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Abstract 

This project aims to support pharmacovigilance, the science and activities relating to 

drug-safety and prevention of adverse drug reactions (ADRs). We focus on a specific 

ADR called QT prolongation, a serious reaction affecting the heartbeat. Our main goal is 

to group medicinal ingredients that might cause QT prolongation. This grouping can be 

used in safety analysis and for exclusion lists in clinical studies. It should preferably be 

ranked according to level of suspected correlation. We wished to create an automated 

and standardised process. 

Drug safety-related reports describing patients' experienced ADRs and what medicinal 

products they have taken are collected in a database called VigiBase, that we have 

used as source for ingredient extraction. The ADRs are described in free-texts and 

coded using an international standardised terminology. This helps us to process the 

data and filter ingredients included in a report that describes QT prolongation. To 

broaden our project scope to include uncoded data, we extended the process to use 

free-text verbatims describing the ADR as input. By processing and filtering the free-text 

data and training a classification model for natural language processing released by 

Google on VigiBase data, we were able to predict if a free-text verbatim is describing 

QT prolongation. The classification resulted in an F1-score of 98%. 

For the ingredients extracted from VigiBase, we wanted to validate if there is a known 

connection to QT prolongation. The VigiBase occurrences is a parameter to consider, 

but it might be misleading since a report can include several drugs, and a drug can 

include several ingredients, making it hard to validate the cause. For validation, we used 

product labels connected to each ingredient of interest. We used a tool to download, 

scan and code product labels in order to see which ones mention QT prolongation. To 

rank our final list of ingredients according to level of suspected QT prolongation 

correlation, we used a multinomial logistic regression model. As training data, we used 

a data subset manually labeled by pharmacists. Used on unlabeled validation data, the 

model accuracy was 68%. Analyzing the training data showed that it was not easily 

separated linearly explaining the limited classification performance. The final ranked list 

of ingredients suspected to cause QT prolongation consists of 1086 ingredients. 
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Populärvetenskaplig sammanfattning
Det här projektet har i syfte att främja farmakovigilans, vilket handlar om läkemedelssäker-
het och att upptäcka, analysera och arbeta för att förhindra oönskade biverkningar. Vi
har valt att fokusera på biverkningen QT-förlängning, vilket innebär en rubbning i hjärt-
frekvensen som kan ge allvarliga följder. Vårt mål med projektet är att gruppera och
rangordna medicinska substanser som tros ge upphov till QT-förlängning. Denna typ av
gruppering kan användas för att exkludera personer som tar vissa substanser från kliniska
studier, samt för säkerhetsanalyser. Tidigare grupperingar har gjorts med avseende på
vissa samband, t.ex. önskad effekt, men att gruppera med avseende på gemensam biverkn-
ing är ett relativt outforskat område. Till skillnad från den manuella gruppering som
används idag ville vi skapa en automatiserad process som använder maskininlärningsme-
toder för utvinning, validering och klassificering.

För att hitta ingredienser som kan ge upphov till QT-förlängning har vi använt oss av
databasen VigiBase, som innehåller miljontals rapporter innehållande beskrivningar av
patienters upplevda biverkningar samt vilka läkemedel patienten i fråga har tagit. Rap-
porterna i VigiBase är kodade enligt en internationell standardiserad medicinsk termi-
nologi; Medical Dictionary for Regulatory Activities (MedDRA), vilket innebär att de
beskrivna biverkningarna är kodade till standardiserade termer. Det finns en gruppering
av dessa termer för just QT-förlängning. Denna har vi använt för att filtrera ut intressanta
substanser ur VigiBase, det vill säga substanser som ingår i ett läkemedel som en patient
har tagit medan denne haft en påvisad QT-förlängning.

Utöver att gruppera substanser utifrån rapporter som är kodade enligt MedDRA så strävade
vi efter en utökning av processen för att inkludera biverkningsbeskrivningar i fritext. Fri-
texterna kommer från rapporter som inte nödvändigtvis är MedDRA-kodade. Vi utvann
dessa ur VigiBase samt förbehandlade och filtrerade dem för att endast inkludera engel-
skspråkiga texter. Genom att använda en modell för språkteknologi utvecklad av Google;
BERT, tränade vi modellen för att avgöra om en rapports fritext beskriver en QT-förlängn-
ing. Denna klassificering arbetade vi med som ett fristående projekt från substansgrup-
peringen, dock i avseende att kunna kombinera dem i framtiden. Modellen visade mycket
goda resultat med en F1-score på dryga 98%, vilken innebär att endast en mycket liten del
av valideringsdatan har klassats inkorrekt.

De läkemedel som är inkluderade i en rapport kan beskrivas enligt en internationell klas-
sificering som kallas WHODrug Global, där inkluderade substanser beskrivs som koder.
För substansgrupperingen använde vi dessa koder för att hitta substansens namn och vari-
ant i WHODrugs lexikon. För att validera om substanserna har en känd koppling till
QT-förlängning undersökte vi de bipacksedlar som innefattar vardera utvunnen substans.
Genom att använda ett verktyg som laddar ner, läser och kodar innehållet i bipacksedlarna
till MedDRA-termer kunde vi validera substanserna.

För att avgöra till vilken grad en substans rapporteras tillsammans med en beskrivning
av QT-förlängning räknade vi ut hur stor procentsats av alla rapporter som berör en viss
substans som beskriver en QT-förlängning. En potentiell felkälla i den procentsatsen är

i



det faktum att en rapport kan nämna en eller flera läkemedel, som i sin tur kan innehålla
en eller flera substanser. Därför är det svårt att dra slutsatser om vilken av flera substanser
som orsakat reaktionen. För att förbättra den nämnda procentsatsen så modifierade vi den
genom att ta hänsyn till substanser vi starkt misstänker vara QT-förlängande efter att ha
validerat mot bipacksedlar.

Vår slutgiltiga lista innehåller 1086 substanser som vi ville rangordna efter misstänkt ko-
rrelation till QT-förlängning. Det gjorde vi genom att träna en klassificeringsmodell som
använder logistisk regression för att klassa varje ingrediens efter grad av misstänkt QT-
förlängande effekt. Som träningsdata användes en mängd substanser som två farmaceuter
fick klassa oberoende av varandra. Efter korsvalidering presterade klassificeringsmod-
ellen en pricksäkerhet på 68% och ett kvadratiskt medelfel på 47% på valideringsdatan.
Det är en relativt osäker klassificering vilket delvis kan förklaras av en liten mängd samt
relativt spridda träningsdata. Vi anser dock att det fungerar väl för en grövre sortering.

Slutprodukten består av de rangordnade substanserna samt tillhörande information som är
till hjälp för en farmaceut att avgränsa vilka substanser som bör ingå i substansgrupperin-
gen. Vi har arbetat aktivt för att inkludera även substanser med mycket svag indikation på
koppling till QT-förlängning för att inte missa att inkludera relevanta substanser. Genom
att sätta gränser för olika parametrar kan man minska mängden substanser genom att
utesluta dem med mycket svag koppling till QT-förlängning.
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Ersson and Emma Rofors, a.k.a Team Shrek, for your daily support, encouragement and
ideas. Even in a time of pandemic and remote working, you have never felt far away. The
rest of Team Tarzan for showing interest and providing really bad puns, seeing your faces
has been the best way to start our days. Niklas Wahlström for your great knowledge of
data-driven methods and your continuous feedback. Jessica Nilsson for your VigiBase
expertise and your stubbornness to never let a question go unanswered. Eva-Lisa Meldau
for your spot-on questions and endless ideas on machine-learning methods. Shachi Bista
for your invaluable help with the SPC Mining. Vanja Wallner for your thorough work
with NLP methods, and for sharing your knowledge and ideas. Tommy Dzus and Sofia
Fors for hours spent labeling ingredients. Denis Krylov at OpenFDA, for providing expert
API queries, and Ray Woosley at AzCERT for sending us CredibleMeds’ QT drug list.
Lastly, thank you to everyone at UMC for showing interest and support and for making us
feel welcome, as well as our friends and families for supporting us through these 5 years
of study, making it a time of our lives we will never forget.

iii



Acronyms
MedDRA Medical Dictionary for Regulatory Activities

ICSR Individual Case Safety Report
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1 Introduction
This master thesis has been conducted in collaboration with Uppsala Monitoring Cen-
ter (UMC). UMC is a non-profit foundation working alongside the World Health Orga-
nization (WHO) with international drug monitoring. Their goal is to promote safer use
of medication globally, by working in specialized teams to support member countries of
the WHO Programme for International Drug Monitoring and supporting patient protec-
tion. UMC also develops and distributes the Global Drug Dictionary; WHODrug Global,
which is used to standardize pharmaceutical information.[1] Supervisors from UMC are
system developers Kerstin Ersson and Klas Östlund and the subject reviewer is Niklas
Wahlström from the Department of Information Technology at Uppsala University.

1.1 Problem background
This project aims to support pharmacovigilance, the collective name for what WHO de-
scribes as ”the science and activities relating to the detection, assessment, understanding
and prevention of adverse effects or any other drug-related problem”. It serves as a key
public health function where the main objective is to present reliable information and
taking action in order to improve patient care and safety.[10] UMC works with pharma-
covigilance on a global scale, with the mission of safer and more effective use of medicine
worldwide.[11]. A part of UMC’s work with pharmacovigilance is to maintain VigiBase,
a database containing millions of drug safety-related reports. These reports contain valu-
able information about post-marketing patient experiences of drugs and play a key role in
the monitoring of drugs post-marketing.

Medicinal ingredients can be grouped based on one or several shared properties. These
listings are referred to as Standardised Drug Groupings (SDGs). UMC creates and man-
ages several SDGs where medicinal products and active ingredients are grouped, often ac-
cording to type or effect. Some examples of existing SDGs are Vaccines, Antihistamines
and Cancer therapies listings. By customer requests, the idea arose to group ingredients
based on a shared adverse drug reaction (ADR), an unwanted side effect. This new kind
of grouping is called next-generation SDGs.

1.2 Problem formulation
The main goal of this thesis is to create an SDG basis for QT prolongation. To further
extend the process to include free-text information, we have also set an aim regarding
free-text processing.

1.2.1 Creation of SDG basis

The aim is to create an automated process for finding and presenting information that a
pharmacist can use to decide whether a medicinal ingredient should be included in an
SDG listing ingredients that might cause QT prolongation. QT prolongation is an ADR
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affecting the heartbeat. The list of potential ingredients can be long, so the ingredients
should be listed according to the level of suspected QT prolongation connection.

1.2.2 Free-text processing

To decide if a free-text description of an experienced ADR describes QT prolongation,
we also want to predict if a free-text verbatim describes QT prolongation. If so, the report
should be included in the SDG creation process.

1.3 Purpose
In this project we focus on the ADR QT prolongation since it is a serious and occasion-
ally life-threatening reaction and therefore important to track. By creating the process as
general as possible, it can be used as groundwork for other types of SDGs focusing on
different ADRs.

The SDG can be used in various types of safety analyses, supporting investigation regard-
ing which substances or concomitant medication (used at the same time) that are known or
suspected to cause QT prolongation. For example, if a patient experiences a QT-related
reaction this could be investigated by examining if he/she has been taking a substance
listed in the QT prolongation SDG. It can also be used in the specification of exclusion
criteria in clinical trials, meaning that subjects taking a medicinal product listed in the QT
SDG are excluded from the study. This is to avoid interference in the study results, as
well as to ensure patient safety.

The purpose of the free-text processing is that it complements the creation of the SDG
basis. This by allowing free-text data as input that does not need to have been manually
reviewed and coded. By automating the whole process, we aim to streamline and time
optimize the SDG creation, which would otherwise be performed manually. We also wish
to standardize the process such that every ingredient’s correlation to an ADR is based on
the same parameters. Using these as a decision basis allows us to avoid human error and
bias.

1.4 Delimitations
To limit the scope of this project, some delimitations have been set. For the free text
classification, we will filter for reports written mainly in English. This is because tools
and systems used in further processing use English data, and for evaluation purposes.

Coding conventions for medical reports change over time, so to keep the coding consis-
tent throughout the data a date restriction has been set such that only reports submitted
after the 1st of January 2018 are considered for the ingredient extraction. Since the Vi-
giBase database includes medicinal products prescribed for humans only, we will discard
information about drugs for veterinary use in our validation stage.
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1.5 Related work
Next-generation SDGs are a new concept and have not been previously developed, thus
it is a relatively unexplored area. An important part of the SDG creation process is
to automatically scan and code product label information available online. To do this,
we have used a UMC-created pipeline based on Shachi Bista’s paper ”Extracting Ad-
verse Drug Reactions from Product Labels using Deep Learning and Natural Language
Processing”[17], where the free-text coding is based on Vanja Vallner’s paper ”Extracting
Adverse Drug Reactions from Product Labels using DeepLearning and Natural Language
Processing”[18]. The latter has also been of great influence on our Free-text process-
ing, from which we have based parts of our implementation. Regarding listing drugs
with a connection to QT prolongation, similar work has been done by the Arizona Center
for Education and Research on Therapeutics (AzCERT), maintaining the CredibleMeds
database that contains a list of QT drugs.[20]
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2 Drug-safety related background
This section describes the drug-related components, systems and tools that have been used
in the SDG creation process. These relations are illustrated in Figure 1.

