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Abstract
Designs obtained with topology optimization (TO) are usually not safe against damage. In this paper, density-based TO is
combined with a moving morphable component (MMC) representation of structural damage in an optimization problem
for fail-safe designs. Damage is inflicted on the structure by an MMC which removes material, and the goal of the design
problem is to minimize the compliance for the worst possible damage. The worst damage is sought by optimizing the
position of the MMC to maximize the compliance for a given design. This non-convex problem is treated using a gradient-
based solver by initializing the MMC at multiple locations and taking the maximum of the compliances obtained. The use of
MMCs to model damage gives a finite element-mesh-independent method, and by allowing the components to move rather
than remain at fixed locations, more robust structures are obtained. Numerical examples show that the proposed method can
produce fail-safe designs with reasonable computational cost.

Keywords Fail-safe · Topology optimization · Moving morphable components · Redundancy

1 Introduction

Topology optimization (TO) has gained increasing popular-
ity since the first article by Bendsoe and Kikuchi (1988)
and the research is constantly evolving (Deaton and Grandhi
2014). A commonly studied formulation when designing
load-carrying structures using TO is to minimize the com-
pliance of the structure subject to a volume restriction. This
usually gives a structure which resembles a statically deter-
minate structure with no redundant parts. This implies that if
one of the structural members was to break, by for example a
brittle failure in the material due to a sudden impact or by an
explosion or a similar occurrence, there would not exist any
alternative load-paths, and the structure would experience a
catastrophic failure. In for example aerospace applications,
this is highly unwanted, and a so-called fail-safe design with
redundancy in terms of load-paths is required.
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According to Niu (1998, 1997), fail-safe can be defined
as:

– A fail-safe structure must support 80–100% limit loads
without catastrophic failure.

– A fail-safe structure must support a single member
failed in a redundant structure or partial failure in a
monolithic structure.

The present article focuses on the second criteria (for
work on the first criteria, see, e.g. Wang et al. (2020)).
To satisfy this criteria implies there must exist additional
load-paths when one structural member is completely
removed or partially damaged. For an a priori discrete
structure such as a truss or frame this results in a
rather simple design problem—in principle one could
simply remove one member at a time and minimize the
maximum compliance (see Stolpe (2019) for a practical
implementation of this idea). Formulation of the design
problem for continuum structures is however not as
straightforward. If one were to look at the structure, it
would be possible to distinguish a structural member
and then say where a damage patch would do a lot of
damage, but of course this is not possible if it is going to
be implemented into a completely automatic optimization
algorithm.
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The first article published on fail-safe TO for continua
is written by Jansen et al. (2014). In this article, a grid of
fixed rectangular damage patches covers the design domain.
The optimization problem is then written as a minimization
of the compliance under the worst damage, i.e. the damage
which gives the maximum compliance. To find the worst
damage, all damage patches had to be tested, and since
the number of patches is in the range of the number of
finite elements the problem becomes very computationally
demanding.

To reduce the number of damage patches, Jansen
et al. (2014) tried to only include patches which con-
tained material and another approach where only patches
which had a non-monotonic density variation were con-
sidered. Zhou and Fleury (2016) tried to further decrease
the number of patches by having two sets of dam-
age populations in which they increased the number
of damage zones until more patches would not do
much difference. This was measured by looking at
the so-called minimum hideout volume of the added
patches.

Ambrozkiewicz and Kriegesmann (2018) examined how
well the algorithm by Zhou and Fleury (2016) performed
and found that it was sensitive to damage zones which
weren’t included in the optimization. They also proposed
their own method where they used the stress-state in the
structure to divide the structure into knots and beams and
each knot and beam was then removed one at at time to
simulate a damage to that particular place. This method
diverges a bit from the rectangular damage zones seen in
previous work.

There are also some research where the fail-safe criterion
is formulated in a more implicit way (Wu et al. 2018; Dou
2019). These methods do not include a damage formulation
but instead uses local volume constraints which makes
the structure get more members and thus increase the
redundancy and consequently the damage tolerance. But
since fail-safe is not explicitly included the structure has to
be tested after optimization.

The most recent article on fail-safe TO is Ambrozkiewicz
and Kriegesmann (2020) where the authors first used a local
volume method of the type mentioned in the preceding
paragraph to get a first draft of a redundant structure and
then they used their previous research to divide the structure
into knots and beams. The optimization then comes to the
second stage where a density-based shape optimization was
performed to get the final design. To divide the structure into
knots and beams in 2D, the stress-state was examined. This
was not possible in 3D with multiple load-cases and thus a
visualisation tool was used. The knot and beam formulation
is close to that of an MMC but they used it in a different
way.

