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Abstract
Understanding complex body–brain processes and the interplay between adipose tissue and brain health is important
for understanding comorbidity between psychiatric and cardiometabolic disorders. We investigated associations
between brain structure and anthropometric and body composition measures using brain magnetic resonance
imaging (MRI; n= 24,728) and body MRI (n= 4973) of generally healthy participants in the UK Biobank. We derived
regional and global measures of brain morphometry using FreeSurfer and tested their association with (i)
anthropometric measures, and (ii) adipose and muscle tissue measured from body MRI. We identified several
significant associations with small effect sizes. Anthropometric measures showed negative, nonlinear, associations with
cerebellar/cortical gray matter, and brain stem structures, and positive associations with ventricular volumes.
Subcortical structures exhibited mixed effect directionality, with strongest positive association for accumbens. Adipose
tissue measures, including liver fat and muscle fat infiltration, were negatively associated with cortical/cerebellum
structures, while total thigh muscle volume was positively associated with brain stem and accumbens. Regional
investigations of cortical area, thickness, and volume indicated widespread and largely negative associations with
anthropometric and adipose tissue measures, with an opposite pattern for thigh muscle volume. Self-reported
diabetes, hypertension, or hypercholesterolemia were associated with brain structure. The findings provide new
insight into physiological body–brain associations suggestive of shared mechanisms between cardiometabolic risk
factors and brain health. Whereas the causality needs to be determined, the observed patterns of body–brain
relationships provide a foundation for understanding the underlying mechanisms linking psychiatric disorders with
obesity and cardiovascular disease, with potential for the development of new prevention strategies.

Introduction
Obesity is a risk factor for disorders of both the body1

and the brain1,2, and represents a global health challenge.
Although causal mechanisms remain unclear, the asso-
ciations between brain and physical health likely reflect

body–brain interactions and common mechanisms across
the soma and the mind. Indeed, patients with psychiatric
disorders show subtle structural brain alterations as
revealed using brain imaging3, and are at increased risk
for poor physical health, including obesity, metabolic
syndrome, cardiovascular disorders, and shorter life-
expectancy4. Yet, how these factors relate to brain
health remains poorly understood.
Several regions of the brain are recognized to be involved

in the complex functions regulating food intake, metabo-
lism, and body composition features5. This includes
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subcortical and cortical structures related to regulation of
metabolism, reward system, and higher-level emotional and
cognitive functioning5. Indeed, cross-sectional brain mag-
netic resonance imaging (MRI) studies have documented
negative associations between obesity/poor metabolic health
and gray matter volumes6–11 and white matter micro-
structure6,7, while there is conflicting evidence for white
matter volumes6,7. Regional variations have been repor-
ted6,7,9–11. Yet, it is not clear how different aspects of obesity,
e.g., adipose tissue distribution, or intra-abdominal fat—a
known risk factor for adverse health outcomes1,12,13—relate
to brain health. Nonlinear associations are a common phe-
nomenon in neuroimaging (e.g., accelerating brain atrophy
at higher ages14), but it is unknown whether aspects of
obesity are nonlinearly related to brain structure. The
genetic contribution to obesity is substantial and interacts
with the environment, lifestyle, and sex15. Body mass index
(BMI) is associated with genetic loci16 and shows genetic
overlap with psychiatric disorders17. Additionally, body
composition, obesity, and brain structure are modifiable and
sensitive to environmental and lifestyle factors and sex.
Indeed, physical fitness and activity have been positively
associated with gray and white matter measures18,19, indi-
cating their importance for brain health, while negative
associations have been reported for mobility impairment20.
Prior studies have largely investigated associations

between brain structure and anthropometric measures
(e.g., BMI, waist-to-hip ratio (WHR), waist cir-
cumference), which are nonspecific measures of body
composition. These measures capture slightly different
aspects of body composition and each provides indepen-
dent information relevant for cardiometabolic risk. BMI is
a general measure that accounts neither for regional/
abdominal adipose tissue nor muscle volume, while both
WHR and waist circumference are indicators of abdom-
inal adipose tissue and are better indicators of cardio-
metabolic risk than BMI (see Tchernof 201312 and Huxley
201021). Regional ectopic fat accumulation appears cen-
tral for cardiometabolic risk13. Visceral adipose tissue (i.e.,
intra-abdominal fat) have stronger links to cardiometa-
bolic risk than abdominal subcutaneous adipose tis-
sue12,13. Ectopic liver fat characterizes non-alcoholic fatty
liver disease and is considered a component of metabolic
syndrome22. Insulin resistance is a risk factor for cardio-
vascular disease23, and the insulin-sensitive skeletal
muscle plays an important role in metabolic health;24

Ectopic muscle fat infiltration has been associated with
obesity25 and insulin resistance24,25, and muscle mass/
strength with insulin sensitivity26. Body MRI enables
regional specific and detailed in vivo measures of adipose
and muscle tissue distribution, allowing for individual
body composition profiling with relevance for clinical
prediction27. How novel body MRI measures relate to
individual differences in brain structure is unknown.