Figure 1: Concept map describing component relations

2.1 Standardised Drug Grouping
SDGs are collections of ingredients having one or more properties in common. The in-
dividual grouping can be based on indication, chemical properties, pharmacodynamic
properties or pharmacokinetic properties, as well as any other property of interest.[2] A
so-called next-generation SDG has the purpose of grouping ingredients with a common
ADR. SDGs can be used whenever there is a need to group drugs e.g. in clinical trials
where they need to make sure to exclude patients taking certain medications. The SDGs
can also be used during signal detection, a core activity at UMC that involves identifying
and describing suspected harm caused by a patient’s use of medicine. A signal in this con-
text is described as ”a hypothesis of a risk with a medicine with data and arguments that
support it, derived from data from one or more of many possible sources”. The objective
is to find new and unknown ADRs and to see group effects.[3] In this project, we aim to
construct an SDG listing ingredients suspected to cause the ADR QT prolongation.

2.2 Drug-induced QT Prolongation and Torsades de Pointes
QT prolongation is a serious cardiac ADR of delayed ventricular repolarization, i.e. when
the time it takes for the heart to recharge between beats is longer than usual. QT pro-
longation can be congenital or drug-induced (our focus), and it is important to discover
in clinical trials and post-authorization safety studies (studies conducted after a drug has
been approved to further analyze safety and effectiveness). QT describes a specific inter-
val, see Figure 2, that can be observed when measuring the electrical activity of the heart
in an electrocardiogram (ECG). To investigate the reason behind the reaction, it is impor-
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tant to know which medications are known to cause the reaction. Since there are many
potential medications (and by extension, ingredients) correlated to QT prolongation that
might not cause it, there is a need to review the available evidence of causation to decide
whether or not to include the medication in the SDG.

Figure 2: The QT interval. ”File:QT interval.jpg” by PeaBrainC is licensed under CC
BY-SA 4.0

A prolonged QT-interval combined with a certain form of ventricular tachycardia is the
definition of Torsades de Pointes (TdP). Drug-induced QT prolongation increases the risk
for but does not always progress to TdP. TdP can lead to ventricular fibrillation and/or
sudden cardiac death.[5]

2.3 Individual Case Safety Report
To document and analyze the ADRs experienced by drug users, Individual Case Safety
Reports (ICSRs) are collected. An ICSR is described by the European Medicines Agency
(EMA) as a ”document providing information related to an individual case of a sus-
pected side effect due to a medicine”.[4] It contains information needed to track and
report ADRs and medicinal product problems. The report must contain the medicinal
product taken and perceived adverse event (ADRs are a subset of adverse events where
a causal relationship is suspected), which could be a fatal outcome. The patient and re-
porter (e.g. a healthcare professional) must be identifiable in the original report. Optional
included information could be for example medical history, patient characteristics and
health-related test results. The collection of ADRs is handled by the national centre for
pharmacovigilance for each country participating in the WHO Programme for Interna-
tional Drug Monitoring.[12] The current number of fully participating countries in the
programme is 142 (November 2020).[13]
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2.4 Medical Dictionary for Regulatory Activities
With all these reports submitted from across the globe, written by different professions
and in different languages, it is a challenge to correctly translate and interpret the reports.
Thus arose the need for a standardized terminology.

Medical Dictionary for Regulatory Activities (MedDRA) is an international standardized
medical terminology developed by the International Council for Harmonisation of Tech-
nical Requirements for Pharmaceuticals for Human Use (ICH). The MedDRA standard
terms are used to facilitate the exchange of clinical information such as registration, docu-
mentation and monitoring of clinical substances. MedDRA is originally in English but the
terminology has been translated to 13 additional languages [6]. A new MedDRA version
is released every six months and the current version is 23.1 (February 2021).

MedDRA is based on a hierarchical structure consisting of five levels. The free text infor-
mation about an ADR from an ICSR is coded into MedDRA standard terms. The coding,
which is often done by national centres for pharmacovigilance, is done at the lowest and
most specific level, Lowest Level Term (LLT). The LLTs can be described as synonyms
or different ways to formulate a Preferred Term (PT), where a PT is the ”correct” term
to describe an ADR. When a matching LLT is found for a free text described ADR, it is
coded to the corresponding PT, which is a distinct description for each ADR. For exam-
ple, ”Dizziness” is a PT. If the report describes an ADR as for example ”Light-headed”,
”Woozy” or ”Swaying feeling”, which are all LLTs under ”Dizziness”, it will be coded to
that PT. The PTs in turn belong to more general levels where the most general is System
Organ Class. The hierarchical structure can be seen in Figure 3, as well as an example of
what the hierarchy looks like for the LLT ”Long QT” specifically.

2.4.1 Standardized MedDRA Query

Even though all PTs are grouped according to the hierarchy explained, a need arose for
a different set of groupings to easier identify all MedDRA terms related to a specific
medical condition (where the terms may belong to different System Organ Classes). A
Standardised MedDRA Query (SMQ) is the product of this separate way to group ADRs
outside of the hierarchical levels[8]. The grouping is done at the PT level, as seen in
Figure 3. The SMQs are a tool for investigation of drug safety issues and can be for
example ”Drug abuse, dependence and withdrawal”, ”COVID-19” or ”Taste and smell
disorders”. As seen in the example in Figure 3, one PT can belong to several SMQs. Since
we aim to group and sort substances related to QT Prolongation, the SMQ of interest is
the QT prolongation/TdP SMQ. We will use this SMQ to sort out relevant data (suspected
relation to TdP/QT prolongation) for the SDG creation.

Each SMQ is divided into two subgroups: narrow scope and broad scope. The narrow
scope includes the PTs that are most likely to correspond to the SMQ characteristic,
whereas the broad scope is estimated to have a lower correlation. The QT Prolongation/TdP
SMQ includes the following PTs in the narrow scope (February 2021):

• Long QT syndrome
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• Long QT syndrome congenital

• TdP

• Electrocardiogram QT interval abnormal

• Electrocardiogram QT prolonged

• Ventricular tachycardia

Figure 3: MedDRA v23.1 hierarchy, including the number of terms for each level[14]

2.4.2 Drug Characterization ID

MedDRA uses the label ”Drug Characterization ID” to describe the presumed connection
between a drug and a reported ADR. The different values and their descriptions are:

1. Suspected (Drug is suspected to have caused the ADR)

2. Interacting (The ADR is suspected to be caused by several interacting drugs)

3. Concomitant (The drug has been taken when the ADR occurred, but a relation is
not suspected)

2.5 WHODrug Global
While MedDRA is used to code and describe the ADRs, we also need a system to code
and describe the drugs mentioned in the reports. For this purpose we use WHODrug.

WHODrug is a WHO global drug dictionary for medicinal products managed by UMC
which describes the purpose as ”The dictionary is used to identify drug names and evalu-
ate medicinal product information, including active ingredients and products’ anatomical
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and therapeutic classifications, from nearly 150 countries”. The dictionary standardizes
the data using a unique drug code hierarchy and terminology and facilitates pharmacovig-
ilance by allowing easier identification and evaluation of drug-related issues.[9] The drug
code consists of three parts:

• Drug Record Number: Describes an active moiety, regardless of variations.

• Sequence number 1: Identifies variations such as salts, plant parts and extraction
methods, hence describing an active substance (or a combination of several).

• Sequence number 2: Identifies the WHODrug record name.

Figure 4: Drug code for Aralen Phosphate which is used in the treatment of malaria

2.5.1 Insight

WHODrug Insight is an online search engine for easy access to all WHODrug data man-
aged by UMC [15]. We used Insight to get access to a small part of data that was missing
in the database tables used.

2.6 VigiBase
All the submitted reports need to be stored for easy access and analysis. VigiBase is a
WHO global database managed by UMC containing 24 812 310 ICSRs (February 2021),
initially described in free text and electronically transferred from the national centres for
pharmacovigilance.

The transferred data is anonymized in the way that the data can not be linked to a name or
social security number, although patient initials may be included in the reports. The pa-
tient demographics are included on a country level. VigiBase supports pharmacovigilance
by providing structured data for analysis. It is linked to several terminologies, including
MedDRA and WHODrug. The reported adverse events are codes allocated according to
the latest versions of the used terminology, currently MedDRA 23.1 (February 2021).[12]

2.6.1 VigiLyze

The national centres can access and analyze the data via the platform VigiLyze. It allows
easy access and overview of the VigiBase data through graphs and listings, as well as
information and results from investigations. VigiLyze was a useful tool for us to validate
that the correct amount of data was covered/extracted in SQL queries.
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2.7 Summary of Product Characteristics
Each medicinal drug on the market must come with a summary of product character-
istics (SPC). It is a legal document containing medicinal product information directed
towards health professionals about how to use the product safely and effectively. The
SPC includes information about benefits, risks, composition, dosage, storage and infor-
mation for individualized care, among others. The product label included with the medic-
inal product is based on the SPC information, written in a way suited for users. In this
project, we have used SPCs to validate connections between QT prolongation and drugs
containing a specific ingredient.

2.8 DailyMed
As our source of SPCs we have used DailyMed, a website and database operated by the
U.S. National Library of Medicine (NLM). It contains SPC information produced and
updated by pharmaceutical companies based on their knowledge and research regarding
the product, where the products and product labels are approved by the U.S. Food and
Drug Administration (FDA).

2.9 CredibleMeds
For SDG ingredient validation and improvement purposes, we searched for reliable sources
with listed QT-related drugs (although not based on VigiBase ICSRs). CredibleMeds is an
online database containing drug safety-related information. The database is created and
managed by the University of AzCERT, a non-profit organization located in the US with
close ties to the FDA.[20] A list of ingredients with a connection to QT-prolongation/TdP
is accessible on their website for registered users (free registration).
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3 Data-driven methods
In this section, we will go through the theoretical explanations of the supervised machine
learning models used in this project. The goal of supervised machine learning is to predict
the outcome for given input data. This is done by allowing the model to learn from
labeled training data containing information on how the input variables relate to the output
variables. The models used in this project are classification models, meaning that they
predict which class (e.g. positive or negative in a binary case) a data point belongs to.
The models are:

• Ingredient classifier for SDG presentation order. Multinomial logistic regression
was used, with Stochastic Gradient Descent (SGD) as training algorithm.

• Binary classifier of free text verbatims using the deep learning language model
Bidirectional Encoder Representations from Transformers (BERT).

3.1 Logistic Regression
Logistic regression is a linear classification algorithm in the sense that the data is separated
by linear hyperplanes. The regular and most basic form of logistic regression is the binary
classification model where each data point is classified with one of two labels.

The input parameters that are used to train the model are called features. Each input data
point consists of a set of features, here described as ~x = {x1, ...,xN} for N number of
features, as well as the label ym given M number of classes. The binary labels (where
M = 2) would typically be set as y1 = 1 and y2 =−1. To predict the label of a data point
given the set of features, we calculate the pseudo probability p that the data belongs to
each class. The probability that the data point belongs to class ym given features~x is given
as pm = p(y = ym|~x). The class probabilities always add to 1:

M

∑
m=1

p(y = ym|~x) = p(y = y1|~x)+ ...+ p(y = yM|~x) = 1

To calculate the probabilities, we initiate a set of weights ~ω = {ω1, ...,ωN} corresponding
to the features, as well as a bias b. The weights and biases are constants. Combining
these using linear regression for a reference class (one of the two classes) in the binary
case results in a logit z:

z = ~ωT~x+b = ω1x1 +ω2x2 + ...+ωNxN +b

To transform this logit to a probability p1 (assuming that class 1 is the reference class),
we apply the logistic function:

p1(z) =
1

1+ e−z (1)

The probability for the second class is set so that p1 and p2 add to 1:

p2(z) = 1− p1(z)
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The class prediction in the binary case will be the class ym with the highest probability,
i.e. where p(y = ym|~x)> 0.5.

3.1.1 Multinomial Extension

For M > 2 number of classes, a vector of logits,~z = {z1, ...,zM}, is used:

zm = ~ωm
T~x+bm = ω1,mx1 +ω2,mx2 + ...+ωN,mxN +bm, m ∈ {1,M} (2)

To extend the algorithm to allow multiple classes, we use a generalization of Equation 1
known as the Softmax function:

pm(~z) =
ezm

∑
M
j=1 ez j

, m ∈ {1,M} (3)

This results in a number of probabilities corresponding to the number of classes. The
class prediction will still be the class ym with the highest probability.

3.1.2 Training

The training consists of updating weights and biases to best predict the training data. We
initiate a matrix containing the weights and biases on the following form:

~ω1
...

~ωN

~ωN+1 =~b

=


ω1,1 ω1,2 . . . ω1,M

... . . . . . . ...

ωN,1
. . . . . . ωN,M

b1 b2 . . . bM


Initially, the matrix is filled with random values. For the training, we declare the following
variables:

• Target vector~τ

• Output probabilities pm

• Learning rate γ

The target vector ~τ is a label y encoded to a binary vector using one-hot scheme. The
length of ~τ corresponds to the number of possible classes. Its elements are 0 except for
the element with an index representing the label y, τm=y, where the value is 1. M classes
would be represented by following target vectors:

y = 1 −→~τ = [1, 0, 0, · · ·, τM = 0]
y = 2 −→~τ = [0, 1, 0, · · ·, τM = 0]
...
y = M −→~τ = [0, 0, 0, · · ·, τM = 1]

The output probabilities pm corresponding to each class is calculated by the Softmax
function, see Equation 3.