In this article we propose a method to obtain fail-safe
designs by using so-called moving morphable components
(MMCs) (Guo et al. 2014) to model damage in the structure
while using density-based TO to obtain an optimized
material layout of the structure. Damage is inflicted on the
structure by an MMC which removes material, and the goal
of the design problem is to minimize the compliance for
the worst possible damage. The worst damage for a given
design is sought by optimizing the position of the MMC
to maximize the compliance. The smooth but non-convex
problem of finding the worst damage is treated using a
gradient-based solver by initializing the MMC at multiple
locations and taking the maximum of the compliances
obtained. This heuristic method does not guarantee that the
worst damage is actually found of course, but the numerical
results indicate that the method works well in practise.

An advantage of proposed method compared to existing
methods for fail-safe design cited above is finite element
(FE) mesh independency in the sense that the only
connection an MMC has to the mesh is when the MMC
is projected onto the FE-mesh for density and gradient
calculations. The position of an MMC is thus not bound
to the FE-mesh but can move around freely using an
optimization solver to find a position where it does the most
damage. As will be seen in the numerical examples below,
compared to a strategy with fixed damage patches such as
in Jansen et al. (2014), the moving patches used herein give
more robust structures.

Finally, one issue found in the reviewed literature was
that there was very little verification that the structures
obtained actually were fail-safe. In the present work, so-
called damage maps are used just to show that the optimized
structures actually are fail-safe.

2 Background theory

To get an understanding of how the proposed method works,
a short explanation of both density-based TO and MMC TO
is provided.

2.1 Density-based topology optimization

The basic problem considered in this article is to maximize
stiffness under a volume constraint. The design is described
by a (relative) density function, approximated as element-
wise constant and taking values between 0 (no material)
and 1 (material). The elemental values ρe are collected in
a vector ρ ∈ R

m, where m is the number of FEs. The
Solid Isotropic Material with P+enalization (SIMP) scheme
is used to obtain close to binary-valued designs (Christensen
and Klarbring 2008; Rietz 2001).
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The mathematical formulation of the (FE-discretized)
optimization problem is
⎧
⎪⎪⎨

⎪⎪⎩

min
ρ

C(ρ) = F T U(ρ)

s.t.

{
V (ρ) ≤ αV0

0 ≤ ρe ≤ 1, e = 1, . . . , m,

where U(ρ) solves the equilibrium equation K(ρ)U = F ,
in which K(ρ) is the stiffness matrix, and F is the load-
vector. Furthermore, V0 is the volume of the design domain
Ω , V (ρ) is the volume of the structure and α is the fraction
of volume that the optimized structure is allowed to occupy.

2.1.1 Filtering

To avoid FE mesh dependency and checkerboards for low
order FEs (Sigmund and Petersson 1998), a linear filter
(Bourdin 2001) is applied to the design variables, giving a
filtered design

ρ̃e = 1
∑m

i=1 Zei

m∑

i=1

Zeiρi, e = 1, . . . , m,

whereZei = max(0, R−Δ(e, i)) is a weight function which
smooths the design. Here R is the filter radius and Δ(e, i)

the Euclidean distance between the centroid of elements e

and i.

2.1.2 Projection for 0/1-designs

When applying a filter, the design becomes gray (interme-
diate densities) at the boundary of the structure. To instead
get a 0/1 boundary without intermediate densities, a so-
called projection-filter is often used. Ideally, the Heaviside-
function (defined by H(x) = 0 for x < 0 and H(x) = 1 for
x ≥ 0) should be used. The discontinuity of this function
may however cause problems for gradient-based solvers.
To circumvent this, a regularized version of the Heaviside-
function (Wang et al. 2011) is used to get the projected
density

ρ̄e(ρ̃e) = tanh (ψη) + tanh (ψ(ρ̃e − η))

tanh (ψη) + tanh (ψ(1 − η))
, (1)

where ψ determines the sharpness of the step. A higher
ψ will result in a sharper step but also a more unstable
optimization process. Usually, a continuation scheme
is used where ψ is gradually increased during the
optimization.

A useful feature of the projection is that different values
of η can be used for the objective function and the
volume constraint. This is used in the present work due
to convergence issues seen if the same value for η was
used for both objective function and volume constraint. This
procedure is known as a robust formulation (Wang et al.

2011) and is used by Jansen et al. (2014). The so-called
nominal density ρ̄

(n)
e (ρ̃e) is obtained by putting η = 0.5 and

the eroded density ρ̄
(e)
e (ρ̃e) is obtained by putting η = 0.7.

By using the robust formulation, the design becomes more
robust to slight changes in the material distribution and
thin members vanishes. The densities to be plotted in the
following are nominal densities.

