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Abstract: Highly efficient photoelectrochemical (PEC) water oxidation under solar visible light is crucial for 
water splitting to produce hydrogen as a source of sustainable energy. Particularly, silver-based nanomaterials are 
important for PEC performance due to their surface plasmon resonance which can enhance the photoelectro-
chemical efficiency. However, the PEC of ZnO/Ag2WO4/AgBr with enhanced visible-light water oxidation has not 
been studied so far. Herein, we present a novel photoelectrodes based on ZnO/Ag2WO4/AgBr nanorods (NRs) for 
PEC application, which is prepared by the low-temperature chemical growth method and then by successive ionic 
layer adsorption and reaction (SILAR) method. The synthesized photoelectrodes were investigated by several char-
acterization techniques, emphasizing a successful synthesis of the ZnO/Ag2WO4/AgBr heterostructure NRs with 
excellent photocatalysis performance compared to pure ZnO NRs photoelectrode. The significantly enhanced PEC 
was due to improved photogeneration and transportation of electrons in the heterojunction due to the synergis-
tic effect of the heterostructure. This study is significant for basic understanding of the photocatalytic mechanism 
of the heterojunction which can prompt further development of novel efficient photoelectrochemical-catalytic 
materials.
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Introduction
Water splitting through photoelectrochemical (PEC) 
[1–3] processes can provide a solution for energy sus-
tainability by harnessing the driving energy from the 
sun, which has conclusive beneficial effect on the envi-
ronment [4–9]. Nanoheterostructure materials have 
been used in wide-range applications such as gas sensor, 
solar cell and water splitting for hydrogen production 
[10–12]. Many metal oxides semiconductors are inves-
tigated extensively for PEC applications such as  WO3, 
 TiO2,  Fe2O3,  BiVO4,  Cu2O and ZnO [9, 13–18]. Among 

these metal oxides, ZnO gains a great interest because of 
its unique properties for PEC applications. ZnO with its 
wide band gap has a high reduction and oxidation (redox) 
potentials to drive the photocatalysis reaction, chemically 
and physically stable; also it is a non-toxic and is abun-
dant [19–22]. Also, ZnO gains high interest because it 
nucleates in a variety of different nanostructured forms 
and different methods of growth can be used. However, 
ZnO has some draw backs which might reduce its utiliza-
tion as an efficient electrode for PEC using the sun radi-
ation. The ZnO absorption is mainly limited to the UV 
wavelength, and its high recombination rate is the main 
factor that reduces its efficiency during a PEC reaction 
[23]. This problem can be optimized by surface modi-
fication of the ZnO by adding another semiconductor 
such as Ag/Ag2WO4 to form a new nanocomposite as 
in our previous work on PEC using ZnO/Ag/Ag2WO4 
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photoelectrode [24]. The result showed high PEC per-
formance in comparison with the ZnO which is attrib-
uted to the suppression of the high recombination rate 
and the shift of the absorption toward the visible-wave-
length region due to surface plasmonic resonance (SPR) 
[24]. In spite of the high performance of the ZnO/Ag/
Ag2WO4 due to the deposition of the  Ag2WO4 into the 
ZnO nanorods (NRs), still the band gap did not utilize 
enough visible light to yield an efficient PEC electrode. 
Thus, smaller-band-gap semiconductor, e.g., AgBr, can 
be deposited onto the ZnO/Ag2WO4 heterostructure to 
further increase the absorption of the visible-light wave-
length of the solar spectrum, which further improves the 
PEC efficiency. AgBr can be a good sensitizer because the 
same Ag-based material of the  Ag2WO4 could give better 
light absorption and photoelectron transportation with 
ZnO/Ag2WO4/AgBr heterostructure.