11



3.1.3 Stochastic Gradient Descent

As training algorithm, we have used Stochastic Gradient Descent (SGD). For each epoch,
which is an iteration over the whole training data set, the indices of the training set data
points are shuffled to process the data in random order. For each index i, the weights and
biases are updated in order to minimize the differences between probabilities and targets.
Consider the loss function L(ω) that we wish to minimize:

L(ω) =−
M

∑
m=1

τmlog(pm(~z(~ω))) =−log(pm=y(~z(~ω))

An ideal prediction would result in L(ω) = 0. By shifting the weights according to the
gradient ∇ωL, we decrease the loss function for each epoch.

ωnew = ωold−∆ω

L(ω−∆ω)≤ L(ω)

The gradient is calculated using the chain rule:

∇ωL =
∂L

∂ωn,m
=

∂L
∂ zm

∂ zm

∂ωn,m

where the inner logit derivative is given as

∂ zm

∂ωn,m
=

{
xi,n for weights
1 for biases

(4)

and the outer derivative as
∂L

∂ zm=y
= (pm− τm) (5)

At the update stage, the learning rate γ decides how quickly the model should adapt to new
training data. For each training data point at a time, the weights and biases are updated
according to:

Weight update: ∆ωn,m = γ

( ∇ω L = ∂L
∂ωn,m︷ ︸︸ ︷

xi,n︸︷︷︸
∂ z
∂ω

(pm− τm)︸ ︷︷ ︸
∂L
∂ z

pm(1− pm)︸ ︷︷ ︸
softmax derivative

)
∀n ∈ {1,N} ∀m ∈ {1,M}

Bias update: ∆ωN+1,m = γ

(
(pm− τm)pm(1− pm)

)
∀m ∈ {1,M}
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3.2 Deep Learning
Deep learning is a branch of machine learning which utilizes neural networks. Neural net-
works are based on simpler machine learning models such as linear regression. Different
types of neural networks can be applied to a wide range of problems e.g. image analysis,
speech recognition or language processing. The architecture is inspired by how neurons
are connected in the human brain and has shown to be able to recognize nontrivial patterns
in the input- and output variables.

A neural network consists of one or several layers of nodes where the input to each layer
is the output of the layer before. The first layer is called an input layer and is the entry
point for the input variables. The input layer is followed by one or several hidden layers
where the input variables are transformed and weighted by the network parameters. The
final layer is called the output layer. For a classification problem, a neural network with
one layer is constructed by using a generalized linear regression model, which is a linear
regression model with the parameters ωi to which a scalar activation function σ is applied.
The generalized linear regression model is a non-linear function which predicts the output
z from the input x = [1 x1 x2 ... xN ]

>, which for a neural network with one hidden layer it
is given by:

z = σ(ω0 +ω1x1 +ω2x2 + ...+ωNxN) (6)

The activation function may be any chosen function, but for this project the softmax
function was used, see Equation 3. With the help of the activation function the output layer
converts the output of the last hidden layer into class predictions. The linear regression
model in equation 6 can be generalized to a neural network with several layers. Figure 5
shows the architecture of a basic neural network.

Figure 5: Neural network architecture

Different types of hidden layers serve different purposes, e.g. pooling layers that reduce
the size of the data. With the help of the different layers, the neural network can on its
own create features and find complex relations between input and output variables in the
data. However, a large set of data is usually required for a neural network to be successful
[23].

13



The softmax functions input parameters z1, ...,zM are called logits. To learn the classi-
fication network the cross entropy loss function is used. With this approach, the vector
of predicted probabilities is compared to the one hot encoded output vector. From this
comparison, the cross-entropy loss function is minimized and the network’s parameters
are optimized. The cross-entropy loss function also helps to avoid numerical problems
when the probability for a prediction, p(m|xi,θ) is close to zero, by compensating for the
effects caused by the softmax function. The cross-entropy loss function is given by the
following equation: [22]

θ̂ = arg min
θ

1
n ∑

n
i=1 L(xi,yi,θ) where L(xi,yi,θ) =−∑

M
m=1 yimlog p(m|xi;θ) (7)

3.2.1 Natural Language Processing

Natural Language Processing (NLP) is a branch of machine learning that concerns the in-
teraction between computers and human languages. Some language processing tasks can
be easy for computers to perform such as word-for-word translations between languages.
However human languages are complex and constantly evolving. It is a difficult task for
computers to capture or understand the semantics of human languages. In recent years
there has been progress in the field with the introduction of deep learning techniques for
NLP [19].

3.2.2 Transformers

A transformer is a deep learning model that uses an encoder-decoder architecture. The
model consists of several encoding layers that process and transform the input variables.
The encoding layers are followed by decoding layers that inverse transform the encoded
input variables to create an output. Transformers use attention which has the advantage
that input does not have to be processed in a sequence, unlike other encoder-decoder archi-
tectures that utilize recurrent neural networks (neural networks with feedback loops)[25].
For an NLP problem, this means that the transformer model can focus on the context in
which the words are used and find the most relevant parts of a sentence.

3.3 BERT
The Bidirectional Encoder Representations from Transformers (BERT) is a pretrained
NLP model released by Google [26]. BERT has a transformer-based architecture that
allows it to process a free-text input bidirectionally so that it can learn the context of a
word based on previous and following words. The specific BERT model used in this
project is pretrained on 3.3 billion words from the English Wikipedia and BooksCorpus
and has a general understanding of the English language and its structure. However, the
model needs to be fine-tuned for each NLP problem it is tasked with by training the model
on relevant data.
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3.3.1 Tokenization

Before free-text data can be processed by BERT the data needs to be tokenized. Tok-
enization means that free-text data is segmented into components which the model can
process. This is done with the help of BERTs built-in dictionary that contains 30 000
tokens. If a word is not in the dictionary as a single token the word can be separated into
several tokens. An example is the word readable which is not in the dictionary, it would
be tokenized read, ##able where ## indicated that the token belongs to the first previous
token not beginning with ##. There are also special tokens that need to be added before
BERT can process a free-text input. Firstly, every input needs to begin with a [CLS] token
which indicates to BERT that it is processing a classification problem. Secondly, each
free-text input needs to end with a [SEP] token which is used for next sentence prediction
problems. Lastly, each free-text input needs to be padded to the same length by [PAD]
tokens. The developers of BERT recommend an input length of either 32 or 64 tokens.
Inputs longer than the limit will be cut off and ignored in the later process. Every token
is then converted to an ID which is unique for every token.

As the final step, an attention mask is created. The attention mask is a vector of ones
and zeros that supports BERT in keeping track of which tokens are relevant for further
process. Every token except for padding tokens is represented by ones in the attention
mask. These processing steps for an example sentance can be observed in Figure 6. As
input the BERT model uses the vector of token IDs and the attention mask.

Figure 6: Example of how the BERT model processes a sentence

3.3.2 Classification

When BERT is used for a classification problem a softmax layer is added after the final
transformation layer. The input to the softmax layer is a vector of logits~z = {z1, ...,zM}
that are converted into class probabilities according to equation 3. The [CLS] token values
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are the only token values that are used as input to the softmax layer this can be seen in
Figure 7. The number of logits is equal to the number of classes.

Figure 7: The softmax layer in a BERT model
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4 Method
The process as a whole consists of two main areas; free-text processing and creation of
SDG basis, which combined add up to the final SDG pipeline. In this project, we have
worked with these two main areas as independent projects, since the free-text processing
can be viewed as an extension of the creation of SDG basis for the inclusion of free-text
data as input. To fully connect the SDG pipeline, some further work needs to be done
regarding the WHODrug-coding of ingredients in the reports from which we use free-text
verbatims. However, this has not been done in this project.

The end product of the creation of SDG basis is the information that a pharmacist can
use to decide which ingredients to include in a QT prolongation SDG, sorted according to
level of suspected QT prolonging effect. The input needed is MedDRA-coded ICSRs. The
end product of the free-text processing on the other hand is a binary classifier predicting
if a free-text verbatim is describing a QT prolonging ADR. In the final pipeline, this is
used as a pre-stage extension that allows verbatims describing an ADR as input, even if
it is not yet MedDRA coded. If the verbatim is classified as describing a QT prolonging
ADR, we wish to code it and include the verbatims’ ICSR in the Creation of SDG basis.

The process overview and the sub-modules can be observed in Figure 8. The free-text
processing corresponds to sub-modules 1-3 and is described in the sections 4.2-4.4. The
creation of an SDG basis corresponds to sub-modules 4-7 and is described in section
4.5-4.12.

Figure 8: Project process scheme

To further explain what is included in the different sub-modules:

1. Extraction of free-text verbatims from VigiBase using language sorting to include
only verbatims mainly written in English and a sampling method to reduce the
amount of non-QT training data (Section 4.2).

2. Tokenization as verbatim pre-processing (Section 4.3).

3. Binary classification of free-text verbatims using BERT to find out whether or not
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a verbatim describes a QT prolonging ADR (Section 4.4).

4. Extraction of active ingredients from VigiBase that indicates a connection to QT
prolonging ADRs, together with corresponding relevant information (Section 4.5).

5. Ingredient validation by SPC validation (Set ID extraction using OpenFDA API,
SPC scanning and PT coded using a UMC-created pipeline for SPC mining), as
well as comparison to CredibleMeds’ QT drug list (Section 4.6, 4.9).

6. Ingredient classification trained on manually labeled data using multinomial logistic
regression (Section 4.11).

7. Presentation of SDG basis with relevant information and ingredients sorted accord-
ing to the level of suspected QT prolonging effect (Section 4.12).

4.1 Choice of software
For the VigiBase data extraction and pre-processing, we have used SQL. The Set ID
extraction and SPC mining was done using Python 3.8 (the SPC Mining pipeline is Python
based). Python was also used for the free-text classification using BERT. For the rest of
the implementation we have used C# 9.0 on .NET Core 3.1, where the pre-processed
database is connected using Entity Framework. Data has been processed using C# or
SQL queries depending on suitability. Plots have been constructed using Microsoft Excel
and MathWork’s MATLAB.

4.2 VigiBase verbatim extraction
ICSRs can contain a free-text verbatim that describes the reported ADR(s). Pre-coded
ICSRs were used as data to train and evaluate the BERT model. The data was extracted
from two different databases named UMCReport_20210103 and Meddra_20210103. Both
databases are frozen versions of otherwise actively updated databases. The verbatims and
the PTs they are coded to, are stored in UMCReport_20210103 and the latest terminology
version of MedDRA is stored in Meddra_20210103. In VigiBase there is 10 868 817
verbatim in total, which are reported from different countries and written in different lan-
guages. Out of these, 11 216 are coded to PTs in the narrow scope QT Prolongation/TdP
SMQ.

In the database UMCReport_20210103, each verbatim is associated with a ReactionID
which is a unique identifier for each ADR in VigiBase. The reaction-ID was used to
match each verbatim to the coded PT term. From the database Meddra_20210103 the
name of each PT was extracted and matched to each PT term. For every verbatim, a label
was added. If the verbatim was coded to a PT that is included in the narrow scope QT
prolongation/TdP SMQ the label was set to 1 and otherwise it was set to 0, implying no
QT-connection.

The extracted data set consisted of the following columns:

• Reaction ID: Unique identifier for each ADR

18



• Verbatim: Free-text description of an experienced ADR

• PT Code: Identifier for the PT term that the verbatim is coded to

• PT Name: Name of the PT term that the verbatim is coded to

• Label: 1 if the described ADR is coded to a PT within the narrow scope QT
prolongation/TdP SMQ, otherwise 0

4.2.1 Language sorting

One of the delimitations in this project is to only include ICSRs written in English, sim-
plifying the NLP method and evaluation. The verbatims extracted from VigiBase are
written in several different languages. Non-English verbatims were sorted out from the
data set. As a first approach, verbatims from known English-speaking countries were se-
lected. Although this proved efficient, the loss of data was large, heavily affecting the
size of training data. Thus our second approach was based on the language sorting pro-
cess in ”Extracting Adverse Drug Reactions from Product Labels using DeepLearning
and Natural Language Processing”[18]. The process utilizes two different strategies to
discard non-English verbatims. The first one automatically discards verbatims containing
letters not in the Latin alphabet (for example Korean symbols and vowels like ”à,ú,ý”).
Secondly, we create a dictionary of all words in the MedDRA LLTs. Each remaining
verbatim is then split into separate words which are compared to the dictionary and an
English score for the verbatim is calculated. The English score is the percentage of words
in the verbatims that are present in the dictionary and is defined as

English score =
Words in dictionary
Words in verbatim

We calculated the English score for each remaining verbatim and discarded all verba-
tims with a score below 70%. After this language sorting process, 7 790 688 English
verbatim remained. 7263 of these are coded to a PT included in the narrow scope QT
prolongation/TdP SMQ.

