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Abstract. For a positive integer d, a non-negative integer n and a non-

negative integer h ≤ n, we study the number C
(d)
n of principal ideals;

and the number C
(d)
n,h of principal ideals generated by an element of rank

h, in the d-tonal partition monoid on n elements. We compute closed
forms for the first family, as partial cumulative sums of known sequences.
The second gives an infinite family of new integral sequences. We discuss
their connections to certain integral lattices as well as to combinatorics
of partitions.
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1. Introduction and description of the results

Enumeration is often the starting point in understanding a given mathematical
structure. Twisted monoid algebras [6,21] of d-tonal partition monoids appear
in [22] as right Schur-Weyl duals for generalized symmetric groups. These al-
gebras are subalgebras of the classical partition algebras from [12,13] and [8].
The monoids underlying the latter algebras have relatively simple principal
ideal structure and well-studied representation theory, see [13,14]. The d-tonal
subalgebras of partition algebras are more complicated. Some basics represen-
tation theory of these and related algebras was developed in [9–11] and [17].
However in the monoid case, for example, these studies cover only a trivial
quotient.

The motivation for the present paper comes from our attempt to under-
stand the structure of d-tonal partition algebras using combinatorics of Green’s
relations for the finite d-tonal partition monoid. The main question we answer
in the present paper is what is the number of different principal 2-sided ideals
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in such a monoid. This already depends on two parameters: the difference pa-
rameter d and the parameter n which controls the size of our partitions. We
denote the number of such ideals by C

(d)
n . Algebraically, there is a natural

third parameter which enters the picture: the rank h ∈ {0, 1, . . . , n} of the
generating partition. Using this parameter, we write

C(d)
n = C

(d)
n,0 + C

(d)
n,1 + C

(d)
n,2 + · · · + C(d)

n,n,

where C
(d)
n,h denotes the number of ideals generated by an element of rank h.

We seek a closed formula for both C
(d)
n,h and for C

(d)
n . Cases d = 1 and d = 2

turn out to be easy.
In Section 2, we give an alternative, purely combinatorial, definition for

the numbers C
(d)
n as enumerators of layers in certain graded posets. These are

related to the original motivation in Section 6. The main part of the paper is
devoted to the study of the case d = 3 which occupies Section 3.

Extra motivation for the case d = 3 comes from its intrinsic geometric-
physical interest. We give an explicit formula for C

(3)
n,h in case h is relatively

big (i.e. h ≥ �n
2 �), see Proposition 4, and in case h is relatively small (i.e.

h ≤ �n
3 �), see Proposition 5. The former gives a connection of our sequence

to partitions with at most three parts while the latter shows a connection to
triangular numbers (in fact, to a special counting of triangular numbers mod-
ulo 3). Our first main result is that the sequence C

(3)
n is given by the “Cyvin

sequence” (A028289 in [19]) which enumerates the number of isomorphism
classes of hollow hexagons (representing polycyclic hydrocarbons), see [3,20].
In Theorem 18 of Section 4, we even give an explicit bijection between hol-
low hexagons and the graded poset underlying the definition of C

(3)
n given in

Section 2.
In Section 5, we relate our graded posets to combinatorics of partitions,

and in Section 6, we make precise the connection between the combinatorially
defined data discussed in the paper and the algebraic structures which moti-
vate our investigation. Combinatorics which underlines the algebraic structure
allows us to determine C

(d)
n for all d and n in terms of partitions with at most

d parts, see Theorem 28 in Section 7. As a corollary of this uniform descrip-
tion for all d, we obtain an alternative, simpler, description of A028289 using
partitions with at most 3 parts.

2. Graded posets

2.1. Notation and general construction

We denote by R the set of all real numbers, by R≥0 the set of all non-negative
real numbers, by Z the set of all integers, by N the set of all positive integers
and by Z≥0 the set of all non-negative integers.

Consider the set Z
d for some fixed d ∈ N. Elements of Z

d are vectors
v = (v1, v2, . . . , vd) such that vi ∈ Z for all i = 1, 2, . . . , d. The number v1 +
v2+ · · ·+vd ∈ Z is called the height of v and denoted ht(v). The set Z

d has the
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natural structure of an abelian group given by addition. The map ht : Z
d → Z

is a surjective group homomorphism. For i = 1, 2, . . . , d, we denote by e(i)
the standard basis vector (0, 0, . . . , 0, 1, 0, 0, . . . , 0) in Z

d, in which the only
non-zero element 1 stands in position i. Note that each e(i) has height 1.

Denote by Λd the subset Z
d
≥0 in Z

d. For h ∈ Z≥0, we denote by Λ(h)
d the

set of all elements in Λd of height h and note that the set Λ(h)
d is finite, in fact,

a standard combinatorial exercise shows that

|Λ(h)
d | =

(
h + d − 1

d − 1

)
. (2.1)

Define Z
d
(h) = {v ∈ Z

d : ht(v) = h}. For a fixed subset

X ⊂ Z
d
(−1)

define on Λd, the structure of a poset using the transitive closure <X of the
following manifestly antisymmetric relation:

v �X w if and only if v − w ∈ X. (2.2)

Note from the construction that �X is a covering relation. Directly from the
definitions, we have that v �X w implies ht(v) = ht(w) − 1, for all v and
w. In particular, the poset (Λd, <X) is a graded poset with rank function
ht : Λd → Z. Note that X �= X ′ implies �X �= �X′ .

2.2. The poset Pd

Consider the set

Xd := {e(k) − e(i) − e(j) ∈ Z
d : i, j, k ∈ {1, 2, . . . , d} such that k ≡ i+ j mod d}.

For example,

X1 = {(−1)}; X2 = {(−2, 1), (0,−1)};

X3 = {(1,−2, 0), (−2, 1, 0), (−1,−1, 1), (0, 0,−1)};

X4 = {(0, 0, 0,−1), (−1,−1, 1, 0), (−1, 0,−1, 1), (1,−1,−1, 0),

(−2, 1, 0, 0), (0,−2, 0, 1), (0, 1,−2, 0)}.

Note that <Xd
is defined. Denote by Pd the poset (Λd, <Xd

). Finite principal
ideals of Pd are the main objects of interest in this paper. For simplicity, we
will denote the relation <Xd

by ≺. For the record, we note the following.

Lemma 1. We have |Xd| = d(d−1)
2 + 1.

Proof. The pair {i, j} from the definition of Xd can be chosen in
(
d
2

)
different

ways for i �= j and in d different ways for i = j. After choosing {i, j}, the
element k is uniquely defined. Note that the d choices when {i, j} ∩ {d} �= ∅

result in the same vector −e(d). The claim follows. �

For v ∈ Pd, we denote by I(v) the principal ideal of Pd generated by
v, that is

I(v) := {v}
⋃

{w ∈ Pd : w ≺ v}.
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For n ∈ Z≥0, we set C
(d)
n := |I(ne(1))|. For h = 0, 1, 2, . . . , n, we also

define

C
(d)
n,h := |I(ne(1)) ∩ Λ(h)

d |.
Then, we have C

(d)
n = C

(d)
n,0 + C

(d)
n,1 + · · · + C

(d)
n,n. Our interest in I(ne(1)) will

be explained in Section 6 (see Theorem 27).
We observe the following structural property of Pd: for k = 1, 2, . . . , d,

consider the set Λd,k which consists of all v ∈ Λd such that v1 + 2v2 + 3v3 +
· · ·+dvd ≡ k mod d. Note that Λd,k ∩Λd,k′ = ∅ if k �= k′. Denote by Pd,k the
poset with the underlying set Λd,k obtained by restricting the relation <Xd

to
Λd,k. For h ∈ Z≥0, set Λ(h)

d,k := Λd,k ∩ Λ(h)
d .

Proposition 2.

(i) The poset Pd is a disjoint sum of subposets Pd,k for k = 1, 2, . . . , d.
(ii) Each Pd,k is an indecomposable poset in the sense that it is not isomor-

phic to the disjoint sum of two non-empty posets.

Proof. Claim (i) follows from the definitions since d divides v1+2v2+ · · ·+dvd,
for each v ∈ Xd.

Note that e(k) ∈ Pd,k. Therefore, to prove claim (ii), it is enough to
show that e(k) ≺ v, for any v ∈ Pd,k of height at least 2. However, if v has
height at least 2, then either v has a coordinate which is greater than or equal
to 2, or v has at least two non-zero coordinates. Therefore, there is x ∈ Xd

such that v + x ∈ Λd. We have v + x ≺ v and from the observation in the
previous paragraph we see that v + x ∈ Λd,k. Therefore e(k) ≺ v follows by
induction on the height of v. This completes the proof. �

From the above proof, it follows that for k �= d, the element e(k) is
the minimum element in Pd,k and that the minimum element in Pd,d is
0 := (0, 0, . . . , 0).

2.3. The case d = 1
In the case d = 1, the map

P1 → (Z≥0, <),
(i) �→ i

is an isomorphism of posets. For n ∈ Z≥0, we have

I(ne(1)) = {(0), (1), (2), . . . , (n)}
and thus C

(1)
n = n + 1. Note that in this case, the poset P1 = P1,1 is inde-

composable.

2.4. The case d = 2
Our first observation in this case is that the maps

P2,1 → P2,2,
v �→ v − (1, 0) and

P2,2 → P2,1,
v �→ v + (1, 0)
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. . . . . . . . . . . .

(0, 5) (2, 3) (4, 1)

(0, 4) (2, 2) (4, 0)

(0, 3) (2, 1)

(0, 2) (2, 0)

(0, 1)

(0, 0)

Figure 1. Hasse diagram for P2,2

are mutually inverse isomorphisms of posets. Consequently, we have C
(2)
n =

C
(2)
n+1, for all even n ∈ Z≥0. The lower part of the Hasse diagram for P2,2 is

shown in Figure 1.
It follows immediately that for k ∈ Z≥0, we have

C
(2)
2k =

(k + 1)(k + 2)
2

.

