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Abstract

The financial crisis of 2007-2008 was a severe global crisis causing a worldwide

recession. One of the main contributing factors of the crisis was the excessive risk

appetite of banks and financial institutions. Since then, regulatory authorities

and financial institutions have directed focus towards risk management with the

main objective to avert a similar crisis from occurring in the future. The aim of

this thesis is to investigate how an adverse macroeconomic scenario would affect

the migrations between risk classes of an SME portfolio, referred to as stress test.

This thesis utilises two frameworks, one by Belkin and Suchower and one by

Carlehed and Petrov, for creating a single systematic indicator describing the

credit class migrations of the portfolio. Four different regression model setups

(Ordinary Least Squares, Additive Model, XGBoost and SVM) are then used to

describe the relationship between macroeconomic indicators and this systematic

indicator. The four models are evaluated in terms of interpretability and ability

to predict in order to find the main drivers for the systematic indicator. Their

corresponding prediction errors are compared to find the best model. The port-

folio is stress tested by using the regression models to predict the corresponding

systematic indicator given an adverse macroeconomic scenario. The probability

of default, estimated from the indicator using each of the frameworks, are then

compared and analysed with regards to the systematic indicator.

The results show that unemployment is the main driver of the risk class migra-

tions for an SME portfolio, both from a statistical and economical perspective.

The most appropriate regression model is the additive model because of its per-

formance and interpretability and is therefore advised to use for this problem.

From the PD estimations, it is concluded that the framework by Belkin and

Suchower gives a more volatile estimate than that of Carlehed and Petrov.

Keywords: Stress test, SME, Transition Matrix, Credit Risk, Statistical Anal-

ysis, Machine Learning



Sammanfattning

Finanskrisen som ägde rum 2007-2008 var en global kris som inledde en om-

fattande l̊agkonjunktur världen över. En av de främst bidragande faktorerna till

krisen var bankers och finansiella institutioners omättliga riskbenägenhet. Sedan

dess har reglerande myndigheter och finansiella institutioner riktat större fokus

mot riskhantering med det huvudsakliga målet att förhindra att en liknande

kris återupprepas i framtiden. Målet med uppsatsen är att undersöka hur ett

ogynnsamt makroekonomiskt scenario skulle p̊averka migrationer mellan risk-

klasser för en portfölj av Små och Medelstora Företag, vilket brukar kallas för

ett stresstest.

Uppsatsen utnyttjar tv̊a ramverk, ett av Belkin och Suchower och ett av Carle-

hed och Petrov, för att ta fram en systematisk indikator som beskriver riskklass-

migrationer för portföljen. Fyra olika regressionsmodeller (Ordinary Least Squa-

res, Additive Model, XGBoost och SVM) används för att beskriva förh̊allandet

mellan makroekonomiska variabler och den systematiska indikatorn för att hitta

faktorerna med störst inverkan. För att stresstesta portföljen används regres-

sionsmodellerna för att prediktera ett värde för den systematiska indikatorn

vid ett givet ogynnsamt makroekonomiskt scenario. Sannolikheterna för fallis-

semang som ges av de tv̊a olika ramverken studeras och analyseras utifr̊an ett

ekonomiskt perspektiv.

Resultaten visar att arbetslöshet har störst inverkan för riskklassmigrationer för

en SME-portfölj, b̊ade fr̊an ett statistiskt samt ekonomiskt perspektiv. Den mest

ändam̊alsenliga regressionsmodellen för skattning av den systematisk indikatorn

är den additiva modellen p̊a grund av dess lämplighet och tolkningsbarhet. Fr̊an

estimeringen av sannolikheten för fallissemang kan det konkluderas att ramver-

ket av Belkin och Suchower ger en mer volatil uppskattning relativt ramverket

av Carlehed och Petrov.



Contents

1 Introduction 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Literature Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Project Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Delimitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Theory 8

2.1 One-Parameter Representation of Risk . . . . . . . . . . . . . . . . . . 8

2.2 Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Evaluation Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4 Hyperparameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Method 26

3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Estimation of One-Parameter Z . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Regression Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Prediction of Transition Matrices . . . . . . . . . . . . . . . . . . . . . 45

4 Results 48

4.1 Model Result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.2 Stress Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5 Discussion 54

5.1 Discussion of Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2 Discussion of Economic Implications . . . . . . . . . . . . . . . . . . . 57

6 Conclusion 61

6.1 Suggestions for Further Research . . . . . . . . . . . . . . . . . . . . . 61



List of Abbreviations

AIRB Advanced Internal Ratings Based Approach

AM Additive Model

BCBS Basel Committee of Banking Supervision

BIS Bank for International Settlements

EBA European Banking Authority

FIRB Foundation Internal Ratings Based Approach

MAE Mean Absolute Error

MSE Mean Square Error

OLS Ordinary Least Square

PD Probability of Default

PIT Point-in-Time

RSS Residual Sum of Squares

SME Small and Medium Enterprises

SVM Support Vector Machine

TTC Through-the-Cycle



List of Figures

1 Disposition of a transition matrix. . . . . . . . . . . . . . . . . . . . . 4

2 Diagram for exemplifying bin thresholds in a normal probability density

function for credit ratings ranging from AAA to D. . . . . . . . . . . . 9

3 Line plot of typical behaviour for TTC PD and PIT PD with respect

to time. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Typical structure of a two-dimensional decision tree. . . . . . . . . . . 18

5 Flowchart of the methodology disposition for the thesis. . . . . . . . . 26

6 Structure of a standard frequency transition matrix. . . . . . . . . . . 27

7 Correlation matrix of macroeconomic variables. . . . . . . . . . . . . . 29

8 Diagram depicting typical values for Z (black curve) and annualised

bankruptcy frequency (grey curve) based on Swedish bankruptcy statis-

tics for limited companies on a quarterly basis from 1986 to 2010. . . . 31

9 Scatter plot of the response Z against the macro variables. (a) Change

in GDP against Z. b) Long term-rate against Z. . . . . . . . . . . . . 33

10 Scatter plot of the response Z against macroeconomic variables. (a)

Change in house prices against Z. (b) Change in commercial real estate

against Z . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11 Scatter plot of the response Z against macroeconomic variables. (a)

Change in the stock index OMXSPI against Z. (b) Change in HICP,

KPI against Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

12 Scatter plot of the response Z against macroeconomic variables. (a)

Unemployment rate against Z (b) Swap rate against Z. . . . . . . . . 34

13 Plot of interpretability against flexibility for regression models. The

figure has been adjusted to fit the chosen methods. . . . . . . . . . . . 35

14 Scatter plot of index against residuals for the full linear model. . . . . 37

15 Scatter plot of fitted values and residuals for the full linear model. . . 38

16 Quantile-Quantile plot of the residuals for the full linear model. . . . . 38

17 Scatter plot of index and residuals & of fitted values and residuals for

the small linear model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

18 Quantile-Quantile plot of the residuals for the small linear model. . . . 40

19 (a) Scatter plot of index and residuals. & (b) Scatter plot of fitted

values and residuals for the additive model. . . . . . . . . . . . . . . . 42

20 Quantile-Quantile plot of the residuals for the additive model. . . . . . 42



21 (a) Plot of the fitted main effect of unemployment to the Z for the

additive model & (b) Plot of the fitted main effect of long term-rate to

the Z for the additive model. . . . . . . . . . . . . . . . . . . . . . . . 49

22 Resulting decision tree for XGBoost. . . . . . . . . . . . . . . . . . . . 50

23 Heat maps depicting the probabilities of migration for each risk class.

(a) Average transition matrix for Z = 0. (b) Adjusted transition ma-

trix given Z = −1. Values are fictional for confidentiality purposes. . . 52



List of Tables

1 Macroeconomic variables for stress tests provided by EBA. . . . . . . 28

2 Hyperparameters for XGBoost. . . . . . . . . . . . . . . . . . . . . . 43

3 Macroeconomic variables for EBA adverse 2021 scenario(%). . . . . . 46

4 Values of the hyperparameters for XGBoost. . . . . . . . . . . . . . . . 49

5 Hyperparameters for SVM. . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Measure of fit metrics for all models. . . . . . . . . . . . . . . . . . . . 51

7 Predicted values for adverse scenario Ẑ for different models. The right-
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1 Introduction

The financial crisis of 2007-2008 was a severe global crisis that caused a worldwide

recession. One of the main contributing factors of the crisis was the excessive risk

appetite of banks and financial institutions. Since then, regulating authorities and

financial institutions have directed focus towards risk management with the main

objective to avert a similar crisis from occurring in the future. This thesis is written

at a large bank in Sweden within the subject of risk management, and focuses on the

effect from adverse macroeconomic scenarios on portfolios.

1.1 Background

A bank is a financial institution licensed to issue loans and provide financial services

such as currency exchange. The largest undertaking of banks are loans, making credit

risk, the risk of a counterparty defaulting on loans and derivative transactions, the

greatest risk to manage [Hull, 2018, p.42]. In light thereof, there is a constant focus

on risk management and assessment of risks and their continuous change. If the credit

risk of a bank becomes too pronounced, the risk of default increases which can cause

a ripple effect of defaulting financial institutions, causing disruption in the financial

system. This is called systemic risk and is the reason domestic and international

regulations are enforced to ensure financial stability in the market [Hull, 2018, p.348].

The demand for accurate estimations of credit risk for risk management and capital

planning requires constant reevaluation and development of new risk models. This

thesis seeks to develop a model for assessment of credit risk with a macroeconomic

perspective.

1.1.1 Basel

Prior to the Basel accord, countries regulated national banks independently, usually

by setting a minimum ratio of required capital to total assets [Hull, 2018, p.348] . This

gave rise to asymmetric risk distribution where countries with less strict regulations

were considered to have a competitive edge compared to those with stricter enforced

capital regulations. The purpose of regulating banks is to ensure that they keep

enough capital to withstand stressed market conditions. The lack of international reg-

ulations and the need to strengthen financial stability by improve worldwide banking

supervision led to the first gathering of the Basel Committee of Banking Supervision

(BCBS) in 1975 [BCBS, 2019]. The committee is part of an organisation for central
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banks called the Bank for International Settlements (BIS) and initially consisted of

12 member countries. The first of three accords, Basel I, was implemented in 1988 as

a first attempt to implement international risk based capital adequacy requirements

[BCBS, 2019].

Standardized Approach The standardized approach, as presented in Basel I, is

used for calculation of risk weighted assets, reflecting the accumulated credit risk of

a bank. The approach provides risk classes with associated risk weights where, for

example, loans to corporations has a risk weight of 100%, while loans to banks and

government agencies has a risk weight of 20% due to being considered a sounder

investment. The total risk weighted assets under the standardized approach by Basel

I is given by

RWA =

N∑
i=1

wiLi,

where wi denotes risk weights and Li denotes the principal amount. According to

Basel I, banks are required to hold 8% of the total risk weighted assets to ensure the

ability to withstand a potential financial crisis. The required capital is therefore

Required Capital = 0.08 × RWA.

Internal Rating Based Approach Basel II, an expansion of Basel I, allows for

the use of internal models during the assessment of capital requirements. The capital

requirements are the value at risk subtracted by the expected loss, and is regulated to

be based on a one year horizon using a 99.9% confidence interval [Hull, 2018, p.363].

There are two options for assessment of capital requirements: the foundation inter-

nal rating-based approach (FIRB) and the advanced internal rating-based approach

(AIRB). Under the AIRB approach, parameters as loss given default (LGD), probabil-

ity of default (PD), exposure at default (EAD) and maturity may be estimated using

internal models. On the other hand, under the FIRB approach, only the PD may

be estimated using internal models [Murphy, 2008, p.289]. The regulated required

capital is defined as

Required Capital =
∑
i

EADi × LGDi × (WCDRi − PDi),

where WCDR, which indicates the worst case default rate, is defined as
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WCDRi = Φ[
Φ−1(PDi) +

√
ρΦ−1(0.999)

√
1− ρ

],

where PDi is the one-year default probability of the ith obligor, ρ is the copula

correlation between the the pairs of obligors and Φ is the standard normal cumulative

distribution function [Hull, 2018, p.364].