The pathophysiology of psychiatric disorders has pro-
ven elusive. To disentangle complex and multifactorial
mechanisms, with each contributing factor having small
effects, we need an improved understanding of normal
body–brain connections in healthy individuals. To accu-
rately describe such small effects, and thereby improve
our understanding of normative body–brain connections,
large-scale investigations are needed28.
To this end, we tested for associations between

anthropometrics and body composition and brain struc-
ture in generally healthy individuals aged 44–82 years
using anthropometric measures and brain (n= 24,728)
and body (n= 4973) MRI from the UK Biobank29. Based
on prior studies6–10,18, we expected brain structure to
show negative associations with anthropometric and
adipose tissue measures, possibly with stronger associa-
tions for ectopic fat, and positive associations for muscle
volume.

Methods
Study design and participants
We included 24,728 generally healthy UK Biobank

participants (13,051 women, 11,677 men) with brain MRI
and anthropometric measures. A subsample (n= 4973)
had body composition measures of adipose and muscle
tissue from body MRI available. We excluded participants
with known diagnosis of cancers, selected traumas, neu-
rological, psychiatric, substance abuse, cardiovascular,
liver, or severe infectious conditions (Note S1), with
incomplete demographic or clinical data, or who with-
drew their informed consent (opt-out-list dated August
20, 2020). We did not exclude based on common meta-
bolic syndrome or lifestyle factors, but adjust for these in
the analyses.
UK Biobank has IRB approval from North West Multi-

center Research Ethics Committee, its Ethics Advisory
Committee (https://www.ukbiobank.ac.uk/ethics) over-
sees the UK Biobank Ethics & Governance Framework,
and informed consent was obtained from all partici-
pants29. We obtained access to the UK Biobank cohort
through Application Number 27412. The study was
approved by the Regional Committees for Medical and
Health Research Ethics (https://rekportalen.no/) and
conducted in accordance with the Helsinki Declaration.

Demographic and clinical data
We extracted demographic data (age, sex, ethnicity) and

variables reflecting cardiovascular risk (including history
of diabetes, hypercholesterolemia, hypertension, current
cigarette smoker, current alcohol consumption), waist
circumference, hip circumference, weight and height, and
computed BMI and WHR (Note S2). Tables S1 and S2
summarize the demographic and clinical data of the full
sample and the body MRI subsample, respectively.
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MRI acquisition
Participants underwent 3 T brain and 1.5 T body/liver

MRI on the same day and site. Brain MRI was available
from three sites (Cheadle, Reading, and Newcastle), while
body/liver MRI was from one site (Cheadle). Similar
scanners/protocols were used across all sites29 (Note S3).

MRI processing
We processed brain MRI DICOM images in-house using

FreeSurfer30 (version 5.3.0; http://www.freesurfer.net). We
extracted mean cortical thickness and white surface area
from the cortical parcellation, volumes of cortical/cerebellum
gray/white matter, brain stem, CSF, lateral ventricle, third
ventricle, thalamus, hippocampus, amygdala, accumbens,
caudate, putamen, and pallidum, and computed the average
across the hemispheres. We refer to average measures unless
otherwise specified. We extracted bilateral measures of cor-
tical area, thickness, and volume for all parcellations of the
Desikan-Killiany cortical atlas31. Additionally, we extracted
Euler numbers32 as a proxy of image quality33.
We extracted body/liver MRI data processed for visceral

adipose tissue (VAT), abdominal subcutaneous adipose
tissue (ASAT), liver proton density fat fraction (PDFF),
muscle fat infiltration (MFI), and total thigh muscle volume
(TTMV), together with an abdominal MRI quality indi-
cator, provided by AMRA (https://www.amramedical.com)
and subsequently released by UK Biobank. We computed
total abdominal adipose tissue as the sum visceral and
subcutaneous adipose tissue (VAT+ASAT) from the
available data (Note S4).

