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a b s t r a c t 

Topological and geometric segmentation methods provide powerful concepts for detailed field analysis 

and visualization. However, when it comes to a quantitative analysis that requires highly accurate geo- 

metric segmentation, there is a large discrepancy between the promising theory and the available com- 

putational approaches. In this paper, we compare and evaluate various segmentation methods with the 

aim to identify and quantify the extent of these discrepancies. Thereby, we focus on an application from 

quantum chemistry: the analysis of electron density fields. It is a scalar quantity that can be experimen- 

tally measured or theoretically computed. In the evaluation we consider methods originating from the 

domain of quantum chemistry and computational topology. We apply the methods to the charge density 

of a set of crystals and molecules. Therefore, we segment the volumes into atomic regions and derive 

and compare quantitative measures such as total charge and dipole moments from these regions. As a 

result, we conclude that an accurate geometry determination can be crucial for correctly segmenting and 

analyzing a scalar field, here demonstrated on the electron density field. 

© 2021 The Author(s). Published by Elsevier Ltd. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Segmentation is a fundamental step in many visualization 

ipelines. When it comes to scalar density fields a common class 

f approaches build on topological concepts. However, despite the 

olid mathematical foundation, the performance of these methods 

aries a lot depending on the characteristic of the scalar fields. 

uring the analysis of electronic charge density fields, we observed 

arge differences in the segmentation results using different imple- 

entations of the same topological concepts which can have a se- 

ere impact on the visualization and the analysis results. This mo- 

ivated us to perform a case study evaluating most accessible topo- 

ogical segmentation methods. 

The electronic charge density plays a central role in the analy- 

is of molecules and crystals, e.g. to compute atomic volumes and 

harges. The use of geometric and topological analysis for segmen- 

ation and visualization of the properties of the electronic charge 

ensity has been gaining popularity not only in the visualization 

ommunity but among chemists and physicists as well. One of 

he pioneering works on the application of topology within the 

cientific domain is “Atoms in Molecules” by Bader [1] describing 

he principles of dividing the charge density between atoms. How- 
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ver, simple Voronoi segmentation has been used for this purpose 

s well [2,3] . The expectation placed on such analysis is that it 

ill provide insight into the properties of molecules and materials 

hat are otherwise either difficult or impossible to determine using 

ther analysis and computational methods. So far, the main focus 

f topological analysis of the charge density has been in the form 

f atomic charge determination [4,5] and interaction/bond analysis 

etween atoms [6–9] . This work focuses on the determination of 

tomic charge based on topological and geometric segmentation of 

he volume. 

The goal of our work is to evaluate commonly used algorithms 

nd models for the segmentation of the electronic charge density 

eld which are used to compute atomic charges and dipole mo- 

ents as well as their use for visualization. This entails at first the 

valuation of the geometric accuracy of available algorithms as so- 

utions to the underlying models. This is especially interesting for 

ethods based on combinatorial topology. Secondly, we evaluate 

he models used for segmentation in comparing the quantitative 

alues for charge and dipole moments to the expectations from 

hemistry. Lastly, we inspect the properties of the segmentation 

oncerning symmetry preservation which is essential for the gen- 

ration of reliable visualizations. 

The field at the center of this evaluation is the electronic charge 

ensity ρ(r ) . It is an observable, meaning that it can be measured 

n an experiment or computed theoretically. The total charge is not 
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n observable but it can be extracted by analyzing the field ρ(r ) . 

his is done by segmenting the total volume of the system into 

tomic regions and integrating over these regions to determine the 

tomic charges [1,4,5] . These charges will then interact with each 

ther by means of electrostatic potential. However, charges deter- 

ined in this way are bad at reproducing the electrostatic poten- 

ial [10,11] . A way to improve the description of the electrostatic 

otential is by utilizing a multipole expansion where a charge dis- 

ribution is described not as a single point charge but as a sum of 

everal terms including charge (q), dipole moment ( μ), and further 

erms of the expansion [12] . Therefore, we extended the analysis of 

he electronic charge density to include the dipolar contribution as 

ell. By doing so we are also able to grasp the anisotropy of ρ(r )

round individual atoms, introducing directional interactions since 

he dipole moment is a direct measure of this. Thus, to achieve re- 

iable results, an accurate geometry of atomic segments becomes 

ery important. 

Methods for computing segmentation that have been developed 

n the field of quantum chemistry are largely inspired by the work 

rom Bader [1] using numerical integration. Often they are specif- 

cally targeted to the electronic density field as a result of the 

ain solvers used in quantum chemistry. The method has also 

aced some criticism for not being able to handle complex chem- 

cal structures. Therefore, we wanted to see if the methods from 

omputational topology could perform better. The methods that 

ave been developed in the field of computational topology pro- 

ide generic methods with a focus on a robust extraction of the 

opological skeleton. The geometric embedding, however, is often 

ot very accurate. This observation has already been made in ear- 

ier work and a few approaches tackling this problem have been 

roposed. At first, Reininghaus et al. [13] and Gyulassy et al. 

14] proposed stochastic methods to obtain better geometric em- 

edding. Later Gyulassy et al. introduced a Morse–Smale complex 

hat conforms to both an input scalar field and an additional prior 

egmentation of the domain [15,16] . With the TopoMS framework, 

he problem has been targeted in the context of electron density 

elds by Bhatia et al. [5] , which is a method that is also used in

ur comparison. We compare different approaches for the segmen- 

ation that are readily available or easily implementable: combina- 

orial discrete Morse theory as implemented in TTK [17] referred 

o as DiscreteMS ; a numerical segmentation proposed by Henkel- 

an et al. [4] ; TopoMS [5] ; and Voronoi diagrams. 

Three types of chemical/physical systems are used for this com- 

arison: a copper (Cu) crystal structure, an ionic crystal of NaCl 

table salt), a molecular crystal of CO 2 (dry ice), as well as indi- 

idual molecules of water, benzene, and p -nitroaniline (PNA). All 

ystems are well known by the scientific community, so it is easy 

o judge whether our results are reasonable. Our test data for 

he crystals were generated with the VASP package [18] using the 

p-30_Cu , mp-22862_NaCl and mp-20066_CO2 entries in the 

aterials project database [19] for structure information and com- 

utational scheme. The molecular data was generated by using the 

AUSSIAN package [20] . 