1.1.2 Rating Classification

Since credit risk accounts for the largest part of a bank’s risk appetite, it is important

to have an established process for evaluation of the degree of risk associated with

various counterparties [Hull, 2018, p.42]. This is managed using a variety of methods,

one being risk classifications. Risk classifications are widely used in the financial in-

dustry and can be applied to a company, portfolio or a bond. Credit ratings give an

indication of the soundness of an investment by assessment of the creditworthiness of

a counterparty. The rating indicates the probability of default by a specific counter-

party within a certain time frame [Bluhm, 2003, p.13].

Risk classifications vary in form depending on the distributor, although a common

disposition is ordered alphabetical ratings such as AAA, AA, A, BBB, BB, B, CCC,

and D where D represents the state of default. This is the disposition of Standard &

Poor, a company providing risk classifications for firms and companies. This credit

rating disposition is used throughout the thesis to exemplify methods and results.

1.1.3 Transition Matrices

Transition matrices describe the probability of a counterparty of a specific rating,

migrating to another rating during a certain time frame. Thus, transition matrices

are used for analysis of historical changes in credit ratings. For example, in the case of

the ratings of Standard & Poor, a transition matrix is structured as set out in Figure

1.
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Figure 1: Disposition of a transition matrix.

Each row in Figure 1 symbolises the initial state of the credit rating for a potential

counterparty, whereas each column represents ending up in a specific credit rating at

a given point in time. Meanwhile, each cell in the matrix denotes the probability of a

counterparty migrating from some credit rating at a given point in time to some credit

rating at a later given point in time. The rightmost column represents migrations to

the default state, meaning that the column as a whole is used to estimate overall

probability of default, a useful statistic for assessment and management of credit risk.

1.1.4 Stress Testing

Following the financial crisis of 2008, flaws in the banking system were shed light

on. As a result, stricter regulations were introduced by several institutions such as

the European Banking Authority (EBA). EBA is an independent European authority,

working to ensure effective and consistent regulations in the European banking sector.

Their main objective is to sustain financial stability by defining harmonising rules for

financial institutions in Europe [The European Banking Authority, 2016]. One of

the rules enforced by EBA is stress testing. Stress tests are simulated hypothetical

unfavorable scenarios the banks undertake to test their capability to withstand ad-

verse financial shocks. The simulated shocks can be based on historical data such

as the strong recession that followed the financial crisis of 2008 or strongly enhanced

economic variables such as an increase in unemployment rate and a decrease in GDP

[Hull, 2018, p.497-503].

EU-wide stress tests are conducted to evaluate the resilience of financial institutions

during adverse market developments [The European Banking Authority, 2021]. The

tests are performed to obtain an understanding of the amount of capital required for

financial institutions to stay solvent during stressed scenarios and to provide valuable

information in overall risk management and capital planning [Finansinspektionen,

2016]. Similar stress tests are also required and conducted on a domestic level for
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financial institutions in Sweden [Riksbanken, 2019]. The domestic stress tests in

Sweden are required mainly for the four largest banks and take five macroeconomic

variables into account: GDP, property prices, inflation, unemployment, and equity

prices [Riksbanken, 2020].

From an endogenous perspective, a bank can use the results from a stress test as

a forward-looking management tool for identification, monitoring and assessment of

risk [BCBS, 2018, p.8]. The results may be used to adjust risk appetite, financial and

capital planning as well as liquidity and funding management. In addition, findings

from the stress test may be used in internal capital adequacy assessments and as

support for internal policies. One of the undertakings of a monetary authority is to

ensure that the results from stress tests may be used as a supervisory tool. From an

exogenous perspective, the results from the stress tests may therefore be used as a

basis for macroprudential decisions. [BCBS, 2018, p.9].

1.2 Literature Framework

Two previous articles that this theses builds upon are ”A One-Parameter Represen-

tation of Credit Risk and Transition Matrices” and ”A Methodology for Point-in-

Time-Through-the-Cycle Probability of Default Decomposition in Risk Classification

Systems” [Belkin, Suchower, 1998], [Carlehed, Petrov, 2012]. Both papers address

the problem of describing risk class migrations using only one parameter, but with

different approaches. Belkin and Suchower use historic transition matrices as a base

for the creation of a framework describing movements in migrations depending on

macroeconomic changes. The framework includes a single parameter describing the

migrations based on the matrices. Carlehed and Petrov utilise a method for describing

the same parameter but with a base in historical default frequencies. Both frameworks

are developed using the same data, but with a distinct difference in their methods.

Carlehed and Petrov’s method allows for use of a single index for estimation of the

parameter while Belkin and Suchower’s requires the whole transition matrix. Both of

the papers are further explained in the Section 2.1.

There are advantages of both methods. When more observations are needed but

historic transition matrices cannot be accessed, the method of Carlehed and Petrov is

useful. The method of Belkin and Suchower is useful in that it allows to estimate the

entire transition matrix, which is a clear advantage of this method over the method by
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Carlehed and Petrov. In literature, as far as the authors of this thesis are concerned,

there has been no previous research combining these two approaches. Therefore, the

academic contribution of this thesis is to combine the methods and evaluate the re-

sulting probability of default. Furthermore, as an extension of the two papers, the

relationship between the systematic indicator parameter and macroeconomics vari-

ables is investigated in this thesis.

1.3 Project Description

In this project thesis, the relationship between macroeconomic variables and credit

class migrations for a Small and Medium sized Enterprises (SME) portfolio is investi-

gated. A framework used for credit risk representation is utilised in order to express

the migrations using only one variable. In addition, different types of parametric and

non-parametric regression models are used to examine the relationship between the

macroeconomic variables and the credit risk representative variable. The models’ in-

ference and predictive abilities are scrutinised in terms of different evaluation metrics

and from an economic perspective. An adverse macroeconomic scenario is applied

to investigate each of the models’ predicted changes in the risk of the investigated

portfolio. Finally, the thesis seeks to compare the different models to determine the

best performing one.

The research questions addressed in this thesis are:

• What are the main macroeconomic drivers for transitions of credit ratings?

• What statistical or machine learning technique is the most suitable for estimat-

ing the systematic indicator using the one-parameter framework?

• How does the different frameworks of Belkin and Suchower and Carlehed and

Petrov affect the probability of default?

1.3.1 Purpose

The purpose of the thesis is to investigate the effects of macroeconomic changes on

risk class migrations for an SME portfolio. The thesis therefore seeks to examine the

possibility to use statistical and machine learning models for describing the effects of

macroeconomic changes on risk class migrations. The aim is that the findings should

provide the bank with a deeper understanding of what is affecting their risk, and to

enable well argued risk management decisions.
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1.4 Delimitations

The models created in this thesis are intended for use as a part of a larger process

with the main goal of obtaining a value of the required economic capital. The input,

further described in Section 3.1, is a set of transition matrices describing the migration

probabilities of a portfolio on quarterly basis. The thesis is delimited to obtaining

a model with corresponding stressed transition matrices and does not cover further

investigation of the process such as the economics of the stress test. Further delimita-

tion include the investigation of models for only one portfolio and country due to the

limited time of the thesis. The thesis is very limited by the data in terms of number

of observation. In addition, the model is intended to be used for the EBA stress test

which includes a given set of macroeconomic variables. The thesis is therefore limited

to investigate the impact of variables in this set.
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2 Theory

In this section, the theory used in this thesis is presented. The first part introduces the

framework of calculations for the response variable based on two papers, as previously

described in Section 1.2. In the second part, the theory corresponding to the creation

of the regression models for explaining the relationship between the response variable

and the macroeconomic variables is given. Lastly, essential evaluation metrics and

theory for hyperparameter tuning for the regression models are presented.

2.1 One-Parameter Representation of Risk

The thesis extends the framework for representation of credit risk and transition

matrices introduced in two articles. The first article is ”The One-Parameter Repre-

sentation of Risk” by Belkin, Suchower [1998]. In the paper a normally distributed

credit change indicator is assumed to be present in credit rating transition matri-

ces. The credit change indicator, denoted X, is divided into two, an idiosyncratic

component, Y , and a systematic component, Z. That is,

X =
√

1− ρY +
√
ρZ, (1)

where ρ is the assumed non-negative correlation between X and Z. Y and Z are

assumed to be independent normal unit random variables and mutually independent.

Conditional on an initial credit rating G at the beginning of a given time frame, the

sample space of X can be partitioned into a set of disjoint bins (xGg , x
G
g+1]. The bins

are defined such that the probability of X falling within a given interval is equal to the

corresponding historical average transition rate to the corresponding rating. Hence,

the bins are defined as

P (G, g) = Φ
(
xGg+1

)
− Φ

(
xGg
)
, (2)

where P (G, g) denotes the historical average probability of transitioning from G-to-g

and Φ(·) represents the standard normal cumulative distribution function defined as

Φ(x) =
1√
2π

∫ x

−∞
e

−t2

2 dt.

The highest rated bin has an upper threshold of +∞ and the lowest rated bin has a

lower threshold of −∞. A visual representation of the bins is given in Figure 2.
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Figure 2: Diagram for exemplifying bin thresholds in a normal probability density

function for credit ratings ranging from AAA to D.

Source: Belkin, Suchower [1998]

Given Equation 1, the historical average transition probabilities are acquired when

Z = 0. For a given time frame, a value of Z is found using the corresponding aver-

age transition rates applied to Equation 2. Hence, Z describes the deviation of the

transition probabilities from the average and is positive (negative) in times when the

general probabilities of migration to superior credit ratings are higher (lower) than

average. A higher (lower) Z corresponds to a lower (higher) probability of default. A

positive Z can be though of as a flourishing economy.

The value of Z is denoted Zt for a certain point in time t and is determined through

minimization of the weighted mean squared discrepancies between the average tran-

sitions probabilities and the observed transition probabilities as

min
Zt

∑
G

∑
g

nt,g
[
Pt(G, g)−∆

(
xGg+1, x

G
g , Zt

)]2
∆
(
xGg+1, x

G
g , Zt

) [
1−∆

(
xGg+1, x

G
g , Zt

)] , (3)

where nt,g is the observed number of transitions for a time t from grade G, and

∆
(
xGg+1, x

G
g , Zt

)
= Φ

(
xGg+1 −

√
ρZt√

1− ρ

)
− Φ

(
xGg −

√
ρZt√

1− ρ

)
. (4)
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The second article, by Carlehed, Petrov [2012], extends the framework by assess-

ing the impact of current economic cycles and assumed time perspective in the initial

credit ratings.

Point-in-Time Point-in-time (PIT) assumes that credit ratings are classified with

a one year perspective, meaning that the rating is believed to remain in the same

state for at least one year. The PIT probability of default (PIT PD) denoted pi(z), is

the probability that a counterparty will default within 12 months given a systematic

risk factor z.

Through-the-Cycle Through-the-cycle (TTC) assumes that the credit ratings are

independent of market fluctuations. The TTC probability of default (TTC PD),

denoted as qi, is constant over time and does not fluctuate due to changes in the

economic state (although it can oscillate due to fluctuations of individual obligors).

TTC PD, denoted as qi, is obtained through the average stationary PIT as

qi = EZ [pi(Z)] =

∫ ∞
−∞

pi(z)φ(z)dz, (5)

where φ is the standard normal distributions density function.

By solving for Y in the standard one-factor Merton model in Equation 1, the hybrid

probability of default is obtained by

pi(Z) = P [Xi < Bi|Z] = Φ(
Bi −

√
ρZ

√
1− ρ

), (6)

where ρ is the correlation between Xi and Z, Φ is the standard normal cumulative

distribution function and Bi is an obligor specific constant. The correlation is as-

sumed to be constant over time and only depends on the sector, not on the individual

obligor. Due to these assumed simplifications, the theory is applied and the following

probability for a portfolio is obtained

pP (Z) = Φ(
B −√ρZ
√

1− ρ
), (7)

where B denotes the average obligor. Inverting Equation 7 results in

Zt =
B − Φ−1(dt)

√
1− ρ

√
ρ

(8)
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where dt denotes the probability of default for time t.