2.1.3 The stiffness matrix

Finally, the eroded density is used with a material
interpolation scheme to get the stiffness matrix for the
structure. Young’s modulus for each element is written as

Ee(ρe) = Emin + (E0 − Emin)(ρ̄
(e)
e )

q1
, (2)

where q1 > 1 is the SIMP penalization exponent, E0 is the
nominal stiffness of the solid phase, and Emin > 0 is the
stiffness of the void phase needed to ensure a non-singular
stiffness matrix. The global stiffness matrix is then

K(ρ) =
m∑

e=1

Ee(ρe)k0e,

where k0e is the stiffness of an element with unit Young’s
modulus.

2.2 MovingMorphable components

Topology optimization with MMCs is an alternative to the
density-based approach which was introduced by Guo et al.
(2014) and Zhang et al. (2016).

2.2.1 The mathematical description of a component

In this work, we consider components described by level-set
functions of the form

φ(x) = 1 −
(

x′

L

)pφ

−
(

y′

f (x′)

)pφ

, (3)

where L is the length of the component, f (x′) is a function
describing the thickness, and pφ is a relatively large, even
integer. A component with the associated design variables
can be seen in Fig. 1. The relation between global xy- and
local x′y′-coordinates is expressed as
{

x′
y′

}

=
[
cos θ sin θ

− sin θ cos θ

]{
x − xc

y − yc

}

, (4)

in which xc and yc are the components of the centroid
xc. The function f (x) can be defined in different ways
depending on what design variables one wants to use. For a
quadratically changing width, the function can be written as

f (x′) = t1 + t2 − 2t3
2L2

(x′)2 + t2 − t1

2L
x′ + t3,

where the parameters t1, t2, and t3 are defined in Fig. 1.
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Fig. 1 A moving morphable
component together with its
design variables

If the level-set function is greater than 0 at a point x,
then that indicates that the component exists at that position
and thus that the elements covered by the component should
contain material. If the function is equal to 0, then that
defines the boundary of the component and if the function
is less than 0, then that means the component is not present
at that position and should not contribute with any material.
In a more mathematical way, this is written as
⎧
⎪⎨

⎪⎩

φ(x) > 0, if x ∈ Ωc

φ(x) = 0, if x ∈ ∂Ωc

φ(x) < 0, if x ∈ Ω \ Ωc

where Ωc and ∂Ωc are the domain of the component and its
boundary, respectively.

Multiple, potentially overlapping components can be
combined using the max-function to a single function
φs(x) = max{φ1(x), . . . , φn(x)} defining the resulting
structure.

2.2.2 The Ersatz material model

To move from a level-set function φ to a corresponding
(element-wise constant) density distribution ρ, a cheap
method is to use the ersatz material model (Guo et al. 2014;
Zhang et al. 2016) in which the density of an element e is
given by

ρe,MMC =
∑nn

j=1(H̃ (φs(xj ))
q2

nn

, (5)

where nn is the number of sampling points xj and H̃ is a
smooth approximation of the Heaviside function specified
in Section 3 below. The parameter q2 is used to get a sharper
boundary of the structure (Coniglio et al. 2019). Formula
(5) is then used in the same manner as in (2), so that the
effective Young’s modulus becomes

Ee,MMC = Emin + (E0 − Emin)ρe,MMC .

2.2.3 Example of MMC TO

To get a better understanding how TO with MMCs actually
works we consider and example of optimization of a

cantilever beam whose left end is fixed and whose right
end is subject to a vertical load. In Fig. 2 (top) one can see
the initial configuration of all the 24 MMCs that define the
design. The black contour lines indicate φ = 0, the green
regions are where φ > 0, and the white regions are where
φ < 0 as explained previously. In Fig. 2 (bottom), one
can see the final design. In Fig. 3, one can then see how
these components are projected onto an (180×60) FE-mesh
through the Heaviside function.

3 Topology optimization for fail-safe designs

We now combine density-based TO with the MMC
formulation to obtain fail-safe designs. This is done in the
form of a minmax formulation where instead of adding
material, one or more MMCs now remove material to model
damage on the structure. The goal of the inner maximization
problem is thus to find the position, given by the centroid
xc, of an MMC that causes the most damage to the structure.
The shape of the MMC is taken as a square with rounded
corner, more precisely a squircle (sic), but other shapes
could of course also be considered (see sections 5.3 and 5.4

Fig. 2 Initial (top) and final configuration (bottom) of the MMCs
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Fig. 3 Density distribution obtained by projection of the components
in the final design in Fig. 2

below). An example of an optimized, damaged structure can
be seen in Fig. 4 (top).

Mathematically, the problem of minimizing the worst
compliance now reads:
⎧
⎪⎪⎨

⎪⎪⎩

min
ρ

max
xc

F T U(ρ, xc)

s.t

{
V (ρ) ≤ αV0

0 ≤ ρe ≤ 1, e = 1, . . . , m

(6)

where U(ρ, xc) solves the equilibrium equation

K(ρ, xc)U = F .