4.2.2 Data sampling

The data is highly unbalanced with 99.9% of the verbatims belonging to the negative
class, i.e not included in the narrow scope QT prolongation/TdP SMQ. To cope with
this issue and to reduce computation time when training BERT, two approaches to data
sampling were investigated. Both approaches utilize the idea of under-sampling where
samples from the majority class, in this case, non-QT verbatims, are drawn [21] whereas
the minority class is untouched. With the two sampling approaches two different data
sets for training was created. The first data set for training was created by using random
sampling, where non-QT verbatims are selected at random. The second data set for train-
ing was created by using PT distribution sampling where non-QT verbatims are selected
while keeping the proportion of non-QT PTs in the data the same. With these two different
data sets two different BERT models were trained and their performance compared.
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In order to compare both sampling approaches, they need to be evaluated on the same test
set. Ideally, the test set should reflect a real world scenario and represent a wide range of
different PTs. Therefore the test set was created using PT distribution sampling. The test
set was created first, and verbatims not in the test set were then sampled to create the two
different training data sets. The test set contained 513547 non-QT verbatims and 2397
QT verbatims. The number of verbatims in each of the training sets are shown in Table 1.

Nr verbatims for training
Non-QT QT

Random sampling 1042979 4866
PT distribution sampling 1042654 4866

Table 1: Training set distribution for the two sampling approaches

4.3 Tokenization
Before the BERT model can train on the data set each verbatim needs to be processed
into a format BERT can handle. Each verbatim needs to be tokenized and padded to the
same length. The BERT developers suggest a limit of 32 or 64 tokens in each input [26].
To reduce training time, a limit of 32 tokens was chosen. As a result, information might
be lost due to verbatims cut shorter. The [CLS] and [SEP] tokens were also added to the
endpoints of each verbatim.

4.4 Classification using BERT
After tokenization, the data for training was split into a training set of 70% and a validation
set of 30%. Two different versions of a BERT model were trained were the different
training sets based on the different sampling approaches explained in Section 4.2.2. The
BERT model works in batches, such that only a subset of the verbatims are processed
at the same time. When all batches have been processed, one epoch has passed. The
batch size was set to 32 verbatims and the number of epochs to 4. Since the data set is
highly unbalanced, we used the Fβ -score as the main evaluation metric, focusing on the
misclassified rather than the correctly classified verbatims. Based on the results the model
does not have a problem with false positives or false negatives. Therefore we chose β = 1
which will weigh precision and recall equally, such that the F1-score is used for evaluation.

There are several different types of pre-trained BERT models for different types of prob-
lems. For this binary classification problem, the base version ”BERT For Sequence Clas-
sification” was selected. The base version has 12 transformation layers and a final softmax
layer to compute class probabilities. In order to follow the training progress, the model
calculates the cross-entropy loss function between each batch. The loss function was opti-
mized using Adam, an optimization algorithm using SGD for deep learning models [27],
and a learning rate γ = 0.00001.
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4.4.1 Predictions

When fully trained, the BERT model will make predictions on the unseen test data set
about whether or not the ADR description indicates a QT-connection or not. Since the
project goal is to automate the process of creating an SDG, the next step for a QT-
predicted verbatim would be to code it to a PT term.

4.5 VigiBase ingredient extraction
For ICSRs pre-coded to MedDRA standard terms, we wished to sort out relevant data
to support correlation to QT prolongation. The data was extracted from two differ-
ent databases named UMCReport20210103 and Meddra_20210103. Both databases are
frozen versions of otherwise actively updated databases. UMCReport20210103 contains
ICSRs and Meddra_20210103 contains the latest version of MedDRA terminology. Data
from these databases were extracted, combined and stored on a local database using SQL.
To find the relevant reports we set the following requirements on the data:

Date
The extracted reports were submitted on or after January 1st 2018, a restriction set to keep
the MedDRA coding version consistent throughout the data.

Exclude foreign reports
To avoid duplicate reports in the data, we chose to only include reports that are written in
and submitted from the same country.

Narrow scope TdP/QT prolongation SMQ
A report can include several different ADRs coded to different PTs and LLTs. In these
cases, only reactions coded to a PT that is included in the narrow scope TdP/QT prolonga-
tion SMQ were selected. To do this, PT terms were selected from the Meddra_20210103
database with the following requirements:

• Code = 20000001 (SMQ code for QT Prolongation/TdP)

• ScopeID, Term Scope = 2 (narrow scope)

• Term status = A (active SMQ)

• Term level = 4 (hierarchy level: PT)

Drug Characterization ID
We used the Drug Characterization ID to sort out the drugs that are not suspected to have
caused the QT prolonging ADR. In our extracted data we set Drug Characterization ID =
(1,3) to include only ”suspected” and ”interacting”.

WHODrug
For each ICSR, UMC has validated a trade name for the medicinal product(s) that the pa-
tient has taken. Each trade name is linked to an ID in WHODrug. A subset of WHODrug
is hosted inside the database UMCReport20210103 from which we can extract the active
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ingredients and connected moieties that a specific drug contains. To extract the active
ingredient we used the Drug record number and Sequence number 1, see Section 2.5 for
definitions. Since there is a many-to-one relationship between the active ingredient and
active moiety, we used the active ingredient name to find the active moiety by setting the
Sequence number 1 = 1. Since UMCReport20210103 only hosts a subset of the whole
WHODrug dictionary, some active moieties had to be manually searched for in the actual
WHODrug dictionary using WHODrug Insight. This will however not be a future issue
since the final pipeline will extract data from a different database table with access to all
of the WHODrug dictionary.

4.5.1 Sorted data

After the described sorting, 8815 reports remained. Together these reports include 1329
unique ingredients that we wish to validate. The sorted data has the following columns:

• ReportID - Unique identifier for a report.

• UMCValidated_ProductID - Validated trade name

• UMCValidated_BaseCompositionName - Validated active moiety

• ActiveSubstance - WHODrug active substance

• PT_Code - ADR identifier

We used VigiLyze to evaluate that the amount of extracted data corresponded to the
amount when searching accordingly using the VigiLyze search tool.

4.6 Validation against SPC data
To examine if the data extracted from VigiBase is known or suspected to cause QT pro-
longation, we decided to validate the connection using SPC information from DailyMed.
Our approach was to extract a list of Set ID:s, which is a unique identifier for each SPC,
for each active ingredient in our sorted VigiBase data. The Set ID:s is then used to access
all relevant SPC information and search for indications of QT prolongation reactions.

Set IDs could be obtained by web scraping or by using a suitable Application Program-
ming Interface (API). We found two APIs that handle the SPCs data set, DailyMed REST-
ful API and OpenFDA Drug API. We opted for OpenFDA since it is more versatile and
well-suited for requests based on active ingredient information.

4.6.1 Set ID extraction using OpenFDA

OpenFDA offers several open-source APIs based on the search engine platform Elastic-
search, handling all public FDA data. We have used the weekly updated OpenFDA Drug
API that processes Drugs@FDA data which is described as:
”Information about the following FDA-approved products for human use:
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• Prescription brand-name drug products, generic drug products, and many therapeu-
tic biological products

• Over-the-counter brand-name and generic drugs” [16]

This corresponds to the SPC data available in DailyMed (although the data is not syn-
chronously updated, hence small differences in the data sets may occur). A request can
be sent to an API using an URL with specified search parameters.

Our goal using OpenFDA was to get all SPC Set ID:s for a given list of active ingredients
and their corresponding active moieties. The moieties are the base composition for each
ingredient, and often they share the same name. For reference, see some examples of
active ingredients and corresponding active moieties from our data set in Table 2. As
seen, several ingredients can have the same moiety. When they are not the same, the
ingredient name is more specific than the moiety.

Ingredient Moiety
Alfuzosin hydrochloride Alfuzosin
Acetylsalicylate lysine Acetylsalicylic acid
Acetylsalicylic acid Acetylsalicylic acid
Hepatitis b vaccine rHBsAg (yeast) Hepatitis b vaccine
Ferrous sulfate Iron

Table 2: Data set examples

We created a script that reads a CSV-file with active ingredients and corresponding moi-
eties as input data. For each active ingredient we use the OpenFDA API to request SPC
information. In the request, we insert an API key provided by OpenFDA which we need
to be able to make more than 1000 requests per day (otherwise no key is needed) and the
name of the active ingredient. The request results in a JSON-file containing SPC data
where the active ingredient and/or generic name corresponds to the given active ingredi-
ent. Since the highest possible number of resulting SPCs per request is 1000, we must
make multiple requests in cases we exceed the limit. In the cases where the API request
does not result in any matching SPCs for the active ingredient, we search for SPCs related
to the active moiety instead.

For all resulting SPC data, we extract all Set ID:s using the Regular Expressions pack-
age. The active ingredient name, the list of correlated Set ID:s and a DailyMed search
link to the first correlated SPC are added to the JSON-file for each iteration. This file is
our resulting output data. The extraction process is described in the following algorithm:
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Algorithm Set ID Extraction using OpenFDA
1: Read csv-file with active ingredients as input data
2: Initiate json-file capturing ’Name’, ’Set ID:s’ and ’Link’
3: for each active ingredient do
4: Request SPC information for active ingredient using OpenFDA
5: if no hits on ingredient name then
6: Request SPC information for active moiety using OpenFDA
7: end if
8: Extract all Set ID:s from SPC information
9: Append name, Set ID:s and DailyMed-link to json-file

10: end for
11: Resulting json-file is output data

4.6.2 SPC scanning and coding

For each Set ID (connected to the active ingredient or active moiety) extracted in the
previous step, we wish to access the SPC information, more specifically the sections
within the SPCs describing ADRs and ingredients. For this purpose, we used a UMC-
created pipeline called ”SPCMining”.

The SPCMining Pipeline is based on two separate master thesis projects previously con-
ducted at UMC: ”Extracting Adverse Drug Reactions from Product Labels using Deep
Learning and Natural Language Processing” [17] and ”Mapping medical expressions to
MedDRA using Natural Language Processing” [18]. As input, the pipeline takes SPCs
from DailyMed in XML-file format and converts them into a JSON-file format. Free-text
descriptions of ADRs in the SPC are then coded to MedDRA-codes by an NLP model.
The NLP model has two evaluation metrics, micro average and macro average F1-score.
Macro average means that the F1-score is calculated independently for each class while
the micro average will weigh the F1-score with regards to the performance on each class.
The macro average F1-score= 0.774 and the micro average F1-score= 0.806. The ADR
verbatims are scanned and coded from the following SPC sections:

• Adverse reactions

• Boxed warnings

• Precautions

• Warnings and precautions

• Warnings

The pipeline processes are described in Figure 9.
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Figure 9: Flow chart for the SPCMining Pipeline

The number of unique Set ID:s extracted in the previous step was 38 458. We accessed 33
983 of these from a previously mined data set. For the 4475 Set ID:s that was not already
mined, we downloaded the raw XML data from DailyMed and ran the pipeline locally on
those Set IDs. The pipeline was unable able to mine 373 Set ID:s since the information
in those Set ID:s was not complete (the sections that the SPCMining pipeline scans and
codes information from were non-existent).

4.6.3 Preferred terms comparison for SPC data

Given our list of active ingredients and corresponding Set ID:s from the previous step,
as well as the JSON-files with information of all successfully mined SPCs for these
Set ID:s, we now wish to check the SPCs for PTs included in the narrow scope QT
Prolongation/TdP SMQ. The process is described in the following algorithm:

Algorithm SPC validation for TdP/QT prolongation SMQ
1: Declare PT-list: PT codes in QT Prolongation/TdP narrow scope SMQ
2: Read JSON-file with results from ’Set-ID Extraction’ as input data, convert to C#

object
3: for each active ingredient do
4: Read list of ’Connected Set ID:s’ (for ingredient or moiety)
5: for each Set ID do
6: Read JSON-file with coded SPC data, convert to C# object
7: Check if SPC contains multiple active ingredients
8: Find all coded PTs that are included in PT-list
9: Check which sections these PTs were found in

10: end for
11: Present number of successfully mined SPCs
12: Present number of successfully mined single-active ingredient SPCs
13: Present percentage of SPC:s with hits (total and single-active ingredient only)
14: end for
15: Save validation results as output CSV-file
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We create C# objects for all JSON-files to effectively access only the information needed.
For each SPC object, we find all coded PT terms by the route:

Sections→Mentions→codeds→PtCodes

Comparing these to our declared list of PT codes, we store information about the number
of SPCs with hits (successful comparison). We do not take into account which section the
hit is found in (such as ”Warnings” or ”Adverse Drug Reactions”) or which PT we get
the hit on (such as ”Long QT Syndrome” or ”Electrocardiogram QT interval abnormal”).
Although that information is easily accessed since it might be of interest in future versions
of the SDG.

One thing that increases the accuracy of the validation is whether or not the SPCs contain
one or multiple active ingredients. If a drug with only one active ingredient is known to
cause an ADR (stated in the SPC), we can directly link the reaction to that ingredient.
Whereas if the drug has multiple active ingredients, we can not know which one is most
likely to be the cause. To label each SPC as multi- or single active ingredient, we examine
the route:

Product→Parts→ActiveIngredients→ActiveMoieties

In the mined SPC information, all ingredients are listed. Some ingredients are inactive
for example water, corn starch or talc. The active ingredients have the corresponding
active moieties listed in the mined JSON-file. So to check if an SPC has one single active
ingredient, we examine if only one of the listed ingredients has a non-empty list of active
moieties.