We also note that I(2ke(1)) ⊂ I(2(k + 1)e(1)), for all k ∈ Z≥0, and that
⋃

k∈Z≥0

I(2ke(1)) = P2,2.

It is also worth pointing out that for each k ∈ Z≥0, the poset I(2ke(1)) is
isomorphic to the poset I(2ke(1))op (the latter is obtained from I(2ke(1)) by
reversing the partial order).

3. The case d = 3

As we will show below, the case d = 3 has several interesting connections to
integral sequences. Our study of this case is the main part of the present paper.
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3.1. Isomorphism of P3,1 and P3,2

The symmetric group S2 acts on Λ3 as follows: for v = (v1, v2, v3) and π ∈ S2

we have π · v = (vπ(1), vπ(2), v3). Note that the set X3 (which can be found in
Subsection 2.2) is invariant with respect to the action of S2. Therefore, this
action induces an action on P3 by automorphisms. Using this action, we can
swap e(1) and e(2) and hence P3,1 and P3,2 (cf. proof of Proposition 2).
Therefore, the posets P3,1 and P3,2 are isomorphic.

3.2. An alternative description

In this subsection, we observe that P3 can be defined by restriction from Z
3.

This is a useful property for computations using computers.
We mimic the definition of P3 starting from Z

3 instead of Λ3. Consider
the set X3 as defined in Subsection 2.2. Use (2.2) to define the covering relation
on Z

3 and let ≺′ denote the partial order on Z
3 induced by this covering

relation. Our main observation here is the following:

Proposition 3. The relation ≺ coincides with the restriction of the relation ≺′

to Λ3.

Proof. Let ≺′ denote the restriction of the relation ≺′ to Λ3. Clearly, ≺⊂ ≺′,
so we only need to show that ≺′ ⊂≺.

Let v,w ∈ Λ3 be such that v ≺′ w. We have to show that v ≺ w. Assume
that this is not the case and that the pair (v,w) satisfying v ≺′ w and v �≺ w
is chosen such that ht(w − v) = k ∈ N is minimal possible. As v ≺′ w, there
is a sequence of elements x1,x2, . . . ,xk ∈ X3 such that

v = w + x1 + x2 + · · · + xk.

Consider vi = v − xi for i = 1, 2, . . . , k. We claim that all vi �∈ Λ3. Indeed, if
vi ∈ Λ3, then we would have v ≺ vi and vi ≺′ w. This would imply vi �≺ w
which would contradict our minimal choice of k. In particular, none of the xi’s
equals (0, 0,−1) since v − (0, 0,−1) ∈ Λ3 because v ∈ Λ3.

The next step is to show that none of the xi’s equals (−1,−1, 1). Other-
wise, without loss of generality, we may assume that xk = (−1,−1, 1). Then,
we have vk �∈ Λ3, and hence, v = (∗, ∗, 0) and vk = (∗, ∗,−1). Furthermore,
we have

(∗, ∗,−1) = vk = w + x1 + x2 + · · · + xk−1.

Since w ∈ Λ3, the third coordinate in w is non-negative. This means that at
least one of the xi’s must have negative third coordinate. The only element
in X3 with negative third coordinate is (0, 0,−1). However, in the previous
paragraph, we already established that none of the xi’s equals (0, 0,−1), a
contradiction.

Therefore, each xi is equal to either (−2, 1, 0) or (1,−2, 0). Assume that
all xi are equal, say to (−2, 1, 0) (the case of (1,−2, 0) is similar). Then, v =
w + k(−2, 1, 0). Since both v and w are in Λ3, we have w + i(−2, 1, 0) ∈ Λ3

for all i such that 1 ≤ i ≤ k. Therefore, v ≺ w, a contradiction.
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C
(3)
n,h 1 1 2 4 5 7 11 13 17 23 27 33 42 48 57 69 78 90 106 118 134 154 170 190 215 235

25 1

24 1 1

23 1 1 2

22 1 1 2 3

21 1 1 2 3 4

20 1 1 2 3 4 5

19 1 1 2 3 4 5 7

18 1 1 2 3 4 5 7 8

17 1 1 2 3 4 5 7 8 10

16 1 1 2 3 4 5 7 8 10 12

15 1 1 2 3 4 5 7 8 10 12 14

14 1 1 2 3 4 5 7 8 10 12 14 16

13 1 1 2 3 4 5 7 8 10 12 14 16 19

12 1 1 2 3 4 5 7 8 10 12 14 16 19 20

11 1 1 2 3 4 5 7 8 10 12 14 16 18 19 21

10 1 1 2 3 4 5 7 8 10 12 14 15 17 18 19 20

9 1 1 2 3 4 5 7 8 10 12 13 14 16 16 17 18 18

8 1 1 2 3 4 5 7 8 10 11 12 13 14 14 15 15 15 15

7 1 1 2 3 4 5 7 8 9 10 11 11 12 12 12 12 12 12 12

6 1 1 2 3 4 5 7 7 8 9 9 9 10 9 9 10 9 9 10 9

5 1 1 2 3 4 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7

4 1 1 2 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5

3 1 1 2 3 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3 3 4 3

2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

0 1 1 1 1 1 1 1 1 1

h/n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Figure 2. Values of C
(3)
n,h for n ≤ 25

The last paragraph establishes that at least one of the xi’s equals (−2, 1, 0)
and at least one equals (1,−2, 0). This implies v − (−2, 1, 0) − (1,−2, 0) =
v + (1, 1, 0) ≺′ w. At the same time, we have

v + (0, 0, 1),v + (1, 1, 0) ∈ Λ3

as v ∈ Λ3 and

v ≺ v + (0, 0, 1) ≺ v + (0, 0, 1) + (1, 1,−1) = v + (1, 1, 0).

This implies v + (1, 1, 0) �≺ w which again contradicts our minimal choice of
k. The claim follows. �

3.3. Small values

The table of C
(3)
n,h for small values of n is given in Figure 2 (computed first by

hands, up to n = 15, and then checked and extended using Proposition 3 and
MAPLE). Please ignore the underlines and the overlines for the moment.
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3.4. Values of C
(3)
n,h for large h

The sequence A001399(n) in [19] lists the number of partitions of n into at
most 3 parts. Here are the first 25 elements in this sequence:

1, 1, 2, 3, 4, 5, 7, 8, 10, 12, 14, 16, 19, 21, 24, . . .

Comparison with columns of Figure 2 suggests that the upper part of each
column in Figure 2 bounded by the underlined element is an initial segment
of A001399. Indeed, we have the following claim:

Proposition 4. For h ≥ �n
2 �, we have C

(3)
n,h = A001399(n − h).

Proof. Let (a, b, c) be a partition of n − h in at most three parts, that is,
a, b, c ∈ Z≥0, a ≥ b ≥ c and a + b + c = n − h. Then, we claim that

v(a,b,c) := (n, 0, 0) + a(−2, 1, 0) + b(−1,−1, 1) + c(0, 0,−1) ≺ (n, 0, 0).

By Proposition 3, it is enough to show that v(a,b,c) ∈ Λ3. The latter however
follows from 2a + b ≤ n (thanks to h ≥ �n

2 �) and b ≥ c (thanks to the fact
that (a, b, c) is a partition).

The vectors (−2, 1, 0), (−1,−1, 1) and (0, 0,−1) are linearly indepen-
dent, which implies that v(a,b,c) �= v(a′,b′,c′) provided that (a, b, c) �= (a′, b′, c′).
Therefore, C

(3)
n,h ≥ A001399(n − h).

Now, consider some v ∈ I(ne(1)) with height h. Then,

v = (n, 0, 0) + a(−2, 1, 0) + b(−1,−1, 1) + c(0, 0,−1) + d(1,−2, 0), (3.1)

for some a, b, c, d ∈ Z≥0. Since the second coordinate of v is non-negative, we
have a ≥ d. Since

(1,−2, 0) = −(−2, 1, 0) + (−1,−1, 1) + (0, 0,−1),

we have

v = (n, 0, 0) + (a − d)(−2, 1, 0) + (b + d)(−1,−1, 1) + (c + d)(0, 0,−1)

and thus may assume that d = 0 in (3.1). We have a + b + c = n − h since
v has height h, b ≥ c as the third coordinate of v is non-negative and a ≥ b
as the second coordinate of v is non-negative. Therefore, v = v(a,b,c), for the
partition (a, b, c) of n − h. The claim of the proposition follows. �

3.5. Values of C
(3)
n,h for small h

We start this subsection with the following observation:

Proposition 5. For h ≤ �n
3 �, we have Λ(h)

3 ∩ I(ne(1)) = Λ(h)
3 ∩ Λ3,k, where

k ∈ {1, 2, 3} is such that n ≡ k(mod 3).

Proof. As I(ne(1)) ⊂ Λ3,k, for our choice of k, to prove the assertion of this
proposition, we only need to show that (Λ(h)

3 ∩ Λ3,k) ⊂ (Λ(h)
3 ∩ I(ne(1))). If

v ∈ (Λ(h)
3 ∩ Λ3,k) \ (Λ(h)

3 ∩ I(ne(1))), for some h, then v + (0, 0, 1) ∈ (Λ(h+1)
3 ∩

Λ3,k)\(Λ(h+1)
3 ∩I(ne(1))) since I(ne(1))) is an ideal. Therefore, it is enough to

prove the proposition for h = �n
3 � which we from now on assume. Set q := �n

3 �.
We will have to consider three different cases depending on k.
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(0, h, 0)

. .
. .

.

.