. Background 

Electronic charge density ρ(r ) is an observable charge distribu- 

ion in a unit of volume. A common way to compute the density 

eld ρ(r ) is by utilizing one of the many density functional the- 

ry (DFT) packages with the most popular being VASP [18] and 

AUSSIAN [20] . These packages generate a discrete 3D grid to rep- 

esent the charge density distribution as a scalar field in some ar- 

itrary total volume V tot . In our case, we focus mostly on data-grids 

enerated by VASP. Due to the theory used to perform the DFT 

alculations, the VASP software can generate two types of density 

elds. The first and main field type only describes the charge dis- 
232 
ribution of the valence electrons (the outermost electrons) since 

nly the valence electrons participate in chemical reactions. A field 

ith both the valence and core electrons taken into account can be 

enerated by post-processing the results of the DFT calculations. 

he difference between the two is that the valence-only field pro- 

ides a more accurate description of the density field. However, 

ecause it lacks the description of core electrons there are cavi- 

ies around the atoms ( Fig. 1 (a,b)). This leads to a more complex 

opological structure of the density field and makes the direct de- 

ermination of the correct maximum, associated with the atomic 

osition, impossible without utilizing additional algorithms. This in 

urn hinders a correct segmentation. On the other hand, the grid 

hat considers both, core and valence electrons, has very distinct 

axima ( Fig. 1 (c,d)) at the atomic positions which helps in com- 

uting better segmentation. However, the description of the elec- 

ronic charge density field is less accurate and leads to errors when 

omputing charges; a fact statement that will be evident in the re- 

ults section. 

Basic algorithm of the analysis . The basics of the topological 

nalysis for atomic charge determination are straightforward. 

• Determine the atomic volume for each atom in the molecule. 

• Integrate over the volume to determine the atomic charge. 

The main challenge for this approach from a chemical point of 

iew is how to draw borders that separate atoms. The most math- 

matically sound suggestion comes from Bader [1] who, based on 

he Smale theory, proposed to draw the border between atoms 

long a surface of zero flux in the gradient of ρ(r ) satisfying 

ρ(r ) · n (r ) = 0 (1) 

here n (r ) is the normal vector to the surface. One can observe 

hese surfaces appearing in Fig. 1 . 

Multipole expansion When it comes to dealing with a charge dis- 

ribution one can rewrite the effective charge of such distribution 

s a point property by utilizing the multipole expansion. The total 

harge q tot is the first term of this expansion and is defined as: 

 tot = 

∑ 

q i (2) 

ith q i being the partial charge of index i . The second term of the

xpansion is the total dipole moment of the charge distribution 

tot defined as: 

tot = 

∑ 

q i r i (3) 

ith r i being the directional vector to q i . In principle, the mul- 

ipole expansion has an infinite amount of terms but in practice, 

ne rarely needs to go beyond the second term of the expansion. 

or the purposes of our study, the dipole moments are calculated 

ith the atom positions as the origin for the directional vector r i . 

Data sets The choice of the data sets that are used in this work 

s motivated either by the use of the same systems in the work by 

enkelman et al. [4] or being so well studied within the chemistry 

ommunity that most of the properties of these systems can be 

onsidered common knowledge. Using these simple examples al- 

ows one to have a clear understanding of what was the expected 

esult should be and how this result differs from the results ob- 

ained with the help of the different segmentation methods. 

In this section, we give a short introduction to the expected 

roperties of the different systems, although most of them are pri- 

arily used to compare the resulting atomic segments and not so 

uch the chemical properties. In order to have a broad range of 

est data sets, we chose to test both crystals and single molecules. 

• NaCl is an ionic crystal of a monovalent salt. That is, the Na 

atom will donate an electron to the Cl atom leading to the for- 

mation of Na + and Cl 
−

ions with the formal charge of 1 e and 
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Fig. 1. These images demonstrate the structure of the charge density field ρ(r ) of NaCl by (a,c) showing gradient field lines and (b,d) the gradient magnitude (yellow for 

low and red for high values). It can be seen that the field provides a natural segmentation of the domain in regions that can be associated with the atoms. The images (a,b) 

show the valence only and (c,d) the full electronic charge density field. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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−1 e respectively, where e is the elementary charge of an elec- 

tron. In contrast, the paper uses [e] to mean the number of 

electrons. 

• CO 2 molecular crystal: In CO 2 , the O atoms will cause a polar- 

ization of the electronic structure along the C 

= O bonds. This lo- 

cal polarization was the main reason to choose this system. But 

because CO 2 is a linear molecule the symmetry of the molecule 

will cancel all electrostatic interactions that are present within 

the molecule. Thus, the second reason for the choice of this sys- 

tem was to test if the different segmentation methods could 

capture this behavior. 

• Cu is a typical metal with a simple crystal structure. 

• H 2 O molecule is probably one of the most recognizable 

molecules to non-chemists and was chosen for its structural 

simplicity to ease the visualization of atomic segments. 

• The benzene molecule is chosen for its highly symmetric planar 

ring structure and in the scope of this work mostly used as an 

example of segmentation. 

• p-nitroaniline (PNA) is a derivative of the benzene molecule 

also used as an example of segmentation. 

Additionally, it is expected that all the atoms of the same type 

e.g. all Na atoms in NaCl) feature the same segmentation shape 

ue to being indistinguishable. Thus, if one would get shapes that 

eometrically differ for the same atom type, it is a sign that some- 

hing is not correct. Even if the inaccurate segmentation does not 

lways have a big impact on the derived total charges nor the total 

ipole moments, it will generally not be accepted by the domain 

cientists due to the missing symmetries. 