Note that no bounds are needed for xc since the worst
damage is always obtained for a patch overlapping the
design domain. Given a bounded design domain, the
optimal centroid is thus confined to a compact set, meaning
that the inner problem is well-posed since the objective is
continuous in xc.

The non-convexity of the inner maximization problem in
(6) is illustrated in Fig. 4 (bottom), where the dotted squares
are the initial positions of two different damage patches
and the solid squares are the final positions of the damage
when optimizing the position. It is thus seen that even if
the starting positions of two damage patches are close to

Fig. 4 Top: a damage patch located near the lower left corner of the
design domain. Bottom: depending on the starting position (dashed
lines) a damage patch may end up in different positions

each other they do not necessarily end up at the same end
position.

While implementing the algorithm it was found that due
to the non-convexity of the inner problem, more than one
damage patch was needed to make sure that the worst
damage was found. (Since we only consider one damage
patch at the time however, an alternative point-of-view is
that we have one damage patch which is initialized at many
different locations. Implementation-wise we get the same
problem formulation however.) The objective will therefore
be to mitigate the damage from the worst positioned damage
obtained for any one of nd damage patches. Introducing the
sets Xi = {xci | xci ≤ xci ≤ xci}, i = 1, . . . , nd , the
optimization problem is written as:

⎧
⎪⎪⎨

⎪⎪⎩

min
ρ

max
i=1,...,nd

max
xci∈Xi

F T U(ρ, xci)

s.t

{
V (ρ) ≤ αV0

0 ≤ ρe ≤ 1, ∀e = 1, . . . , m

(7)

The box constraints in the sets Xi are introduced to make
sure that the entire design domain is searched without the
patches getting stuck in positions where they do not cause
much damage.

3.1 Inner problem

The innermost problem in (7) is to maximize the compliance
by moving the ith MMC over a given design ρ. The MMC
could be quite complicated as described in (3), but to be able
to compare the current algorithm to previous algorithms
from the literature a simpler function is used, namely

φi(x; xci) = 1 −
(

x − xci

L

)pφ

−
(

y − yci

L

)pφ

, (8)

whose zero level set is a (super-ellipse based) squircle. If pφ

is set to 2 a circle is obtained and the higher pφ used, the
sharper the edges on the MMC. For this study, a value of 6
was chosen which yields a square component with rounded
corners.

The function φi in (8) is then put through a regularized
Heaviside function and sampled to get a corresponding
density distribution as described in Section 2.2.2. The
regularized Heaviside function used in this article is defined
as

H̃ (x) = 1

2

(
1 + tanh (βx)

)
, (9)

where β > 0 controls the steepness of the (smooth) step.
The stiffness of the structure will now depend on the MMC
damage as well as the (eroded) density-distribution ρ̄e =
ρ̄e(ρ̃e(ρ)) from (1), where the density variable adds material
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and the MMC removes material. This gives the effective
Young’s modulus

Ẽe(ρ, xci
) = Emin +

(E0 − Emin)ρ̄
q1
e

(

1 −
∑nn

s=1(H̃ (φ(xs; xci )))
q2

nn

)

,(10)

and thus the stiffness matrix

K(ρ, xci) =
m∑

e=1

Ẽe(ρ, xci)k
0
e .

3.1.1 Sensitivity analysis

To use a gradient-based algorithm to solve the inner-most
problem in (7), the gradient of the compliance Ci =
F T U(ρ, xci) with respect to the centroid is needed. The
only constraints are the box constraints on the centroid
and no derivative is needed of these. Differentiating the
compliance with respect to the position of the damage-patch
using the adjoint method (Christensen and Klarbring 2008),
we get

∂Ci

∂xc

= −U(ρ, xci)
T ∂K(ρ, xci)

xc

U(ρ, xci),

where

∂K(ρ, xci)

∂xc

=
m∑

e=1

∂Ẽe(ρ, xci)

∂xc

k0
e .

The derivative of the regularized Heaviside function from
(9) is

∂H̃

∂xc

= 1

2

(
1 − tanh2(βφ(xs; xci))

)
β

∂φ

∂xc

,

and finally, the derivative of the level-set function from (8)
is

∂φ

∂xc

= pφ

L

(
x′

L

)pφ−1

The derivative with respect to yc is obtained analogously.

3.1.2 Extra sampling points

Using too few sampling points in (10) can cause difficulties.
For example, a common choice is to use only the FE nodes
as sampling points. This can give a good representation of
the component itself but not of the derivative with respect
to the centroid which is non-zero only in a narrow region
at the boundary of the component. To illustrate this, Fig. 5
shows how a component centred at x = 0.5 would look in
1D with a coarse 40-element grid (red), a coarse grid with
3 extra points per element (blue) and how the regularized
Heaviside function would actually look (green). As one
can see, there is not much difference between extra nodes
and no extra nodes. In the bottom plot in Fig. 5; however,
the derivative of the component is shown, and here some
issues can be seen: the derivative on the coarse grid (red)
is almost flat while the derivative with extra nodes (blue)
is closer to the actual derivative (green) although averaged
over the entire element. Worth noting is that the function
is differentiated with respect to xc and not x and thus the
derivative is negative on the left side and positive on the
right side since material is added on the right side and
removed on the left side if the component moves to the
right.