In this work, hydrothermal growth route followed by 
successive ionic layer adsorption and reaction (SILAR) 
method was used to prepare ZnO/Ag2WO4/AgBr NRs 
photoelectrode for PEC water splitting analysis. This 
implies electrode preparation, characterization, PEC 
experiments and presenting the proposed electron path 
during the photocatalytic reaction.  Ag2WO4 was depos-
ited into the sample in order to develop plasmonic sen-
sitizer to improve the utilization of the solar power and 
accelerating the charge carrier transfer. The Ag in the 
sample with SPR effect can enhances the photocatalytic 
performance due to the enhancement of the absorption 
of the solar light. The loading of the AgBr could further 
enhances the absorption of light in the visible range due 
to the lower band gap of the AgBr. As far as we know, it 
is the first time to prepare ZnO/Ag2WO4/AgBr NRs pho-
toelectrode by deposition of  Ag2WO4 and AgBr on the 
ZnO NRs using SILAR method for PEC performance. 
The ZnO/Ag2WO4/AgBr NRs photoelectrodes were 
prepared with 5, 10, 15 and 20 SILAR cycles for AgBr 
amount optimization.

Experimental Part
ZnO/Ag2WO4/AgBr Photoelectrodes Preparation
The photoelectrodes were prepared using three steps: 
growth of the ZnO NRs, deposition of  Ag2WO4 and 
AgBr as illustrated in Fig. 1.

The pristine ZnO NRs were prepared on the FTO cov-
ered by a seed layer of ZnO nanoparticles (NPs) prepared 
by the hydrothermal growth similar to our previous 
work [24]. The precursor solutions were prepared using 
equal molecular (0.05 M) of zinc nitrate hexahydrate (Zn 
 (NO3)2·0.6H2O) and hexamethylenetetramine (HMT). 
Then, the FTO substrates with the seed layer were fixed 
upside down in a Teflon sample holder and then placed in 
a beaker containing the growth solution and were kept in 

a preheated oven at 90 °C for 5 h. After the completion of 
the growth duration, the samples were taken out and left 
to cool down to room temperature. Finally, the samples 
were washed with DI water to avoid any unwanted par-
ticles or residuals and then dried with flowing nitrogen 
gun.

The ZnO/Ag2WO4 NRs photoelectrode was prepared 
using SILAR method in the same way as our previous 
work [24, 25]. An anionic and cationic aqueous precur-
sor solutions were prepared separately using 0.1  M of 
silver nitrate Ag (NO)3 and 0.1  M of sodium tungstate 
 (Na2WO4.2H2O). The deposition took place by immer-
sion of the prepared ZnO NRs samples into the Ag (NO)3 
solution for 2  min to absorb the silver ions  (Ag+), and 
then, they were washed with DI water to remove excess 
ions or any other unwanted particles. Then, the sam-
ples were immersed into the  Na2WO4.2H2O solution for 
2  min and again washed with DI water. This cycle was 
repeated several times to obtain enough  Ag2WO4 par-
ticles on the ZnO NRs. Then, the samples were dried in 
an oven at 60  °C for 3 h to obtain good adhesion of the 
 Ag2WO4 on the ZnO NRs.

The ZnO/Ag2WO4/AgBr NRs photoelectrode was 
prepared also using the SILAR method. Anionic and 
cationic aqueous precursor solutions were prepared sep-
arately using 0.1 M of silver nitrate Ag (NO)3 and 0.1 M 
of sodium bromide (NaBr). The deposition took place 
by immersion of the prepared ZnO NRs sample into Ag 
(NO)3 solution for 2 min to absorb the silver ions  (Ag+), 
and then, they were washed with DI water to remove 
excess ions or any other particles. Then, the sample is 

Fig. 1 Schematic diagram showing the preparation method of the 
ZnO/Ag2WO4/AgBr photoelectrode
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immersed into the NaBr solution for 2  min and again 
washed with DI water. This cycle was repeated for sev-
eral times to obtain enough AgBr particles on the ZnO/
Ag2WO4 photoelectrode followed by drying in the oven 
at 60 °C for 3 h for better adhesion of the nanoparticles. 
Also, the ZnO/Ag2WO4/AgBr NRs photoelectrodes were 
prepared with 5, 10, 15 and 20 SILAR cycles for PEC 
analysis to optimize the AgBr content.