. Segmentation 

In recent years, there have been numerous ways proposed to 

ompute the atomic volumes both by numerical determination 

f the gradient [4,21–23] and by computing the Morse–Smale 

omplex [24] . We use the numerical code that is provided by 

he group of Henkelman and also the visualization software In- 

iwo [25] which integrates the Topology Toolkit (TTK) [17] . Here, 

e utilize TTK for computing the Morse–Smale segmentation. An- 

ther tool developed in the visualization community is TopoMS [5] , 

hich combines a numerical approach for volume segmentation 

ith a Morse–Smale analysis for determining the molecular graph. 

inally, for the sake of comparison, a geometry based segmentation 

tilizing Voronoi diagrams is also considered as a part of our eval- 

ation since Voronoi diagrams have also previously been used for 

he computation of atomic charges by chemists [2,3] . Another key 

eature that most of these methods, except for weighted Voronoi, 

ave is that they do not require any preexisting knowledge about 

he data which is crucial when exploring novel materials. 
233 
.1. Numerical gradient based approaches 

Numerical segmentation by Henkelman . This approach is based 

n a numerical analysis also known as the Bader analysis [1] . The 

dea behind this analysis is that one can draw natural borders 

etween atoms along the surfaces with zero gradient cross flow, 

here ρ(r ) satisfies (1) . The second property of ρ(r ) is that it

xhibits a maximum at the atomic positions. Based on these as- 

umptions, the original algorithm proposed by Henkelman et al. 

4] starts at the vertices of the grid and follows the numerically de- 

ermined gradient between the grid vertices until reaching a max- 

mum. All points visited along the way are saved. When all grid 

oints have been visited, they are assigned to segments that corre- 

pond to the corresponding maximum. However, this method was 

uickly deemed unsatisfactory due to the “grid bias” that the de- 

ermined volumes were displaying. To remove this bias a near-grid 

ethod, the current standard method, has been developed [21,22] . 

t is still based on the principles of the original idea of going from 

rid point to grid point by utilizing the central finite difference 

cheme. However, a correction vector is introduced to keep track of 

he accumulated error when traversing from one point to another. 

nce the error, that is the vector’s magnitude, exceeds a threshold 

 correction step is made toward a grid point in the direction of 

he vector and then resetting the vector. For a more detailed ex- 

lanation of the methods please refer to the original publications 

specially the one by Tang et al. [21] . We used Version 0.95a of 

he code provided by the Henkelman group for this study. 

TopoMS is a hybrid method combining a numerical segmenta- 

ion with the Morse–Smale determination of the molecular graph. 

he method utilizes central differences for the gradient determina- 

ion with a tri-linear interpolation and an adaptive Euler integra- 

or to trace the integral lines. This method also utilizes an adaptive 

tep by estimating the error of the integration. The method over- 

omes the problem of having multiple maxima for an atom by as- 

igning each maximum to the closest atom. The process of finding 

he nearest atom is accelerated using a kd-tree data structure. 

Since the scope of this paper is to compare the segmentation of 

he atomic volumes determined by the different methods, we will 

reat TopoMS as a numerical method in this case. It does stand to 

oint out that unlike the Henkelman software, TopoMS is well in- 

egrated with VTK [26] thus making it a superior software in terms 

f the topological visualization of molecules. 

.2. Discrete gradient approach 

Morse–Smale complex . Given a smooth scalar field f : M → R 

efined on a manifold M, a point p c ∈ M is called a critical point 

f f if the gradient ∇ f p c is zero. 
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An integral line is a path in M which follows the gradient direc- 

ion. The set of all integral lines originating at a critical point p c 
long with p c is called the ascending manifold of p c . Similarly, the 

et of all integral lines with destination at a critical point p c along 

ith p c is called the descending manifold of p c . The Morse–Smale 

omplex is the decomposition of M into regions with uniform gra- 

ient flow behaviour, that is, it is a partition such that within each 

ell the set of integral lines share a common origin and destina- 

ion. This partition can be obtained as the intersection of the as- 

ending and descending manifolds of the critical points. For more 

etails about the computation of Morse–Smale complex, we refer 

o [27,28] , and [29] . 

In the context of analyzing charge density fields, the features 

f interest are maxima as they correspond to the atomic posi- 

ions. The descending manifolds of the maxima provide the atomic 

egmentation. For computing the Morse–Smale complex and its 

ersistence driven simplification [30] , we utilize the Topology 

oolkit [17] . We refer to this method of segmenting charge density 

eld as DiscreteMS in this paper. 

.3. Geometric approaches 

Since the position of the atoms are available for the charge den- 

ity fields, we also consider a purely geometric approach for the 

egmentation. We use the Voronoi diagram and its weighted ver- 

ion which is also referred to as power diagram [31] for this pur- 

ose. 

Voronoi diagram . Given a set of seed points S = { p i } ∈ R 

d , the

oronoi diagram partitions the space based on proximity to the 

eed points. The Voronoi cell of point p i consists of the points p ∈
 

d which are closer to point p i than to any other seed points p j ∈
, j � = i . 

Usually, the distance measure used is the Euclidean distance. 

n case the seed points have different weights (consider balls with 

ifferent radii), the definition of Voronoi diagram extends naturally 

o weighted seed points with the power distance measure [31] . The 

ower distance between a point p ∈ R 

d and a weighted input seed 

oint p i with radius r i is defined as pd (p i , p) = ‖ p − p i ‖ 2 − r 2 
i 

. We

ompute the segmentation of the density fields using Voronoi di- 

grams, the Voronoi cell being the segment corresponding to an 

tom, both using the Euclidean and power distance measure. For 

he weighted Voronoi approach, the weight was assigned based on 

he atomic radii. 

. Results 

Here, we present the results for the different approaches that 

e tested concerning visual appearance and geometric robustness. 

n Section 4.2 , we perform a simple visual analysis of the seg- 

ented volumes. This is followed by a test on the methods’ sen- 

itivity to the change of resolution of the data in Section 4.3 . 

ection 4.4 explores how well the different methods represent the 

ocal anisotropy that can arise in some chemical systems. We also 

erform a quantitative comparative analysis in Section 4.5 . Finally, 

e visually summarize the overall relation between segmentation 

nd physical properties in Section 4.6 . 

.1. Data 

As described earlier in Section 2 , we use six different represen- 

ative data sets for this study: three molecules and three periodic 

rystal structures. They are simple in terms of number of atoms; 

onetheless they are well suited to demonstrate the general behav- 

or. The molecular data sets are for H O (water), C H (benzene) 
2 6 6 

234 
nd C 6 H 6 N 2 O 2 (p-nitroaniline or PNA), while the crystals consid- 

red in this study are NaCl (table salt), CO 2 (dry ice) and Cu (Cop- 

er metal) crystals. 