As output, we extract following data for each ingredient in our input data list:

• Number of successfully mined SPCs

– How many of these had hits (percentage)

• Number of single-active ingredient SPCs

– How many of these had hits (percentage)

4.7 Categorization
To get an overview of which ingredients we could validate via SPCs and with what cer-
tainty, as well as how they are represented in VigiBase reports, we divided all ingredients
into five sub-categories. They are defined as following (the connected reports in Vigibase
before and after modification is to be explained in the next section):

1. Validated on a single-active ingredient SPC.

2. Validated on multiple-active ingredient SPCs only.

3. Mined connected SPCs, but not validated.

4. No mined connected SPCs, connected reports in Vigibase after modification.

5. No mined connected SPCs, connected reports in Vigibase only before modification.
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4.8 VigiBase occurrences
For the list of ingredients coded to a PT included in the narrow scope QT prolongation/TdP
SMQ, we calculate the total number of connected ICSRs in VigiBase for each ingredient
(i.e. all reports where the user described an ADR after taking a drug that included that
specific ingredient). We also calculate the fraction of these ICSRs that was coded to the
narrow scope QT prolongation/TdP SMQ. The resulting percentage describes how many
of all reports connected to an ingredient that has a QT-connection:

QT occurrences =
QT coded connected reports

All connected reports

This percentage is not always an accurate measurement of an ingredient’s probability to
cause QT prolongation/TdP, since we do not know which one of all ingredients connected
to the report is causing the ADR. To further improve this parameter, we decided to mod-
ify the percentage by adjusting the numerator. Instead of counting all connected reports
coded to the narrow scope QT prolongation/TdP SMQ for each ingredient, we temporar-
ily discard reports connected to another ingredient that we have reason to strongly suspect
is the cause of the ADR (these reports are still included in the denominator which does
not change).

As a threshold to when an ingredient is suspected to be the cause, we choose to include
ingredients that we have validated for at least one single-active ingredient SPC, i.e. in-
gredients in category 1. Thus the ”Modified number of QT coded connected reports” in
Equation 8 is all QT coded reports connected to an ingredient, except those where another
ingredient included has been validated for a single-active ingredient SPC.

Modified QT occurrences =
Modified number of QT coded connected reports

All connected reports
(8)

As an example, ”Aminosalicylic acid” had a total of 28 connected ICSRs. When checking
the list of connected ingredients for these 28 reports, they all contained at least one other
ingredient that belongs to category 1. Thus they were all discarded and the modified
percentage of connected reports is 0. For an example of how Abacavir Sulfate is affected
by the parameter modification, see Figure 10.

27



Figure 10: Modification of the VigiBase occurrences percentage for Abacavir Sulfate

After this modification, we were able to separate the sub-category for no mined SPCs into
two new sub-categories. Sub-category 4 and 5, where ingredients in category 4 still has
VigiBase occurrences after modification whereas ingredients in category 5 do not.

4.9 CredibleMeds comparison
Another source of information that we used to validate our SDG ingredient list is Credi-
bleMeds, see Section 2.9. They provide and manage a list of ingredients with a risk for
the user to develop TdP. We contacted CredibleMeds that supplied us with an Excel-file
containing this list. The original list consists of 293 ingredients (or a combination of two
ingredients) and contains the following information:

• Generic names (ingredient name)

• Drug brand names (partial list)

• Drug Action (e.g. antibiotic, sedative)

• Main therapeutic use (e.g. asthma, cancer)

• Routes administered (e.g. oral, injection)

• Current risk category

We have used the first and last category for evaluation (and later on for ingredient clas-
sification improvement). Since we use different ways to rank/categorize ingredients, this
list can not be used to directly evaluate our list of ingredients. It does however give us an
indication about if the ingredients we have extracted have a known or suspected correla-
tion to QT-prolongation/TdP, and to what risk category it has been assigned by AzCERT.
This information is also of value to the pharmacist using the final SDG. The different risk
categories used in CredibleMeds are:

• Drugs with known TdP risk
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• Drugs with possible TdP risk

• Drugs with conditional TdP risk

• Drugs to be avoided by congenital Long QT

In some cases, the CredibleMeds included some different spelling options and synonyms
for ”Generic names”. We altered those to match our ingredient names (if the listed in-
gredient was in our list). Some alterations can be observed in Table 3. As can be seen,
some alterations were easily done by using only one of the suggested spellings, whereas
others required using a synonym or non-suggested spelling. It is safe to assume that some
ingredients were not matched because of a spelling or synonym we did not know to al-
ter. Some ingredients were listed as a combination in CredibleMeds, where we divided
the combination into two separate ingredients to match our format. Thus the modified
CredibleMeds list contains 300 ingredients.

Original After modification
Amphetamine (Amfetamine) Amfetamine

Eribulin mesylate Eribulin mesilate
Levalbuterol (Levsalbutamol) Levosalbutamol

Papaverine HCl Papaverine hydrochloride
”Fluticasone and Salmeterol” ”Fluticasone” and ”Salmeterol”, respectively

Table 3: Examples of modification of ”Generic Names” in CredibleMeds list

After this modification, we read the data and compares each ”Generic name” to our ingre-
dient names. If it is an exact string match, the program writes that the ingredient has been
validated using CredibleMeds onto the local database, as well as to which risk category it
belongs. If the ingredient does not match, we repeat the comparison and writing but now
using the moiety.

4.10 Manual ingredient labeling
In order to present the SDG ingredients in an order of likeliness to cause QT prolongation,
we aimed to train a classification model using logistic regression to categorize ingredients.
To get the training data, we received help with the manual classification of a subset of the
SDG ingredients.

The manual classification was performed by two pharmacists at UMC. We provided them
with a list of ingredients (both got the same list) to categorize independently. That way we
could also examine how much manual ranking can vary between professionals. We de-
cided to let the pharmacists use all available information to rank the ingredients as well as
possible. For example, they could use SPC information from different countries/centers,
VigiBase reports and information on the internet they see as credible. This way we see
the effect of using the limited data in our model, such as not being able to access free
text information from the SPCs and ICSRs. In our model, we only access the coded data
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after SPC mining or MedDRA coding, and are also limited to SPCs in FDAs database
(such that we can not access SPCs if the active ingredient is not approved at the American
market).

The list of ingredients provided contained 110 substances in total. The proportions were
50 substances from sub-category 1, 10 from sub-category 2 and 50 from sub-categories 3,
4 and 5. Other data provided was:

• Instructional guidelines, see Appendix B.

• Country information (from which country the ICSR for each ingredient was re-
ceived, in decreasing order)

• CredibleMeds QT drug list (the data used for CredibleMeds validation)

Before the pharmacists began their ranking they agreed on a common ranking system.
They used DailyMed as their primary source of information. Firstly they would search
for the active ingredient and secondly the active moiety. However one of the pharmacists
decided to also search for the active ingredient in WHODrug to find medicinal products
(that contain the active ingredient) that could be searched for in DailyMed. If the active
ingredient could not be validated to have a QT prolonging ADR in DailyMed they would
move on to search for SPCs from other countries, research papers or other sources they
saw as credible. Each active ingredient was ranked into one of three categories which
were:

• Class 1, Strong indication of connection to QT prolongation/TdP based on SPC or
other credible source

• Class 2, Weaker indication of connection to QT prolongation/TdP based on SPC or
other credible source

• Class 3, No alleged connection to QT prolongation/TdP based on SPC or other
credible source

One of the pharmacists had time to rank 100 active ingredients, whereas the other had
time to rank all 110 active ingredients. For the 100 ingredients that they both ranked,
their labels varied for 38, information used for calculating the Inter-Annotator Agreement
(IAA). We made two versions of the training data, one where we used an average in the
case where their labels disagreed and one where we used the label indicating a stronger
QT-connection. We decided to proceed with the latter version since the pharmacist who
labeled the stronger connection has provided reliable sources to motivate the decision
(which the other one may have missed). Also, we would rather falsely include ingredients
that should not be in the final SDG, than exclude an ingredient with a QT-connection.

4.11 Ingredient classification using logistic regression
To train a model on the manually labeled data to predict the rest of the unlabeled ingre-
dients, we implemented a classifier using multinomial logistic regression (see Section 3.1
for theory). We constructed the classifier to work for any number of features (and classes,
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but we consistently used three classes since the available training data is labeled to three
classes).

4.11.1 Input Data

The labeled input data (110 data points) were kept in a separate database table from the
unlabeled. The classification process begins with reading from the labeled data table as
input data. As y-data, the three-class labels are read and transformed to target vectors as:
y = 1 −→~τ = [1, 0, 0]
y = 2 −→~τ = [0, 1, 0]
y = 3 −→~τ = [0, 0, 1]

As x-data we choose suitable (best describing QT-connection) parameters as features.
A feature vector with values for each ingredient is given as ~an = (an,1, ...,an,i, ...,an,I)
where I is the number of ingredients, i ∈ {1, I}, and N is the number of features, n ∈
{1,N}. The x-data given by ~xi = (a1,i, ...,aN,i) for each ingredient is the feature values
for that ingredient. We began with a basic 2-feature model (N = 2), using ”Validated
single-active ingredient SPC percentage” and ”Modified QT-coded reports in VigiBase
percentage”. When reading the data, we want to normalize each feature value such that
it is all presented on a scale from 0 to 1. The normalization for each feature value an,i is
done according to the equation

an,i(norm) =
an,i

~an(max)
,

where an,i(norm) is the normalized feature value and~an(max) is the maximum feature value
in the feature vector~an.

In a second version of the classifier, we included ”CredibleMeds risk group” as a third
feature, in order to use the research done by AzCERT in our predictions as well. Since
this feature is described alphabetically, we need to convert it to numeric values within the
same scale as our normalized numeric features. In consultation with a pharmacist, we set
the following data conversion for the CredibleMeds risk groups:

• Not present in CredibleMeds −→ an,i = 0

• Drugs to be avoided by congenital Long QT −→ an,i = 0

• Drugs with conditional TdP risk −→ an,i = 0.8

• Drugs with possible TdP risk −→ an,i = 0.9

• Drugs with known TdP risk −→ an,i = 1

The reason that ”Drugs to be avoided by congenital Long QT” was set to be ignored is that
it does not have any proven QT prolonging effects, but rather adrenaline-like effects. To
present an example of an input data point for the 3-feature version, consider the ingredient
”Atomoxetine”. The data extracted for ”Atomoxetine” from VigiBase, CredibleMeds and
SPC validation results in:
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• Validated single-active ingredient SPC percentage: 95.65% −→ x1 = 0.9565

• Modified QT-coded reports in VigiBase percentage: 2.52%−→ x2 = 0.0252

• CredibleMeds risk group: Drugs with possible TdP risk −→ x3 = 0.9000

• Manual label: y = 1 −→~τ = [1, 0, 0]

Thus the labeled input data point for ”Atomoxetine” would be:
(~x;~τ) =

(
[0.9565,0.0252,0.9000]; [1,0,0]

)
4.11.2 Data division and cross-validation

The labeled input data is divided into training- and validation data, where we have set
aside 20% for validation and 80% for training. The training data is used to update the
weights and biases to improve the prediction (minimize the mean squared error (MSE)),
whereas the validation set is used to evaluate the trained algorithm on unseen data by
measuring the performance (MSE and accuracy).

Since the manually labeled data is very limited, we have used 5-fold cross-validation (see
Section 5.2.3 for theory) to train the final model, on the whole, labeled data set while still
estimate the performance. To understand the procedure, see Figure 11. The whole set
of 110 labeled data points are divided into 5 subsets of 22 points each. For 5 iterations
(folds), each subset is held out as a validation set and the model is trained on the remaining
80%. The MSE ε and accuracy α are calculated for each iteration and the average over
the 5 folds, εcv and αcv, is used as the final performance estimation. After this 5-fold
cross-validation, the final model is trained on all of the labeled data.

Figure 11: 5-fold cross-validation for the SDG classification, first fold

4.11.3 Epochs and learning rate

An epoch is a term describing one iteration over all data points in a set, so the number of
epochs describes how many times the algorithm will train the model on all of the training
data set. We have kept a consistent number of 1000 epochs while tuning the learning rate
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γ . The learning rate affects how strongly the weights will be updated when presented
new data. To decide a suitable learning rate, we plotted εcv over varying γ and chose the
minimum. This tuning was performed for the 2-feature as well as the 3-feature model.

4.11.4 Training

The training consists of updating a weight/bias-matrix using SGD, see Section 3.1.3 for
theory. The matrix is initiated with size (N+1)xM, where N is the number of features and
M number of classes and is initially filled with small randomly assigned values. Since the
3-feature model resulted in a higher accuracy and lower error than the 2-feature model,
we decided to proceed with that version.