Methods of moments is used for estimating the series Z. From Equation 7 it can be

seen that

E[Φ−1(p)] =
B√

1− ρ
(9)

and

V [Φ−1(p)] =
ρ

1− ρ
. (10)

Only the default series d is of importance for obtaining the Z series under this frame-

work. The default series is transformed by applying Φ(d) from which a mean (m)

and standard deviation (σ) are derived. By application of this and solving for B, the

following can be derived.

B ≈ m√
1 + σ2

(11)

and

ρ ≈ σ2

1 + σ2
. (12)

When Equation 11 and 12 are inserted into Equation 8, the following is obtained

Zt =
m− Φ−1(dt)

σ
. (13)

Equation 13 is used for obtaining a series {Zt} with an inherent indication of the

impact from economic cycles and systematic risk.

In the case of an unknown time perspective of the credit ratings, the probabilities

can be generalized and transformed to either TTC or PIT, respectively. This is done

by deriving a parameter 0 ≤ α ≤ 1, denoting the degree of ”PIT-ness” of the initial

credit ratings where a value of 1 denotes a 100% PIT model. In the case of a hybrid

model, α is in the interval (0, 1) and the value of α is obtained by taken the difference

between two points in time with respect to Z. Consider the two points in time

11



φ−1(pi,α(Z1)) =
Bi −

√
ραZ1√

1− ρα2
(14)

and

φ−1(pi,α(Z2)) =
Bi −

√
ραZ2√

1− ρα2
. (15)

The difference between the two points results in the right hand side of Equation 16

while the left hand side is the average of the inverse standard normal distribution

density function of the default probability for all time points. α is obtained by solv-

ing Equation 16 for every time point.

∆(
1

P

∑
iεP

Φ−1(pi,α(Z))) =

√
ρα∆Z√
1− ρα2

. (16)

For simplification purposes, the average of all αs is derived, making α constant over

time. When applying this, a 100% TTC probability is obtained by deriving the

expected value for the time period by mimicking previous steps as follows

qi = Φ[
√
ραZt +

√
1− ρα2Φ−1(pi,α)]. (17)

By repeating previous steps, the corresponding 100% TTC probability is transformed

to a 100% PIT probability by applying Equation 18 as

pi(z) = Φ[
Φ−1(qi)−

√
ρz

√
1− ρ

]. (18)

The result from calculations using Equation 17 and 18 result in the PD as shown in

Figure 3, where the PD for TTC is constant and the PD for PIT is more volatile.
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Figure 3: Line plot of typical behaviour for TTC PD and PIT PD with respect to

time.

2.2 Regression Models

In this section, a set of regression models used to model the response variable Z to a

set of predictors are presented with corresponding theory.

2.2.1 Linear Model

A multiple linear regression model is used to find a relationship between a response

variable and several explanatory variables [Wood, 2017]. The response is a linear

function of the unknown parameters and is expressed as

Yi = β0 + β1Xi,1 + β2Xi,2 + . . .+ βp−1Xi,p−1 + εi (19)

for i = 1, 2, . . . , n

where

• Yi is the value of the response variable for the ith case.

• εi ∼iid N
(
0, σ2

)
• β0 is the intercept

• β1, β2, . . . , βp−1 are the regression coefficients for the explanatory variables.
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• Xi,k is the value of the kth explanatory variable for the ith case.

Interactions between explanatory variables are expressed as a product of X ′s

Yi = β0 + β1Xi,1 + β2Xi,2 + β3Xi,1Xi,2 + . . .

. . .+ βp−3Xi,p−2 + βp−2Xi,p−1 + βp−1Xi,p−2Xi,p−1 + εi. (20)

The model is linear due to having linear parameters β. When predicting a dependent

variable Y , given known values of the explanatory variables X, Equation 19 is used

with estimated coefficients.

T-Test A t-test is used when testing the hypothesis that a parameter βk differ

significantly from 0. It is often used as a decision tool for dropping one predictor

from a model, such as: {
H0 : βk = 0

H1 : βk 6= 0

at significance level α. If the standard error of βi is se, then, under the null hypothesis

that βk = 0, the test statistics is defined as

T =
β̂k

se
(
β̂k

) ∼ t(n− p), (21)

where β̂k is the estimated parameter. The observed values of T -statistics are used

for calculations and comparisons of critical values, or direct calculations of p-values

[Wood, 2017]

2.2.2 Additive Model

An additive model (AM) is an extension of the framework for a standard linear model

by allowing non-linear functions for the variables [Wood, 2017, p.131]. The model

utilises a multiple linear regression defined as

yi = β0 + β1xi1 + ...+ βpxip + εi. (22)

When extending the model, the linear components βjxij , are replaced with a smooth

non-linear function fj(xij). Rewriting the model, it can be seen that AMs relate a

response variable y to predictors, xj as
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yi = α+ f1 (x1i) + f2 (x2i) + f3 (x3i, x4i) + . . . , i = 1, . . . , n, (23)

where α is an intercept parameter, fj are unknown smooth functions of the covariates

xk and εi ∼iid N
(
0, σ2

)
. For further explanation of additive models, see Wood [2017]

Given known values of the explanatory variables, a fitted model is used for prediction

by applying the estimated coefficients into Equation 23.

Basis Functions A set of basis functions defines a space of functions such that

each element in the space is a linear combination of the basis functions. Choosing a

basis corresponds to choosing a number of basis functions. The jth basis function is

denoted by bj(x) [Wood, 2017, p.120].

f(x) =

k∑
j=1

bj(x)βj ,

where f is the smooth function of the covariate x, bj is the jth basis function and βj

is the jth unknown parameter.

Smoothing Spline A spline curve is constructed by concatenation of basis func-

tions and can accordingly be described as a curve of two or more joined curves. The

location where two curves are joined is called a ”knot” and can be at or beyond the

limits of the data, called a boundary knot in the latter case. When the boundary knot

is unconstrained, a common spline, called the B-spline, is obtained and agreement of

the second derivatives imply smooth joints. The smoothing spline assesses a knot to

each point in the data making the total number of basis functions one less than the

total number of points in the data implicating a quite computationally expensive algo-

rithm. The smoothing spline f is obtained by minimizing the residual sum of squares

and adding a penalising term λ to the integral of the squared second derivative

n∑
i=1

(yi − g (xi))
2

+ λ

∫
g′′(x)2dx, (24)

where the non-negative penalty parameter λ controls the trade-off between the smooth-

ness and the model of fit [James, 2017, p.277]. The integral is evaluated over the range

of xi. If λ → ∞, then the f is a straight line estimate whereas λ = 0 gives an un-

penalised regression spline estimate [Wood, 2017, p.126].
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Cubic Smoothing Spline A cubic spline basis spreads its knots evenly through

the covariate values, optimizing the computationally expensive smoothing spline. It

is especially useful if yi is measured with noise. It can then be beneficial for xi, yi

data to be smoothed instead of interpolated. It can be fitting to treat g(xi) as n

free parameters of the cubic spline instead of setting g(xi) = yi. Equation 24 is then

minimized and the resulting g(x) is a smoothing spline minimizing

n∑
i=1

(yi − f (xi))
2

+ λ

∫
f ′′(x)2dx. (25)

Thin Plate Spline When there is noisy data that needs an estimation for a smooth

function with multiple predictors, a thin plate splines is a general solution to the

problem. It can handle any number of predictors and allows for selecting the order

of derivatives when measuring the ”wiggliness” of the function. The thin plate spline

finds the function that best satisfies the conflicting goals of making f̂ smooth while

still matching the data. A thin plate spline differs from other basis functions because

it does not offer the choice of knot positions or selecting basis functions since it

naturally emerges from the smoothing problem’s mathematical statement. However,

thin plate splines are computationally heavy. This is because the cost is equal to the

cube of number of parameters and the number of parameters is as large as the number

of unique predictor combinations. It is defined as

f̂(x) =

n∑
i=1

δiηmd(|| x− xi ||) +

M∑
j=1

, αjφj(x), (26)

where δ and α are the coefficient vectors that need to be estimated. For further

definitions, see ”Generalized Additive Models: an Introduction with R. 2ND ed.”

[Wood, 2017, p.152]. Subject to Tδ = 0 is δ which is a linear constraint, where

Tij = φj(xi). The functions φi, having M =
(
m+d−1

d

)
functions, span the space of

the polynomials in <d of degree, less than m and are linearly independent. The φ

span the function space where Jmd, the wiggliness penalty, is zero, meaning that the

functions are considered completely smooth in the null space of Jmd [Wood, 2017,

p.152-153].

General Cross Validation Generalized cross validation (GCV) is used to estimate

the smoothing parameter λ and for model comparison. In essence, it is an approxima-

tion of the ordinary cross validation but with the advantage of being computationally
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efficient and less time consuming but still producing good results [Wood, 2017, p.129].

It can therefore reflect an error of how well a model is fitted. It is defined as

Vg =
n
∑n
i=1

(
yi − f̂i

)2

[n− tr(A)]2
, (27)

where A =
(
XTWX + S

)−1
XTWX is the influence matrix, EDF = τ = tr(A) are

the effective degrees of freedom and W are the weights [Wood, 2017, p.129].

F-Test An F-test is used for verifying multiple types of hypotheses and simultaneous

significance tests. When using additive models this test can be used effectively when

testing hypothesis of smoothing functions being significantly different from constant,

as {
H0 : f = constant

H1 : f 6= constant

In general, the F-test is defined by letting p be number of parameters in the large

model Ω and q < p be number of parameters in the small model ω. Then F is defined

as

F =
(SSres,ω − SSres,Ω) / (dfω − dfΩ)

SSres,Ω/dfΩ
, (28)

F =
(RSSω −RSSΩ) / (dfω − dfΩ)

RSSΩ/dfΩ
, (29)

where SSres is the Residual Sum of Squares defined as SSres =
∑
i (yi − fi)2

and df

denotes the degrees of freedom. Formally, H0 is then rejected at significance level α

if F > Fα (dfω − dfΩ, dfΩ)

2.2.3 Extreme Gradient Boosting

Extreme gradient boosting (XGBoost) is a popular machine learning gradient boosted

tree implementation. The supervised learning algorithm is often used for regression

or classification and uses ensemble learning methods based on weak prediction models

[Chen, 2016]. For further explanations of XGBoost, see Chen [2016].

Decision Tree Decision trees are commonly used machine learning models con-

structed by creating rules for decision making according to some criteria. Trees are

built by nodes which can be split based on which value and variable would be most
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favourable according to the criteria. Such criteria can be, but is not limited to, min-

imizing a loss or maximizing a gain. Figure 4 visualizes an example of the output

from a two-dimensional tree with one root node, three decision nodes and five terminal

nodes [James, 2017, p.305].

Figure 4: Typical structure of a two-dimensional decision tree.

Source: James [2017]

Decision trees are used to solve problems for either classification or regression [James,

2017, p.304]. The difference between the two lies in the form of the response variable

with regression trees having a qualitative response while classification trees have a

quantitative response.

A regression tree is created by dividing the predictor space for X1, X2, ..., Xp into

J distinct and non-overlapping regions, R1, R2, ..., RJ . For every observation that

falls within the region of RJ , the same prediction is made which is the mean of the

response values for the training observations in RJ . Let R1, ..., RJ be the regions that

minimize the residual sum of squares (RSS) and

J∑
j=1

∑
iεRJ

(yi − ŷRJ
)2, (30)

where ŷRJ
is the mean response for the training set in the jth region. The recursive

binary splitting, also known as the top-down greedy approach is used due to it being

computationally infeasible to consider all possible partitions for the feature space. The

approach initially starts at the top and sequentially splits the predictor space into two.
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In every split, the best split at that moment is made, with no regards for optimal

future outcome, making the approach greedy. For the recursive binary splitting, the

predictor Xj is initially selected along with the thresholds s. The predictor space

is split into two regions X|Xj < s and X|Xj > s, leading to the greatest feasible

reduction in RSS. That is, for any j and s, the pair of half-planes is defined as

R1(j, s) = {X|Xj < s} (31)

and

R2(j, s) = {X|Xj ≤ s}. (32)

Equation 33 is minimized for the optimal value of j and s

∑
i:xiεR1(j,s)

(yi − ŷR1)2 +
∑

i:xiεR2(j,s)

(yi − ŷR2)2, (33)

where ŷR1 is the mean response of the training observations in R1(j, s) and ŷR2 is the

mean response of the training observations in R2(j, s). The process is repeated for

each resulting region in order to find the optimal threshold and minimize the RSS.