For the three molecular data sets, ρ(r ) is generated using the 

AUSSIAN software [20] , while VASP [18] is used for generating 

(r ) for the three crystal data sets. A major difference between 

he fields ρ(r ) generated by GAUSSIAN and VASP is that GAUS- 

IAN generates only the valence electron field ρ(r ) , while VASP 

enerates a valence ρ(r ) and a core electron ρ(r ) which then 

an be summed up to generate a full electron density field ρ(r ) 

hrough post processing. 

.2. Visual comparison 

We start the comparison of the different segmentation methods 

y comparing them visually. We use our molecular data sets for 

his study since they are small and simple unlike the periodic crys- 

al data sets, where the periodicity impedes understanding purely 

y visual observation. The resulting segmentation can be seen in 

ig. 2 . The three molecules on display are water Fig. 2 (a–e), ben-

ene (f–j), and PNA (k–o). 

We start with water, a molecule that consists of only three 

toms. A first intuitive approach is to draw a border in the ge- 

metric middle between the atoms resulting in the Voronoi seg- 

entation ( Fig. 2 (d)). However, this approach does not take into 

ccount that atoms can differ in size. Adding this domain knowl- 

dge leads to the solution proposed by the weighted Voronoi 

ethod ( Fig. 2 (e)) giving a more realistic solution of the location 

f the borders between the atoms. While the Voronoi segmenta- 

ion is conceptually simple and easily implementable, both ver- 

ions draw borders as straight planes which are not necessarily 

epresentative of a real system. The weighted Voronoi segmenta- 

ion requires in addition prior knowledge of the system to provide 

ood weights. It is worth mentioning that finding good weights is 

ot trivial since the atomic radius of an atom can change drasti- 

ally depending on its surroundings; atomic radii found in the lit- 

rature provide only a crude approximation for the weight. Thus, 

 method that does not require much prior knowledge of the sys- 

em yet that can draw realistic borders between atoms would be 

esirable. 

This leads to the use of topological segmentation methods that 

onceptually are purely based on the data without prior knowl- 

dge of the system. However, depending on the chosen implemen- 

ation, this is not always the case. Numerical segmentation as im- 

lemented in TopoMS and Henkelman’s Bader analysis software re- 

uires the knowledge of the atomic positions (which is not a prob- 

em for computationally produced ρ(r ) ). Combinatorial methods 

ased on Forman’s discrete Morse theory [32] as implemented in 

TK [17] takes only the density field as an input. 

Fig. 2 (b,c) shows the resulting segmentation of the two numer- 

cal methods. Here, one can see that the borders of the hydrogen 

toms become more spherical protruding into the volume occupied 

y the oxygen atom. 

Lastly, DiscreteMS draws the border between the atoms in 

 way that the symmetry of the two indistinguishable hydrogen 

toms is lost ( Fig. 2 (a)). Their volumes have a unique shape and

iffer in size. The other two data sets, benzene and PNA, included 

n Fig. 2 also illustrate the different unintuitive shapes of atomic 

olumes inside the molecule. Looking closely at the PNA molecule 

n Fig. 2 (l,m) one can notice that the volume associated with the 

ydrogen atoms (white) is different depending on whether they 

re connected to a carbon atom (gray) or nitrogen atom (blue). 

ince atomic radii are influenced by their surroundings this can be 

nother problem for the weighted Voronoi method as this intro- 

uces even more parameters when determining weights. 
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Fig. 2. Comparison of the segmentation for three molecules (top: H 2 O , middle: Benzene, bottom: PNA) using the different segmentation methods. The atom colors follow 

the CPK coloring scheme: hydrogen (white), oxygen (red), carbon (gray), and nitrogen (blue) while the different segments are colored differently to aid the visualization 

of the segmentation borders between atoms. Please note the unsymmetrical nature of the DiscreteMS segmentation (a,f,k) and planar cuts between the atoms in Voronoi 

segmentation (c,d,h,i,m,n). In contrast, numerical segmentations (b,c,g,h,l,m) preserve both the symmetry and have the more intuitively understandable atomic borders. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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.3. Charge determination of NaCl 

In the following we evaluate the segmentation methods with 

espect to the accuracy of the aggregated total charges that are as- 

ociated with each atom. We start with the analysis of NaCl (table 

alt). NaCl is an ionic crystal meaning that in this test case one 

lectron from the Na atom will jump over to the Cl atom. 

At first we compare the partial charges of the NaCl crystal for 

ifferent grid resolutions of density field ρ(r ) to evaluate the sta- 

ility of the methods. 

The resulting atomic volume and partial charge for the Cl atom 

an be seen in Fig. 3 . It can be seen that both the mean charge

nd mean volume using DiscreteMS and the Henkelman methods 

re more stable as a function of the grid size than the other meth- 

ds for both the mean charge and mean volume. Also note that 

oth the Voronoi and weighted Voronoi substantially underesti- 

ate both the charge and volume compared to the other methods. 

or the weighted Voronoi the ionic radius for Cl in crystals was 

sed as the weight. 

Secondly, we compare the partial charges with the theoretically 

xpected values. Overall, the DiscreteMS and Henkelman method 

ive similar results. The number of electrons on the Cl atom is 

round 7.86 giving the Cl atom a net charge of about −0 . 86 e . This

s about what one would expect for a crystal since in such systems 

lectrons are shared between atoms to a larger degree than in for 

xample an aqueous solution where the expected charge would be 

loser to −1 e . It is important to point out that in all the above

ethods we used a combination of the full and the valence field 

o determine the charge. The combination consists of determining 

he segments by utilizing the full charge distribution field and us- 

ng the data from the valence field to compute the charge based 

n those segments. 
235 
On the other hand, TopoMS uses only one charge density field 

s input for its analysis and it displayed some interesting results. 

irstly, if we look at the results from the full charge density data 

et we see little difference from DiscreteMS and Henkelman when 

t comes to the determined volumes. We can, however, clearly see 

hat the accuracy of the electronic charge data is far off from the 

xpected value of somewhere close to −1 e , especially for coarser 

rid sizes. The results seem to converge to the expected result at 

ner grid sizes but it is clear that the full charge density fields 

re unfit to be used to determine the partial charges of a system. 

n the other hand when using only the valence ρ(r ) to determine 

he charge, everything seems to be fine except for one of the grid 

esolutions for which the segments are not correctly determined. 

ven if the errors for the coarse grid sizes can be understood, the 

udden loss of accuracy at the grid size of 200 3 is concerning. 