(h − 6, 6, 0) . . . (0, 6, h − 6)

(h − 5, 5, 0) . . . (1, 5, h − 6) (0, 5, h − 5)

(h − 4, 4, 0) . . . (2, 4, h − 6) (1, 4, h − 5) (0, 4, h − 4)

(h − 3, 3, 0) . . . (3, 3, h − 6) (2, 3, h − 5) (1, 3, h − 4) (0, 3, h − 3)

(h − 2, 2, 0) . . . (4, 2, h − 6) (3, 2, h − 5) (2, 2, h − 4) (1, 2, h − 3) (0, 2, h − 2)

(h − 1, 1, 0) . . . (5, 1, h − 6) (4, 1, h − 5) (3, 1, h − 4) (2, 1, h − 3) (1, 1, h − 2) (0, 1, h − 1)

(h, 0, 0) . . . (6, 0, h − 6) (5, 0, h − 5) (4, 0, h − 4) (3, 0, h − 3) (2, 0, h − 2) (1, 0, h − 1) (0, 0, h)

Figure 3. Triangular arrangement of Λ(h)
3

Case 1: k = 3. In this case, q = h = n
3 . Let (a, b, c) ∈ Λ(h)

3 ∩ Λ3,k, that is
a, b, c ∈ Z≥0, a + b + c = h and 3 divides a + 2b. In this case, we have

(n − 3c − 2b, b, c) = (n, 0, 0) + (b + c)(−2, 1, 0) + c(−1,−1, 1) ≺ (n, 0, 0). (3.2)

Now, n − 3c − 2b = 3a + b. Since 3 divides both a + 2b and 3a + 3b, it also
divides 2a + b. Therefore, there is p ∈ Z≥0 such that 2a + b = 3p. We have

(a, b, c) = (n − 3c − 2b − 3p, b, c) =
= (n − 3c − 2b, b, c) + p(−2, 1, 0) + p(−1,−1, 1) + p(0, 0,−1)

≺ (n − 3c − 2b, b, c). (3.3)

Combining (3.2) and (3.3) implies (a, b, c) ≺ (n, 0, 0) and hence (a, b, c) ∈
I(ne(1)).

Case 2: k = 2. In this case, q = h − 1 and n = 3h − 1. Let (a, b, c) ∈
Λ(h)
3 ∩ Λ3,k, that is a, b, c ∈ Z≥0, a + b + c = h and 3 divides a + 2b − 2.

Formula (3.2) still holds in this case. Now, n − 3c − 2b = 3a + b − 1. Since 3
divides both a + 2b − 2 and 3a + 3b, it also divides 2a + b − 1. Therefore, there
is p ∈ Z≥0 such that 2a + b − 1 = 3p. Formula (3.3) still holds in this case.
Again it follows that (a, b, c) ∈ I(ne(1)).

Case 3: k = 1. In this case, q = h − 1 and n = 3h − 2. Let (a, b, c) ∈
Λ(h)
3 ∩ Λ3,k, that is a, b, c ∈ Z≥0, a + b + c = h and 3 divides a + 2b − 1.

Formula (3.2) still holds in this case. Now, n − 3c − 2b = 3a + b − 2. Since 3
divides both a + 2b − 1 and 3a + 3b, it also divides 2a + b − 2. Therefore, there
is p ∈ Z≥0 such that 2a+ b−2 = 3p. Formula (3.3) still holds in this case, and
we similarly obtain (a, b, c) ∈ I(ne(1)). �

Lemma 6.

(i) If 3 does not divide h, then |Λ(h)
3,1 | = |Λ(h)

3,2 | = |Λ(h)
3,3 |.

(ii) If 3 divides h, then |Λ(h)
3,1 | = |Λ(h)

3,2 | = |Λ(h)
3,3 | − 1.

Proof. We prove both statements at the same time by induction on h. Let us
arrange elements of Λ(h)

3 in a triangular array as shown in Figure 3.
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Writing down the residue modulo 3 of the expression a + 2b for each
element (a, b, c) in Figure 3, we get

. . .
. . . 2

. . . 1 0
. . . 0 2 1

. . . 2 1 0 2
. . . 1 0 2 1 0

. . . 0 2 1 0 2 1
. . . 2 1 0 2 1 0 2

. . . 1 0 2 1 0 2 1 0

For a fixed h, the set Λ(h)
3 corresponds to the first h + 1 “bottom-left-to-top-

right” diagonals starting from the bottom right corner. The induction step
h → h + 1 corresponds to adding the next diagonal.

By a direct inspection of the above tables, we have

0 = |Λ(0)
3,1| = |Λ(0)

3,2| = |Λ(0)
3,3| − 1,

1 = |Λ(1)
3,1| = |Λ(1)

3,2| = |Λ(1)
3,3|,

2 = |Λ(2)
3,1| = |Λ(2)

3,2| = |Λ(2)
3,3|,

which establishes the basis of our induction.
Note that the residues in each diagonal follow a cyclic order on 0, 1, 2 (as

one step up along the diagonal decreases the first coordinate by 1 and increases
the second coordinate by 1, thus changing a + 2b to (a − 1) + 2(b + 1)). In
particular, if the number of elements on a new diagonal is divisible by 3, it
contains the same number of 0’s, 1’s and 2’s. This proves the induction step
in the case when 3 divides h − 1.

If 3 divides h−2, then the new diagonal contains an extra zero compared
to the common number of 1’s and 2’s. If 3 divides h, then the new diagonal
contains one zero less than the common number of 1’s and 2’s. Put together
this implies the induction step and completes the proof of the proposition. �

For a set X, we denote by δX the indicator function of X, that is,

δX(x) =

{
1, x ∈ X;
0, x �∈ X.

Corollary 7. For h ≤ �n
3 �, we have

C
(3)
n,h =

(h + 1)(h + 2) + (6δ3Z(n) − 2)δ3Z(h)
6

.

Proof. We have C
(3)
n,h = |I(ne(1)) ∩ Λ(h)

3 | by definition and |I(ne(1)) ∩ Λ(h)
3 | =

|Λ(h)
3 ∩ Λ3,k| by Proposition 5. Further, |Λ(h)

3 ∩ Λ3,k| = |Λ(h)
3,k| again by defini-

tion. Now the claim follows applying Lemma 6 and Formula (2.1) and keeping
|Λ(h)

3 | = |Λ(h)
3,1 | + |Λ(h)

3,2 | + |Λ(h)
3,3 | in mind. �
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In the case when 3 does not divide n, the sequence (h+1)(h+2)−2δ3Z(h)
6 is

A001840(h) from [19]. In the case when 3 divides n, the sequence
(h+1)(h+2)+4δ3Z(h)

6 is A007997(h + 2) from [19]. However, it seems that our
interpretation of both these sequences does not appear on [19] at the moment.
We note that the sequence A001840(h + 1) − A001840(h) is the sequence

1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, . . . ,

while the sequence A007997(h + 3) − A007997(h + 2) is the sequence

1, 0, 1, 2, 1, 2, 3, 2, 3, 4, 3, 4, 5, 4, 5, 6, 5, 6, . . . .

The latter sequence should be compared with the fourth sequence which will
be constructed in Subsection 3.6 below.

Each column in Figure 2 contains a unique overlined element. This ele-
ment corresponds to the upper bound �n

3 � for the value of h for which C
(3)
n,h

is given by Corollary 7. In other words, this element and all elements below
it in the same column are given by an initial segment of A007997(h + 2) or
A001840(h), if 3 does or does not divide n, respectively.

Problem 8. Find a closed formula for C
(3)
n,h, where �n

3 � < h < �n
2 �.

We do not know how hard this problem is, we do not see how to approach
it in full generality.

3.6. Sequence A028289

The sequence A028289 in [19] lists coefficients in the expansion of
1+t2+t3+t5

(1−t)(1−t3)(1−t4)(1−t6) . Here are the first 25 elements in this sequence:

1, 1, 2, 4, 5, 7, 11, 13, 17, 23, 27, 33, 42, 48, 57, 69, 78, 90, 106, 118, 134, 154,

170, 190, 215, 235, . . .

This sequence appears in [3]. Comparison with the first row of Figure 2 suggests
that C

(3)
n = A028289(n) for all n. We will prove this in the next subsection.

In this subsection, we propose two constructions of A028289, alternative to its
definition on [19]. The first construction consists of five combinatorial steps.

• Consider first the sequence 0, 1, 2, 3, 4, 5 . . . of all non-negative integers.
• Construct the second sequence 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, . . . by repeating

all non-zero terms in the previous sequence twice.
• Define the third sequence as the sequence of partial sums of the second

sequence: 0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, . . . .
• Construction of the fourth sequence is the most complicated one. The

sequence is:

1, 0, 1, 2, 1, 2, 4, 2, 4, 6, 4, 6, 9, 6, 9, 12, 9, 12, 16, 12, 16, 20, 16, 20, . . .

and this is obtained by adding appropriately shifted five-term frames of
the form (i, 0, i, 0, i), where i an element of the third sequence, as shown



90 C. Ahmed et al.

here:
1 0 1 0 1

2 0 2 0 2
4 0 4 0 4

6 0 6 0 6
. . . . . . . . .

add: 1 0 1 2 1 2 4 2 4 6 4 6 . . . . . . . . .

• The final, fifth, sequence is the sequence of partial sums of the fourth
sequence:

1, 1, 2, 4, 5, 7, 11, 13, 17, 23, 27, 33, 42, 48, 57, 69, 78, 90, 106, 118, 134, 154, 170, 190, . . .

Proposition 9. The fifth sequence constructed above coincides with A028289.

Proof. Let us compute the generating function of all sequences constructed
above. For the first sequence, the generating function is

f(t) :=
t

(1 − t)2
.

For the second sequence, we get

f(t2) +
1
t
f(t2) =

t + t2

(1 − t2)2
.