Regularized Learning Objective For a given data set, D = (xi, yi) (| D | =

n,xiεRm, yiεR) with n observations and m features, let a tree ensemble model predict

the output using K additive functions as

ŷi = φ(xi) =

K∑
k=1

fk(xi), fkεF (34)

where F = {f(x) = wq(x)}(q : Rm → T,wεRT ) denotes the space of regression trees.

q represents the individual tree’s structure and T is the number of leaves. wi is

defined as the ith leaf’s score. For the final prediction, the summation of the score

for the corresponding leaves is derived. For the set of functions F, minimization of

the regularized objective in Equation 35 is preformed.

L(φ) =
∑
i

l(ŷi, yi) +
∑
k

Ω(fk), (35)

where

Ω(f) = γT +
1

2
λ || w ||2
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and l is a differentiable convex loss function with measures the difference between the

target yi and the prediction ŷi and Ω is penalization term of the complexity for the

model.

Gradient Tree Boosting Due to the parameters in Equation 35 being functions,

traditional optimization methods cannot be applied. The model is instead trained

in a sequential order by letting ŷ
(
i
t) be the prediction at the tth iteration of the ith

instance and choosing the optimal function for the specified loss function. This is

achieved by adding ft and minimizing

L(t) =

n∑
i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft). (36)

The general setting can swiftly be optimized using a second-order approximation

L(t) '
n∑
i=1

[l(yi, ŷi
(t−1) + gift(xi) +

1

2
hif

2
t (xi)] + Ω(ft), (37)

where the first and second order gradient statistics on the loss function are gi =

δŷt−1 l(yi, ŷ
t−1 and hi = δ2

ŷ(t−1) l(yi, ŷ
(t−1)). The following simplified objective at step

t is obtained by removing the constant terms

L̄(t) =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft). (38)

Denote Ij = {i|q(xi) = j} as the set of instances of leaf j. Equation 38 follows by

expanding Ω as

L̃(t) =

n∑
i=1

[gift(xi) +
1

2
hif

2
t (xi)] + γT +

1

2
λ

T∑
j=1

w2
j (39)

=

T∑
i=1

[(
∑
iεIj

gi)wj +
1

2
(
∑
iεIj

hi + λ)w2
j ] + γT.

The optimal weight w∗j of leaf j is be computed for a fixed structure q(x) as

w∗j = −
∑
iεIj

gi∑
iεIj

hi + λ
, (40)

where the optimal corresponding value is calculated by

L̃(t) = −1

2

T∑
j=1

(
∑
iεIj

gi)
2∑

iεIj
hi + λ

+ γT. (41)
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Equation 41 is used as a measure of the quality, q, of a tree structure as a scoring

function. It has similarities with the impurity score used for evaluation of decision

trees with the exception of being derived for more general objective functions. Under

normal conditions it is usually impossible to enumerate all viable tree structures q.

XGBoost therefore uses a greedy algorithm starting from a single leaf while adding

branches to the tree iteratively. Let IL and IR be assumed to be instance sets of right

and left nodes after the split. If I = IL ∪ IR, then the loss reduction after the split is

be defined as

Lsplit =
1

2
[

(
∑
iεIL

gi)
2∑

iεIL
hi + λ

+
(
∑
iεIR

gi)
2∑

iεIL
hi + λ

−
(
∑
iεI gi)

2∑
iεI hi + λ

]− γ. (42)

2.2.4 Support Vector Machine

A support vector machine, SVM, is a machine learning algorithm developed in the

1990s computer community and has been proved to be valuable in many settings. It

attempts to perceive a line in a multidimensional space such that the line fits the

observations as close as possible, with regards to a margin. The penalty of being

outside of the margin is controlled by adjusting a hyperparameter for penalty. SVM

handles non-linearity by using certain kernel functions [Awad, 2015, p.68].

Maximal Margin Classifier SVM is originally a generalization of the maximal

margin classifier which uses a linear p-dimensional hyperplane for classification of a

data set. A hyperplane divides the data set into two subsets. The hyperplane has a

margin to the the observations and the most optimal hyperplane has the largest mar-

gin. The maximal margin classifier is obtained by solving the optimization problem

in Equation 44. It is defined as

min
b,w

1

2
wTw (43)

yi(w
Txi + b) ≥ 1 ∀i = 1, ..., N,

where the matrix w is the parameters and b is the boundary for the points xi.

Soft Margin Classifier For the case when separation by a hyperplane for a set

of observation is not feasible, alternatively when misclassification leads to greater

classification of remaining observations, support vector classifiers, also known as soft

marginal classifiers, are favourable. A slackness parameter is introduced for each
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observation, ξi≥ 0. With respect to the slack parameter, an extra penalty term is

added resulting in the optimization problem

min
b,w,ξ

1

2
wwT + C

N∑
i=1

ξi (44)

s.t yi(w
Txi + b) ≥ 1− ξ and ξi ≥ 0 ∀i,

where C denotes a non-negative hyperparameter that determines the tolerance of

severity and number of violations of the hyperplane. As C increases, the more tolerant

the model becomes towards misclassifications and therefore the cost decreases.

Support Vector Machine Classification of non-linear relationships for the pre-

dictors and outcome requires an enlarged feature space. This condition is satisfied by

using functions for the predictors such as quadratic, cubic or higher-order polynomi-

als. Support vector machines enlarge the feature space by using kernels, an efficient

computational approach that quantifies the similarities between observations [James,

2017, p.337]. A function κ(·, ·) : X × X → R is a kernel function if, for arbitrary

x1, ..., xN εX and a1, ..., .aN εR,

N∑
i,j=1

aiajκ(xi, xj) ≥ 0. (45)

A type of kernel is the radial basis function, RBF, defined as

κ(x, y) = exp(−||x− y||
2

2σ2
), (46)

where || · || is the `2 norm.

Support Vector Regression For a regression problem, a generalization of the

classification problem is established where a continuous-valued output is returned by

the model. For multidimensional data, x is augmented by one and b is included in

the w vector

y = f(x) =< w, x > +b =

M∑
j=1

wjxj + b, y, bεRM (47)

f(x) =

[
w

b

]T [
x

1

]
= wTx+ bx, wεRM+1. (48)
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This function approximation is formulated as an optimization problem in support

vector regression (SVR) that is intended to find the narrowest space surrounding the

surface while the prediction error is minimized. The objective function is produced

through the former condition as

minw
1

2
||w||2, (49)

where ||w|| is the approximated magnitude of the normal vector to the surface [Awad,

Khanna, 2015, p.68].

2.3 Evaluation Metrics

Evaluation metrics for regression models provide necessary information of their per-

formance and fit. They are useful tools when comparing models and in determining

if a model has tendencies of over- or underfit. The three evaluation metrics used in

the thesis are given in this section.

2.3.1 Mean Squared Error

The mean squared error (MSE) is a common metric used for model evaluation of

performance in terms of how similar its predictions are to the observed values. It

is calculated by squaring the residuals, implicating that large errors have a greater

impact on the MSE compared to smaller errors. It is defined as

MSE =
1

n

n∑
i=1

(Yi − Ŷi)2, (50)

where Y are observed values, Ŷ are predicted values and n the number of observations

[James, 2017, p.29].

2.3.2 Mean Absolute Error

The mean absolute error (MAE) is also a common metric for evaluation of the per-

formance of a model used to determine the extent to which predictions are similar to

observed values. For MSE, calculations entail absolute value of the residual, giving

an indication of the actual observed difference. It is defined as

MAE =
1

n

n∑
i=1

|Yi − Ŷi|, (51)

where Y are the observed values, Ŷ are the predicted values and n the number of

observations [James, 2017, p.29].
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2.3.3 R-Squared

R-Squared can be interpreted as the proportion of variance in the dependent variable

that is predictable from the independent variables. It is useful for determining how

well a model is fitted to the observed data where a higher value would indicate a better

model since a larger portion of the variance in the observed data then is explained by

the model. It is defined as

R2 ≡ 1− SSres

SStot
, (52)

where SStot =
∑
i (yi − y)

2
and SSres =

∑
i (yi − fi)2

[Wood, 2017].

2.4 Hyperparameter Tuning

Hyperparameters of a model are the external characteristics that cannot be estimated

from the data. They are set prior to the learning process, in contrast to parameters

estimated from the data. The values of hyperparameters are of importance for the

structure and accuracy of a model. To achieve optimal values of hyperparameters,

several methods presented in this section can be applied.

2.4.1 K-Fold Cross Validation

K-fold cross validation is a commonly used method for estimation of model perfor-

mance on in-sample predictions for machine learning models. The method randomly

partitions the data set into k sets of as close to equal size as possible and fit the model

on k − 1 of the sets. The kth set is used for testing. The procedure is performed k

times, omitting one set from training each repetition [James, 2017, p.181]. The mean

squared error is calculated for each k, resulting in an average error estimation of

MSECV =
1

k

k∑
i=1

MSE. (53)

Other metrics like the MAE can also be used in the same way.

2.4.2 Grid Search

A grid search has a large reach and tests many combinations of hyperparameters to

find optimal values. When a grid search is conducted, a vector of estimated values for

each parameter is created. The grid search tests every feasible combination of values

for the model and returns optimal values for the hyperparameters.
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2.4.3 Bayesian Search

Bayesian search is more thorough compared to a grid search. In contrast to the exten-

sive trial in a grid search, Bayesian search bases the selection on previous evaluation

results and proceeds with the most promising estimate. Based on previous results, a

probabilistic model is formed that actively select and map the hyperparameter to the

probability of an objective function’s score

P (score | hyperparameters).
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3 Method

In this section, the method implemented for the thesis is presented. First, the data

is presented and elucidated, covering the investigation of the internal data of the

migration matrices as well as the external data for the macroeconomic variables.

Thereafter, the method of the estimation of Z is presented, giving an indication of

the market status at each time point on a quarterly basis. Due to the data consisting

of a reasonably short time interval, Section 3.2.1 provides the method of prolonging

the series, Zt, using loss rate and inflation to create a stabilised training basis for the

models. Then, a set of regression models used to model the macroeconomic variables

to Z are assessed in Section 3.3, initially elucidating on the concept of a ”good model”

and the main corresponding factors used for determination in this thesis. Next, the

degree of point-in-time of the credit ratings is obtained using theory from Carlehed

and Petrov in Section 3.4. Following is the calculation method for the predictions of

Z when assuming a stressed market scenario provided by EBA. From the predictions,

the probabilities of default and overall migration matrices are calculated for 100%

TTC as well as 100% PIT based on the predicted Ẑ for each of the models. Figure 5

visualises the process using a flow chart.

Figure 5: Flowchart of the methodology disposition for the thesis.
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3.1 Data

The data in this thesis contains frequencies of migrations for each risk class and is

structured as shown in Figure 6.

Figure 6: Structure of a standard frequency transition matrix.

The available data includes migration matrices from 2005 to 2020 on a quarterly basis.

The thesis is focuses on a portfolio containing migrations for an SME portfolio. SME

represents 99% of all business in the EU using the definition as having less or equal

turnover to €50m or have less or equal to 250 employees [European Commission,

2020]. The specific portfolio is chosen due to its large size along with the relatively

even risk class distribution.

The data set includes macroeconomic variables for the time period between 1985

and 2020. The variables are chosen in accordance with the EBA 2021 EU-wide stress

test in order to allow testing of the models using the EBA scenarios [European Bank-

ing Authority, 2021]. The variables are potential drivers of the macroeconomic state

and are therefore suitable for stress testing purposes. The data contains no missing

values and includes the following macroeconomic variables:
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Table 1: Macroeconomic variables for stress tests provided by EBA.