MRI quality control
Among the 42,068 participants with available brain MRI,

27,203 met inclusion criteria. Of these, we excluded two
participants that did not have Euler numbers available for
automated data quality assessment, prior to iteratively
excluding Euler outliers defined as participants with higher
negative Euler numbers that exceeded three standard
deviations from the mean in either hemisphere. We iter-
ated until no outliers remained, resulting in seven itera-
tions. This led to further exclusion of 2602 participants,
yielding a total sample of n= 24,728 (Fig. S1; Note S5).
For body MRI, participants labelled with severe motion

artifacts, corrupted data, broken coil element, outer field-
of-view inhomogeneities, or metal contamination were
removed. We further removed 180 participants with
incomplete body composition measures, yielding a total
body MRI subsample of n= 4973 (Fig. S1).

Statistical analysis
We investigated the sample demographics across and

within sexes. Categorical variables were compared using
χ2-test. For normally/non-normally distributed continuous
variables we used the two-sample t-test/Wilcoxon rank-

sum test. For unequal variance across sexes, t-test was
replaced by Welch approximation. Normality was assessed
by visual evaluation of density plots (Figs. S2–S3). We
derived correlation matrices of anthropometric and body
composition measures and age, and evaluated the corre-
sponding network graphs34 (Fig. 1). For brain structure, we
assessed density plots for expected distribution patterns
(Figs. S4–S5; not shown for cortical parcellations), and
scatter plots of body–brain associations (Figs. S6–S14; not
performed for cortical parcellations).
For descriptive purposes we initially assessed age- and

sex-related associations on anthropometric and body
composition measures and brain structure using a three-
step multiple linear regression approach: model 1a
included age, age2, and sex; model 1b additionally inclu-
ded age-by-sex and age2-by-sex interactions; and model
1c additionally included metabolic/lifestyle variables,
including ethnicity (due to differences in adipose tissue
distribution/accumulation12), current cigarette smoking
(yes/no), current alcohol consumption (yes/no), diabetes
(yes/no), hypertension (yes/no), and hypercholesterolemia
(yes/no). Model 1c was only applied to anthropometric
and body composition measures.
In the main analyses, building upon model 1b/c, we

tested for linear and quadratic associations between brain
structure (dependent variable) and anthropometric and
body composition measures. We used a three-step

Fig. 1 Network correlation graphs of anthropometric and body
composition measures and age. The network graphs visualize the
structure of the correlation matrices of anthropometric and body
composition measures and age; for (a) the full sample (n= 24,728)
and (b) the body MRI subsample (n= 4973). It was created using the
qgraph34 R function (R version 4.0.0). The edges illustrate the
correlation among variables, and the node placement reflects the
correlation pattern. Only correlations with r ≥ 0.2 are displayed. ASAT
abdominal subcutaneous adipose tissue, BMI body mass index, LF liver
proton density fat fraction, MFI muscle fat infiltration, TTMV total thigh
muscle volume, VAT visceral adipose tissue, V+ S total abdominal
adipose tissue (VAT+ ASAT), WC waist circumference, WHR waist-to-
hip ratio.
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multiple linear regression approach: model 2a included a
linear body measure term; model 2b additionally included
a quadratic body measure term; and model 2c additionally
included metabolic/lifestyle variables. Model 2a/b extends
model 1b, while model 2c extends model 1c. Additionally,
for model 2c only, we conducted: (i) follow-up analyses
for laterality effects; and (ii) regional analyses of cortical
area, thickness, and volume.
We used regression models of incremental complexity

to motivate the fully adjusted models, and to explore the
importance of nonlinearities in the observed body–brain
associations. Separate analyses were conducted for the full
sample and body MRI subsample (when applicable). For
brain MRI, we additionally adjusted for intracranial
volume (except for cortical thickness), image quality
(average Euler number), and site (when applicable).
Categorical variables were included as factors, continuous
variables were mean-centered.
We evaluated model residuals for normality using

residual vs fitted value and Q–Q plots, leading to log-
transformation of dependent variables for models show-
ing a significant (and consistent) departure from nor-
mality, namely: all outcomes for sample description
analyses of anthropometric and body composition and
CSF, lateral, and third ventricle volumes for brain MRI
analyses (Figs. S15–S20 presents selected illustrations).
Remaining dependent variables were not log-transformed.
All statistical analyses were conducted in R (version