Convolution with 1, 1, 1, . . . , that is, the sequence with generating function
1

1−t , implies that the generating function for the third sequence is

g(t) =
t + t2

(1 − t)(1 − t2)2
.

The generating function for the fourth sequence is

g(t3)
t3

+
t2g(t3)

t3
+

t4g(t3)
t3

=
(1 + t3)(1 + t2 + t4)

(1 − t6)2(1 − t3)
=

1 + t2 + t4

(1 − t6)(1 − t3)2
.

Finally, yet another convolution with 1, 1, 1, . . . gives the generating function

1 + t2 + t4

(1 − t)(1 − t6)(1 − t3)2

for the fifth sequence. The latter generating function coincides with the gen-
erating function

1 + t2 + t3 + t5

(1 − t)(1 − t3)(1 − t4)(1 − t6)

of A028289 since

(1 + t2 + t4)(1 − t4) = 1 + t2 − t6 − t8 = (1 + t2 + t3 + t5)(1 − t3).

The claim follows. �

Our second construction of A028289 (which is relevant for Theorem 11
in the following subsection) uses the following observation:
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Lemma 10. We have

1 + t2 + t3 + t5

(1 − t)(1 − t3)(1 − t4)(1 − t6)
=

1

1 − t
· 1

1 − t3
· (1 + t2 + t3 + t4 + t5 + t7) · 1

(1 − t6)2
.

Proof. We have to check that

1 + t2 + t3 + t5

1 − t4
=

1 + t2 + t3 + t4 + t5 + t7

1 − t6
.

This is a straightforward computation. �

Lemma 10 implies that A028289 can be constructed in the following four
combinatorial steps.

• Consider first the sequence 1, 2, 3, 4, 5 . . . of all positive integers.
• Construct the second sequence 1, 0, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 3, 2, . . . by re-

peating the pattern i, ∗, i, i, i, i, ∗, i of the terms in the previous sequence
using shift in six positions.

• Construct the third sequence 1, 0, 1, 2, 1, 2, 4, 2, 4, . . . by convolution of
the second sequence with 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, . . . .

• The final, fourth, sequence is the sequence of partial sums of the third
sequence:

1, 1, 2, 4, 5, 7, 11, 13, 17, 23, 27, 33, 42, 48, 57, 69, 78, 90, 106, 118, 134, 154, 170, 190, . . .

3.7. Computation of C(3)
n

Here, we prove our first main result.

Theorem 11. We have C
(3)
n = A028289(n) for all n ∈ Z≥0.

Proof. Taking Lemma 10 into account, to prove the assertion of our theorem,
it is enough to show that∑

n≥0

C(3)
n tn =

1
1 − t

· 1
1 − t3

· (1 + t2 + t3 + t4 + t5 + t7) · 1
(1 − t6)2

. (3.4)

For a variable n, consider the sets

D̃n := (n, 0, 0) + Z(−2, 1, 0) + Z(−1,−1, 1) + Z(0, 0,−1),

Dn := (n, 0, 0) + Z(−2, 1, 0) + Z(−3, 0, 1).

For v ∈ D̃n, we denote by Φ(v) = Φn(v) the unique element in Dn for which
we have Φ(v)− v ∈ Z(−3, 0, 0). This is well-defined as the Z-linear span of the
linearly independent vectors (−2, 1, 0), (−1,−1, 0) and (0, 0, 1) coincides with
the Z-linear span of the linearly independent vectors (−2, 1, 0), (−3, 0, 1) and
(−3, 0, 0).

Our first observation is the following:

Lemma 12. For any v ∈ I(ne(1)), we have

Φ(v) ∈ (n, 0, 0) + Z≥0(−2, 1, 0) + Z≥0(−3, 0, 1).
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Proof. We have

v = (n, 0, 0) + a(−2, 1, 0) + b(1,−2, 0) + c(−1,−1, 1) + d(0, 0,−1),

for a, b, c, d,∈ Z≥0, by definition. From v ∈ I(ne(1)), by looking at the second
and the third coordinates of v, we obtain a − 2b − c ≥ 0 and c − d ≥ 0. Now
we rewrite

v = (n, 0, 0) + (a − 2b − c)(−2, 1, 0) + (c − d)(−3, 0, 1) + (b + d)(−3, 0, 0).

As (n, 0, 0) + (a − 2b − c)(−2, 1, 0) + (c − d)(−3, 0, 1) ∈ Dn, the claim of the
lemma follows from the definition of Φ. �

Motivated by Lemma 12, for i ∈ Z≥0, set fi := |Ti|, where

Ti := {v ∈ (n, 0, 0) + Z≥0(−2, 1, 0) + Z≥0(−3, 0, 1) : v = (n − i, ∗, ∗)}.

Lemma 13. We have
∑
i≥0

fit
i =

1 + t2 + t3 + t4 + t5 + t7

(1 − t6)2
.

Proof. The proof is illustrated in Figure 4. By definition, fi enumerates lattice
points of the two-dimensional cone C := (n, 0, 0)+Z≥0(−2, 1, 0)+Z≥0(−3, 0, 1)
(the points of C are depicted as bullet points in Figure 4) belonging to the
line, in the plane determined by the cone, given by the condition that the first
coordinate of the point on the line equals n − i (these lines are depicted as
dashed lines in Figure 4).

A direct calculation gives the following values for small i:

i 0 1 2 3 4 5 6 7
fi 1 0 1 1 1 1 2 1

(3.5)

For i = 6, we, for the first time, have fi = 2 > 1. This implies that fi satisfies
the recursion fi+6 = fi + 1, for all i ≥ 0. Indeed, from Figure 4, we see that C
is the disjoint union of the shifted copy C + (−6, 0, 2) of C and the remaining
strip of width 2 going north-east in Figure 4. The recursion follows by noting
that for i �= 1, the corresponding dashed line intersects the remaining strip
in exactly one point and that for i ≥ 6, the intersection of the corresponding
dashed line with C+(−6, 0, 2) has exactly fi−6 points, due to the observation
above and the linearity of the definitions.

The claim of the lemma follows by combining the recursion fi+6 = fi +1
with the initial values listed in (3.5). �

For each n ∈ Z≥0, mapping v �→ v + (1, 0, 0) defines an injection from
I((n − 1)e(1)) to I(ne(1)). Set gn := C

(3)
n − C

(3)
n−1 ≥ 0 (under the convention

C
(3)
−1 = 0). Then, we have

C(3)
n = gn + gn−1 + · · · + g0 (3.6)

by construction. This reduces the claim of the theorem to the following crucial
observation:
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• • • • •

• • • •

• • •

• •

•

ifigiC
(3)
i

0 1 1 1
1 0 0 1
2 1 1 2
3 1 2 4

4 1 1 5
5 1 2 7

11 4 2 6
31 2 1 7
71 4 2 8

...
...

...
...

(n, 0, 0)

(n − 5, 1, 1)

(n − 7, 2, 1)(n − 8, 1, 2)

(n − 9, 3, 1)(n − 10, 2, 2)(n − 11, 1, 3)

(n − 2, 1, 0)(n − 3, 0, 1)

(n − 4, 2, 0)

(n − 6, 3, 0)

(n − 8, 4, 0)

(n − 6, 0, 2)

(n − 9, 0, 3)

(n − 12, 0, 4)

(−2, 1, 0)(−3, 0, 1)

Figure 4. Geometric illustration of the proof of Lemma 13
and Theorem 11

Lemma 14. We have gn = fn + fn−3 + fn−6 + . . . , for all n, where we assume
fk = 0, for k < 0.

Proof. First of all, we claim that the map

I((n − 1)e(1)) → I(ne(1))
v �→ v + (1, 0, 0)

induces a bijection between I((n − 1)e(1)) and the set

{v = (v1, v2, v3) ∈ I(ne(1)) : v1 �= 0}.

Indeed, the inverse map is easily seen to be given by w �→ w − (1, 0, 0).
Therefore, we need to show that fn + fn−3 + fn−6 + . . . enumerates the

set

R := {v = (v1, v2, v3) ∈ I(ne(1)) : v1 = 0}.

Note that the restriction of Φ = Φn to R is injective since the linear span of R
intersects Z(−3, 0, 0), see the definition of Φ, in exactly one element, namely
(0, 0, 0). Therefore, it is enough to enumerate |Φ(R)|. We claim that

Φ(R) = Tn ∪ Tn−3 ∪ Tn−6 ∪ . . . (3.7)
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(note that this union is automatically disjoint), which is a reformulation of the
assertion of the lemma due to the rule of sum.

We have Φ(R) ⊂ Tn ∪ Tn−1 ∪ Tn−2 ∪ . . . by Lemma 12. As the first
coordinate of each v ∈ R is zero and Φ(v) − v ∈ Z(−3, 0, 0) by definition, it
follows that the first coordinate of Φ(v), for v ∈ R, must be divisible by 3,
that is Φ(R) ⊂ Tn ∪ Tn−3 ∪ Tn−6 ∪ . . . .

For the inverse inclusion, take some v = (n − 2a − 3b, a, b) ∈ Tn−3j , for
some j ≥ 0. Then, n − 2a − 3b = 3j, by definition. Clearly, v ≺ ne(1). If
j = 0, then v ∈ R and Φ(v) = v. If j > 0, then we apply to v the following
procedure j times: first add (−2, 1, 0), then add (−1,−1, 1), then add (0, 0,−1).
It is easy to see that, by doing this, we follow the order ≺ inside I(ne(1)).
As (−3, 0, 0) = (−2, 1, 0) + (−1,−1, 1) + (0, 0,−1), as the result, we obtain
(0, a, b) ≺ v. In particular, we have (0, a, b) ∈ R. From the definition of Φ and
Lemma 12, we obtain Φ((0, a, b)) = v. Therefore Tn∪Tn−3∪Tn−6∪· · · ⊂ Φ(R).
This proves (3.7) and completes the proof of the lemma. �

To prove our theorem, we need to prove (3.4). Lemma 13 corresponds to
the last two factors on the right-hand side of (3.4), formula (3.6) corresponds
to the first factor and Lemma 14 corresponds to the second factor. The claim
of the theorem now follows using the rule of sum. The intuitive picture behind
this proof is given in Figure 4.