Macroeconomic variable

GDP

Unemployment rate

Harmonised Index of Consumer Prices

Stock index OMXSPI

Long-term rate

Residential real estate index

Commercial real estate index

5-year SEK Swap rate

The GDP denotes the gross domestic product which is a common measure for rep-

resentation of added value through production of services and goods in a country,

in this case denoted by the change on a quarterly basis. The unemployment rate is

the percentage rate of people between the ages of 15-74 years not currently employed

or occupied otherwise, but available for work. The data is seasonally adjusted and

smoothed. The Harmonised Index of Consumer Pricing (HICP) used in this thesis

is KPI which is considered one of the most common measures for compensation and

inflation calculations in Sweden. It describes the average price development for the

private consumption [SCB, 2021]. The stock market is represented using change of

the Swedish index (OMXSPI) an all-share index including all listed shares on OMX

Nordic Exchange Stockholm [Nasdaq, 2021]. The long term-rate expresses the long

term interest rate of a 10-year government bond. Real estate is depicted using two

variables, residential real estate (price trends for one and two-dwelling houses intended

for permanent living [SCB, 2020]) and commercial real estate (CRE) (property exclu-

sive provision of workspace and other business related purposes such as office space,

hotels, malls, restaurants). The final and eighth variable is the rate of a swap between

a fixed interest rate and a floating interest rate such as STIBOR.

The dimensions of the data largely depends on the time span during which it was

collected. Even though the use of risk classes is traced back to the beginning of

the 20th century, the regulations regarding it have changed immensely, affecting the

meaning of given risk classes over time. As previously stated, introduction of IRB
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models in Basel II led to further modification of ratings, limiting the time span of co-

herent accessible data. Due to this, additional data is required to be collected from a

similar environment as the original data. This causes a trade-off between the benefits

of enlarging the data set using more extensive data based on different circumstances,

and using data from comparable circumstances although of smaller size.

3.1.1 Correlation

The macroeconomic variables are examined using Pearson’s correlation. A correlation

close to 1 or -1 indicates similarities in the provided information of the variables. A

threshold of +-0.85 is used for determining removal of a variable, the removed variable

in the pair is the one possessing the highest correlation with any other variable.

This results in a smaller model of fewer variables with close to equal information.

However, it is conducted with the purpose of addressing potential problems with

multicollinearity rather than as a means for dimension reduction. Multicollinearity,

defined as one predictor being able to linearly predict another, can result in difficulty

in the reliability of the estimates of the model parameters [Alin, 2010].

Figure 7: Correlation matrix of macroeconomic variables.

As can be seen in Figure 7, the correlation between the 5Y swap rate and the long

term-rate is close to 1. Swap rate possess the second highest correlation with any

other variable and is therefore removed from the data set. Removal of swap rates

from the data set hopefully resolves any problems regarding multicollinearity.
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3.2 Estimation of One-Parameter Z

To find the relationship between a response variable and the macroeconomic variables,

a time series describing the economic state Z is needed. As initially described in the

theory section, two main articles are used in this regard. The method from the paper

”The one parameter representation of risk” is based on theory of Merton and the one

factor model described in Equation 1 [Belkin, Suchower, 1998].

The initial data consists of transition matrices on quarterly basis from 2005 to 2020.

There is a strong time dependency in the frequency matrices because the number

of counterparties increase with time, causing complications when modelling if not

handled. The frequencies of data are therefore transformed to probabilities by di-

viding each row with the sum of the same row, removing the time dependency. The

transformed matrices describe the probability of migrating to a given risk class. Its

structure is visualised in Figure 1.

The series Z is obtained by applying the theory from the article by Carlehed and

Petrov given in Section 2.1. The sole focus of the method lies on the rightmost col-

umn denoting migrations to the default state. For each time step t, the summation

of the rightmost column is retrieved, obtaining the overall probability of default for

the period, not considering from nor to what risk class the migration describes. The

obtained vector, denoted d, is the probability of default for each time step. A trans-

formation of d is conducted by applying the standard normal cumulative distribution

function, Φ−1(d). From the transformed vector, a mean and standard deviation are

derived which are inserted into Equation 13, resulting in a series Z.

Figure 8 shows a fictional time series for Z values based on quarterly bankruptcy

statistics in Sweden for limited companies [Carlehed, Petrov, 2012]. The black line

represents values for Z corresponding to the (left y-axis) and the grey line represents

the percentage rate for the annualised bankruptcy frequency corresponding to the

(right y-axis). Z can be interpreted as the state of the market and thereby, simpli-

fied, as the inverse of the probabilities of defaults for the same period of time.
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Figure 8: Diagram depicting typical values for Z (black curve) and annualised

bankruptcy frequency (grey curve) based on Swedish bankruptcy statistics for limited

companies on a quarterly basis from 1986 to 2010.

Source: Carlehed, Petrov [2012]

3.2.1 Additional Data

The amount of data a model is trained on directly correlates to the magnitude of the

corresponding error of the predictions, up to some point. The data from the original

source is limited and therefore alternative approaches are studied for enlarging the

data set such as by simulation or by use of other macroeconomic indicators to emulate

Z. There are predominantly two main complementary techniques used for comparing

time series. The first one utilises correlation where a high correlation between the

investigated macroeconomic index and the original data set indicates similarities and

support the use of the emulating index. The second option is visual investigation

using a plot of the movements.

The investigated indicator is internal loss rate, defined as premiums not earned due

to counterparties not meeting their obligations divided by total earned. It gives an

indication of the general probability of default further back by providing more data.

In general, a higher loss rate indicates a higher PD and vice versa. The data needs

to be scaled since the loan to value ratio differs to great extent from 1980 to the

beginning of the 1990s. To account for the varying loan to value ratio, the total

amount of internal lending with regards to inflation is used to scale the loss rate. The

inflation and lending adjusted loss rate behaves similarly to the PD from the original
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data. In order to facilitate the comparison with the Z series, the adjusted loss rate is

standardised using Equation 13. By doing this, the correlation between the original

time series Z and the Z based on the adjusted loss rate for the years 2005-2020 is

equal to 0.68. By investigation of their movement, noticeable similarities in pattern

is observed, although the fluctuations of the loss rate are somewhat amplified. A new

response is created with a combination of inflation and lending adjusted loss rate and

the original Z data. This new time series will henceforth in the thesis be referred to

as Z.

The purpose of including the new data is to create a more stable model and thus

decrease fluctuations of the size of the residuals depending on which subset is ex-

cluded in a cross validation. The forgoing data set used when creating the models is

therefore a combination of the original data Z originating from the transition matrices

from 2005 to 2020, with the addition of the inflation and lending adjusted loss rate

from 1985 to 2005.

3.3 Regression Models

In this section, the method for constructing regression models using a variety of

approaches is presented. Recall that the aim is to find the relation between the sys-

tematic variable Z and the corresponding macroeconomic variables. The predictions

of the model should be independent of time, whereby what happened before and after

the stressed economic scenario should not matter to the model or the prediction.

3.3.1 Visualisation of Data and Macroeconomic Variables

The scatter plots of the response Z to each of the macroeconomic variables presented

in Figure 9, 10, 11 and 12 serve as support when evaluating the models in terms of

macroeconomic effect on the response.
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(a) (b)

Figure 9: Scatter plot of the response Z against the macro variables. (a) Change in

GDP against Z. b) Long term-rate against Z.

(a) (b)

Figure 10: Scatter plot of the response Z against macroeconomic variables. (a)

Change in house prices against Z. (b) Change in commercial real estate against Z .

(a) (b)

Figure 11: Scatter plot of the response Z against macroeconomic variables. (a)

Change in the stock index OMXSPI against Z. (b) Change in HICP, KPI against Z.

33



(a) (b)

Figure 12: Scatter plot of the response Z against macroeconomic variables. (a)

Unemployment rate against Z (b) Swap rate against Z.

3.3.2 Evaluation of Models

There are several indicators to use when comparing models in order to declare the op-

timal one. MSE and MAE, as described in the theory section, attempt to give an error

measurement based on the residuals of the fitted model, with squared or the absolute

residuals, respectively. Concerning these measurements, a smaller value is preferred

when deciding on the best model since it implicates closer average predictions to the

observed values. R-squared, defined in Equation 52, is also a measurement of fit. It

can be interpreted as the proportion of the variance of a dependent variable explained

by the independent variables. It takes the sum of squares of residuals with respect

to the sum of squares of the difference between each observation and the mean of

the response into account. Hence, a greater value indicates a fitted model that more

closely explains the same variance as the original data and therefore is more likely to

be an appropriate model.

When interpreting the coefficients it is important to know how the independent vari-

ables, in this case the macroeconomic variables, affect the dependent variables, in this

case the Z. When evaluating these, the effect on the dependent variable is studied and

then compared to the general perception of how it is described in economic literature,

if such perception exist. Considering this, a regression model is sought after since the

dependent variables effect can easily be interpreted while for tree based models, it is

not as clear. Therefore, when evaluating the model, the interpretability of the effect

of dependent variables for each model has to be taken into account. Figure 13 shows

each of the included models for this thesis and their interpretability in relation to each
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other. Also included in Figure 13 is the flexibility of each model which corresponds to

which type of functions the model can emulate. Least Squares in Figure 13, which in

this thesis is referred to as the linear model, can only take linear relations into account

while each of the other models can account for much more flexible ones [James, 2017,

p.25].

Figure 13: Plot of interpretability against flexibility for regression models. The figure

has been adjusted to fit the chosen methods.

Source: James [2017]

Cross validation is commonly used for tuning the hyper-parameters of a model. How-

ever, since the data set for this thesis is small, cross-validation is used for determi-

nation for the stability of the predictions depending on the partitioning of training

and test sets. If the variance is high then the the model is less stable which has to

be taken into account when using the model. Cross-validation is therefore used for

evaluating the models where the average test and training errors give an indication

of the stability of the model.

The bias-variance trade-off has to be considered for model evaluation [James, 2017,

p.34]. Variance corresponds to the amount by which the predictions would change

given that the model would be trained using two different data sets. When minimis-

ing, the wanted results are small changes for different data sets. On the contrary,

bias corresponds to the error which occurs when trying to estimate a complex model
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using a too simple model [James, 2017, p.35].

3.3.3 Linear Baseline Model

The first model is a linear regression model using ordinary least square to estimate

the unknown parameters. It is used as a baseline model due to its simplicity and

strong interpretability in regards to the effect from the predictors on the response. In

the event that the errors and values for metrics described in the previous section for

this model are smaller or equal to the errors of different models the linear baseline

model would be preferred.

Initial scatter plots of each of the macroeconomic variables to the response Z vi-

sualised in Section 3.3.1, show no indication of a linear relationship. However, since a

linear regression model is easy to interpret in terms of coefficients, the model is still

investigated as a baseline. To further investigate interactions among the macroeco-

nomic variables, scatter plots for each combination of the variables are created. Some

interactions are observed to have patterns indicating a non-random relationship.

The model is fitted with Z as response and all of the macro variables as predic-

tors, represented by Y and X in Equation 19. The model is refitted using backwards

stepwise selection of the full model with both the main effects and the interactions.

For every model, a t-test according to Equation 21 is made for each of the predictors

and the term with the highest (most non-significant) p-value with a confidence of

95% is removed. This is applied to the full model where the interaction effects are

removed first until all remaining interactions are significant. The same procedure is

applied for the main effects. However, if a linear predictors is the least significant

according to t-test of predictors Equation 21, but its corresponding macro variable is

a part of a significant interactions, the predictor is not removed and the second most

non-significant predictor is removed instead, if any exist. This procedure results in

the model presented in Section 4.1.1.

To be able to sufficiently rely on the created model the following assumptions are

investigated:

• Independent residuals

• Constant variance among the residuals
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• Normally distributed residuals.

To be able to determine if the approximated errors (residuals) are independent, it is

important to see if there are any structural problems within the model. Figure 14

shows the residuals from the fitted model plotted against an index which in this case

represents time. The pattern tends to not be fully random since the variance with

respect to time is not constant. It indicates that a non-linear relationship has not

been accounted for with the current model.

Figure 14: Scatter plot of index against residuals for the full linear model.