Let us return to the example of ”Atomoxetine”. After 1000 epochs, the weight/bias-matrix
is used to calculate the logits z using Equation 2 for each class. Running the logits through
the Softmax function 3 results in following pseudo-probabilities pm(~z):

• Class 1: p1 = 0.8937

• Class 2: p2 = 0.0958

• Class 3: p3 = 0.0105

In this case, the model prediction is strongly towards class 1. Since that is also the input
label y, this would be a correct prediction.

4.11.5 Prediction of unlabeled data

The final 3-feature trained model is used to predict and estimate the QT-connection for all
unlabeled ingredients, writing the predicted class onto the data table.

4.12 Final SDG basis
Since we have little to no reason to suspect a QT-correlation for ingredients in category
5 (no mined SPCs and no VigiBase occurrences after modification) labeled to class 3
(no indication of QT connection), we decided to discard these substances from the SDG
ingredient list, resulting in a reduction from 1329 to 1086 suspected ingredients.

The final SDG basis consists of these 1086 ingredients with the following information for
each:

• Ingredient name

• Moiety name

• SPC validation search subject (ingredient or moiety)

• CredibleMeds comparison search subject (ingredient or moiety)

• Number of reports in VigiBase

• VigiBase occurrences percentage
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• VigiBase occurrences percentage after parameter modification

• Number of mined connected SPCs

• Percentage of validated SPCs

• Number of single-active ingredient SPCs

• Percentage of single-active ingredient validated SPCs

• Flag if only multi-active ingredient SPCs are mined

• CredibleMeds risk group (if occurring)

• DailyMed link to the first connected SPC

We have used the manually labeled data to train the broad classes for ingredient sorting.
To refine the sorting, we also included additional factors with an impact on the predicted
QT-connection. The final order of relevance for the SDG ingredient presentation is sorting
according to:

1. Ingredient classifier prediction, ascending order

2. Percentage of single-active ingredient validated SPCs, descending order

3. SPC validation search subject, ingredient before moiety

4. Percentage of all validated SPCs, descending order

5. Modified VigiBase occurrences percentage, descending order

6. Original VigiBase occurrences percentage, descending order

7. Number of mined connected single-active ingredient SPCs, descending order

8. Number of mined connected SPCs, descending order

9. Number of reports in VigiBase, descending order

The final sorted list of ingredients was exported as an Excel-file for pharmacists to use as
a basis for creating an SDG. Since we have kept a broad inclusion, the pharmacist can
decide upon thresholds for different parameters to narrow down the number of ingredients
if wanted.
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5 Performance metrics
When the performance of a supervised machine learning model is evaluated, the pre-
dicted class labels are compared to the annotated labels. In this section, we explain the
metrics used for performance evaluation for the different classification models, as well as
an agreement measurement used for manual classification analysis.

5.1 Free-text classification evaluation
The free-text classification of verbatims is a binary classification problem and the metrics
described in this section were used to evaluate the performance. For the binary classifica-
tion problem, there are four prediction outcomes:

• True positives (TP): The model and the annotated label agree that a data point be-
longs to the positive class.

• True negatives (TN): The model and the annotated label agree that a data point
belongs to the negative class.

• False positives (FP): The model predicts that a data point belongs to the positive
class, however the data point belongs to the negative class

• False negative (FN): The model predicts that a data point belongs to the negative
class, however the data point belongs to the positive class

From these outcomes different evaluation metrics can be constructed. The choice of eval-
uation metric depends on the type of problem and the class distribution of the data set.

5.1.1 Confusion matrix

Confusion matrices are used for visualizing the model predictions. A perfect classifier
would have a confusion matrix where every non-diagonal element is 0.

Predicted
0 1

A
ct

ua
l 0 TN FP

1 FN TP

Table 4: Confusion matrix

5.1.2 Precision and Recall

In order to take false positives and false negatives into account when evaluating a model,
recall and precision can be used. Precision measures the fraction of correctly predicted
data points that are predicted as positive, i.e. taking the false positive data points into
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account. Precision is defined as

Precision =
T P

T P+FP
(9)

Recall on the other hand takes the false negatives into account and measures the fraction
of correctly predicted data points that belong to the positive class.

Recall =
T P

T P+FN
(10)

The maximum value for precision and recall is 1, which implies a perfect classifier. A
value closer to 0 indicates that the model has problems with false positives or false nega-
tives respectively.

5.1.3 Fβ -Score

Fβ -Score is a measure that combines precision and recall into a single measure and is
given as

Fβ = (1+β
2)

Precision ·Recall
(β 2 ·Precision) + Recall

(11)

The parameter β weighs precision against recall. If β > 1, recall is weighed higher than
the precision. Similarly, β < 1 weighs precision higher than recall.

5.2 Ingredient classification evaluation
For evaluation of the multinomial logistic regression classifier, we have used MSE and
accuracy as performance metrics. The final performance evaluation is done using k-fold
cross-validation, where the metrics are an average over the k number of folds.

5.2.1 Accuracy

The model accuracy is a measurement describing the fraction of correct predictions rela-
tive to the labels. The accuracy α is given as

α =
Number of correctly labeled data points

Total number of data points
(12)

5.2.2 Mean squared error

The MSE measures the average of the squared difference between the targets and the
probabilities. For each estimated data point, the squared error ε is given as:

ε =
M

∑
m=1

(τm− pm)
2
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Thus the MSE is calculated as:

ε =
∑

N
n=1 εn

N
(13)

5.2.3 k-fold cross-validation

While we train the model on a part of the labeled data known as training data, we also set
aside a part for validation. The purpose of this data is to evaluate the model performance
on data unseen by the algorithm. A higher fraction of training data results in a better
trained algorithm, whereas a higher fraction of validation data gives lower variance in
the estimated error and accuracy. This trade-off is especially important when the labeled
data is limited. A way to evaluate the model without having to set aside validation data,
allowing training on the whole labeled data set, is using k-fold cross-validation:

Algorithm k-fold cross-validation
1: Split the labeled data into k batches of validation data
2: for each validation batch do
3: Train the model on the other k−1 batches of data
4: Evaluate the model on the validation batch, store error and accuracy
5: end for
6: Estimate the model performance on unseen data by calculating the k-fold cross-

validation error and accuracy
7: Train the final model on all labeled data

The k-fold cross-validation error and accuracy are given by taking the average over all k
folds for Equations 12 and 13, resulting in the cross-validation metrics:

αcv =
∑

k
l=1 αl

k
, εcv =

∑
k
l=1 ε l

k

5.3 Cohen kappa
When analyzing the level of agreement between two annotators, a useful measurement
is the IAA. We have used this measurement for the level of agreement between two
pharmacists who were tasked to individually label a list of ingredients.

There are different varieties of IAAs depending on the number of annotators. Since we
have a pair of annotators (the two pharmacists), we used the Cohen kappa metric given
as:

κ =
P0−Pe

1−Pe
(14)

P0 is the relative measure of agreement, i.e. the percentage of all labels that the pair agreed
upon. Pe is the hypothetical probability of chance agreement, i.e. the expected agreement
if the annotators would label completely at random. This estimation is obtained using a
per-annotator empirical prior over the class labels[28].
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6 Results

6.1 Free-text processing
After verbatim extraction and language sorting, 7 790 688 English verbatims remained,
corresponding to about 70% of the original data. 7263 of these are coded to QT prolong-
ing PTs. For the binary classification of free-text verbatims, the following sub-sections
will go through the obtained performance measures and results.

6.1.1 Training and validation loss

Between each epoch, the cross-entropy loss function was calculated on the training and
validation set. During training and validation, the loss function is minimized using Adam
optimizer. The training loss is slightly higher than the validation loss for the first epochs.
The training loss decays and becomes lower than the validation loss for the final epochs.
The training and validation loss for both sampling approaches can be seen in Figure 12.

(a) Random sampler model

(b) PT Distribution sampler model

Figure 12: Training and validation for the different BERT models
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6.1.2 Prediction on test set

The two different BERT models were trained on data created using the two different sam-
pling approaches. The models were tested on the same test set containing 2397 verbatims
coded to a PT included in the narrow scope TdP/QT prolongation SMQ and 513547 ver-
batims coded to other PTs. In table 5 the confusion matrices are shown for both models

Predicted
0 1

A
ct

ua
l 0 513510 37

1 22 2375

(a) Random sampling

Predicted
0 1

A
ct

ua
l 0 513497 50

1 22 2375

(b) PT distribution sampling

Table 5: Confusion matrix for Random sampling model and PT distribution sampling
model

From the confusion matrices precision, recall and F1-score can be calculated. For the
model that was trained on random sampling data set the F1 = 0.9877 and for the model
train on PT distribution sampling data set F1 = 0.9850. Table 6 shows precision, recall
and F1-score.

Random Sampling PT Distribution Sampling
Precision 0.9847 0.9794
Recall 0.9908 0.9908
F1-score 0.9877 0.9850

Table 6: Performance measures

6.2 Set ID Extraction and SPC Mining
After the VigiBase data pre-processing we had a data set of 1329 active ingredients, each
corresponding to one active moiety, for which we searched Set ID:s to all connected SPCs.
Using OpenFDA, we extracted Set ID:s connected to the ingredient for 944 ingredients
and Set ID:s connected to the moiety for 88 ingredients, see Table 7. The remaining num-
ber of ingredients with no connected Set ID:s is 297 (22.3%). The number of connected
Set ID:s for each ingredient varies widely, up to an order of thousands.

API search subject Amount with connected Set-ID:s Percentage of all ingredients
Active ingredient 944 71,03 %

Active moiety 88 6,62 %

Table 7: Results from Set ID Extraction
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The total number of Set ID:s extracted was 72 617, with 38 425 unique Set ID:s re-
sulting in 38 052 unique SPCs successfully mined (since 373 Set ID:s were incomplete
and therefore unsuccessfully mined). To analyze how many of the duplicates are due to
moiety-connected Set IDs (which often share the same name as an active ingredient), we
analyze the successfully mined SPCs.

6.3 SPC Validation
Looking at the total set of successfully mined SPCs, we wished to analyze the presence
of duplicates, i.e. our mined SPCs that are connected to multiple substances, see Table 8.
There are several explanations to the presence of duplicates:

• Multi-active ingredient drugs. For example, the SPC for the drug ”Dolishale -
levonorgestrel and ethinyl estradiol tablet” belongs to substances ”Levonorgestrel”
and ”Estradiol” (both ingredient-connected).

• Moiety-based identical searches. For example, the SPC for the drug ”Levofloxacin
tablet” belongs to the ingredient ”Levofloxacin” but also ”Levofloxacin hemihy-
drate” and ”Levofloxacin Mesylate” since we did not find any SPCs directly con-
nected to those ingredients so that the connected lists are connected to the moiety
”Levofloxacin”. Hence the three connected lists of Set-ID:s are identical.

Looking at the 3341 unique moiety-connected SPCs, only 74 was not in an ingredient-
connected search as well. Although the proportion of moiety-based searches are small, so
a lot of duplicate SPCs is due to multi-ingredient drugs.

API search subject Total nr of checked SPC:s Unique SPC:s within search subject
Active ingredient 67624 37978

Active moiety 4475 3341
Both (All SPC:s) 72099 38052

Table 8: Number of SPCs, unique and in total, for each search subject

6.3.1 Multiple active ingredients

When examining how many of all mined SPCs that contains multiple active ingredients,
the results are presented in Table 9.

Total nr of SPCs Nr of multi-ingredient SPCs Nr of single-ingredient SPCs
72099 30006 42093

Table 9: Number of single- and multiple ingredients SPCs

Out of the 1329 active ingredients, 70 had only multi-ingredient SPCs connected. These
are flagged with a warning since the results are more unreliable than for single-ingredient
validation.
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6.4 Categorization
After categorizing the ingredients based on SPC validation and VigiBase occurrences, see
category definitions in Section 4.7, the ingredients were divided into the five categories.
The category proportions can be seen in Table 10.

Category Nr of ingredients in category Percentage of all ingredients
Category 1 302 22.72 %
Category 2 50 3.76 %
Category 3 503 37.85 %
Category 4 209 15.73 %
Category 5 265 19.94 %

Table 10: Division to categories based on SPC validation and VigiBase occurrences

6.5 CredibleMeds comparison
After comparing if our listed ingredients were also presented in CredibleMeds’ list of
ingredients with a risk of QT prolongation/TdP, the resulting matches can be seen in
Table 11.

Ingredient match Moiety match Nr of unmatched ingredients in CredibleMeds’ list
208 158 71

Table 11: Comparison to CredibleMeds’ list of ingredients with QT-correlation

Out of the 300 ingredients, all but 71 were listed in our data. We believe that this number
could be decreased if a pharmacist would go through all data and check for alternate
synonyms/spellings. Another reason that some of these ingredients are unrepresented in
our data is that no reports connected to those ingredients have been collected to VigiBase
after 2018 (thus the ingredient was never represented in our original VigiBase data set).