3.6.0; https://www.r-project.org). We used lm for the
regression analyses (Note S6), and computed the partial
correlation coefficients, r, effect size directly from the t-
statistics for continuous variables and via Cohen’s d for
categorical variables35. We used Bonferroni correction to
adjust for multiple comparison at α= 0.05 across N1=
(3+ 9)(1+ 17)+17= 233 independent tests, which is the
number of regression models from sample description
(i.e., n= 3+ 9+ 17 tests) and main analyses (i.e., n=
(3+ 9)×17 tests) for both the full sample and body MRI
subsample, counting partly overlapping models once,
reflecting the included 17 brain structures, 3 anthropo-
metric, and 6 body composition measures (i.e., 3+ 6
measures in body MRI subsample). This resulted in a
study-wide significance threshold of p ≤ α/N1= 0.0002.
Similarly, we computed a separate Bonferroni threshold
for the regional cortical analyses across N2= 34×3(3+ 9)
=1224 independent tests, which is the number of cortical
parcellations, cortical measures (i.e., area, thickness, and
volume), and anthropometric and body composition
measures from the full sample and body MRI subsample,
yielding a significance threshold of p ≤ α/N2= 4.1e-05.
We present the overall global picture of significant find-
ings from model 2c, and the range of p-values and r effect
sizes (absolute values; indicated by |r | ). The full results
are presented in the supplemental material.

Results
Demographic variables
The full sample (n= 24,728) included more women

(n= 13,051; 52.8%) than men (n= 11,677; 47.2%), and
was largely of self-identified European ancestry (96.5%).
The age range was 44–82 years. Compared to women,
men had significantly higher age, more alcohol consumers
and cigarette smokers, higher anthropometric measures
(except hip circumference), and more were diagnosed
with diabetes, hypercholesterolemia, and hypertension
(Table S1; Fig. S2). Similarly, the body MRI subsample (n
= 4973) included more women (n= 2652; 53.3%) than
men (n= 2321; 46.7%), the age range was 44–79 years,
and men had higher age and generally higher levels of
adverse factors than women. For body composition
measures, men had higher liver PDFF, VAT, and TTMV,
but lower MFI and ASAT than women (Table S2; Fig. S3).
We derived network correlation graphs of anthropometric
and body composition measures and age (Fig. 1). Both
liver PDFF and MFI showed weaker ties to the other
adipose tissue measures, while TTMV showed links to
measures of abdominal adipose tissue.
Primarily for descriptive purposes, the sample char-

acteristics were further explored for age- and sex-
associations on anthropometric and body composition
measures and brain structure (Note S7; Tables S3–S5).

Brain structure and anthropometric measures
Analyses in the full sample revealed overall negative and

nonlinear associations between anthropometric measures
and global brain volumes, positive associations for ven-
tricular volumes, and a mixed picture for subcortical
structures (Figs. S6–S8). Using model 2c, which investi-
gates both linear and quadratic terms of anthropometric
measures on brain structure (Fig. 2a), we observed the
largest negative effect sizes of the linear term for cere-
bellum/cortical gray matter and brain stem volumes,
mean surface area, and mean cortical thickness (Fig. 2b),
together with significant quadratic terms suggestive of
negative and accelerating reductions for cerebellum/cor-
tical gray matter and brain stem volumes, and mean
cortical thickness (Fig. 2c) at higher anthropometric
measures (Tables S6–S8). Further, we observed smaller
cerebellum white matter and indications of accelerating
reduction with higher anthropometric measures. There
were positive associations between anthropometric mea-
sures and CSF, third, and lateral ventricle. Lateral ven-
tricle also displayed positive quadratic associations
suggestive of accelerated expansion. Subcortical struc-
tures exhibited mixed results. Higher anthropometric
measures were negatively associated with pallidum, cau-
date, and hippocampus volumes, and positively associated
with amygdala, accumbens, and putamen volumes. There
were significant negative quadratic terms for thalamus,
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and amygdala volumes, suggestive of accelerating reduc-
tion for thalamus, while amygdala increase was quad-
ratically attenuated. In general, both waist circumference
and WHR showed a stronger negative, nonlinear, com-
ponent than BMI. Effect sizes of the quadratic terms were
small (|r | ≤0.05). The associations were similar bilaterally
(Fig. S21; Table S9).
The results were robust across models 2a/b/c, with

some adjustment of significant levels and effect sizes, with
p in [7.8 × 10−118, 0.0002], and |r | in [0.02, 0.15] (Fig. S22;
Tables S6–S8). For model 2c, compared to models 2a/b,
we observed attenuation of significance levels and effect
sizes with p in [2.3 × 10−108, 0.0002] and |r | in [0.02, 0.14]
between body and brain anthropometrics. Additionally,
we here observed significant associations (|r | in [0.02,
0.06]) between self-reported diabetes, hypertension or
hypercholesterolemia, and brain structure, including
smaller cortical/cerebellum gray matter and brain stem
volumes, and larger ventricles. Hypercholesterolemia