The multipole expansion for NaCl does not yield any dipole mo- 

ent on the atoms which is expected for such a system, meaning 

hat the electrons are uniformly distributed around the atoms. 

.4. Multipole determination of CO 2 

For the evaluation of the anisotropy of the ρ(r ) in the seg- 

ents, the CO 2 crystal is well suited since it exhibits a dipole mo- 

ent along the bonds from the oxygen to the carbon atom. The 

ata set consists of a periodic structure of a CO 2 crystal with the 

eriodic cell containing four CO 2 molecules at a grid resolution of 

50 3 . An example of the segmented atomic volumes and the re- 

ulting dipole moments for a single CO 2 molecule can be seen in 

he supplementary material. Since each cell contains four indistin- 

uishable CO 2 molecules, we expect to see no difference in the re- 

ults between the different individual molecules. 
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Fig. 3. NaCl comparison of the difference in atomic volume and charge of the Cl 

atom (number of electrons) between the numerical, DiscreteMS , and Voronoi seg- 

mentation methods as a function of the grid size. 
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Fig. 4 illustrates the dipole moments of the data set computed 

sing all approaches. We also expanded on the TopoMS analysis 

y combining the TopoMS full density field segmentation with the 

ata from the valence density field mimicking the procedure used 
ig. 4. Calculated dipole moments for all the atoms in CO 2 carbon (black) and oxygen (red

alence ρ(r ) , (e) topoMS full ρ(r ) , and (f) topoMS (combined) segmented data sets. The s

long the direction of the dipole vector. (For interpretation of the references to color in th

236 
n the other methods. Comparing the results, one can notice that 

here is a noticeable discrepancy between the methods. First, there 

s a difference in the size of the arrows between the segmenta- 

ion methods which in itself was not unexpected. However, the fact 

hat for the DiscreteMS method, the strength of the dipoles, repre- 

ented as the size of the arrows, varies a lot for identical molecules 

eveals a severe issue with the accuracy of the segmentation. 

We now further compare the numerical values of the total 

harge and dipole moments in Tables 1 and 2 . The charge on the 

ndividual atoms is given by the number of electrons per atom [e] 

nd the dipole moment is given in electron Ångström [e ̊A]. Starting 

ith the value for the total charge we see that the values from the 

enkelman method are uniform across the same atoms (C-atom 

.87e, O-atom 7.07e). The values for the DiscreteMS method are, 

xcept for C3, O5, O6, quite consistent with values of 1.74e for 

 and 7.14e for O. Both Voronoi methods, though mostly uniform, 

learly underestimate the amount of electrons that the carbon do- 

ates to the oxygen in comparison to other methods with C 3.49e 

nd O 6.26e for Voronoi and C 3.82e and O 6.09e for weighted 

oronoi, respectively. In this case, the weight for weighted Voronoi 

as the radius of C and O when the atoms form a covalent dou- 

le bond. The TopoMS (valence) has an issue with detecting car- 

on atoms and assigning the full charge to the oxygen atoms. The 

opoMS (full) is again suffering from the issue of bad data in the 

ull ρ(r ) data set. Since we need to post-process the segmentation 

or the multipole expansion, we add an analysis scheme that is not 

ncluded by default in the TopoMS software. That is a segmenta- 

ion on full density field ρ(r ) and electronic data from the valence 

ata set. By doing so, the TopoMS produced segmentation leads to 

esults similar to those achieved by the Henkelman segmentation 

ielding 1.88e for C and 7.06e for O, which is expected since now 

he two analysis methods become virtually identical. 

By looking at the charge determination results alone, one might 

onclude that the numerical and DiscreteMS methods are quite 

imilar and there are plenty of ionic salt data sets like NaCl lead- 

ng to this conclusion. There are however outliers, namely the 

O 2 molecule consisting of the aforementioned C3, O5, O6. Clearly, 

omething did not go well for this segmentation. The differences 
) using the (a) Henkelman, (b) DiscreteMS (TTK), (c) weighted Voronoi, (d) topoMS 

ize of the arrow indicates the strength of the dipole moment and the arrow points 

is figure legend, the reader is referred to the web version of this article.) 
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Table 1 

Resulting charge of the CO 2 crystal. The charge is given in electrons [e]. 

Atom Henkelman DiscreteMS Voronoi Weighted Voronoi TopoMS (Val) TopoMS (Full) TopoMS (Combined) 

C1 1.87 1.74 3.49 3.82 0 3.68 1.88 

C2 1.87 1.74 3.49 3.82 0 3.68 1.88 

C3 1.87 0.76 3.49 3.82 0 3.68 1.88 

C4 1.87 1.74 3.49 3.82 0 3.68 1.88 

O1 7.07 7.14 6.26 6.09 8.00 9.16 7.06 

O2 7.07 7.14 6.26 6.09 8.00 9.16 7.06 

O3 7.07 7.14 6.26 6.09 8.00 9.16 7.06 

O4 7.07 7.14 6.26 6.09 8.00 9.16 7.06 

O5 7.07 7.61 6.26 6.09 8.00 9.16 7.06 

O6 7.07 7.61 6.26 6.09 8.00 9.16 7.06 

O7 7.07 7.14 6.26 6.09 8.00 9.16 7.06 

O8 7.07 7.14 6.26 6.09 8.00 9.16 7.06 

Table 2 

Resulting dipole of the CO 2 crystal. The strength of the dipole moments are given in electron Ångström [e ̊A]. 

