted to a concentration of 150 mM 
and the net charge set to zero. The system relaxation used a sequence of equilibration 
steps at 303.15 K with Nose–Hoover coupling, and the pressure was set to 1.0 bar with 
semi-isotropic Parinello–Rahman coupling. The Verlet cutoff scheme was combined with 
the LINCS constraint algorithm. System relaxation used two minimization steps, which 
were followed by one equilibration step. The simulations analyzed the molecular processes 
for 100 ns, containing 50 million steps with the step size set to 2 fs. All simulations were 
run on GROMACS 2020.4 version [59] for 32 h on 240 cores with 480 logical cores. 

4.8. DOPA and Cyclen Ligand Synthesis 

DOPA and cyclen-based compounds were synthesized as described previously [72]. 
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