6.6 Manually labeled data
For the 100 active ingredients that both pharmacists had ranked, they disagreed on the
ranking for 38 active ingredients. Out of these, they widely disagreed on 8 active in-
gredients, meaning that one ranked the active ingredient to class 1 and the other to class
3. The manually labeled ingredients can be observed as data points plotted for VigiBase
occurrences and single-active ingredient SPC validation in Figure 13, where the marker
color represents the different labels or if the ingredient label was disagreed upon by the
two pharmacists.
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Figure 13: Manually labeled data plotted for VigiBase occurrences and single-active in-
gredient SPC validation

To further analyze the level of agreement, we calculated the IAA. This measurement
tells us more about the actual level of agreement than percentages only, since it also
includes the possibility of the agreement occurring by chance. Since we have a pair of
annotators (the two pharmacists), we use the Cohen kappa metric, Equation 14, resulting
in κ = 0.396. The measurement expresses the level of agreement on a scale from−1 (zero
agreement) to 1 (absolute agreement). κ = 0 represents the level of agreement expected
if the labeling was done at complete random. To interpret the result, the agreement is
above 0, which is to be expected since the labeling was not done at random. Although it
is relatively far from absolute agreement, indicating that the level of disagreement is high
and the labeled data variance is large.

Of the 110 active ingredients, we could not find any SPCs using OpenFDA and the SPC
Mining pipeline for 14 of them. The pharmacist that directly searched for active ingredi-
ents or moiety could not find these SPCs either, however, the pharmacist who also used
WHODrug could find SPCs for 7 out of the 14. This implies that there is a loss of infor-
mation when not doing manual searches varying from the main method.
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6.7 Classification using logistic regression
6.7.1 Features

For each ingredient, we used data from VigiBase and the results of the SPC validation
and CredibleMeds comparison to derive parameters that were used as features for the
ingredient classification:

Vigibase Occurrences
From VigiBase we derived three parameters related to the number of reports from 1st of
January and on-wards each ingredient occurs in. For each ingredient we calculated the
total number of reports the ingredient occurs in. We also calculated how many of these
reports had PTs included in the narrow scope QT Prolongation/TdP SMQ. From these
parameters, a percentage of QT-related reports was calculated for each ingredient, which
we modified for improved precision.

SPC Validation
For each ingredient, four parameters were extracted from the results of the SPC valida-
tion. The total number of SPCs and the number of single-ingredient SPCs, as well as the
percentages of all SPCs and single-ingredient SPCs that the SPCMining Pipeline coded
to PTs included in the narrow scope QT prolongation/TdP SMQ.

CredibleMeds Risk Group
After ingredient comparison to CredibleMeds’ list, we use the assigned risk group as a
parameter for how strong the ingredient’s correlation to QT prolongation/TdP is estimated
to be.

The following parameters were used as a basis for classification

• QTPercentage_InReports_Modified - Percentage of QT connected reports where
ingredient occurs, after modification

• Validated_SinglePercentage - Percentage of single ingredient SPCs coded to
a PT included in the narrow scope QT Prolongation/TdP SMQ

• CredibleMeds_RiskGroup - States if an ingredient is present in the CredibleMeds
list and if so, to which risk group

6.7.2 Choice of learning rates

For a set number of 1000 training epochs, we wanted to tune a learning rate to best train
the classifier, i.e. minimize the cross-validation error εcv. By plotting εcv over varying γ

we identified the minimum, see Figure 14, thus we used γ = 0.0031 for the two-feature
classifier and γ = 0.0039 for the three-feature one.
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(a) Classifier using two features, 1000 epochs

(b) Classifier using three features, 1000 epochs

Figure 14: Choice of learning rates

6.7.3 Performance

Training the classifier for 1000 epochs with said learning rates resulted in the following
performance metrics results:
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Two-feature model Three-feature model
γ 0.0031 0.0039

αtrain 0.6545 0.6909
εtrain 0.4828 0.4380
αcv 0.6545 0.6818
εcv 0.5075 0.4660

Table 12: Ingredient classifier performance metrics

As often is the case using this kind of learning algorithms, the performance is somewhat
higher for the training data than for the validation data. This is simply explained by the
fact that the model was trained and adapted to the training data, whereas the validation
data is unknown to the model.

6.7.4 Classification of unlabeled data

When using the 3 feature-model trained on all labeled data to make predictions on all
ingredients (labeled and unlabeled), the result can be seen in Figure 15, where each dot
represents an ingredient and each axis a model feature. Out of the 1329 ingredients, 390
were labeled as class 1 (strong connection), 2 as class 2 (weak connection) and 937 as
class 3 (no indication of connection). The colors represent the different labels. From the
937 ingredients labeled as class 3 by the model, 243 were discarded since they also had
no validated connected SPCs and no QT-related VigiBase occurrences after modification.
The resulting number of ingredients for the SDG basis is 1086.

Figure 15: Classification of SDG ingredients using logistic regression
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To see how the model predictions relate to the manually labeled data, it can be compared
to Figure 16 showing the labeled ingredients in a similar plot with the features as axis.
Here, the colors corresponds to the manual labels instead of model predictions. These
manually labeled data points are also included in Figure 15, colored after model predic-
tions instead.

Figure 16: Manually labeled data (if disagreement, the label indicating a stronger QT-
connection was chosen)

Since we chose to train the model heavily for the CredibleMeds risk groups (by giving
the different risk groups values closer to 1 at the normalization stage), all ingredients
included in one of the risk groups we counted as an indication of QT prolonging effects
are labeled to class 1. All ingredients are separated by hyperplanes into three prediction
zones. The prediction zone for class 2 is very limited, resulting in a small fraction of
ingredient predictions. For the ingredients not in the CredibleMeds list, all with a low
single-active ingredient SPC validation percentage are predicted as class 3.
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7 Discussion
In this section, we discuss the methods used and the results obtained, as well as noted
sources of error. We suggest possible improvements, extensions and areas for further
investigation.

7.1 Choice of terminology and dictionary
The main reason that we chose MedDRA as medical terminology and WHODrug as drug
dictionary is that it is globally recognized standard, hence the VigiBase ICSRs are coded
using MedDRA terminology, and the drugs and ingredients described in the reports are
referenced using WHODrug. We are content with the usage and flexibility since they
are both used internationally and developed to support pharmacovigilance projects. The
MedDRA hierarchy allows us to choose the level of specificity, and the SMQ groupings
were of utter value for this project. It also makes it easy to include other ADRs by simply
choosing a different SMQ as the target.

7.2 Choice of PT terms
We chose to only include PTs in the narrow scope TdP/QT prolongation SMQ. The limit
was set after discussions with pharmacists at UMC. Changing to the broad scope would
have included PTs that are not exclusively linked to QT prolonging ADRs. An example
from the broad scope is the PT ”Cardiac arrest” which a prolonged QT might lead to,
however is not the exclusive cause of. A selection of PTs from the broad scope could be
included in the project to slightly broaden the scope if wanted.

7.3 Free-text processing
The goal for the free-text processing was to construct a binary classifier that predicts if a
free-text verbatim describes an ADR included in the narrow scope TdP/QT prolongation
SMQ. According to the results in Section 6.1.2, the classifier can perform this task with
only a few errors.

7.3.1 Precoded verbatims

The verbatims used to train the BERT model were gathered from pre-coded ICSRs. As a
basis for the coding, a pharmacist has looked at the report as a whole, so the coding may
have been done using more information than the free-text verbatim alone. In some cases,
the ADR described in the verbatim might not correlate with the coded PT. This makes it
harder for the model to make predictions on the verbatim.

Another limitation with the ICSRs is that they do not necessarily have to contain a free-
text description of the reported ADRs. This is because there are different reporting prac-
tices and legal restrictions in different countries and regions. An example is the reporting
practices within EMA where free-text descriptions are written but not always shared with
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VigiBase. The missing free-text descriptions limit which ICSRs the classifier can be used
on. To be able to use all reports as input (with our without free-text parts), the model
could be extended to also take the reported PT into account. Although this might prevent
UMCs possibility to validate the reported PT.

7.3.2 Language sorting

In this project, we choose to only include verbatims written in English. This limit was set
to ensure that we can understand what the verbatims describe and because no BERT model
can process several languages at once. To include non-English verbatims, an NLP model
that can process different languages or a translation model needs to be investigated. After
discussions with a pharmacist at UMC, a translation model was not further investigated.
The reason for this is that translating medicinal terms has proven to be challenging and
we wish to avoid compromising the data quality.

The current language sorting approach utilizes a dictionary. Around 30% of all extracted
verbatims were discarded when this approach was applied with a 70% threshold for the
English-score. The threshold was chosen to allow verbatims containing some non-English
words, e.g. Latin words, and after manual review, we are content with the language sorting
threshold. If we compare our sorting approach to simply selecting verbatims from English
speaking countries, we can include up to 90% more data. Thus the more complex sorting
approach is preferable.

7.3.3 Data sampling

The two sampling approaches were implemented to reduce execution time for the training
and to make the training data set less unbalanced. Random sampling is easier to imple-
ment, however, it might produce a data set that does not reflect the real world scenario.
Distribution sampling on the other hand demands a more complex implementation, but
the data set reflects the real world better. From the confusion matrices in Table 5 and the
F1-score in Table 6, these differences do not seem to affect the results since the difference
in incorrectly classified verbatims is relatively small. Both sampling approaches perform
very well for all evaluation metrics.

An alternative to just sampling from the distribution of PTs is to take reporting country or
reporter qualification (reported by e.g. consumer, physician, or pharmacist) into account
as well. Since the data set is highly unbalanced, some sort of measure should be applied
to cope with this problem. The implemented sampling approaches are undersampling
the non-QT verbatims. Another approach could be to oversample the QT verbatims by
duplication. Because of the simple implementation and superior results, we consider the
random sampling approach as preferable.

7.3.4 Misclassification

The majority of verbatims misclassified are the same for both sampling approaches. In
Table 13, some examples of verbatims that both model versions (with the two different
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sampling approaches) misclassified are shown. The first three verbatims in the table are all
coded to QT prolonging ADRs but the model predicts them incorrectly. For the following
three, the situation is reversed. Regarding probable causes for the misclassification, we
can say that the first verbatim is a long text line and therefore cut short by the limited
tokenization, such that valuable information about the QT prolonging ADR is lost. The
second and the third verbatims suggest that the pharmacist who coded them had access
to additional information other than the verbatim. In general, the model seems to react
stronger on words it associates strongly with QT prolonging ADRs. This is noticeable
with the last three verbatims in the table. The fourth verbatim describes a QT prolonging
ADR not included in the narrow scope QT prolongation/TdP SMQ, although correlated.
The fifth and sixth verbatims describe two ADRs in each verbatim, one of which is QT
prolonging. Both verbatims are coded to PTs suitable for the second ADR described.

Verbatim Misclassification type
She experienced the first symptoms ... and gallop rhythm FN
Electric Storm FN
grade2 FN
Ventricular tachyarrhythmia FP
QT prolongation and Nausea FP
Torsades de pointes/cardiac arrest FP

Table 13: Examples of misclassified verbatims

To deal with these problems the length of the tokenization could be increased, however,
it would also increase the execution time. A way to further improve the classification
model could be using BioBERT which is a specialized version of BERT trained to process
biomedical language [29]. We suggest trying BioBERT to compare the performance to
using general BERT.

7.4 VigiBase ingredient extraction
The extracted active ingredients from VigiBase were gathered from ICSRs submitted on
or after the 1st of January 2018. The purpose of this date restriction is to keep MedDRA
coding conventions consistent. We also want to avoid active ingredients that have become
prohibited in the SDG. Changing the date restriction to allow older ICSRs will give more
data but might not improve the quality of the data, To include more ICSRs in the data
without changing the date restriction the scope of the TdP/QT prolongation SMQ could
be changed. However, the broad scope version of the SMQ contains several PTs not
exclusively connected to QT-prolonging ADRs. Therefore the correlation would become
less precise.
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7.5 SPC validation stage
7.5.1 Set ID extraction

The Set ID proved to be a very useful identifier by uniquely describing a specific SPC.
After deciding upon several ways to extract Set IDs, we are content with the choice of
using the OpenFDA API. It is less demanding than web scraping and more versatile than
the DailyMed RESTful API.

7.5.2 Ingredient as a search subject

When we use the OpenFDA API, we insert the ingredient (or moiety if needed) name
extracted from VigiBase as a search subject. Using the exact string might sometimes fail
since the ingredient name can be spelled differently in FDA:s database. If the name is
spelled differently, we will get no search hits and be unable to validate the ingredient.
This was also an issue when comparing our ingredient list with the CredibleMeds list of
ingredients with QT-correlation, which had to be manually reviewed.

A possible approach to work around this issue would be using a coded identifier for each
ingredient instead of the name string, therefor we discussed using Unique Ingredient Iden-
tifier (UNII) codes. A UNII code links to a specific ingredient and is a valid searchable
field in the OpenFDA API. However, we ended up using the ingredient name to facili-
tate different searches and using other sources than FDA. Although for improvement we
suggest further investigating the use of UNII codes.

7.5.3 SPC source and search subjects

In this project, SPCs are retrieved from DailyMed. This means that only active ingredients
that are approved for commercial use in the United States can be validated against an
SPC. The main reason for this limitation is that the SPC Mining pipeline that we have
used to process the SPCs requires that the SPCs are in a certain format and written in
English. Including additional SPC sources would improve the SPC validation stage but
would require extending the SPC Mining algorithm.

In the cases where we could not find any SPCs for the searched active ingredient we
instead searched for the active moiety. The drawback of this is that the validation becomes
less precise. However, if the moiety can be validated to have a QT prolonging ADR then
it suggests that the active ingredient also has one, so we believe that including the moiety
as well improves the quality of the final product.