Characterization
The structural properties of our photoelectrodes were 
studied using powder X-ray diffraction (XRD) with a 
Philips powder diffractometer (1729 PW) connected to 
a Cu K(α) radiation source at the generator voltage of 
40 kV and the current of 40 mA. A field-emission scan-
ning electron microscope (FE-SEM) equipped with a 
Sigma 500 Gemini field emission gun operating at 10 kV 
was used to investigate the sample morphology. The 
chemical composition of the samples was investigated 
by X-ray photoelectron spectroscopy (XPS) using a Kra-
tos AXIS Ultra DLD equipped with a monochromatic Al 
K(α) X-ray source. CasaXPS software was used to analyze 
the data. In order to analyze the optical properties, the 
UV–visible spectroscopy (Perkin-Elmer Lambda 900 sys-
tem) was used.

Photoelectrochemical Measurements
The photoelectrochemical performance was studied by 
three electrode photoelectrochemical measurements 
using SP-200 potentiostat (Bio-Logic, Claix, France). 
A platinum (Pt) mesh (as the counter electrode) and a 
standard silver/silver chloride (Ag/AgCl) in 3 M KCl (as 
a reference electrode) were used with (0.1 M) of sodium 
sulfate  (Na2SO4) electrolyte. The total immersed area 
of the electrode in the electrolyte was 1 cm × 1 cm. The 
visible-light radiation was obtained by a solar simulator 
that uses a 100-W ozone free xenon lamp with an output 
power of 1 sun (AM 1.5).

Result and Discussion
Characterization Analysis
Figure 2 shows the XRD spectra of ZnO, ZnO/Ag2WO4 
and ZnO/Ag2WO4/AgBr samples. It is clear that all 
the obtained XRD diffraction peaks in the ZnO sample 
correspond to the hexagonal wurtzite of ZnO (JCPDS 
no. 36-1451) suggesting no other phases of ZnO were 
observed. In the XRD pattern of the ZnO/Ag2WO4 sam-
ple, additional peaks were identified, which belonged to 
 Ag2WO4 (JCPDS no 33-1195), indicating the success-
ful deposition of the  Ag2WO4 into the ZnO NRs. In the 
XRD pattern of the ZnO/Ag2WO4/AgBr heterostruc-
ture, the planes (200) and (220) labeled in the figure were 
assigned to the AgBr (JCPDS no 06-438), confirming the 

formation of AgBr on the ZnO/Ag2WO4 heterostructure 
(Additional file 1).

The FE-SEM images of the ZnO/Ag2WO4 and ZnO/
Ag2WO4/AgBr NRs photoelectrodes are presented in 
Fig.  3a, b, respectively. In Fig.  3a, we could clearly see 
that  Ag2WO4 particles were deposited onto the ZnO 
NRs. In Fig. 3b, we can notice that a larger particle size 
is shown for the ZnO/Ag2WO4/AgBr sample compared 
to the ZnO/Ag2WO4 NRs photoelectrode, with semi-
crystal structure suggesting the successful deposition 
of the AgBr onto the sample. Also, tiny particles can be 
observed, which could be due to different counterpart 
deposited onto the ZnO NRs. Figure 3c shows EDX spec-
trum of the ZnO/Ag2WO4/AgBr NRs photoelectrode 
which display the relative amount of Zn, O, Ag, W and 
Br. Surprisingly, unexpected Cl element was detected 
which is attributed to contamination. In addition to that, 
the EDX mapping is displayed in Fig.  3d to show the 
elemental distribution over the sample. Figure 3e shows 
cross-sectional SEM image and mapping of the ZnO/
Ag2WO4/AgBr photoelectrode. It is worth to note that 
good elemental distribution on the sample could result in 
high-quality heterostructure yielding an enhanced PEC 
performance. Moreover, the effect of the AgBr loading on 
the morphology was investigated for the ZnO/Ag2WO4/
AgBr samples with different cycles of AgBr loading as 
shown in Fig.  4. As the loading cycles increases, more 
AgBr particles are deposited onto the sample, reaching 
full coverage of the surface by the AgBr with 20 cycles of 
loading cycles.