As a direct consequence of Theorem 11 and [3,4], we get:

Corollary 15. For i ∈ N, we have:

C
(3)
3(i−1) = 1

8

(
(i + 1)(2i2 + i + 1) − 1

2 (1 + (−1)i)
)
,

C
(3)
3(i−1)+1 = 1

8

(
(i + 1)(2i2 + 3i − 1) + 1

2 (1 + (−1)i)
)
,

C
(3)
3(i−1)+2 = 1

8

(
(i + 1)(2i2 + 5i + 1) − 1

2 (1 + (−1)i)
)
.

4. C(3)
n and hollow hexagons

4.1. Triangular tilings

Consider a regular triangular tiling of a Euclidean plane as shown in Figure 5.
We assume that the side of the basic equilateral triangle (the fundamental
region) of this tiling has length 1. Each intersection point if called a vertex of
the tiling. Each straight line of the tiling is called a tiling line. A horizontal
tiling line will be called a line of type 1. A tiling line of type 2 is a tiling line
obtained from a tiling line of type 1 by a clockwise rotation by π

3 . A tiling line
of type 3 is a tiling line obtained from a tiling line of type 1 by a clockwise
rotation by 2π

3 .

4.2. T-hexagons and their h-envelopes

For i = 1, 2, 3, a tiling strip of type i is the region between two tiling lines of
type i, including these lines (see Figure 5 for an example of a tiling strip of
type 2). In particular, if these two lines coincide, then the corresponding tiling
strip coincides with each of these tiling lines. A t-hexagon is, by definition, the
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∗
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Figure 5. Triangular tiling, vertices, and tiling lines; trian-
gles marked with ∗ form a tiling strip of type 2

intersection of three tiling strips, one for each type. Note that a t-hexagon can
be:

• empty;
• equal to a vertex of the tiling;
• equal to a bounded line segment of a tiling line;
• a polygon with three, four, five, or six vertices.

By the perimeter of a t-hexagon we mean its perimeter as a polygon. Clearly,
each t-hexagon has finite perimeter. The perimeter of a vertex is zero, while the
perimeter of a bounded line segment is twice the length of this line segment.

The group of symmetries of the triangular tiling is the triangle group

Δ(3, 3, 3) = 〈a, b, c : a2 = b2 = c2 = (ab)3 = (bc)3 = (ca)3 = 1〉
generated by reflections with respect to the sides of the fundamental region of
the tiling. Two t-hexagons which can be obtained from each other applying
some element in Δ(3, 3, 3) will be called isomorphic. For n ∈ Z≥0, we denote
by Tn the number of isomorphism classes of t-hexagons with perimeter 2n.

Centroids of tiling triangles form a dual hexagonal tiling of our plane.
Given a t-hexagon H, its hexagonal envelope E(H) is the union of all hexagons
in the hexagonal tiling which intersect H, see Figure 6 for an example of a
t-hexagon (bold lines) and its hexagonal envelope (dotted lines).

Lemma 16. Let H be a t-hexagon of perimeter i for some i ∈ Z≥0. Then, the
hexagonal envelope of H has 6 + 2i vertices.

Proof. For i = 0, 1, 2, 3, 4, 5 the statement of the lemma follows by inspecting
all t-hexagons of perimeter i. These t-hexagons are given in the following list:

•
i = 0

• •
i = 2

• ••

i = 3

• • • • •• •

i = 4

• • •• •

i = 5
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Figure 6. A t-hexagon and its hexagonal envelope

We claim that the rest follows by induction on i. Indeed, assume that H is the
intersection of three tiling strips (one for each type). We can, in turn, pull the
lines defining these strips closer to each other, one step at a time. Eventually,
by one such step, we will get a smaller t-hexagon H ′. There are four possible
cases.

Case 1. The t-hexagon H ′ is obtained from H by collapsing a line segment
to a vertex as illustrated here:

•
•

•
→

In this case, we see that the perimeter of H decreases by 2 and the number of
vertices of the hexagonal envelope decreases by 4.

Case 2. The t-hexagon H ′ is obtained from H by collapsing a trapezoid
segment onto its basis as illustrated here (the length of the segment can be
arbitrary):

• •
• • •

• • • •
→

In this case, we see that the perimeter of H decreases by 1 and the number of
vertices of the hexagonal envelope by 2.

Case 3. The t-hexagon H ′ is obtained from H by collapsing a trapezoid
segment onto its basis as illustrated here (the length of the segment can be
arbitrary):



Ideals in tonal partition monoids 97

• •
• • •

• • •
→

In this case, we see that the perimeter of H decreases by 2 and the number of
vertices of the hexagonal envelope by 4.

Case 4. The t-hexagon H ′ is obtained from H by collapsing a trapezoid
segment to its basis as illustrated here:

• •
• • •

• •
→

In this case, we see that the perimeter of H decreases by 3 and the number of
vertices of the hexagonal envelope by 6.

Since all the above changes agree, by linearity, with the desired formula,
the claim of the lemma follows by induction. �

Hexagonal envelopes of t-hexagons seem to be exactly the hollow hexagons
considered in [3,4] (the latter papers do not really have any mathematically
precise definition of hollow hexagons).

4.3. Characters of t-hexagons

We would like to encode t-hexagons using vectors with non-negative integral
coordinates. For this, we will need some notation. Denote by v1, v2 and v3,
the vectors in the Euclidean plane as shown in Figure 7. Note that all these
vectors have length one and that v1 + v2 + v3 = 0. In Figure 7, we also see a ∗-
marked t-hexagon which is the intersection of the tiling strips formed by thick
lines. The tiling lines which bound the tiling strips are marked by numbers
1, 2, 3, 4, 5, 6 which correspond to going along the perimeter of the hexagon
starting from the bottom side and going into the clockwise direction.

Let now H be a nonempty t-hexagon given as the intersection of three
tiling strips, one for each type. Without loss of generality, we may assume
that each tiling line which bounds each of these tiling strips has a nonempty
intersection with H. We number the tiling lines forming the boundaries of
the tiling strips in the same way as in Figure 7. Note that, if two tiling lines
coincide, we still count them as two different lines in our numbering. This
corresponds to walking along the boundary of H, starting with the bottom
side, first along v1, then along −v3, then along v2, then along −v1, then along
v3 and, finally, along −v2.

The intersection of a boundary tiling line of a tiling strip with H is then ei-
ther a vertex or a side of H. We denote by χ(H) the vector (a1, a2, a3, a4, a5, a6)
where for i = 1, 2, 3, 4, 5, 6 the number ai is the length of the intersection of
the line i with H. For example, for the ∗-marked t-hexagon in Figure 7, we
have χ(H) = (1, 1, 1, 1, 1, 1), while for the thick t-hexagon in Figure 6, we have
χ(H) = (3, 0, 2, 2, 1, 1). The vector χ(H) will be called the character of H.

One could also give a description of χ(H) as follows: Start with the
rightmost vertex on the bottom edge of H. Walk along v1 until the next vertex
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v2 v3
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4
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∗

∗

∗ ∗

∗ ∗

Figure 7. Basic vectors and lines

(which might coincide with the starting one). The number a1 is the length of
this walk. Continue along −v3 to record a2, then along v2 to record a3 and so
on in the order described above.

The original action of Δ(3, 3, 3) induces an action on the set of characters
of t-hexagons which is generated by the cyclic permutations of components of
the character and the flip

(a1, a2, a3, a4, a5, a6) �→ (a6, a5, a4, a3, a2, a1).

Using this action, we can change H to an isomorphic t-hexagon H ′ such that we
have χ(H ′) = (a1, a2, a3, a4, a5, a6) where the following conditions are satisfied:

a1 + a3 + a5 ≤ a2 + a4 + a6 and a1 ≥ a3 ≥ a5. (4.1)

Such H ′ as well as its character will be called distinguished. It is easy to see that
a distinguished representative in the isomorphism class of H is unique up to
shift of tiling. As an example, the regular hexagon in Figure 7 is distinguished,
while the t-hexagon in Figure 7 is not distinguished since the first inequality
in (4.1) fails.

Note that our walk along the perimeter of H always returns to the original
point. From this, it follows that (a1, a2, a3, a4, a5, a6) ∈ Z

6
≥0 is the character of

some t-hexagon if and only if

(a1 − a4)v1 + (a5 − a2)v3 + (a3 − a6)v2 = 0. (4.2)

Taking into account v3 = −v1 − v2 and linear independence of v1 and v2,
Equation (4.2) is equivalent to

a1 + a2 − a4 − a5 = 0 and a2 + a3 − a5 − a6 = 0. (4.3)

Lemma 17. Let H be a distinguished t-hexagon and χ(H) = (a1, a2, a3, a4, a5, a6).
Then, we have

a1 ≤ a4, a5 ≤ a2 and a3 ≤ a6.
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Proof. From Equation (4.3), we have a1 − a4 = a5 − a2 = a3 − a6. Plugging
a1 − a4 = a5 − a2 into the first inequality in (4.1) implies a3 ≤ a6. Plugging
a5 − a2 = a3 − a6 into the first inequality in (4.1) implies a1 ≤ a4. Plugging
a1 − a4 = a3 − a6 into the first inequality in (4.1) implies a5 ≤ a2. �

4.4. Elementary operations on distinguished t-hexagons

Let H be a distinguished t-hexagon and χ(H) = (a1, a2, a3, a4, a5, a6). We
consider four elementary operations on hexagons.