To avoid problems with vanishing derivatives, we use
nn = 16 sampling points in our numerical examples. Note
that increasing the number of sampling points has negligible
effect on the computational time which is dominated by
solving the equilibrium equation.

3.2 Outer problem

The outer problem in (7) consists of finding a design which
minimizes the worst compliance obtained for any of the
damage patches, i.e.

C(ρ) = max
i=1,...,nd

Ci(ρ) = F T U(ρ, x∗
ci),

Fig. 5 Left: the Heaviside
function and the sampled
Heaviside function in a coarse
mesh and a coarse mesh with
extra points. Right: the
derivative of the component
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where x∗
ci = x∗

ci(ρ) solves max
xci∈Xi

F T U(ρ, xci). The

optimization problem can thus be written as

⎧
⎪⎪⎨

⎪⎪⎩

min
ρ

C(ρ)

s.t

{
V (ρ) ≤ αV0

0 ≤ ρe ≤ 1, ∀e = 1, . . . , m

The max-function is non-smooth and therefore the
Kreisselmeier-Steinhauser (KS) approximation (Kreis-
selmeier and Steinhauser 1979) is used to get

C(ρ) ≈ CKS(ρ) = 1

γ
ln

(
nd∑

i=1

exp
(
γCi(ρ)

)
)

, (11)

where a higher value of γ makes the approximation closer
to the max-function.

3.2.1 Sensitivity analysis

The derivative of the KS-approximation with respect to ρe

is given by

∂CKS

∂ρe

=
∑nd

i=1 exp(γCi)
∂Ci

∂ρe∑nd

i=1 exp(γCi)
, (12)

where

∂Ci

∂ρe

= −U(ρ, x∗
ci)

T

⎛

⎝
m∑

j=1

∂K

∂ρ̄j

∂ρ̄j

∂ρ̃j

∂ρ̃j

∂ρe

⎞

⎠ U(ρ, x∗
ci), (13)

in which

∂K

∂ρ̄j

= q1(E0 − Emin) ·

ρ̄
q1−1
j

(

1 −
∑nn

s=1(H̃ (φ(xs; x∗
ci)))

q2

nn

)

k0
j ,

∂ρ̄j

∂ρ̃j

= ψ(1 − tanh2(ψ(ρ̃j − η)))

tanh (ψη) + tanh (ψ(1 − η))
,

and ∂ρ̃j /∂ρe = Zje/
∑m

i=1 Zji .
The expression (13) is valid provided that the ith inner

problem max
xci∈Xi

F T U(ρ, xci) has a unique solution (c.f.

Theorem 1 in Klarbring and Strömberg (2012)). That is
not necessarily the case in our numerical examples but we
nevertheless observe good convergence as shown in Fig. 13
for example.

3.3 The optimization algorithm

Problem (7) is solved using an algorithm which can be seen
in the flowchart in Fig. 6.

Setup problem, component 
parameters and filtering 

matrix. 

Filter design variables

Sensi�vity analysis 

Upda�ng design variables 

End of op�miza�on 

Start loop over all 
damage patches

Damage op�miza�on: 
Upda�ng the damage patch 

posi�ons  

Damage-op�miza�on 
finished

Solve equilibrium 
equa�on

Converged?

Damage op�miza�on

Yes

No

Calculate sensi�vi�es

Upda�ng damage 
posi�on

1 nd

1,…,nd

Itera�ons ≥ max itera�on
No

Yes

Solve equilibrium 
equa�on

Calculate sensi�vi�es

Upda�ng damage posi�on

Itera�ons ≥ max itera�on
No

Yes

Fig. 6 Flowchart of the optimization algorithm with the inner and outer optimization problem
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We note that a somewhat similar algorithm was proposed
in da Silva et al. (2019) for TO under load uncertainty, and
that the inner loop over all damage patches is almost trivial
to parallelize if needed. The update of the position of the
damage patch was done by the use of the method of moving
asymptotes (Svanberg 1987) while the design was updated
using the optimality criteria (OC) method (Christensen
and Klarbring 2008) as implemented in Andreassen et al.
(2011).

4 Numerical examples

The numerical examples in this section are based on the
set-up shown in Fig. 7.

A “safe-zone” (the region to the right of the blue line in
Fig. 7), where no damage can be present, is applied so as to
not disconnect the force from the body (which would result
in a very large compliance due to the non-zero Young’s
modulus Emin > 0 of void regions). Damage patches of two
different sizes that will be used are also shown.