When evaluating the variance of a scatter plot with the fitted values and residuals, a

constant variance among the observations indicates a solid model in terms of standard

deviation among forecasted errors, called heteroscedasticity. Considering Figure 15,

a trend of smaller variance in the lower and higher fitted values than around 0 is

observed. Hence, the residuals seem to be somewhat more extreme in the middle of

the fitted values. Since there is such a small set of data points to evaluate, a small

set of outliers can affect the constant variance assumption with a large magnitude.

However, this pattern is, most likely, too prominent to be a result of outliers and

hence there is problem with heteroscedasticity.
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Figure 15: Scatter plot of fitted values and residuals for the full linear model.

To ensure that the model predicts as expected, the normality assumption of the

residuals is important. For this thesis, the assumption is checked in two ways. The

first approach is reviewing the normal quantile-quantile plot in Figure 16 by making a

scatter plot of the theoretical quantiles against the sample quantiles. If the observed

values follow the 45 degree red line closely, they are normally distributed. Figure

16 shows a pattern indicating that the sample quantiles of the residuals follow the

theoretical quantiles closely, with the exception of a few outliers.

Figure 16: Quantile-Quantile plot of the residuals for the full linear model.

Since it cannot not be concluded that the residuals are independent, nor that the

residuals have constant variance, it is unclear how reliable the predictions from the

model are.
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When assessing the stability of the model, cross validation is used. Cross validation is

normally used for parameter tuning for machine learning algorithms. However, with

regards to the small data set used for this thesis, cross validation is used for evaluation

of the stability of the model depending on the partition for the training set. Because

of the small size, leaving out a few observations or not in the training process cause

significant change in the parameter estimation, the goal is to see how much. The

cross validation uses is a K-fold with 10 folds described in the Section 2.4.1 which

results in 10% of the observations observations being left out each time for validation

while the parameter estimation is performed on the rest. This procedure results in

the mean squared error, mean absolute error, and r-squared presented in Table 6.

When investigating scatter plots of the response Z to each of the macroeconomic

variables, some of the combinations show patterns generally considered more ran-

dom than others. The macroeconomic variables that show clear patterns of some

non-random relationships are unemployment, long term-rate and house price index.

Therefore, given that the previously presented model had problems with its assump-

tions, the noise that some of the other macroeconomic variables may have added

could be avoided. A new model using only unemployment, long term-rate and house

price index is therefore fitted and presented in Section 4.1.1. Each of the previously

presented assumptions are also checked for this model. Considering the scatter plots

in Figure 17, they show similar tendencies as the previous model. The pattern is the

same but the residuals do not have the same spread as in Figure 15. Since the residuals

do not seem to be independent, the corresponding assumption of independence does

not hold. Regarding the constant variance assumption, there is a clear heteroscedastic

pattern in the fitted values to the residuals plot, as in Figure 15. Therefore, by the

same reasoning as for the previous model, the constant variance assumption does not

hold.
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(a) (b)

Figure 17: Scatter plot of index and residuals & of fitted values and residuals for the

small linear model.

The quantile-quantile plot in Figure 18 is almost identical to the one for the previous

model shown in Figure 16 and hence the same reasoning is made for this model. Thus,

the residuals are assumed to be normally distributed.

Figure 18: Quantile-Quantile plot of the residuals for the small linear model.

A 10-fold cross validation is also used for this model for investigation of the stability.

For the cross-validation, the MSE, MAE and R-squared are calculated and presented

in Table 6.

3.3.4 Additive Model

By using the arguments of non-linearity in the previous section from the linear model,

an additive model is a natural next step. The main objective for this model is to in-

corporate the assumed non-linear effect that some of the macroeconomic variables
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have on the response Z that the linear model could not account for. From the scatter

plots of Z to the macroeconomic variables, tendencies of non-linear effect for both

unemployment rate and long term-rate are pronounced since neither of them seem to

increase or decrease in a linear way. The interaction between the long term-rate and

the unemployment plotted against the response Z shows a pattern containing non-

linear indications. Smoothing splines for additive model are used in order to account

for non-linear complex relationships between the response and the predictor. An AM

is desirable, given that there are non-linear relationship in the response to the macro,

since an AM can model complex relationship while maintaining the ability to be fairly

interpretable in terms of effect of predictors.

The aim is to fit an additive model using the methods presented for the linear model

where the f is represented in such a way that the corresponding response of the

additive model depends linearly on some unknown smooth functions of some predic-

tors. To do this, a set of basis functions must be chosen. In order to find the best

model, several models are created by fitting one model each, including only the main

effects of unemployment and long term-rate as well as a model containing both the

main effect and one with the interaction. The house prices index is also tested for all

the models but has non-significant effect and is therefore not further included. The

models are then compared in terms of GCV presented in Section 2.2.2 and the one

with the smallest values, corresponding to the best fit, is chosen. This results in the

model shown in Section 4.1.2. The additive model is then adjusted by simultaneously

tuning each of the smoothing splines dimensions of their bases and order of penalty

corresponding to unemployment and long term-rate. It is done in order to fit the ob-

servations as close and smooth as possible. The basis for the chosen smoothing splines

is a thin plate regression spline for unemployment, as presented in Equation 26 and a

cubic regression spline for long term-rate, as presented in Equation 25. Both with the

penalised sum of squares presented in Equation 24. Hence, the smooth functions are

defined according to f1(x) =
∑k1
i=1 b1i(x)β1i and f2(z) =

∑k2
i=1 b2i(z)β2i where β1i

and β2i are unknown coefficients, b1i(x) and b2i(z) are sets of known basis functions

as previously defined.

Each model is evaluated using the GCV-score presented in Section 2.2.2 where a

smaller value indicates a better model since it corresponds to a smaller estimation of

the cross validation error. Each of the smooth terms are jointly tested with statistical

significance according to the F-test in Equation 29 and the null-hypothesis of equality
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of zero with a confidence of 95%.

For the model to be reliable, the residuals need to be, as for the linear model, in-

dependent and have constant variance. From Figure 19, the same pattern as for the

linear model is observed. There are some trends of non-independent residuals in Fig-

ure 19 plot (a). Considering plot (b) in the same Figure, low variance is found in the

lower values of the fitted values and higher variance in the higher parts. Hence, the

residuals are neither independent, nor do they have constant variance.

(a) (b)

Figure 19: (a) Scatter plot of index and residuals. & (b) Scatter plot of fitted values

and residuals for the additive model.

For this additive model, the assumptions for normality also applies, just as for the

linear model, since the mean of the response as well as the residuals were assumed to

be normally distributed.

Figure 20: Quantile-Quantile plot of the residuals for the additive model.
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The final assumption is the identifiability constraint. Since f1 and f2 are used in

an additive model, they can be estimated within an additive constant. Imposed on

the smooth terms presented is the zero-sum identifiability constraint where f1 =∑
i f1(xi) = 0 and f2 =

∑
i f2(xi) = 0. This constraint is checked by reviewing

the smoothed functions presented in Figure 21 on page 49 where the average of the

smoothing functions is set around zero. From the figure, it appears to be the case and

thus, this constraint seems to hold. The stability of the model is then evaluated using

a 10-fold cross validation and its resulting MAE, MSE and r-squared are presented in

Table 6. The final model is presented in Section 4.1.2.

3.3.5 Extreme Gradient Boosting Model

Extreme gradient boosting, XGBoost is a widely used tree-based machine learning

algorithm utilising the gradient boosting algorithm and regularisation. In contrast to

the linear model, this approach can incorporate non-linear relationships into the model

XGBoost has a large number of hyperparameters however eight are chosen for this

model which can be seen in Table 2.

Table 2: Hyperparameters for XGBoost.

Hyperparameter

Number of estimators

Max depth

Learning rate

Min child weight

Max delta step

Colsample by node

Alpha

The hyperparameters have to be set before the training of the model begins and the

set of hyperparameters focuses on the build of the trees as well as regularisation and

sampling. First the number of estimators is included, denoting the number of trees

and is equivalent to the number of boosting rounds. The second hyperparameter is

the max depth that describes the maximum number of nodes that are allowed from

the root to a leaf of a tree for a base learner. Deeper trees allow for more complex
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relationships to be modelled although the splits become less relevant with the in-

creasing depth and too deep trees easily lead overfitting. The learning rate, or the

shrinkage factor as it is also called, is a technique to slow down the learning by ap-

plying a weighing factor for the corrections of residual errors by newly added trees of

the model. A high learning rate increases the time to fit but will most likely cause

the model to overfit the training set, especially for a small data set, while a smaller

value of the learning rate will make the computations slower but often results in a

better solution. Min child weight is the minimum required weight when a new node

is created in a tree. A smaller min child weight allows for more complex trees due

to creating nodes corresponding to fewer samples however it is also more likely to

overfit. A larger min child weight therefore entails a more conservative algorithm.

Max delta step describes the largest step the estimation of a tree’s weight is allowed

to be. At default it is set to zero, meaning that no constraint is active. A positive

value makes the creation of the tree more conservative. Colsample by node denotes

the fraction of columns that are randomly sampled from for each node. A smaller

subsample ratio for the colsample by node limits the amount of variables that are used

at each split which can decrease overfitting. Alpha denotes the L1 regularisation term

on the weights. When alpha is increased the model will be more conservative.

Taking wisdom from the linear models and the additive model, only a subset of the

whole data set is used for this model. The variables included are those showing signs

of a non-random relationship and hence provides information to the model. Therefore

the model is based on unemployment rate, long term-rate and residential house price

index.

To find the best fitting model and its corresponding hyperparameters, a two-step

procedure is used for implementation. The first one is a grid search as described in

theory Section 2.4.2. For this procedure, a set of values for each of the hyperparame-

ters is set with regards to the data, covering a large range of values. All combinations

of the hyperparameters are tested and the combination resulting in the smallest fea-

sible error is selected. Thereafter, a Bayesian search, as described in Section 2.4.3, is

conducted around the particular area for the value of each hyperparameter obtained in

the grid search. This procedure increases the accuracy of the hyperparameters. The

metric used for evaluation of the grid search and Bayesian search is mean squared

error using a 10-fold cross validation as described in theory Section 2.4.1.

44



3.3.6 Support Vector Machine Model

Support vector machine (SVM) is a machine learning algorithm for regression and

classification. The creation of this model is initiated by selecting values for the hy-

perparameters. As previously stated, hyperparameters are estimated prior to training

the model and are meant to establish the best possible conditions for the model, in

the case of SVM, only two hyperparameters can be estimated. The first one is the

cost parameter, C which is used to adjust the penalty for an observation inside the

margin. Smaller values indicate a smaller penalty and higher values indicate a higher

penalty. Therefore, the hyperparameter C has a large effect on the resulting model

and thus need to be properly tuned. The second hyperparameter, γ, states how much

curvature the decision boundary is allowed to have. A high value for γ entails more

curvature and vice versa. These two variables need to be estimated to minimise the

error while at the same time minimising both variance and bias.

As in the XGBoost model, the SVM model is based on the subset containing only

the unemployment rate, long term-rate and house price index. The hyperparameters

are estimated using the same method as previous models, initiated with an extensive

grid search of comprehensive intervals to find a reasonable range for each of the hy-

perparameters followed by a Bayesian search based on surrounding intervals to obtain

more exact values. The final hyperparameters are presented in Table 5.

3.4 Prediction of Transition Matrices

This section present the process of predicting transition matrices and corresponding

PD’s.

3.4.1 Estimation of PIT-ness

As presented in the theory section according to Carlehed and Petrov, the α in Equa-

tion 16 is defined as the degree of PIT. To convert the transition matrices from a

hybrid perspective to either PIT or TTC, the degree of PIT of the hybrid ratings is

required. To obtain α for the credit ratings of the data from this thesis, Equation 16

is solved by using the originally estimated Z and correlation ρ according to Equation

12. The resulting α is 0.984.
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3.4.2 Prediction of Stressed Scenario

The EBA adverse scenario for 2021 is used for evaluation of the effects from an

adverse macroeconomic shock on the portfolio. The adverse macroeconomic scenario

is intended to resemble a severe (but realistic) scenario. It includes the macroeconomic

variables shown in Table 3.