Atom Henkelman DiscreteMS Voronoi Weighted Voronoi TopoMS (Valence) TopoMS (Full) TopoMS (Combined) 

C1 0 0 0 0 0 0 0 

C2 0 0 0 0 0 0 0 

C3 0 0 0 0 0 0 0 

C4 0 0 0 0 0 0 0 

O1 0.31 0.40 0.27 0.36 1.21 0.33 0.28 

O2 0.31 0.40 0.27 0.36 1.21 0.33 0.28 

O3 0.31 0.40 0.27 0.36 1.21 0.33 0.28 

O4 0.31 0.40 0.27 0.36 1.21 0.33 0.28 

O5 0.31 0.85 0.27 0.36 1.21 0.33 0.28 

O6 0.31 0.85 0.27 0.36 1.21 0.33 0.28 

O8 0.31 0.40 0.27 0.36 1.21 0.33 0.28 
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ecome even clearer when looking at the dipole moments of the 

ndividual atoms, for a visual representation see Fig. 4 . All meth- 

ds yield a 0 dipole moment for the C atom. The dipole on the 

 atom is significantly larger for the DiscreteMS segmentation 

 Fig. 4 (b)) at 0.40 compared to 0.31 to the Henkelman segmen- 

ation ( Fig. 4 (a)), which given the information presented above 

an be considered the most robust method. The discrepancy in 

he computed dipole moments for O5 and O6 is even larger: 0.85 

ased on DiscreteMS compared to 0.31 based on Henkelman seg- 

entation. Another aspect of the dipole moment is that it has a 

irection. In the case of the CO 2 molecule, two dipole moments 

oint from the O atom towards the C atom. Thus, we can make 

n easy check on how good the direction of our computed dipole 

oments is. For the numerical method, the difference in angle be- 

ween the computed dipole vector and the vector between O and 

 atom is 0 ◦. On the other hand for the DiscreteMS method, the 

ifference is 13 ◦, except for the O5, O6 case where the difference 

s 0 ◦. Thus, as a quick summary, the DiscreteMS method overes- 

imates the strength of the dipole and does not obtain the correct 

irectionality. If we combine the definition of the dipole moment 

n Eq. (3) with the visual comparison from Section 4.2 the rea- 

on why DiscreteMS struggles with determining uniform results 

or the dipole moments and charges in the case of the CO 2 data 

et should become clear. 

On the other hand, both the Voronoi and weighted Voronoi 

ethods ( Fig. 4 (c)) yield results that are similar to that of the nu-

erical methods in the strength of the dipole moment, however it 

eems that the mistake on the directionality of the dipole moment 

s 180 ◦. This is a very surprising number since one would not ex- 

ect such a large shift of the direction if the geometry resulting 

rom a segmentation is off. But if one considers that the electrons 

re not uniformly distributed within the total volume, and that the 

ond between the C and O is highly polarized (the electrons from 

he O shift over to C) a small error in computing the segment ge-

metry can lead to a significant error in higher order moments. 

or a more detailed explanation, please refer to Fig. 2 in the sup- 

lementary material. 
237 
Another example of this can be seen in the results for TopoMS 

alence segmentation ( Fig. 4 (d)). Here we have a case where the 

 atom segments completely swallow the C atom segments giving 

ise to an extremely bloated dipole moment. On the other hand, 

he TopoMS results for the full segmentation ( Fig. 4 (e)) are com- 

arable to Henkelman. This indicates that the correct geometry of 

he volume is more important for the determination of the dipole 

oment than the electronic values of individual voxels. Finally, the 

ombined TopoMS results ( Fig. 4 (f)) are comparable to the Henkel- 

an segmentation. Again, this is expected since the two methods 

ecome virtually identical. Also, the direction of the dipole mo- 

ent for all the TopoMS cases is in accordance with the vector 

etween the C atom and O atom indicating an overall good direc- 

ion determination in TopoMS . 

.5. Quantitative comparison 

To compare the segmentation methods more quantitatively, we 

se the Jaccard similarity coefficient [33] for the analysis. The Jac- 

ard coefficient between two sets A and B is defined as: 

(A, B ) = 

| A ∩ B | 
| A ∪ B | 

e use this measure to compare the similarity between the seg- 

ents S i a and S i 
b 

computed for an atom i using the methods a and

. Then the volume similarity J v between these segments is com- 

uted as: 

 v (S i a , S 
i 
b ) = 

V olume (S i a ∩ S i 
b 
) 

V olume (S i a ∪ S i 
b 
) 

ince for our application the total charge within each segment is of 

igher importance, we also use a weighted version of the Jaccard 

imilarity coefficient to quantify the charge similarity between two 

egments. The charge similarity J c between the segments S i a and S i 
b 

s computed as: 

 c (S i a , S 
i 
b ) = 

∫ 
S i a ∩ S i b 

ρdv 
∫ 

S i a ∪ S i ρdv 

b 
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Table 3 

Average J v and J c scores for all pairs of segmentation methods. The volume similarity J v is reported above the diagonal of this table, while charge similarity J c is displayed 

below the diagonal. The colored dots indicate scores exceeding 90 % ( ) and lower than 60 % ( ). 

Molecule DiscreteMS (full) TopoMS (full) Henkelman Weighted Voronoi Voronoi DiscreteMS (val) TopoMS (val) 