Operation Φ. Assume a1 − a3 ≥ 2. Then, using Lemma 17, it is easy to
check that the vector

(a1 − 1, a2, a3 + 1, a4 − 1, a5, a6 + 1)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique
distinguished t-hexagon which we denote by Φ(H). Here is an example of this
operation:

• • • •
• •

• • • •

• • •
• •

• •
• • •

Φ→

Operation Ψ. Assume a1 > a3 > a5. Then, using Lemma 17, it is easy to check
that the vector

(a1 − 1, a2 + 1, a3, a4 − 1, a5 + 1, a6)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique
distinguished t-hexagon which we denote by Ψ(H). Here is an example of this
operation:

• • • •
• •

• •
• • • •

•
•

•

•

•

•

•

•

•

•

•
•Ψ→

Operation Θ. Assume a5 > 0. Then, using Lemma 17, it is easy to check that
the vector

(a1 − 1, a2 + 1, a3 − 1, a4 + 1, a5 − 1, a6 + 1)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique
distinguished t-hexagon which we denote by Θ(H). Here is an example of this
operation:
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•
•

•

•

•

•

•

•

•

•

•
•

•
•

•
•

•

•

•

•
•

•

•
•

Θ→

Operation Λ. Assume a3 − a5 ≥ 2. Then, using Lemma 17, it is easy to check
that the vector

(a1 − 1, a2 + 2, a3 − 2, a4 + 1, a5, a6)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique
distinguished t-hexagon which we denote by Λ(H). Here is an example of this
operation:

•
•

•

•

•

•

•

•

•

•

•

•
•

• •
•

•

•
•

•

•

•

•

•
•

•
•

•

Λ→

Directly from the definitions, it is easy to see that all maps Φ, Ψ, Θ and Λ
do not change the perimeter. As illustrated by the examples, all these maps
have rather transparent geometric interpretations which could be obtained by
moving the boundary tiling lines of the tiling strips which define the original
t-hexagon.

4.5. Signature and defect

Let H be a distinguished t-hexagon. Assume that χ(H) = (a1, a2, a3, a4, a5, a6).
Then, the vector sign(H) := (a1−a3, a3−a5, a5) ∈ Z

3
≥0 will be called the signa-

ture of H. For example, the regular hexagon in Figure 7 has signature (0, 0, 1)
while a distinguished t-hexagon isomorphic to the t-hexagon in Figure 6 has
signature (1, 1, 0). Directly from the definitions, one computes that for any
distinguished t-hexagon H, we have:

sign(Φ(H)) = sign(H) + (−2, 1, 0),
sign(Ψ(H)) = sign(H) + (−1,−1, 1),
sign(Θ(H)) = sign(H) + (0, 0,−1),
sign(Λ(H)) = sign(H) + (1,−2, 0),

(4.4)

provided that the t-hexagons Φ(H), Ψ(H), Θ(H) or, respectively, Λ(H), are
defined.

We define the defect of H as

def(H) := a2 + a4 + a6 − a1 − a3 − a5

and note that the defect of a distinguished t-hexagon is always non-negative.
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4.6. The number of t-hexagons

Our main result in this section is the following statement which gives a direct
connection between the present paper and [3,4].

Theorem 18. For all n ∈ Z≥0, mapping H to sign(H) induces a bijection
between the set of isomorphism classes of distinguished t-hexagons of perimeter
2n and the set I(ne(1)).

Proof. Consider a distinguished t-hexagon Q having the character (n, 0, 0, n, 0, 0).
The signature of this t-hexagon is (n, 0, 0) = ne(1). Applying, whenever possi-
ble, a sequence of operations Φ, Ψ, Θ and Λ to Q, produces a set of t-hexagons
of perimeter 2n. From (4.4), it follows that the set of signatures for all t-
hexagons which can be obtained in this way is contained in I(ne(1)). Observe
that the operation Φ is defined as soon as a1 − a3 ≥ 2 and that this con-
dition is equivalent to the fact that adding (−2, 1, 0) to the signature of the
input t-hexagon gives a vector with non-negative coordinates. Put differently,
if we have a t-hexagon such that the sum of its signature and (−2, 1, 0) has
non-negative coordinates, then Φ can be applied to this t-hexagon. Similar
observations also apply to Ψ and (−1,−1, 1), to Θ and (0, 0,−1) and to Λ and
(1,−2, 0). Consequently, the set of signatures for all t-hexagons which can be
obtained from Q by all possible sequences of Φ, Ψ, Θ and Λ coincides with
I(ne(1)).

Our next step is to show that each distinguished t-hexagon of perimeter
2n can be obtained from Q using a sequence of operations of the form Φ, Ψ,
Θ and Λ (in fact, the first three would suffice). Let K be a distinguished t-
hexagon of perimeter 2n with character (a1, a2, a3, a4, a5, a6). Assume a5 > 0.
Then, using Lemma 17, it is easy to check that the vector

(a1 + 1, a2 − 1, a3, a4 + 1, a5 − 1, a6)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique
distinguished t-hexagon. Therefore, K = Ψ(K ′) for some distinguished t-
hexagon K ′ and the character of K ′ has a smaller fifth coordinate. In particu-
lar, K is obtained, using a sequence of Ψ’s, from some distinguished t-hexagon
K ′, the character of which has zero-fifth coordinate.

Let K be a distinguished t-hexagon of perimeter 2n with character
(a1, a2, a3, a4, a5, a6). Assume that a5 = 0 and a3 > 0. Then, using Lemma 17,
it is easy to check that the vector

(a1 + 1, a2, a3 − 1, a4 + 1, a5, a6 − 1)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique
distinguished t-hexagon. Therefore, K = Φ(K ′) for some distinguished t-
hexagon K ′ and the character of K ′ has a smaller third coordinate. In partic-
ular, K is obtained, using a sequence of Φ’s and Ψ’s, from some distinguished
t-hexagon K ′ the character of which has zero-third and fifth coordinates.

Let K be a distinguished t-hexagon of perimeter 2n with character
(a1, a2, 0, a4, 0, a6). Then, a4 ≥ a1 by Lemma 17. If a4 = a1, then from (4.3)
it follows that a2 = a6 = 0 and K = Q. If a4 > a1, then from (4.3) it follows
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that a2 = a6 = a4 − a1 > 0. If a4 > a1 + 1, then, using Lemma 17, it is easy
to check that the vector

(b1, b2, b3, b4, b5, b6) := (a1 + 1, a2 − 1, a3 + 1, a4 − 1, a5 + 1, a6 − 1)

satisfies all conditions in (4.1) and (4.3) and hence is the character of a unique
distinguished t-hexagon, say K ′. Note that, by construction, def(K ′) < def(K)
and that K = Θ(K ′). Finally, if a4 = a1 + 1, then from (4.3) it follows that
the character of K is of the form (x, 1, 0, x + 1, 0, 1), for some x. In this case,
the perimeter of K is 2x + 3, which is an odd number, contradicting our
assumptions. Therefore, the case a4 = a1 + 1 cannot occur.

Using induction on defect and the above steps, it follows that any dis-
tinguished t-hexagon of perimeter 2n is obtained using Φ, Ψ and Θ from a
distinguished t-hexagon of perimeter 2n with character (a1, 0, 0, a4, 0, 0). But
from Equation 4.3, it thus follows that a1 = a4 = n, and hence, the latter
t-hexagon must be isomorphic to Q.

As a consequence of the above argument, we have that the image of
the signature map is contained in I(ne(1)). So, it remains to show that the
signature map is injective.

Let K be a distinguished t-hexagon with signature (x, y, z) and of perime-
ter 2n. Then, the character of K equals (x + y + z, a2, y + z, a4, z, a6) for some
a2, a4, a6 ∈ Z≥0. From (4.3), we have

x + y + z − a4 = z − a2 = y + z − a6.

Since the perimeter of K is 2n, we also have

x + y + z + a2 + y + z + a4 + z + a6 = 2n

and hence a2, a4 and a6 are uniquely determined. This means that the char-
acter of K is uniquely determined and thus K is uniquely determined up to
isomorphism by its signature. This completes the proof. �

As an immediate corollary from Theorem 18, we have:

Corollary 19. For all n ∈ Z≥0, C
(3)
n is the number of isomorphism classes of

t-hexagons with perimeter 2n.

Our proof of Theorem 18 provides another connection to the sequence
A001399(n) giving the number of partitions of n in at most three parts which
was already mentioned in Subsection 3.4. Let Pn denote the set of all partitions
of n in at most three parts. If n < 0, we set Pn = ∅.

Corollary 20. Let n ∈ Z≥0. Mapping H with χ(H) = (a1, a2, a3, a4, a5, a6)
to (a1, a3, a5) induces a bijection between the set of isomorphism classes of
distinguished t-hexagons of perimeter 2n and the set Pn ∪ Pn−3 ∪ Pn−6 ∪ . . . .
In particular, we have

C(3)
n = A001399(n) + A001399(n − 3) + A001399(n − 6) + . . . .

Proof. Restricting the bijection constructed in the proof of Theorem 18 to the
set of distinguished t-hexagons of defect 2i and thereafter mapping sign(H) =
(x, y, z) to the partition (x+ y + z, y + z, z) of x+2y +3z, provides a bijection
from the set of distinguished t-hexagons of defect 2i to Pn−i. �
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5. Partitions modulo d

5.1. Partitions and refinement

For n ∈ Z≥0 denote by Πn the set of all partitions of n, that is, the set of all
tuples λ = (λ1, λ2, . . . , λk) such that λ1, λ2, . . . , λk ∈ N, n = λ1 +λ2 + · · ·+λk

and λ1 ≥ λ2 ≥ · · · ≥ λk. As usual, we write λ � n for λ ∈ Πn.
For λ = (λ1, λ2, . . . , λk) � n and μ = (μ1, μ2, . . . , μl) � n, we say that

λ refines μ and write μ < λ provided that l < k and there is a partition
J1 ∪ J2 ∪ · · · ∪ Jl of {1, 2, . . . , k} into a disjoint union of non-empty subsets
such that

μi =
∑
j∈Ji

λj , for all i = 1, 2, . . . , l.