The parameter γ in the KS-approximation (11) is taken
as 5/Cmax where Cmax is the maximum compliance
obtained for a given design (strictly speaking one should
then consider Cmax when computing derivatives). Due to
big differences in the compliance over the course of the
optimization, Cmax is updated every 10th (outer) iteration.
The parameter ψ in (1) starts at 2 and is doubled every
50th iteration until a final value of 16. After the 20 first
iterations, the design does not change significantly and
thus the positions of the MMCs are updated 4 times every
iteration the first 20 iterations and thereafter only updated
once per iteration to save computational time. The box
constraint for each MMC is set to be ±0.2L in both x− and
y-direction starting from the initial position of the MMC.
The initial positions for all MMCs are shown for each
example below. The mesh size for the cantilever beam was
180× 60 elements. All other parameters and settings can be
found in Table 1.

Table 1 All parameters used in the optimization

Parameter Value

Sampling points nn = 16

Density penalization q1 = 3

Heaviside exponent q2 = 2

Filter radius R = 0.05333 L

Heaviside steepness β = 5

φ exponent Pφ = 6

OC Move limit 0.05

Maximum OC iterations 400

Damage map components 360 × 120

Projection level for eroded design ηeroded = 0.7

Projection level for nominal design ηnominal = 0.5

Nominal Young’s modulus E0 = 1

Poisson’s ratio 0.3

Void Young’s modulus Emin = 10−9

Projection steepness ψ ∈ {2, 4, 6, 8, 16}
Length parameter L=1

Thickness of design domain 1

Element type Quad4

MMA parameter asyinit 1

MMA parameter asyincr 1.4

MMA parameter asydecr 0.7

As initial guess for the design, we use in all cases a
uniform density-distribution satisfying the volume and box
constraints.

4.1 Damage patch 0.2L

4.1.1 Nominal design with damage

In Fig. 8 (top), one can see how the design looks when it
is optimized not considering damage and in the middle plot
one can see the worst damage in the structure. To assess
the performance of the structure, a so-called damage map,

Fig. 7 Design domain with
loads and boundary conditions.
To the right are examples of
damage patches of two different
sizes
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Fig. 8 Top: optimized design. Middle: the design with the worst
damage. Bottom: damage map for the design

Fig. 8, is constructed by using 360×120 damage patches
evenly spread throughout the domain. This yields a map
where one can see how the worst compliance varies as a
function of the centroid position of a damage patch. The
nominal compliance of the nominal design is 202.4 and the
compliance for the worst damage is 8627.96. A damage
to the optimized structure not considering damage is thus
highly detrimental for the performance.

4.1.2 Optimized design with stationary damage

To compare to earlier work in Jansen et al. (2014) and
Zhou and Fleury (2016), an optimization is performed with
stationary damage patches. The optimization was performed
with 60 × 180 damage patches uniformly distributed in
the domain. The top plot in Fig. 9 shows the optimized
design, and the middle plot shows the design with the worst
damage obtained from the damage map in the lowermost
plot. The undamaged compliance was 245.41 and the worst
compliance found during the optimization was 371.28. This
is significantly lower than what was found from the damage
map where the worst compliance found was 497.46. This
shows that even if a large amount of stationary damage
patches is used, even a slight change in the position of
the damage patches can damage the structure significantly
more. Below, we will see that this effect can be avoided

Fig. 9 Top: design optimized with stationary damage patches. Middle:
design with the worst damage. Bottom: damage map

Fig. 10 Top: optimized design with 5 × 12 moving damage patches.
Middle: design with the worst damage. Bottom: damage map
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Fig. 11 Initial and final density distribution with the corresponding damage patch distribution (turquoise squares) superimposed

Fig. 12 The evolution of the design during the first 100 design updates
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Fig. 13 The eroded compliance as a function of the iterations during the optimization
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Fig. 14 Designs for 3 × 10 = 30 (a) and 5 × 24 = 120 (b) moving
damage patches

almost entirely by using a much smaller number of moving
damage patches.

4.1.3 Optimized design with moving damage

Figure 10 shows an optimized design for an initial damage
distribution of 5×12 damage patches. As can be seen in the
middle plot, the worst damage is located near the support
at the bottom left part of the domain. The corresponding
damage plot is seen in the bottom of Fig. 10.

The initial and final distribution of damage patches for
the design in Fig. 10 can be seen in Fig. 11 superimposed
onto the respective design. The evolution of the design can
be seen in Fig. 12

The objective function (the maximum eroded compli-
ance) evolution can be seen in Fig. 13. The general appear-
ance is smooth with jumps at 50, 100, and 150 iterations due

to the update of the steepness-parameterψ for the Heaviside
projection filter defined in (1).