DiscreteMS (full) NaCl 92.08 % 92.24 % 86.46 % 53.81 % 98.44 % 92.07 % 

CO 2 70.93 % 68.68 % 58.65 % 61.11 % 61.88 % 57.67 % 

Cu 96.38 % 97.54 % 96.44 % 96.44 % 99.61 % 95.93 % 

H 2 O - - - - - - 

Benzene - - - - - - 

PNA - - - - - - 

Average 82.22 % 81.35 % 74.22 % 64.56 % 80.36 % 75.51 % 

TopoMS (full) NaCl 99.42 % 98.51 % 85.21 % 52.79 % 91.21 % 97.13 % 

CO 2 84.27 % 93.73 % 67.56 % 71.33 % 55.74 % 59.37 % 

Cu 99.41 % 97.49 % 98.65 % 98.65 % 96.11 % 98.58 % 

H 2 O - - - - - - 

Benzene - - - - - - 

PNA - - - - - - 

Average 91.85 % 95.95 % 78.63 % 69.70 % 74.29 % 78.49 % 

Henkelman NaCl 99.44 % 99.86 % 85.62 % 53.17 % 91.29 % 96.07 % 

CO 2 83.86 % 98.77 % 65.18 % 68.02 % 54.05 % 56.25 % 

Cu 99.61 % 99.59 % 97.56 % 97.56 % 97.26 % 97.05 % 

H 2 O - - 74.96 % 42.55 % 67.15 % 97.77 % 

Benzene - - 75.27 % 63.73 % 66.47 % 96.73 % 

PNA - - 74.43 % 64.42 % 66.50 % 91.84 % 

Average 91.68 % 99.27 % 75.93 % 64.63 % 69.66 % 86.46 % 

Weighted Voronoi NaCl 98.99 % 98.92 % 98.95 % 61.10 % 85.17 % 83.20 % 

CO 2 67.03 % 70.79 % 70.48 % 93.25 % 46.42 % 47.76 % 

Cu 99.42 % 99.78 % 99.60 % 100.00 % 96.17 % 98.23 % 

H 2 O - - 70.31 % 52.61 % 65.87 % 76.15 % 

Benzene - - 54.66 % 49.13 % 57.42 % 74.13 % 

PNA - - 63.56 % 59.18 % 58.76 % 70.95 % 

Average 83.08 % 85.00 % 71.26 % 67.31 % 62.73 % 70.63 % 

Voronoi NaCl 93.34 % 93.23 % 93.29 % 94.22 % 53.07 % 51.70 % 

CO 2 70.52 % 74.79 % 74.36 % 93.67 % 48.03 % 49.43 % 

Cu 99.42 % 99.78 % 99.60 % 100.00 % 96.17 % 98.23 % 

H 2 O - - 45.87 % 38.47 % 47.55 % 43.45 % 

Benzene - - 74.66 % 45.11 % 58.18 % 65.35 % 

PNA - - 71.70 % 57.10 % 57.17 % 64.65 % 

Average 82.94 % 85.10 % 76.69 % 69.97 % 57.11 % 60.88 % 

DISCRETEMS (val) NaCl 99.87 % 99.34 % 99.36 % 98.86 % 93.22 % 91.51 % 

CO 2 60.93 % 59.48 % 59.36 % 50.42 % 52.27 % 94.23 % 

Cu 99.94 % 99.37 % 99.56 % 99.38 % 99.38 % 95.65 % 

H 2 O - - 77.99 % 62.14 % 49.02 % 67.46 % 

Benzene - - 81.32 % 48.91 % 72.40 % 66.27 % 

PNA - - 80.58 % 56.35 % 69.94 % 63.70 % 

Average 80.41 % 79.42 % 80.08 % 63.06 % 71.01 % 77.50 % 

TopoMS (val) NaCl 99.20 % 99.55 % 99.44 % 98.50 % 92.85 % 99.16 % 

CO 2 60.61 % 59.71 % 59.49 % 50.48 % 52.34 % 99.04 % 

Cu 99.33 % 99.77 % 99.51 % 99.71 % 99.71 % 99.29 % 

H 2 O - - 98.05 % 69.88 % 46.55 % 78.48 % 

Benzene - - 97.55 % 54.68 % 75.61 % 81.02 % 

PNA - - 97.40 % 63.38 % 72.53 % 80.82 % 

Average 79.93 % 79.67 % 89.65 % 66.77 % 72.31 % 88.72 % 
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For each chemical system in our data sets and every combi- 

ation of methods (a, b) , we can now compute the average of J v 
cores for the atoms. These average J v scores are reported for all 

ix chemical systems in Table 3 corresponding to the entries above 

he diagonal. Similarly, we compute the average J c scores which are 

eported in the bottom left triangle. We further compute the over- 

ll average J v and J c scores over all the atoms in every system in an

ttempt to quantitatively capture the agreement and disagreement 

etween a pair of methods (a, b) using a single summary score. 

lthough this average score hides a lot of system and atomic level 

ntricacies, it does provide a useful measure of overall similarity 

nd differences between the methods. Note that J v and J c scores re- 

orted here allow one to quantify how similar or different the seg- 

entations obtained from two methods are. These scores are not 

 measure of the accuracy of the methods against some ground- 

ruth segmentation as such a segmentation is not known for these 

ata sets. 
238 
For a comprehensive atomic level comparison using J v and J c 
cores, refer to the Fig. 8-14 in the supplement. From this quan- 

itative comparative analysis, the following points are worth men- 

ioning: 

• In general, J c > J v applies to any pair of methods. That is, even

if the geometric volumes determined by the two methods dif- 

fer, the charge within that volume may not differ significantly. 

This is largely due to the fact that the segments differ in the re- 

gions where ρ(r ) is very low due to drawing different separat- 

ing boundaries within the flat plateau region where ρ(r ) ≈ 0 . 

As long as the two methods are correctly separating the regions 

with high ρ(r ) , they will have a high J c score. This is partic-

ularly evident in the case of the Voronoi segmentation of the 

NaCl crystal. Even though J v ≈ 53% for the Voronoi based ap- 

proach compared to other methods, the J c is consistently above 

92% . 



A.I. Abrikosov, T. Bin Masood, M. Falk et al. Computers & Graphics 98 (2021) 231–241 

Fig. 5. Comparison of segmentation for an oxygen atom in a CO 2 crystal lattice. The diagonal shows the segments generated by the different methods. Above the diagonal, 

we can observe the symmetric difference of the segments computed by a two different methods. Below the diagonal we display the difference in the determined physical 

properties. 

 

 

 

• The best scores of J v = 95 . 95% and J c = 99 . 27% were obtained

for the (Henkelman, TopoMS ) combination using full ρ(r ) . This 

is expected because both methods use a numerical gradient ap- 

proach for the segmentation. However, it is still worth point- 

ing out that there is not a 100% agreement between these ap- 

proaches. Furthermore, it also matters whether the full or va- 

lence ρ(r ) is used for the segmentation. The agreement be- 

tween these two approaches goes down to (J v = 86 . 46% , J c =
88 . 72%) if a valence ρ(r ) field is used for segmentation. This

drop in score is largely due to TopoMS being unable to correctly 

segment the carbon atoms within the CO 2 system. 

• All methods agree very well on the segmentation of metallic 

crystals as evident from the very high J c and J v scores for the 

Cu crystal. This can be explained by the uniform periodic na- 

ture of this system containing only one type of atom. Geomet- 

ric approaches based on the Voronoi diagram work very well 

for such systems. 

• All gradient based approaches, namely the Henkelman method, 

TopoMS , and DiscreteMS do a good job of segmenting ionic 
239 
crystal systems as demonstrated by the results for NaCl sys- 

tem. The purely geometric Voronoi based approach of segment- 

ing by drawing boundaries exactly in the middle of the atoms 

fails for this system as unlike the Cu crystal, because it contains 

two atoms of different sizes. As a result, the Voronoi method 

has J v ≈ 53% when compared to other methods. The segmenta- 

tion can be improved using a weighted version of the Voronoi 

diagram with J v improving to ≈ 85% as a consequence. This, 

however, is still below the ≈ 92% agreement between gradient 

based approaches. 