The partially ordered set (Πn, <) was studied in [1,2,23]. In particular, in [23],
it was shown that it has some nasty properties. We refer the reader to [23] for
more details on this poset.

The poset (Πn, <) is graded with respect to the rank function
(λ1, λ2, . . . , λk) �→ k.

5.2. Partitions modulo d

For d ∈ N, define an equivalence relation ∼d on Πn as follows: Given λ =
(λ1, λ2, . . . , λk) � n and μ = (μ1, μ2, . . . , μl) � n set λ ∼d μ provided that
k = l and there is π ∈ Sk such that d divides λi − μπ(i), for all i. In other
words, λ ∼d μ if and only if the multisets of residues modulo d for parts of λ

and μ coincide. For λ � n, we denote the ∼d-class of λ by λ
(d)

.
Since ∼d-equivalent partitions have the same number of parts and par-

titions with the same number of parts are incomparable with respect to the
refinement order <, this order induces a partial order <d on the set Πn,d :=
Πn/ ∼d defined as the transitive closure of the relation <̃ given by λ<̃μ if
there are λ′ ∈ λ and μ′ ∈ μ such that λ′ < μ′. The poset Πn,d inherits from
Πn the structure of a graded poset.

Define the poset Π∗
n,d as follows: if d does not divide n, set Π∗

n,d :=
Πn,d with the order <d; if d divides n, define Π∗

n,d as the poset obtained
from (Πn,d, <d) by adding a minimum element, denoted ∅ (for simplicity, we
will keep the notation <d for the partial order on Π∗

n,d). The structure of
a graded poset on Πn induces the structure of a graded poset on Π∗

n,d by

defining the degree of ∅ to be zero. The class (1, 1, . . . , 1)
(d)

= {(1, 1, . . . , 1)}
of the partition (1, 1, . . . , 1) is the maximum element in Π∗

n,d.

5.3. Π∗
n,d versus Pd

Our main result in this section is the following:

Theorem 21. The (graded) posets (Π∗
n,d, <d) and (I(ne(1)),≺) are isomorphic.

Proof. To each λ � n, we associate the vector (vλ
1 , vλ

2 , . . . , vλ
d ), where, for

i = 1, 2, . . . , d, we have

vλ
i := |{j : λj ≡ i mod d}|.
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This map is constant on the ∼d-equivalence classes and hence induces a map
from Πn,d to Pd. We extend this map to Π∗

n,d by sending the ∅ element to
the zero vector in case d divides n. Denote the resulting map by Φ. Note that
Φ preserves the degree of an element, namely, it maps a partition with k parts
to a vector of height k.

First of all, we claim that Φ is a homomorphism of posets. Indeed, any
refinement of partitions can be written as a composition of elementary refine-
ments which simply refine one part of a smaller partition into two parts of a
bigger partition. Such elementary refinement corresponds to the covering re-
lation μ � λ where λ has k parts while μ has k − 1 parts. Assume that this
refines the part μi into parts λs and λt. This means that μi = λs + λt and
hence

μi ≡ λs + λt mod d.

Let a, b, c ∈ {1, 2, . . . , d} be such that μi ≡ a, λs ≡ b and λt ≡ c mod d. Then,
the element e(a) − e(b) − e(c) belong to Xd. This implies that Φ(μ) ≺ Φ(λ).
It follows that Φ is a homomorphism of posets.

Clearly, Φ((1, 1, . . . , 1)
(d)

) = ne(1). Since (1, 1, . . . , 1)
(d)

is the maximum
element in Π∗

n,d, it follows that Φ maps Π∗
n,d to I(ne(1)).

That Φ : Π∗
n,d → I(ne(1)) is injective follows directly from the definition.

It remains to show that Φ is surjective, in particular, invertible, and that Φ−1

is order preserving. We prove this by downward induction on the height h. If
h = d, the claim is clear as ne(1) is the only element of I(ne(1)) of height h.

For the induction step h → h−1 let v and w be two elements in I(ne(1))
of heights h − 1 and h, respectively, and assume v ≺ w. Then v = w + x, for
some x ∈ Xd. Let x = e(k) − e(i) − e(j), for some i, j, k ∈ {1, 2, . . . , d}. From
the inductive assumption, there is λ � n such that Φ(λ) = w. Let λs and λt

be two different parts of λ with residues i and j modulo d, respectively. Define
μ as the partition obtained from λ by uniting λs and λt. Then, Φ(μ) = v.
Therefore, Φ is a bijection.

From the arguments above, it follows that the covering relations in Π∗
n,d

to I(ne(1)) match precisely under Φ. This implies that Φ is an isomorphism
of posets, completing the proof of the theorem. �

As an immediate corollary, we have:

Corollary 22. For n ∈ Z≥0 and d ∈ N, we have |Π∗
n,d| = C

(d)
n .

6. Connection to d-tonal partition monoid

6.1. Partition monoids

For n ∈ Z≥0, consider the sets n = {1, 2, . . . , n} and n′ = {1′, 2′, . . . , n′} (these
two sets are automatically disjoint). Set n := n

⋃
n′ and consider the set P(n)

of all partitions of n into a disjoint union of nonempty subsets. The cardinality
of P(n) is the 2n-th Bell number, see A000110 in [19].
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Figure 8. Partitions and their composition

The set P(n) has the natural structure of a monoid, see [8,13,15,16].
The composition σ ◦ π of two partitions σ, π ∈ P(n) is defined as follows (here
n′′ = {1′′, 2′′, . . . , n′′} is disjoint from n):

• First consider the partition σ′ of n′ ∪ n′′ which is induced from σ via the
bijection n ∪ n′ → n′ ∪ n′′ which sends i �→ i′ for i ∈ n and j′ → j′′ for
j′ ∈ n′.

• Let π̃ be the equivalence relation on n ∪ n′ ∪ n′′ whose parts are those of
π combined with singletons of n′′.

• Let σ̃ be the equivalence relation on n ∪ n′ ∪ n′′ whose parts are those of
σ′ combined with singletons of n.

• Let τ̃ denote the minimal (with respect to inclusions) equivalence relation
on the set n ∪ n′ ∪ n′′ which contains both π̃ and σ̃.

• Let τ̃ ′ be the restriction of τ̃ to n ∪ n′′.
• Define τ = σ ◦ π as the partition of n ∪ n′ induced from the partition τ̃ ′

by the bijection n ∪ n′′ → n ∪ n′ which sends i �→ i for i ∈ n and j′′ → j′

for j′′ ∈ n′′.

The identity element in the monoid (P(n), ◦) is the identity partition

{{1, 1′}, {2, 2′}, . . . , {k, k′}} ∈ P(k).

Both elements of P(n) and the composition ◦ admit a diagrammatic descrip-
tion as shown in Figure 8 (in the composition σ ◦ π which is the left-hand
side of the equality in Figure 8, the element σ is depicted on the left and the
element π on the right). We refer the reader to [8,13,16] for further details.

6.2. d-tonal partition monoids

For d ∈ N, the d-tonal partition monoid Pd(n), as introduced in [22], is the
submonoid of P(n) which consists of all partitions σ of n such that every part
σi of σ satisfies the condition that

d divides |σi ∩ n| − |σi ∩ n′|.
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Thus, for d = 1, we have P1(n) = P(n). For d = 2, the above condition
is equivalent to the requirement that all parts of σ have even cardinality.
Therefore, |P2(n)| is given by the sequence A005046 in [19] (see also [18]).

The twisted monoid algebra of the d-tonal partition monoid was stud-
ied (under various names) in [17,22], see also [9–11] for related algebras and
[7, Section 5.1] for some recent developments. We record the following open
problem:

Problem 23. Compute |Pd(n)| in a closed form as a function of d and n.

As the twisted semigroup algebra of Pd(n) is generically semi-simple, see
[22], and forms, for all n, a sequence of embedded algebras with multiplicity-
free restrictions, see [9], there is a natural analogue of the Robinson-Schensted
correspondence for Pd(n) and hence Problem 23 admits a combinatorial refor-
mulation in terms of walks on a certain Bratelli diagram.

6.3. Rank and d-signature

For σ ∈ Pd(n), the rank rank(σ) is the number of parts σi in σ such that both
|σi ∩ n| �= 0 and |σi ∩ n′| �= 0. Such parts are called propagating.

Note that, for σ ∈ Pd(n), the cardinality of any part of σ which is entirely
contained in n or in n′ is divisible by d.

Define the function Ψ : Pd(n) → Z
d
≥0, called the d-signature function, as

follows: for σ ∈ Pd(n) define Ψ(σ) = (v1, v2, . . . , vd), where for i = 1, 2, . . . , d
the number vi is the number of parts σj in σ satisfying the conditions

|σj ∩ n| �= 0, |σj ∩ n′| �= 0, d divides |σj ∩ n| − i.

Note that v1 + v2 + · · · + vd = rank(σ).

6.4. J -classes of d-tonal partition monoids

Two elements σ, π ∈ Pd(n) are called J -equivalent, written σJ π, provided
that Pd(n)σPd(n) = Pd(n)πPd(n), see [5, Section 4.4]. For σ ∈ Pd(n) we
denote by σJ the J -equivalence class containing σ.

There is a natural partial order on the set Pd(n)/J given by inclusions:
we write σJ � πJ if and only if Pd(n)σPd(n) ⊂ Pd(n)πPd(n).