Table 3: Macroeconomic variables for EBA adverse 2021 scenario(%).

dGDP Unemp dKPI dHouse dOffice longrate dStock Swaps

-2.0 13.3 0.7 -5.3 -22.5 -0.77 -50 -0.17

No monetary or fiscal policy reactions are assumed in the scenario beyond what is

already in place. When quantifying and analysing the effects of the scenario the

models presented in Section 3.3 are used for estimation of the response Ẑ. The

predictions are made with each model using the respective section of prediction in the

theory section. The predicted values of the response Z are presented in Table 7.

Prediction of Hybrid Transition Matrix and PD When predicting transition

matrices for each perspective (PIT, TTC, hybrid) given a Ẑ, the average transition

matrix for the interval is required. For each predicted Ẑ a quarterly specified matrix

reflecting the market fluctuations is obtained by shifting the basis transition matrix

with respect to Ẑt. This is done by taking the inverse cumulative distribution function

of the cumulative sum for every row, obtaining the average binned transition matrix.

Every bin represent a cut off point in the distribution function of the transition for

each risk class. The shift is applied by first subtracting the given value for Ẑ from the

value of the binned matrix in the rightmost column followed by taking the cumulative

distribution function over the expression and transforming it back to a probability.

For the remaining values in the matrix, the market adjusted probability is obtained

by taking the cumulative sum over the difference between the given binned value sub-

tracted by Ẑ and the cumulative sum of the columns for the risk classes considered

lower than the current. The result is an adjusted matrix reflecting the fluctuations

in the market at time t, through a shift Ẑt for a hybrid model. The probability of

default is assumed to be the mean of the rightmost column, representing the overall

transition from the different risk classes to the state of default. The corresponding

probability of default is presented in Table 8.
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Using the method of Carlehed and Petrov, the PD is calculated using Equation 13

and is presented in Table 9.

Prediction of 100% TTC Transition Matrix When determining the transition

matrix and probability of default for a 100% TTC model, Equation 17 is used. The

Equation takes the transition probabilities from the hybrid model, pi into account and

for each position in the matrix, representing every migration from all combinations

between the risk classes, calculates a new probability. The new matrix of values

represents the long term, through-the-cycle transition probability to migrate to a

given risk class. The probability of default for the 100% TTC is then determined

as the overall sum of the last column of the matrix representing the transition from

every risk class to the state of default. Using the method of Carlehed and Petrov, the

PD is calculated using Equation 17 and is presented in Table 9.

Prediction of 100% PIT Transition Matrix From the transition matrix with a

TTC-perspective, the 100% PIT transition matrix is obtained by applying Equation

18. The TTC-probabilities for every transition are inserted into the Equation and

a matrix with a PIT-perspective is obtained. From this, the PIT PD is derived as

the sum of the last column representing the total migration from every risk class to

the state of default. Using the method of Carlehed and Petrov, the PD is directly

calculated using Equation 18 and is presented in Table 9.
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4 Results

This section presents the regression models and their corresponding predicted Ẑ and

probability of default, given the stressed EBA 2021 scenario.

4.1 Model Result

In this section, the resulting models and their corresponding values of the evaluation

metrics are presented.

4.1.1 Linear Models

Full Model Recall from the method section that the first linear model included

all macroeconomic variables and combinations of interactions. The full linear model,

achieved by step-wise backward elimination and therefore only includes significant

coefficients, is expressed as

Ẑ = 1.59− 0.59XdGDP − 1.394XUnemp − 1.327Xlongterm−rate + 0.37XdHouse+

0.712XdOffice + 1.284XdGDPXUnemp + 0.573XdGDPXlongterm−rate−

0.0933Xlongterm−rateXdOffice−0.182XUnempXdOffice+0.932XUnempXlongterm−rate+

0.533XdGDPXdHouse (54)

The β values are randomized for confidentiality purposes.

Small Model The small linear model using step-wise backward elimination with

only unemployment, long term-rate and house price index is presented in Equation

55. All included terms are significantly different from zero.

Ẑ = 0.043−1.25XUnemp−1.3372Xlongterm−rate−0.93XdHouse+0.96XUnempXlongterm−rate

(55)

The β values are randomized for confidentiality purposes.

4.1.2 Additive Model

The additive model using only unemployment rate and long term-rate results is ex-

pressed in Equation 56. Recall from the method section that the included terms are

chosen according to the lowest GCV-score.

Ẑ = −0.01 + f1(Unempi) + f2(longratei) (56)
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where f1 is a smooth function with thin plate regression spline and f2 is a cubic

regression spline.

(a) Unemployment (b) long term-rate

Figure 21: (a) Plot of the fitted main effect of unemployment to the Z for the additive

model & (b) Plot of the fitted main effect of long term-rate to the Z for the additive

model.

4.1.3 Extreme Gradient Boosting Model

The tuned hyperparameters using grid- and Bayesian search for the extreme gradient

boosting model are presented in Table 4. A representation of the final tree is presented

in Figure 22.

Table 4: Values of the hyperparameters for XGBoost.

Hyperparameter Value

Number of estimators 11

Max depth 3

Learning rate 0.86

Min child weight 1.35

Max delta step 0.45

Colsample by node 0.64

Alpha α 0
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Figure 22: Resulting decision tree for XGBoost.

4.1.4 Support Vector Machine Model

The tuned hyperparameters using grid- and Bayesian search for the support vector

machine algorithm are presented in Table 5, using the non-linear radial basis function

as kernel.

Table 5: Hyperparameters for SVM.

Hyperparameter Value

C 0.648

γ 0.000563

Kernel function Radial basis function

4.1.5 Measure of Fit Metrics

Table 6 show the errors from the 10-fold cross validation measured in mean squared

error and mean absolute error as well as the R-squared coefficient of determination.

The metrics in Table 6 are calculated for each model for estimation of the response

Z using macroeconomic variables.
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Table 6: Measure of fit metrics for all models.
Metric OLS Full OLS Small AM XGBoost SVM

CV MSE Train 0.453 0.518 0.320 0.190 0.416

CV MSE Test 0.442 0.484 0.324 0.657 0.743

CV MAE Train 0.525 0.558 0.438 0.333 0.55

CV MAE Test 0.510 0.536 0.460 0.660 0.712

R2 0.596 0.471 0.662 0.804 0.580

4.2 Stress Test Results

The predicted Ẑ for the stressed adverse EBA 2021 scenario is presented for each

model in Table 7.

Table 7: Predicted values for adverse scenario Ẑ for different models. The rightmost

column shows the Ẑ using an ensemble of the AM, SVM and XGBoost models.

Metric OLS Full OLS Small AM XGBoost SVM Mean

Ẑ -3.62 -4.43 -0.422 -0.884 -0.521 -0.608

Figure 23 visualizes two fictitious heat maps, the left one describing the average

transition matrix for the portfolio and the right describing the adjusted transition

matrix given a unfavourable year in terms of macroeconomic variables, with a Z =

-1. The figure exemplifies adjusting of transition matrices. The PD calculated from

the transition matrices are presented in 8

51



(a) (b)

Figure 23: Heat maps depicting the probabilities of migration for each risk class. (a)

Average transition matrix for Z = 0. (b) Adjusted transition matrix given Z = −1.

Values are fictional for confidentiality purposes.

Table 8 shows the probability of default from a TTC, hybrid and PIT perspective

using the predicted Ẑ in Table 7 for the stressed EBA 2021 scenario. The PDs are

calculated using the rightmost column, the state of default, of the predicted transition

matrices shown in Figure 23.

Table 8: The resulting probability of default from each of the corresponding Ẑ us-

ing the predicted transition matrices. The rightmost column shows the Ẑ using an

ensemble of the AM, SVM and XGBoost models.

Metric OLS Full OLS Small AM XGBoost SVM Mean

PD TTC (%) 38.4 53.0 1.24 2.71 1.48 1.72

PD Hybrid (%) 48.3 62.7 1.34 3.24 1.64 1.93

PD PIT (%) 57.3 69.8 1.46 3.87 1.83 2.22

Table 9 presents the probability of default for a TTC, hybrid and PIT perspective

using predicted Ẑ in Table 7. Recall that values are calculated using Equation 13 by

Carlehed and Petrov.
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Table 9: Resulting probability of default for corresponding Ẑ using the method of

Carlehed and Petrov.
Metric OLS Full OLS Small AM XGBoost SVM Mean

PD TTC (%) 1.90 1.90 1.90 1.90 1.90 1.90

PD Hybrid (%) 5.20 6.40 2.03 2.35 2.10 2.16

PD PIT (%) 5.25 6.51 2.04 2.36 2.10 2.16
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5 Discussion

In this section, the results and findings of the thesis are discussed and analysed. The

section is divided based on objective of focus, first on the regression models and then

on the economic consequences implied by the stressed economic scenario.

5.1 Discussion of Modelling

The framework for creating a macroeconomic indicator variable Z is based on the

assumption that the credit change indicator X is normally distributed, as seen Fig-

ure 2. This assumption is fairly strong and uncertainty lies in whether it holds or

not. It has a large impact on the applied shifts in the transition matrices and also

the probability of default, which has to be taken into consideration. Considering the

one-parameter framework, the assumption of one variable being able to reflect the

whole movement of the portfolio is quite naive. The method implies that the applied

shift occur according to a normal distribution which can raise questions regarding

the method and corresponding assumptions. However, when creating a model with

the purpose of inference and the independent variables effect on the dependent, there

are clear advantages of having one single response variable assumed to be normally

distributed. This simplifies answering questions regarding which variable affects the

changes in the portfolio. However, for predictive purposes it has to be considered that

a small error in the predicted value for Ẑ can cause large changes in the transitions

of the migration matrices and the probability of default. With this in mind, the re-

gression models can now be investigated.

Four different methods for creating regression models for describing the Z series are

created in this thesis. The first method, used for the creation of two linear baseline

models, is linear regression. From the model in Section 4.1.1, it can be seen that

some of the macroeconomic variables do not have an effect and they are therefore

not included in the presented model. However, some variables do have relations that

violates economic assumptions and theory. For example, an increase in GDP has a

negative effect on the response which implies a higher than average probability of

defaults and a larger degree of transitions from higher risk classes to lower. This vio-

lates previous research that shows that GDP has a positive effect on the development

of SMEs [Woźniak, Duda, Gasior, Bernat, 2019]. This is the case for several of the

predictors for the linear models. When the residuals for both of the linear models
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are investigated, as described in Section 3, neither of them satisfies all of the as-

sumptions. The violated assumptions are connected to independence of residuals and

their variance. The heteroscedasticity does not necessarily make the OLS estimator

biased but it leads to biased standard error of the coefficients, which therefore affects

the t-test [Kaufman, 2013, p.13]. Thus, the estimates of the coefficients cannot with

certainty be reliable and neither can the models. The impact of the violation of the

constant variance assumption varies depending on the degree of heteroscedasticity.

Consequently, how much the violation impacts the t-tests is not known. When inves-

tigating the linear models’ predicted values for Ẑ presented in Table 7, it can be seen

that neither of the linear models have reasonable predictions, given that the worst

observed values for the series of Z, as seen in the response to macroeconomic scatter

plots, is around -1.7. This prediction is most likely the result of using linear models for

non-linear relationships in addition to predictions using values of independent vari-

ables that are not in the sample and have not been seen before. Consequently, with

regards to the violation of the assumptions and the presumed non-linear relationship,

the linear models do not seem to be the best models for this problem.

The additive model includes unemployment and the long term-rate to estimate the

response. The main effect of the independent variables, visualised in Figure 21, shows

an escalation in downwards steepness as unemployment increases. The long term-rate

pattern with respect to the response violates accepted economic theory since values

of around 0 and 4 would indicate higher Z but lower around all other values. This

is discussed further in the economic implication discussion. The assumptions of the

residuals of the additive model are still not satisfied. Since the non-linear effects most

likely have been taken into account, then either the explanatory variables included

cannot explain the response, or there is some underlying problem with the data. There

is a possibility that the additional data is the problem since the larger fluctuations

in the residuals corresponds to the transitions between different data sets. When

the error measurements for the cross validation in Table 6 are investigated it can be

seen that the model is neither over- or underfitted due to the difference between the

training and test errors being very small. The result of the predicted value Ẑ for the

additive model is in a reasonable range with regards to the observed data. However,

it may seem quite small in absolute value given that the stressed scenario is adverse

and the corresponding Ẑ may not reflect that severity.