In Fig. 14a, one can see the design obtained when
3 × 10 = 30 uniformly distributed damage patches were
considered during the optimization and in Fig. 14b one can
see the design when 5 × 24 = 120 damage patches were
considered during the optimization. The undamaged and
damaged compliance can be seen in Table 2.

The principle appearance, as well as the compliance, of
the designs in Figs. 9, 10, 14b and a is similar. If more
damage patches were used, then the worst damage found
from the optimization is closer to the worst damage found
from the damage map. For the 0.2L damage patch, the
compliance from the optimization is still close to the worst
damage even when only 30 damage patches were used:
431.79 compared to 453.22.

The computational time required for 5×12 moving
patches was approximately 23.4 min and for 60×180
stationary patches it was approximately 5542 min. This is
thus roughly 240 times faster. This can be compared with
it being 180 times more damage patches in the example
with the stationary patches. Some additional computational
times can be seen in Table 2. The optimization ran on a
non-optimized code using MATLAB R1029b on a Intel core
i9-9900K @3.60 GHz processor with 64 GB of RAM and
using a sparse direct solver for the equilibrium equations.
The bottleneck in the calculation is the number times the
equilibrium equation needs to be solved.

4.2 Damage patch 0.4L

Figure 15 shows designs obtained with a damage patch
of size 0.4L. In Fig. 15a, we see a design for 60 × 180
stationary damage patches, in Fig. 15b, one with 3 × 10
moving damage patches, in Fig. 15c one with 5×12 moving
damage patches, and in Fig. 15d one with 5 × 24 moving
damage patches. The designs here as well are similar to each

Table 2 Compliance for the cantilever beam example obtained with different settings for the damage size and number of patches

Damage patches
in optimization

Damage
size

Undamaged
compliance

Worst compliance,
optimization

worst compliance,
damage map

Time (min)

n/a 0.2L 202.4 n/a 8627.96 ∼ 3

60x180 (stationary) 0.2L 245.41 371.28 497.46 ∼ 5542

3×10 0.2L 275.34 431.79 453.22 ∼ 15.8

5×12 0.2L 271.87 445.16 445.7 ∼ 23.4

5×24 0.2L 262.17 457.61 457.7 ∼ 45

n/a 0.4L 208.28 n/a 9649.31 –

60×180 (stationary) 0.4L 321.75 765.69 947.55 –

3×10 0.4L 347.33 637.23 844.14 –

5×12 0.4L 346.48 841.53 857.77 –

5×24 0.4L 331.61 832.03 842.28 –
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Fig. 15 Four designs obtained
when using 0.4L damage
patches. Top left: 60 × 180
stationary damage patches. Top
right: 3 × 10 moving damage
patches. Bottom left: 5 × 12
moving damage patches.
Bottom right: 5 × 24 moving
damage patches

other and have the same principle design. The compliance
for the damaged structure obtained from the damage maps
is similar as well except for the optimization with 60 ×
180 stationary damage patches. The compliance for the
undamaged structures and the compliance for the damaged
structure can be found in Table 2. As one can see in Fig. 15,
the designs are very similar, but once again the design
with stationary damage patches in Fig. 15a has the worst
damaged compliance. Here, the moving damage patches
make for much better designs at lower computational cost.

4.3 Summary

A summary of data for all the designs considered above,
including the nominal and worst compliance found during
the optimization and the worst compliance found from the
damage map, is given in Table 2. As can be seen in the
table, the compliance for the structures optimized using a
0.2L damage patch is almost 20 times better than that for
the nominal design. The worst compliance found during the
optimization is also close to the worst compliance found
from the damage map. For the 0.4L damage, the compliance
optimized with damage is more than 10 times better than
that for the nominal design. Worth noting is that when a low
number of damage patches were used, 3 × 10 = 30, the
worst compliance was not found during the optimization but
the structure is still just as damage tolerant as the designs
where the worst damage found during the optimization was
close to the worst compliance from the damage map.

5 Additional examples and extensions

To further investigate the capability of the algorithm, some
additional examples, namely the MBB beam and the L-
bracket, are considered. For these examples, the MMC-
damage formulation is the same as in the previous section
where only the centroid is used as design variable for the
inner problem.

Furthermore, the MMC formulation can easily be
modified to include both a change in length, Li , and
thickness, ti , as well as rotation, θi , of the components (c.f.

Fig. 16 The optimized L-bracket (a) and the worst damage (b)
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Figure 1). The added variables do make the optimization
problem increasingly non-convex and it becomes difficult
to verify, with, e.g. a damage map, if the worst damage is
found. However, it is clear that the optimized designs are
more fail-safe than an optimized design without regarding
damage.

If nothing else is stated the parameters are the same as,
found in Table 1.