To further evaluate the ZnO/Ag2WO4/AgBr NRs 
heterostructure, XPS measurement was taken on all 
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photoelectrodes
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elements present in the structure. Different high-res-
olution XPS (HR-XPS) spectra are shown in Fig.  5. The 
Zn 2p spectrum shows two peaks which matches to Zn 
 2p3/2 and Zn  2p1/2 with a peak position at 1022.5 and 
1045.7 eV, respectively [26, 27], as shown in Fig. 5a. The 
Ag 3d spectrum is also divided into two peaks with a 
peak position at 365.1 and 371.1  eV which is attributed 
to Ag  3d5/2 and Ag  3d3/2, respectively, as shown in Fig. 5b. 
The Ag  3d5/2 is then divided into two different peaks at 
365.0 and 365.8 eV, and the Ag  3d3/2 peak is also divided 
into two different peaks at 371.0 and 371.6 eV.

The peaks at low energies 365.0 and 371.0  eV are 
assigned to the  Ag+ in AgBr, whereas the peaks at higher 
energies 365.8 and 371.6 are assigned to metallic  Ag0 [28, 
29]. Figure  5c shows the spectrum for W 4f which has 
two peaks positioned at 35.0 and 37.1 eV corresponding 

to W  4f7/2 and W  4f5/2, respectively [29]. The Br 3d also 
exhibits two separate peaks positioned at 68.0 and 
69.0 eV assigned to Br  3d5/2 and Br  3d3/2, respectively, as 
shown in Fig. 5d [30]. The high-resolution XPS analysis 
agrees with the EDX measurement and confirms that the 
intended ZnO/Ag2WO4/AgBr NRs composite hetero-
structure has been successfully achieved.

From the UV–Vis absorption spectra, a redshift in 
the optical absorption in the visible-light region was 
observed for the ZnO/Ag2WO4/AgBr NRs sample com-
pared to the other samples. Also, the optical band gap 
energy was reduced to 2.94 eV, which was found from the 
plots of (αhv)2 versus photon energy (hv) from the UV–
Vis absorption spectra as shown in Fig. 6a. The enhance-
ment in the visible-light absorption ability of the ZnO/
Ag2WO4/AgBr NRs heterostructure can be assigned 

Fig. 3 a SEM Image of ZnO/Ag2WO4, b SEM Image of ZnO/Ag2WO4/AgBr, c EDX spectrum of ZnO/Ag2WO4/AgBr photoelectrode, d EDX 
mapping of the ZnO/Ag2WO4/AgBr heterostructure, and e Cross-sectional SEM images and mapping of the ZnO/Ag2WO4/AgBr (10 SILAR cycles) 
photoelectrode
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Fig. 3 continued
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to the deposition of the AgBr due to its lower band gap 
energy compared to the ZnO. Higher ability to absorb 
visible light in the heterostructure will be valuable for 
increasing the efficiency of the PEC reaction.

Photoelectrochemical Analysis
The PEC properties of the different photoelectrodes 
investigated by the photoresponse over time of the 
NRs-based photoelectrodes using chronoamperometry 
measurements which recorded the photocurrent density 
versus time in the dark under on/off solar irradiation with 
an applied potential of + 0.5 V are shown in Fig. 6b. The 
photocurrent densities were found to be 1.6 mA/cm2, for 
the ZnO photoelectrode which increases up to 2.7 mA/
cm2 for ZnO/Ag2WO4 photoelectrode. Further enhance-
ment of the photocurrent density was obtained after the 
deposition of the AgBr. The enhancement of the photo-
current density is observed when increasing the amount 
of the AgBr loading with different SILAR cycles. At the 
lower cycle of 5 times, small amount of photocurrent 
density (2.7  mA/cm2) was detected due to small num-
ber of particles that distributed into the surface as it can 