The tree from the XGBoost model is presented in Figure 22 and, even though un-
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employment, long term-rate and house prices are included, the best XGBoost model

uses unemployment exclusively. Hence, according to this model, unemployment rate

should solely be used to describe the migrations between risk classes for an SME

portfolio. The errors from the cross validation of the XGBoost model presented in

Table 6 shows a quite large difference between the errors for the training and test.

The model is therefore overfitted and not stable and there is a greater uncertainty in

what range the error would be when using the model on out-of-sample data. The pre-

dicted Ẑ for the stressed scenario, as shown in Table 7, is considered to be reasonable

and a Z with that value would reflect an economic situations which, by comparison

to previous years of unfavourable macroeconomic situations, is quite severe. What

has to be taken into account however is that a tree model cannot successfully predict

values outside of the sample and therefore, it is most likely to predict a Ẑ with an

unemployment as close to the out-of-sample unemployment as possible.

The SVM model is hard to interpret in terms of each predictors effect on the response.

Nevertheless, the variables used for the model are unemployment, long term-rate and

house prices which may give an indication of how the response is predicted since the

combination of those resulted in the best model. The errors presented in Table 6 for

the SVM model show signs of overfitting since the cross validation training error is

smaller than that of the test sets. Thus, the model cannot be reliable in terms of

how large an error is expected to be for out-of-sample predictions. The prediction

Ẑ, presented in Table 7, is considered a bit too high for an adverse scenario and the

SVM can potentially be seen as somewhat restrictive in its predictions.

When the models are compared, the linear ones are excluded since they clearly can-

not explain the non-linear effects that the independent variables have on the response.

Hence, by investigation of the AM, XGBoost and SVM model, it can be seen that

the AM has the lowest error for both training and test as well as not being overfit-

ted. Therefore, the AM model is the most stable as well and it also has the lowest

average error. When the R2 for the models is compared, it can be seen that the

XGBoost is the best model since it has the highest value and therefore would be able

to best explain the variance in the original data. However, it has to be considered

that XGBoost is the model with the largest difference in training and test error and

it could be one of the reasons why it has the highest R2. To clarify, the R2 is based

on the variance training set and since the model performs better on the training set

and is overfitted, the R2 will naturally be high. It becomes eminent, given that the
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AM model seems to have the lowest error and best fit in terms of the bias-variance

trade-off, that the AM model has the highest predicted value of Z, which may seem

like the least reasonable value of the three models. However, since it seems to be the

best model in terms of fit and error, then the predicted value, which may seem small,

might be the most accurate for the given economic scenario.

The additional data originating in the loss rate has the effect of enabling more stability

in the models. With the benefit of more stable models, the choice of using additional

data can be argued to be better even if the result is a slightly higher average error.

The major concern is how to interpret the residuals if they are a result of a mix in the

data used as the response. A way to avoid that problem is to use a model not sub-

ject to assumptions, but with the trade-off of having to use less interpretable models,

like XGBoost or SVM. Consequently, there is a trade-off between using a model with

violation of assumptions and a lower average error or a model without any necessary

assumptions on data and a higher error and overfit.

5.2 Discussion of Economic Implications

The focus of this thesis lies in estimation of transition matrices for a portfolio in

stressed market conditions through a univariate random variable Z that describes

the portfolio movements corresponding to the market. First it must be decided to

what extent the movements in the portfolio stem from movements in the market. The

SME can initially be assumed to have a reasonably high correlation with the market

which would entail a sound base for the construction of a model with good predictive

abilities. This constitutes one of the arguments for the choice of a portfolio to model.

By visual examination of the macroeconomic indicator variable Z, the movements

fluctuate over time and, by comparison to other indexes, the series seems to match

the overall movement quite well, with a slight lag.

The lag can stem from a few different sources. Either the initial credit risk rat-

ing models, used to create the data, do not react fast enough to changes in the

macroeconomic variables, or the portfolio does not fluctuate from the changes at all.

Another reason could be that the portfolio has a delayed reaction due to a chain of

movements in the financial system. If the portfolio does not react to changes in the

economic variables, it would indicate a lower degree of PIT for the portfolio than

the observed α = 0.984 in Section 3.4.1. Such a value of α indicates that the initial
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model has a very high degree of PIT and should therefore react reasonably fast to

financial fluctuations. As previously stated, the lag could however stem from the

initial data, meaning that it might be too stable. The portfolio could then mostly

consists of companies with stable finances that are not as affected by fluctuations in

the market due to their resources to withstand an economic downturn, which could

cause a delay in the response. By definition, the TTC estimate should not change in

regards to external factors such as the macroeconomic variables. However, this is not

the case for the PD of the different models as can be seen in Table 8, based on the

method by Belkin and Suchower. It can be seen that the TTC PD is always slightly

lower than the hybrid PD, which is lower than the PIT PD. This relation is expected

for values of Z below 0, but not that the TTC should change to the extent that it

does depending on the predicted response. For the predicted PD using the method

by Carlehed and Petrov, as presented in Table 9, the TTC is lower and has exactly

the same value for all predicted Ẑ. This is desired since it should be constant and

shows that the method works. Since the same does not apply for the PD calculated

from the transition matrices, the TTC and PIT calculations cannot be reliable since

the TTC PD is not constant. However, the same relation, TTC < Hybrid < PIT ,

for the corresponding PD can be seen in Table 8. Consequently, the method of using

the transition matrices for calculating the PD could be useful if larger fluctuations

are desired. This can be observed since the XGBoost has a low Z and also a lower

PD using the transition matrix than when using the method of Carlehed and Petrov.

An extreme case of this can be observed in for the linear models. The contrary is true

for the SVM and the AM models.

The predictor variables are plotted against Z in Section 3.3.1 and all but three seem

to have random effect on the response. One with a vague observable pattern is the

residential real estate variable which has a mostly random pattern and very weak

tendencies. It is therefore not included in three of the models and the additive model

because there is no visible pattern to replicate. In the results it is therefore concluded

that the variables that seem to have an effect on the actual fluctuations are unem-

ployment rate and long term-rate. The long term-rate however seems to be somewhat

unlikely to possess a predictive ability in financial theory judging by its movement

with time as well as with Z. The models are trained on data from 1985 up to 2020

during which time the long term-rate had a almost constant continuous decrease from

10% down to 1% [FRED, 2021]. With this in mind, it seems unlikely that this rate

has an indicative correlation with the movements in the portfolio or the market. It is
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therefore suggested to not be incorporated in future models. The models in this thesis

are and base in statistical evidence to which the long term-rate could be argued for to

include. The unemployment rate is, on the contrary to the long term-rate, included

in various studies that have shown it to be the main indicator for movements of an

SME portfolio [Bekeris, 2012]. This strengthens the outcome of the models that solely

base the prediction of a stressed Z on the unemployment rate.

The stressed Ẑ result in a PD estimate for every model, presented in Table 8. By

reviewing the results it can be concluded that the resulting PD predictions during

stressed market conditions for the XGBoost model, SVM model and the additive

model are in a reasonable range based on historical data. However, given that the

adverse scenario is out-of-sample, the resulting PD should intuitively be larger than

that of any observed data. The mean of the PD presented in Table 8 is in the upper

limits of the historical observed values which can be interpreted as the adverse sce-

nario having an adverse result on the PD. The linear models’ corresponding PD are

however not plausible in any case due to the high values for their estimates and can

therefore not be recommended for future models. This is because the linear models

are used to model non-linear relationships.

It would be beneficial to have knowledge of the exact markets the companies in the

portfolio act in and from there define the variables that would be reasonable to as-

sume to have a predictive ability. Such information is not available for this thesis.

The stress tests are conducted based on the EBA stressed scenario which uses a stan-

dardised numbers of macroeconomic variables that are the same for every bank in

every country. This conditions the models to use the same macroeconomic variables

even though other variables or indexes might have higher correlation and effect on the

portfolio. The use of such variables could potentially increase the predictive ability

and result in more useful information to base risk appetite on. In the case of a de-

layed effect of some macroeconomic variable on the response, the stress test does not

allow such variables to be included since the test should be independent of previous

states. For the current situation it has to be possible to test the models for any given

time point and to receive a stressed prediction at the same time point without any

information of the previous time point.

The EBA adverse scenario is inspired by the current situation of a global pandemic

and therefore the scenario use extreme values for variables that are assumed to be the
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most affected, such as unemployment rate, GDP, real estate and equity prices. It is

a more extreme version of the current financial state. During the recent year, drastic

negative changes have been observed in these variables, and the market has partially

been stabilised by regulatory bodies and external institutions in various efforts. The

data used in the models includes intrinsic monetary or fiscal policy reactions that

can have an effect on the historical transitions in the data set. Hence, any historical

transitions excluding those reactions are not known. In addition, it can be assumed

that the data used for creating the models possess an intrinsic effect from monetary

or fiscal policy reactions and in extension, the predictions may therefore assume such

reactions, at least to some unknown degree. The extreme values that are adopted in

the EBA stress tests are meant to be adverse. In practice, this means that the models

have not been trained on any data similar to it before, complicating the prediction,

especially for the tree-based models. It can cause the models to fail to predict such

movements and only base the prediction on the previous worst outcome, which is not

extreme enough for the stressed variables.

The stress tests are conducted on behalf of regulatory bodies such as EBA and the

Swedish financial supervisory authority. The various actors have different intentions

and desired outcomes when stress testing. The bank prioritises a model that has

the ability to replicate a fair reaction to maximise the use of resources and be fully

invested. For this purpose, the method by Belkin, Suchower [1998] would be more

favourable. The regulatory bodies want a strong reaction which would entail a larger

amount of held capital to ensure financial stability. For this purpose the method by

Carlehed, Petrov [2012] is recommended since the reactions are amplified and the

result is more extreme compared to the other method.
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6 Conclusion

From the results in this thesis, it can be concluded that the Swedish SME-portfolio is

highly affected by changes in unemployment rate and the long term-rate. However,

the change in long term-rate in Sweden the last 30 years has been steadily declining,

resulting in relations which are not reasonable for inference purposes. Therefore,

unemployment rate can, and should, be the only covariate for such a model out of the

macroeconomic variables included in this thesis. If one model is to be preferred, it is

the additive model. It is fairly easy to see the effect of each of the covariates, it has a

good balance in the bias-variance trade-off and the lowest general error when tested

using cross validation. The one-parameter framework can be good for inference since

it allows for univariate models which are easy to interpret. However, it relies heavily

on a normal distribution assumption of the risk class migrations, which is convenient

from a mathematical point of view, but most likely does not hold in reality. Therefore,

with respect to the large changes an error of the predicted Ẑ has on the resulting PD,

it may not be the best framework to use for prediction in out-of-sample scenarios. The

use of the parameter estimation of Carlehed and Petrov enables additional data from

single indexes to be used which makes the models more stable. The probability of

default from the predicted transition matrices are, when using the method by Belkin

and Suchower based on transition matrices, higher for lower values of Z and vice

versa, than when using the one by Carlehed and Petrov based on default frequencies.

It can be concluded that usage of transition matrices as a base for probability of

default gives a more volatile estimation while the use of the method by Carlehed and

Petrov gives a more stable estimation.

6.1 Suggestions for Further Research

For future research it would be favourable to train the models on larger data sets

that cover more extreme fluctuations and therefore gives a better indication of what

is a more common state of the economy. If the data is biased then the model will

be biased. It would also be interesting to try different methods when sampling data

for the macroeconomic indicator series, Z, in the case where a richer data set is

unobtainable. As previously discussed, the models are very dependent on the initial

modelling of the macroeconomic indicator variable and errors will be included in the

next model as well. A closer estimation of Z will improve the prerequisites for the

other models. As for the XGBoost-model specifically, it would be recommended to
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include new theory enabling a regression to model data outside of the sample data.

This would predict a closer estimation of the movements of the data rather than

choosing the most extreme point available in the data set.
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