6.5. Canonical elements

An element σ ∈ Pd(n) will be called canonical provided that the following
conditions are satisfied:

• Each part σi of σ satisfies |σi ∩ n| ≤ d and |σi ∩ n′| ≤ d.
• The intersections σi ∩ n and σi ∩ n′ are connected segments of n and n′,

respectively, ordered by cardinalities of the intersections for those parts
σi which intersects both n and n′ and then followed by those parts of σ
which intersect only n or n′.

For example, the identity element in Pd(n) is canonical.

Lemma 24. For each σ ∈ Pd(n), there is a canonical π ∈ Pd(n) such that
σJ π.
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Figure 9. Illustration of the proof of Lemma 24

Proof. If some part σi of σ satisfies |σi∩n| > d or |σi∩n′| > d, then there is σ′ ∈
Pd(n) which has exactly the same parts as σ except for σi which is split into
two parts: a part with d elements which is a subset of n (respectively, n′) and its
complement. Existence of σ′ follows using the construction shown in Figure 9
(in the case d = 3) and note that σJ σ′ also follows from Figure 9. Proceeding
inductively, we find an element τ ∈ Pd(n) which is in the same J -class as σ and
which satisfies the condition that |τi∩n| ≤ d and |τi∩n′| ≤ d for each part τi of
τ . Permuting, if necessary, the elements of n and, independently, of n′ (that is,
multiplying from the left and/or from the right by permutations, noting that
all permutations belong to Pd(n)), one rearranges τ into a canonical element
π in the same J -class as σ. The claim follows. �

Proposition 25. We have Ψ(Pd(n)) = I(ne(1)).

Proof. We use downward induction to prove that for each k = n, n − 1, n −
2, . . . , 0, the map Ψ induces a bijection between the set of all canonical elements
of rank k in Pd(n) and the set of all elements of height k in I(ne(1)). The
statement of the corollary then will follow from Lemma 24.

The basis of the induction is k = n. In this case, on the left-hand side, we
have only one canonical element, the identity element, while on the right-hand
side, we have ne(1) which is the image of the identity element under Ψ.

Let v ∈ I(ne(1)) be an element of height k and let σ be a canonical
element such that Ψ(σ) = v. Let e(k) − e(i) − e(j) ∈ Xd be such that v +
(e(k) − e(i) − e(j)) ∈ I(ne(1)). Then, σ has a part σs such that d divides
|σs ∩ n| − i and a different part σt such that d divides |σt ∩ n| − j. Consider
the element σ′ obtained from σ by uniting σs with σt and keeping all other
parts. Then, σ′σ = σ′ and hence Pd(n)σ′Pd(n) ⊂ Pd(n)σPd(n). Moreover,
Ψ(σ′) = v + e(k) − e(i) − e(j). This implies surjectivity of the induction step.

At the same time, the form of the canonical element immediately implies
that it is obtained from the identity element using the unification procedure
described in the previous paragraph, followed by splitting off d-element parts
contained in n or n′ (note that the latter parts do not affect the value of Ψ
by definition). This implies that Ψ takes values inside I(ne(1)) and completes
the proof. �

Corollary 26. For each σ ∈ Pd(n), there is a unique canonical π ∈ Pd(n) such
that σJ π.
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Proof. Taking into account Proposition 25, the claim follows from the obser-
vation that different canonical elements are sent by Ψ to different elements in
I(ne(1)). �

6.6. A combinatorial description of the J -order

Our second main result, which explains our interest in C
(d)
n , is the following:

Theorem 27. The map Ψ : (Pd(n)/J ,�) → (I(ne(1)),≺) is an isomorphism
of posets.

Proof. From Proposition 25, we have a map Ψ : Pd(n)/J → I(ne(1)). This
map is bijective by the combination of Proposition 25 and Corollary 26. From
the third paragraph of the proof of Proposition 25, it follows that for each pair
of elements v,w ∈ I(ne(1)) such that v ≺ w, there are σ, π ∈ Pd(n) such that
Pd(n)σPd(n) ⊂ Pd(n)πPd(n), Ψ(σ) = v and Ψ(π) = w.

On the other hand, from the last paragraph of the proof of Proposition 25,
it follows that the poset (Pd(n)/J ,�) is a graded poset. Now, applying the
argument from the third paragraph of the proof of Proposition 25 once more
and counting modulo d, one checks that the covering relations in (Pd(n)/J ,�)
and (I(ne(1)),≺) match precisely via Ψ. The claim follows. �

7. Enumeration of J -classes for arbitrary d

7.1. Enumeration via d-part partitions

The proof of Proposition 25 gives a way to write a formula for C
(d)
n in the

general case. Let d ∈ N and n ∈ Z≥0. Denote by P
(d)
n the number of partitions

of n with at most d parts. By taking the dual partition, we get the usual fact
that P

(d)
n also equals the number of partitions of n in which each part does

not exceed d. For simplicity, we set P
(d)
n = 0 when n < 0.

Theorem 28. We have C
(d)
n = P

(d)
n + P

(d)
n−d + P

(d)
n−2d + P

(d)
n−3d + . . . .

Proof. To prove this claim, we analyse the proof of Proposition 25. According
to the latter proof, C

(d)
n enumerates canonical elements in Pd(n). Let σ be a

canonical element. Let σ1, σ2, . . . , σk be the list of all parts of σ contained in n
(note that k might be zero). Then, each of these parts has cardinality d, and
we may consider the set

nσ := n \ (σ1 ∪ σ2 ∪ · · · ∪ σk)

which thus has cardinality n − kd.
Cardinalities of intersections of all propagating parts of σ with nσ de-

termine a partition of n − kd in which each part does not exceed d. It is
straightforward that this gives a bijection between the set of all canonical ele-
ments in Pd(n) with 2k non-propagating parts and all partitions of n − kd for
which each part does not exceed d. The claim follows. �
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Corollary 29. For d ≥ 1, we have∑
n≥1

C(d)
n tn =

1
(1 − td) · (1 − t)(1 − t2)(1 − t3) . . . (1 − td)

.

Proof. This follows by combining the usual equality∑
n≥1

P (d)
n tn =

1
(1 − t)(1 − t2)(1 − t3) . . . (1 − td)

with the statement of Theorem 28. �

Remark 30. It is easy to check that for d = 3, we indeed have the equality

1 + t2 + t3 + t5

(1 − t)(1 − t3)(1 − t4)(1 − t6)
=

1
(1 − t)(1 − t2)(1 − t3)2

.

Here, the left-hand side is the original generating function for A028289.

Remark 31. The poset Π(d) of partitions with at most d parts can be defined
using the same approach as we used to define Λd. The assertion of Theorem 28
can then be interpreted as a bijection between certain (co)ideals in Π(d) and
Λd. Such a bijection admits a direct combinatorial construction.

7.2. Examples for d = 4 and d = 5

The sequence C
(4)
n starts as follows:

1, 1, 2, 3, 6, 7, 11, 14, 21, 25, . . . .

The sequence C
(5)
n starts as follows:

1, 1, 2, 3, 5, 8, 11, 15, 21, . . . .

We note that none of the sequences C
(d)
n for d ≥ 4 appeared on [19] before.

However, as noted, they are simple cumulative sums of classical sequences.

7.3. Relation to partition function

Recall the classical partition function P (n) which gives, for n ∈ Z≥0, the num-
ber of partitions of n, see the sequence A000041 in [19]. One general observation
for the numbers C

(d)
n,h is the following:

Proposition 32. If n − h < d and 2(n − h) < n, then C
(d)
n,h = P (n − h).

Proof. To prove the assertion, we construct a bijective map between I(ne(1))∩
Λ(h)

d and the set of all partitions of n − h.
For v ∈ Λd, set α(v) = v2 + 2v3 + 3v4 + . . . . For i, j ∈ {1, 2, . . . , d} such

that i + j < d, we have (i + j − 1) − (i − 1) − (j − 1) = 1. Therefore, for such
values of i and j and for any v,w ∈ Λd, we have α(v) = α(w) + 1 provided
that

v = w + e(i + j) − e(i) − e(j).

Note that e(i + j) − e(i) − e(j) ∈ Xd.
Assume now that n − h < d and v ∈ I(ne(1)) is of height h < n.

Then, v is obtained from ne(1) by adding n − h vectors from Xd of the form
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e(i + j) − e(i) − e(j), for some i and j as above. Indeed, let s > 1 be the
smallest index such that vi �= 0 (which exists as h < n and n − h < d). Then,
the vector v is obtained from the vector

w = (v1 + 1, v2, . . . , vs−2, vs−1 + 1, vs − 1, vs+1, . . . , vd)

by adding e((s−1)+1)−e(s−1)−e(1) (here w1 = v1 +2 if s = 2). Applying
a similar procedure to w and proceeding inductively, we get the claim. This
implies that

Υ(v) := (v2 + v3 + v4 + . . . , v3 + v4 + . . . , . . . )

is a partition of n − h. Since n − h is fixed and v is, clearly, recoverable from
Υ(v), the map Υ from I(ne(1)) ∩ Λ(h)

d to the set of all partitions of n − h is
injective.

To prove surjectivity of Υ, assume that n − h = x2 + 2x3 + 3x4 + . . . , for
some non-negative x2, x3, . . . . We proceed by induction on n − h. If n − h =
0, surjectivity of our map is obvious. To prove the induction step, we write
k = i + j, for some 1 ≤ i, j ≤ k − 1, and consider the partition of n − h − 1
given by decreasing xk by 1, increasing xi by 1 and increasing xj by 1 (if
i = j, the outcome is that xi is increased by 2). From the combination of
the inductive assumption and the condition 2(n − h) < n, it follows that the
resulting partition of n − h − 1 is in the image of our map. Applying the
definition of ≺, it follows that the original partition of n − h is also in the
image of our map. This completes the proof. �

Problem 33. Find a closed formula for C
(d)
n,h for all d, n, h.
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