7.5.4 SPC Mining

The SPC Mining pipeline, created by UMC was used to scan and code ADRs in SPCs
to PT codes. The pipeline uses a NLP model to code the free-text descriptions in the
SPCs. The model is not a perfect classifier and will make mistakes in the coding. The
performance is still sufficient and provides good results. The pipeline could be extended
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to also return if the SPC is a single or multi-ingredient SPC (the information is provided
but requires data processing).

We have used the SPC Mining pipeline in its existing format, which is trained on the 5000
most frequently occurring PTs. It would be interesting to re-train it to better adapt it for
QT prolonging ADRs especially, and investigate if that would improve the performance.

7.6 VigiBase occurrences
The reason for the modification of the VigiBase occurrences parameter is that an active
ingredient in sub-category 1 is validated to cause QT prolonging ADR. We, therefore have
reason to believe that sub-category 1 ingredients are the cause of QT prolonging ADRs.
By doing this modification the VigiBase occurrence will better highlight the probability
of an ingredient causing a QT prolonging ADR

A possible drawback of the modification is that we might lose information about ingre-
dients that are often coreported with sub-category 1 active ingredients. To mitigate this
problem, the original parameter can be used alongside the modified one. Since the mod-
ification is depending on the SPC validation, improvement of the validation stage would
also improve the modified parameter. Using DailyMed for SPC validation, only medici-
nal products permitted in the United States can be validated. If SPCs from other countries
could be validated as well, the categorization of the active ingredients would be more
accurate and in turn also the modified VigiBase occurrence parameter.

7.7 CredibleMeds as a feature
We used CredibleMeds as a validation source since it is the most credible source of in-
formation we found listing ingredients with a correlation to QT prolongation and TdP.
Although it focuses mainly on TdP, a risk of TdP implies a QT prolonging effect as well.
The fact that the ingredient classifiers performance was improved by including Credi-
bleMeds comparison as a feature also implies that it is a valuable validation source.

7.8 Ingredient classification
7.8.1 Training data

Given the limited amount of manually labeled training data and the relatively low IAA
value, we can conclude that the quality of the training data is a weak link in the classifica-
tion. The training data could be improved by increasing the number of ingredients to be
manually labeled, and/or using more than two pharmacists as annotators. For evaluation
purposes, we wanted the labeling to be performed individually. Although for model opti-
mization, it would be more valuable to assign a group of pharmacists that together agrees
upon the labels used for training. It would probably be a more accurate representation of
how this kind of ingredient sorting would be performed in reality. These improving sug-
gestions require more manpower, thus it is a trade-off between manual work and model
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optimality.

Because of the training data limitations, a categorization model using semi-supervised
learning could be a useful approach. It combines a smaller amount of labeled data with
unlabeled data for training. This could return in a better model performance for the limited
amount of labeled data.

7.8.2 Logistic regression model

We chose logistic regression since it is useful for multi-class problems and a method that
we were able to implement without using external models/tools except for basic packages.
Other methods for example support vector machines, deep learning algorithms, or a semi-
supervised approach (as previously mentioned) could be used for this type of classification
as well. Since it is used to classify a very limited amount of data, we opted for the more
basic choice of logistic regression, which still offers a lot of model flexibility.

There are many ways to extend the logistic regression model. We trained it for three fea-
tures at maximum, but an extension could be using more and/or different features. To
avoid overfitting, lasso regression could be used, a regression model using L1 regulariza-
tion. By adding a regularization penalty term, it supports feature selection.

Some feature data might be misleading because the data is too limited. For example,
if an ingredient is only mentioned in one ICSR that is QT-coded, the feature for QT-
related VigiBase occurrences would be 100%. If the number of reports was higher, the
same information would tell us a lot more since the variance is decreased. To avoid
information with high variance, an extension to discard misleading feature data could be
setting thresholds for when to include certain information. This could be for example a
threshold for the number of reports or SPCs needed to include the related percentages.
However, we chose not to implement these extensions since the information is still of
value. Instead of discarding information below the threshold, the information could be
penalized.

Thresholds could also be used for the model predictions. Our model predicts all input
data based on the highest pseudo probability pm. A limit between the two highest class
logits zm (or probabilities since they correspond) could be set to discover predictions with
an uncertainty considered too high. The result could be ignoring or flagging uncertain
predictions, demanding a manual check for those cases.

7.8.3 Performance and result

Looking at the classifier results in Table 12, we were able to improve the performance by
including CredibleMeds data. This was expected since it is a clear indication of known
or suspected correlation. The final cross-validation performance measures for the three-
feature model, αcv = 0.6818 and εcv = 0.4660, indicates that the data is not easily sep-
arated for the chosen features. This is also observed when plotting the training data for
these features in Figure 16. Even though there is a pattern in where the different class
data points are more likely to be, the data is very mixed and hard to separate. This is
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especially true for class 2 (weak connection), in which scattered training data results in
a very small prediction zone seen in Figure 15. We believe that the number of unlabeled
ingredients assigned to class 2 should be higher to better simulate the manual labeling.
With the current training data, the multinomial logistic regression model behaves almost
like a binary classifier (predicting only two ingredients to class 2). Because of this re-
sult, one could interpret the problem as a binary classification problem instead, giving the
manual annotators only two options (QT-prolonging or non-QT-prolonging).

In the figure we can also see that Validated single-active ingredient SPC percentage is the
dominating feature when comparing it to QT-coded reports in VigiBase. looking at the
outlier with 100% QT-coded reports in VigiBase, it was still predicted as class 3 because
it was not validated for any single-ingredient SPC. This shows the importance of the SPC
validation stage, why we suggest focusing on that stage if further optimizing the process.

7.9 Final product
When analyzing the final product, it is clear that we have included more ingredients than
we believe have an actual connection to QT prolongation. This is due to our strategy
of rather including more ingredients than excluding ingredients that might belong in the
SDG. The product is therefore adaptable to set new thresholds and/or manually exclude
ingredients to narrow down the list of ingredients. Looking at the bottom of the list, we
see ingredients assigned to class 3 by the classifier, that we have not been able to validate
for SPCs or CredibleMeds comparison. The only connection for these ingredients is a
low percentage of QT occurrences in VigiBase after modification. As an example, we
find several vaccines here that are usually taken as a set, e.g. diphtheria, tetanus, acellular
pertussis, and polio vaccine. These have 1913 reports in VigiBase, from which only 2
have been coded as QT prolonging. A fraction that small is probably due to other reasons
than an actual correlation, such as other QT-prolonging drugs being taken by the user
or a false interpretation of the reaction. As a first step to narrow down the list further,
we suggest setting a threshold for the modified QT VigiBase occurrences acting on the
ingredients classified as class 3 (no indication of connection).

7.10 Adapting the process for other ADRs
An interesting aspect of the SDG basis creation is the possibility to adapt the process
for other ADRs than QT prolongation. We have tried to keep the pipeline as general as
possible, to ease a transition to different ADRs. The VigiBase occurrences parameter
would be calculated the same if another MedDRA SMQ were used for the grouping, but
could also be adapted for a customized set of PTs. For the SPC validation stage, the only
adaptation would be adjusting the list of PTs that we compare with the coded SPCs. The
only parameter that we would not be able to use is the CredibleMeds validation. Instead,
there might be other validation possibilities for the new ADR.

A challenge for certain ADRs, which we did not experience focusing on QT prolongation,
is that some drug reactions can be both wanted and unwanted. Let us take hypotension

53



(low blood pressure) as an example ADR. For a patient suffering from hypertension (high
blood pressure), lowering the blood pressure is probably a wanted drug reaction. For other
patients, it is an unwanted, and sometimes dangerous, ADR. This difference would be of
importance when creating a hypotension SDG.

Another difficulty with groupings for different ADRs is the ability to measure the ef-
fect. For QT prolongation, it is directly observable using ECG. Other reactions might be
harder to measure and more defendant on the patient’s expressed experience, thus harder
to quantify.
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8 Conclusion
To conclude the project as a whole, we were able to create a basis for a QT prolongation
SDG, sorted in order of suspected correlation. We were also able to predict if a free-text
verbatim from an ICSR describes a QT prolonging ADR, with satisfactory precision. The
final product consists of information useful for a pharmacist to decide if an ingredient
should be included in the SDG.

We worked with the free-text processing and the creation of SDG basis separately, but
they could be used together in a shared pipeline, including reports that are not coded
to MedDRA terms by instead making predictions based on the free-text verbatims. To
include the reports that our free-text classifier predicted as describing a QT prolonging
ADR in the creation of SDG basis process, there is a need to code the medicinal products
mentioned in the report to WHODrug drug codes. There is a UMC automated coding
service that could be used for this purpose, creating a finalized pipeline.

Regarding the free-text processing, we are content with the results and would suggest
using the implemented language sorting and the random sampling approach. One easily
implemented approach to improve the performance would be to increase the number of
tokens, avoiding important information being cut off.

Due to the limited and scattered training data and the low IAA score, the ingredient clas-
sification has an unsatisfactory performance. The classification works well for a first
sorting, but we would not count it as exact or reliable. Since the prediction zone for
”Class 2: Weak connection” is so limited, the classifier almost acts as binary even though
it is trained for three classes.

We consider the methods and systems used to be well-performing, and the final result
to be a good basis for future work or to directly use as a decision basis. Although as
presented in the Discussion section, there are multiple suggested approaches to further
optimize and extend the process.
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A Division of work
We have collaborated on the project as a whole, but divided the responsibilities for the
different sub-modules for an efficient workflow. We have used an agile approach working
in sprints of two weeks, which helped us to continuously stay updated on each other’s
areas of responsibility while preparing sprint reviews.

Jacob was responsible for the extraction of relevant data in VigiBase, regarding ingredi-
ents as well as free-text verbatims. Elsa focused on the processing of the ingredient data
by extracting Set ID:s, validate for SPCs, review and modify CredibleMeds’ QT drug
list and compare included ingredients to the VigiBase extracted ingredients. She also
analyzed the different validation results.

For the two classification models, Elsa managed the ingredient classifier using multi-
nomial logistic regression and Jacob the free-text classification using BERT, including
tokenization, language sorting and sampling approaches. We shared the responsibility for
the SPC Mining process, the manual labeling process and analysis, the modification of the
VigiBase occurrences parameter and the final content and presentation of the SDG basis.
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Guidelines 

Syfte: Att mäta skillnaden mellan vår metod (begränsad mappad data, ej manuellt kontrollerad) med 

en manuell metod (fria sökningar, tillgång till all tänkbar information ni har åtkomst till) 

Rankning sker efter: Det vi vill ranka är den uppskattade kopplingen mellan substansen och de 

biverkningar som ingår i narrow scope "Torsade de pointes/QT Prolongation" SMQn, som innefattar: 

•     Long QT syndrome 

•     Long QT syndrome congenital 

•     Torsade de pointes 

•     Electrocardiogram QT interval abnormal 

•     Electrocardiogram QT prolonged 

•     Ventricular tachycardia 

Vilken av dessa biverkningar som substansen tros ge upphov till behöver ej tas i beaktning. 

Antal manuella valideringar: För att även mäta hur en manuell rankning kan skilja sig ”naturligt” 

mellan farmaceuter, så uppskattar vi om ni gör varsin rankning (men med exakt samma ingredienser 

och antal) på det sätt som ni själva föredrar. Ni bör alltså inte synka och använda samma 

tillvägagångssätt och information, utan gör varsin individuell rankning. Skillnaden i era resultat ger 

oss en intressant indikation att reflektera kring. 

Data: Den data ni får given är  

• Aktiv substans 

• Aktiv moiety 

• Vilka länder VigiBase-rapporterna inom narrow scope QT SMQ kommer ifrån (antal för varje 

land), separat lista 

• CredibleMeds-data, separat lista. Vi testade att jämföra varje ingrediens/moiety med denna 

lista, men då de skrivs på olika sätt och former blev det missvisande, så bifogar istället hela 

listan. 

Antal substanser: Vi skickar med en lista på 110 substanser (blandat urval från vår lista på ca 1300 

substanser). Ni behöver ej hinna med alla utan gör så mycket ni hinner under den utsatta tiden, men 

gå enligt samma ordning så att ni checkar samma substanser. Ifall det skulle gå jättefort så kan vi 

skicka fler substanser. 

Vad ni skriver ut: Ett heltal som visar på er uppskattade rankning (1=högst uppskattad koppling till 

biverkningarna). Vilken skala ni använder avgör ni själva, men använd samma antal på skalan. Skriv 

även er huvudsakliga källa till beslutet (länk). Om ni vill föra in en kommentar vid 

specialfall/svårrankade substanser så finns en fritext-ruta till det. 

Kolla gärna om ni kan validera substansen i DailyMeds databas (så ser vi om våra scannade SPCer har 

mappats korrekt). 

Ni får gärna även skriva en kommentar var om ert tillvägagångssätt och vilken data ni kollat på samt 

hur ni definierat de olika nivåerna på skalan. Skriv även om ni i huvudsak har baserat er rankning på 

substans eller moiety. 

Stort tack för hjälpen! 
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