5.1 L-bracket with 0.2L damage patches

For the L-bracket shown in Fig. 16a, a box (in green)
was added as a safe zone around the point where the
force was applied. This was done to keep the damage
from disconnecting the force from the structure. The design
domain was 2L × 2L with an inactive zone of L × L in the
top right. The number of elements was 120×120. The initial
damage patches were distributed evenly in the domain and a
total of 47 damage patches were considered. The same type
of damage patches as in the 0.2L damage cantilever setup
was used. The optimized structure can be seen in Fig. 16a,
and the worst damage at the inward corner can be seen in
Fig. 16b. The compliance for the undamaged structure was
118.66 and for the damaged structure it was 236.23.

5.2 MBB beamwith 0.2L damage patches

The other example is the MBB beam with the same setup
as for the L-bracket. For the MBB beam, two safe zones
(in green) had to be applied to not disconnect the force as
well as the support in the bottom right in Fig. 17a since
this too would make the compliance tend to infinity. The
number of elements was 120 × 40. The total number of
damage patches was 72 which were evenly distributed. The
optimized structure can be seen in Fig. 17a and the worst
damage, located slight below the center of the domain, can
be seen in Fig. 17b. The compliance for the undamaged
structure was 283.67 and for the damaged structure it was
481.12.

5.3 Varying patch size

In this example, the MMC is allowed to change its position
as well as its length, L and width, t. To not get too long,
thin damage patches which can cut too many structural
members, a bound is put on the length Li ∈ [0.05, 0.2] as
well as the thickness ti ∈ [0.05, 0.2]. Without these bounds,
a sufficiently long patch could cut away all the material at
the supports and the compliance would tend to infinity in the
same manner as disconnecting the force would. To maintain
a sensible size of the damage, a bound on the area which it
is allowed to cover was added. That is Liti ≤ MaxArea was
added into problem (7). This bound is always fulfilled when

Fig. 17 The optimized MBB beam (a) and the worst damage (b)

only varying the centroid and rotation. The maximal area
was set to be equal to the area of a square damage patch with
side lengths of 0.2L. The amount of damage patches was set
to 5 × 12 and they were evenly distributed throughout the
domain. The optimized design can be seen in Fig. 18a. The
design resembles the designs in. Fig. 15 and this is due to
the maximum length of the damage patch being the same as
one of the sides of the larger damage patches even though
the area covered is smaller in this example. The final damge
distribution is shown in Fig. 18b.

Fig. 18 The optimized cantilever beam with 4 damage variables (a)
and the damage distribution (b)
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Fig. 19 The optimized cantilever beam with 5 variables (a) and the
damage distribution (b)

5.4 Varying patch size and orientation

Additionally, one can let the components rotate as stated
in (4). The same bounds as in the previous section are
used with added bounds on the angle θ ∈ [−π/2, π/2] for
each patch. The damage patches were initially distributed
as crosses similar to Fig. 2 to try and capture as many bad
damage locations as possible. There were 5 × 12 crosses
evenly distributed in the domain resulting in 120 damage
patches. Figure 19a shows the optimized structure and
Fig. 19b shows the damage distribution. One can see that
the damage patches would rather orientate in such a way
that they cut as many structural members as possible and not
along the structural beams. This is due to the fact that cutting
a structural member with a thin damage is almost equally as
bad as if the entire beam was removed (if it wasn’t for Emin

in (10), ensuring a small stiffness also in voids, it would be
exactly as bad).

6 Concluding remarks

We have proposed a method for TO of fail-safe structures
based on a standard density-based description of the design
and a mesh-independent MMC representation of damage.
The numerical examples show that the method can be
effective for generating fail-safe designs.

When comparing the compliance found during the
optimization to the damage map compliance in Sections 4.1
and 4.2, the worst damage was never truly found. However,
for a sufficient amount of damage patches, it was close, and
for the smaller damage size, it was closer than when using
stationary patches. Furthermore, even though the worst

damage is not found, the structure still has more than a 10-
fold improvement in terms of compliance compared to the
nominal design, even for the design with 3 × 10 damage
patches of size 0.4L. For the smaller 0.2L damage size, the
optimization proved successful at finding the worst damage
with as little as 30 damage patches and yielded a 20-fold
improvement in worst compliance compared to the nominal
design, see Table 2.

As shown in Section 5, the proposed algorithm also
works for different examples and it is easy to implement
other MMC descriptions in the proposed framework. The
structures optimized with additional damage variables, seen
in Figs. 18a and 19a, resemble the structures obtained for a
0.4L damage patch seen in Fig. 15 even though each damage
only occupies one fourth of the area. The reason is that
the damage patches prefer to be as long as possible in one
direction to cut as many structural members as possible.
More variables added makes it more difficult to know if one
has found the worst damage or not but the structures are
more fail-safe none the less.
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