be seen in the SEM of the 5 time. Increasing the num-
ber of cycles to 10 resulted in the highest photocurrent 
density of 3.3 mA/cm2 with more particles distribution. 
Further increase of AgBr loading result in a reduction of 
the photocurrent density to 2 and 1.8 mA/cm2 for ZnO/
Ag2WO4/AgBr (15 SILAR cycles) and ZnO/Ag2WO4/
AgBr NRs (20 SILAR cycles) photoelectrodes, respec-
tively, but the interface structure became more uniform 
size distribution with more crystallization. The possi-
ble reason for this reduction is that increasing the AgBr 
amount leads to form larger aggregates around the ZnO 
NRs, which might destroy the junctions and reduces the 
separation of the charge carriers at the interfaces of the 
heterojunction. Therefore, it is important to optimize the 
photoelectrodes for higher PEC activity. Due to the best 
PEC result observed from the ZnO/Ag2WO4/AgBr NRs 
(10 SILAR cycles) photoelectrode, this sample is used for 
all the measurement as optimum photoelectrode.

Linear sweep voltammetry (LSV) measurement was 
taken under the illumination of solar light and dark con-
ditions at a potential of 1.23  V (vs. Ag/AgCl) electrode. 
Under the dark condition, a negligible photocurrent 

5 cycles 10 cycles

20 cycles15 cycles

1µm

1µm 1µm

1µm

Fig. 4 a SEM images of the ZnO/Ag2WO4/AgBr with different amounts of AgBr loading
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density of the ZnO NRs photoelectrode was noticed, 
which indicates good surface quality of the ZnO NRs as 
shown in Fig. 6c. In comparison with the ZnO NRs pho-
toelectrode, the ZnO/Ag2WO4, and the ZnO/Ag2WO4/
AgBr NRs photoelectrodes showed a small photocur-
rent density under dark condition 0.009 and 0.015  mA/
cm2, respectively, measured at a potential of 1.23  V 
indicating an enhancement in the electrical conductiv-
ity. Under the illumination of solar light, a lower pho-
tocurrent density of 0.7 mA/cm2 was observed for ZnO 
NRs, whereas the photocurrent density was highly 
increased to 2.3 and 3.8  mA/cm2 for the ZnO/Ag2WO4 
and ZnO/Ag2WO4/AgBr NRs photoelectrodes, respec-
tively. The remarkably improved photocurrent density 
of the ZnO/Ag2WO4/AgBr NRs photoelectrode could 

be ascribed to the heterojunction effect upon the depo-
sition of  Ag2WO4 and the AgBr NPs onto the surface of 
the ZnO NRs. Which indicates that a high density of the 
photogenerated electrons can be transferred from the 
ZnO/Ag2WO4/AgBr NRs photoelectrode to the counter 
electrode through the external circuit providing higher 
photocurrent density. This is attributed to the enhanced 
charge carrier separation, transportation efficiency, the 
high absorption of solar light and the shift of the absorp-
tion into the visible-light range.

Mott–Schottky (M–S) analysis is commonly used in 
PEC for photoelectrodes characterization to under-
stand the electronic properties and the change in the 
carrier density, which also gives valuable information 
about the flat band potentials  (EFB) of the samples [24, 
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25]. Mott–Schottky plot was obtained by electrochemi-
cal impedance measurement at room temperature with 
selected frequency ⁓ 1 kHz which is based on the capaci-
tance versus applied potential measurements and is 
shown in Fig. 7. Figure 7 shows the corresponding M–S 
plots of pristine ZnO NRs, ZnO/Ag2WO4, and ZnO/
Ag2WO4/AgBr photoelectrodes. It can be seen that all of 
the prepared samples exhibited positive slopes, showing 
their n-type nature as expected.