• The segmentation obtained using DiscreteMS , the discrete gra- 

dient approach as implemented in TTK, differs significantly 

from the numerical approaches as used in the Henkelman 

method and TopoMS . This is especially the case for molecu- 

lar systems with covalent bonds, namely CO 2 , H 2 O , Benzene, 

and PNA. The J v score between DiscreteMS and TopoMS is 

≈ 67% for these molecules while it is ≈ 80% between Dis- 

creteMS and the Henkelman method. The agreement between 

DiscreteMS and numerical approaches improves to J v > 90% 
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and J c ≈ 99% when only non-covalently bonded systems are 

considered. 

.6. Detailed atomic-level comparative visualization 

We provide a visualization approach which allows a compre- 

ensive comparison of the segmentation obtained for an atom us- 

ng different approaches. Refer to Fig. 5 as an example. We use a 

atrix to display various results. Each column or a row in the ma- 

rix corresponds to one of the segmentation approaches. The seg- 

ent obtained for the atom using approach a is displayed on the 

iagonal of the matrix within the panel (a, a ) of the matrix. The 

ymmetric difference between the segments is displayed in the up- 

er right triangle of the matrix. The dipole vector comparison and 

ther quantitative measures are depicted in the lower left triangle 

f the same matrix. This visualization approach supports a deeper 

ook at the differences and similarities between the methods. 

As an example, we compare the results from one oxygen atom 

f the CO 2 data set in Fig. 5 . Also for the sake of readabil-

ty we only compare the DiscreteMS , TopoMS , Henkelman and 

eighted Voronoi methods in this figure. For the complete compar- 

son showing all the approaches, we would like to refer the reader 

o Fig. 3 -7 in the supplement. All methods use the full ρ(r ) for the

egmentation but the data from valence ρ(r ) for charge and dipole 

oment computation. From Fig. 5 , it is clear that small differences 

n the segmentation can lead to very drastic changes in the phys- 

cal properties that one would like to determine. For example, al- 

hough the volumes as determined by the Voronoi and numerical 

radient approaches do not differ much with a similarity score of 

84% , the dipole vectors are reversed. This is explained when we 

ook at the volume difference between the Voronoi and Henkel- 

an approaches or the Voronoi versus TopoMS volume difference. 

e can observe the whole segment as determined by Voronoi ap- 

roach is shifted to the top left which is in the direction away 

rom the carbon atom in CO 2 . Due to this shift in the segment, 

he dipole moment shifts from pointing towards the carbon atom 

o pointing away. Refer to Fig. 2 in the supplement for more de- 

ailed explanation of this observed change in the orientation of the 

ipole vector. The second interesting and relevant observation one 

an make from Fig. 5 is the fact that the dipole vector as computed

sing DiscreteMS is not aligned to the direction vector of the C 

= O 

ond between carbon and oxygen. 

. Conclusion 

While it is commonly known that the geometric embedding of 

egmentation based on combinatorial methods is not very good, 

he advantage of providing a robust and accurate topological struc- 

ure is rated of higher importance. In this work, we showcase the 

mplications a bad geometric embedding can have with respect to 

he analysis of a scalar field. Therefore, we have utilized the exam- 

le of electronic density distribution fields and we have compared 

 set of commonly used segmentation methods in this domain. The 

ethods evaluated include (i) combinatorial topology, (ii) numer- 

cal segmentation based on the gradient flow, and (iii) purely ge- 

metric methods based on Voronoi segmentation which requires 

omain knowledge for the segmentation while ignoring properties 

f the density field. Since the dependence on domain knowledge 

uring the analysis is increasing, the methods are becoming less 

eneric. 

Our results have confirmed that the geometry of topological 

egmentation can play a significant role in the determination of 

roperties of scalar field data sets. This is particularly the case for 

ata sets where integral measures become important in terms of 

olume or anisotropy analysis of the segments. 
240 
In more detail, we can confirm that the boundaries of the seg- 

entation for the combinatorial approach, here DiscreteMS , can 

e far off from the expected location. This is especially serious in 

reas where the field exhibits a plateau-like behavior. This behav- 

or can be seen in many applications; in our case this concerns 

he regions in between the atoms where the field takes low values 

lose to zero. One can argue that those are regions that are not 

f the highest interest and that the corresponding segmentation is 

ot stable and, thus, do not affect the topological structure, which 

s represented accurately. However, one can also argue that these 

rtifacts are severe and even make the use of discrete topological 

egmentation methods unacceptable in some applications. As soon 

s the segmentation represents a physical property, both volume 

nd shape become important. Our case is one example but there 

re also other applications with similar demands, for example the 

egmentation of CT scans to determine the physical properties of 

 material or the analysis of the shape and integrals over burning 

ells in combustion simulation [34] . In our specific application, we 

an observe that the computed volume associated with an atom 

or the different segmentation methods varies significantly. But the 

otal charge associated with an atom is not as much affected due 

o the low field values in the miss-segmented area and, thus, does 

ot contribute much to the total charge. The impact on the dipole 

oment that measures the anisotropy of the charge distribution in 

 segment is stronger. The Voronoi segmentation, which is inde- 

endent of the electronic charge density, often introduces a strong 

ias in the segmentation while maintaining the underlying sym- 

etries well. In some cases, the weighted Voronoi segmentation 

an provide a reasonable approximation for the total charge, com- 

are Table 1 . 

Besides the implications of an accurate quantification, there is 

 second argument that is directly related to the visualization of 

he results. In our experience, domain scientists tend to reject a 

isualization that does not respect the inherent symmetries of the 

eld. This can be that atoms playing exactly the same role, for ex- 

mple the atoms in H 2 O , as shown in Fig. 2 (a), are assigned asym- 

etric volumes. Or in the case of NaCl, the crystal symmetry of 

ach segment is not preserved. In conclusion, we note that in the 

ase of electronic charge density there have been some effort s in 

he domain to achieve accurate segmentation of the volume. Those 

ethods are, however, often very specific to the application and 

ake use of the domain knowledge, like the location of the atoms. 

hese methods do not scale very well with increasing complexity 

f the atomic or molecular structure and are also not applicable to 

ther domains. There are also some methods proposed in context 

ith combinatorial topology that are not yet generic enough, thus, 

eaving significant avenues for future research. 
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