The position of the  EFB is estimated by linear extrapola-
tion of the linear region of the curve; the x-axis intercept 
gives the values of the  EFB, which were approximately 
equal to 0.41, 0.70 and 0.74  V for pristine ZnO NRs, 
ZnO/Ag2WO4 and ZnO/Ag2WO4/AgBr NRs photoelec-
trodes, respectively. Thus, the shift in  EFB to higher val-
ues could be attributed to the change in charge carrier 

Fig. 6 a The plots of (αhν)2 versus hν, b Chronoamperometry I–t curves with solar irradiation on/off cycles,  and c LSV curves under dark and 
visible-light conditions of the ZnO NRs, ZnO/Ag2WO4 and ZnO/Ag2WO4/AgBr
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concentration in the heterojunctions and the change in 
Helmholtz layer potential [25]. The presence of more 
surface states can lead to a significant change in the band 
position that might shift the Fermi level to higher value 
[24, 31].

Using the dielectric permittivity of the ZnO and the 
permittivity of the vacuum, the charge carrier density 
( Nd ) could be estimated using the following formula [32]:

.
The charge carrier densities were estimated to be 

7.5× 10
18 and 1.1× 10

20  cm−3 for the pristine ZnO 
NRs and ZnO/Ag2WO4/AgBr NRs photoelectrodes, 
respectively. Obviously, Nd of the ZnO/Ag2WO4/AgBr 
NRs photoelectrodes is enhanced, which explains the 
improved PEC activities of this photoelectrode under 
solar light compared to pristine ZnO NRs.

Proposed Mechanism
The energy band position of the ZnO/Ag2WO4/AgBr 
heterojunction with possible electron transfer path is 
illustrated in Fig.  8. Light with lower-energy photons 
will excite electrons from the VB to the CB of the AgBr 
due to its suitable band gap (⁓ 2.6 eV), whereas higher-
energy photons can excite electrons in the ZnO and 
 Ag2WO4 semiconductors. Rapid electrons transfers will 

(1)Nd =

2

qεε0

[

1

d
(

1/C2
)

/dv

]

take place quickly where electrons are transferred from 
the CB of the AgBr to the CB of the ZnO and  Ag2WO4 
consequently. Then, electrons will then be captured and 
transferred to the photoelectrode contact for reduc-
tion reaction in the Pt electrode site where  H2 should be 
released. Holes that are left in the VB will perform oxi-
dation reaction and  O2 should be released. The efficient 
electrons transfer between the heterojunction can reduce 
the recombination rate and enhances the photocatalytic 
reaction.

Conclusion
In summary, ZnO/Ag2WO4/AgBr NRs heterostruc-
ture photoelectrode was prepared successfully using 
the hydrothermal growth route followed by the SILAR 
method. The characterization analysis revealed that 
the  Ag2WO4/AgBr was successfully deposited onto 
the ZnO NRs. The photocurrent density of the ZnO/
Ag2WO4/AgBr NRs (10 SILAR cycles) photoelectrode 
was increased 5 times compared to the ZnO NRs pho-
toelectrode under visible sun radiation. Also, the pho-
toresponse over time showed an improvement in the 
photocurrent density for the ZnO/Ag2WO4/AgBr NRs 
(10 SILAR cycles) photoelectrode (3.3  mA/cm2) in 
comparison with that of the ZnO NRs photoelectrode 
(1.6  mA/cm2). The enhancement in the PEC response 
is attributed to the synergistic effect due to the depo-
sition of the  Ag2WO4 and the AgBr NPs onto the sur-
face of the ZnO NRs. This deposition increased the 

Fig. 8 Path transfer of electron–hole in the ZnO/Ag2WO4/AgBr heterojunction
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absorption of the visible light and the accompanied 
lowered recombination rate. Also, it was found that 
higher amount of AgBr can lead to larger aggregates 
into the heterostructure which might destroy the heter-
ojunction and reduces the PEC performance. The high 
potential of the ZnO/Ag2WO4/AgBr NRs photoelec-
trode for the PEC water splitting makes this photoelec-
trode a promising candidate for hydrogen production.
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