showed significant association only with brain stem
volume. Current cigarette smoking was negatively asso-
ciated with mean cortical thickness, while current alcohol
consumption was not significantly associated with brain
structure.
Regional analyses showed a number of significant, pre-

dominantly negative, linear associations between anthro-
pometric measures and cortical area, thickness, and
volume (Fig. 3; Tables S10–S12; model 2c), together with
some indications of nonlinearities in the association
(|r | ≤0.06) particularly for thickness (Fig. S23). The sig-
nificance levels and effect sizes were in range p in [1.0 ×
10−59, 4.1 × 10−05] and |r | in [0.03, 0.10]. These regions
were predominantly in the temporal/occipital lobes and
insula, but were also observed in the frontal/parietal lobes.
We observed peak negative effect sizes for (i) area of
inferior temporal (temporal lobe) and lingual and peri-
calcarine (occipital lobe) regions; (ii) thickness of the
superior temporal region (temporal lobe) and insula; and

Fig. 2 Body–brain association patterns for anthropometric measures (n= 24,728). Results from model 2c (a) that investigates body–brain
connections through the inclusion of linear (b) and quadratic (c) terms of anthropometric measures. The regression model was adjusted for age,
age2, sex, age-by-sex, age2-by-sex, intracranial volume (except cortical thickness), lifestyle/metabolic factors, Euler number, and site. Significant
associations indicated by asterisk. Dependent variables CSF, lateral/3rd ventricle were log-transformed. BMI body mass index, GM gray matter, WC
waist circumference, WHR waist-to-hip ratio, WM white matter.
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(iii) volume of the entorhinal, fusiform, superior temporal
regions (temporal lobe), and insula. Positive associations
were observed, and were most pronounced for area of the
paracentral region (frontal lobe) and thickness of the
rostral middle frontal region. The association patterns
were similar—although not identical—across hemispheres
and anthropometric measures. Regional associations with
self-reported diabetes, hypertension, and/or smoking were
observed (Tables S10–S12).

Brain structure, anthropometric, and body composition
measures
Analyses in the body MRI subsample revealed similar

patterns of brain structure associations for anthropometric
and adipose tissue measures (Fig. 4). For anthropometric
measures (Fig. 4a), there were significant negative associa-
tions with mean surface area (except WHR) and cortical/
cerebellum gray matter volume. BMI/waist circumference
were negatively associated with cortical white matter, which
was not observed in the full sample. WHR was positively
associated with CSF, and waist circumference negatively
associated with pallidum volume. For adipose tissue mea-
sures (Fig. 4b), liver PDFF was negatively associated with
cortical/cerebellum gray matter volumes. ASAT was nega-
tively associated with mean surface area, cortical gray
matter, and pallidum volumes, while VAT+ASAT was
negatively associated with mean surface area and cortical/
cerebellum gray matter volumes. MFI was negatively asso-
ciated with mean cortical thickness and cortical/cerebellum
gray matter volumes. TTMV was positively associated with
brain stem and accumbens volumes. The associations were
similar across models 2a/b/c, with anthropometric mea-
sures showing significant p in [1.3 × 10−12, 0.0002], effect
sizes |r | in [0.05, 0.1], and body composition measures
showing significant p in [1.8 × 10−11, 0.0002] and |r | in
[0.05, 0.1]. There were fewer significant findings when using

the fully adjusted model 2c compared to models 2a/b (Figs.
S24–S25; Tables S13–S21). The associations were similar
bilaterally (Figs. S26–S27; Table S22).
Regional analyses of anthropometric and body composi-

tion measures (Figs. 5, S28–S29; Tables S23–S31) revealed
fewer significant findings for anthropometric measures in
the body MRI subsample (Fig. S28; Tables S23–S25) than in
the full sample (Figs. 3, S23; Tables S10–S12), and the
overall association patterns differed somewhat (Figs. 3, S28).
There were, however, several similarities across anthropo-
metric and adipose tissue measures. We observed similar,
negative, association patterns particularly for (i) area of
entorhinal and fusiform (temporal lobe), medial orbito-
frontal (frontal lobe), and postcentral (parietal lobe) regions;
(ii) thickness of the middle/superior temporal (temporal
lobe), precentral (frontal lobe) regions, and insula; and (iii)
volume of the entorhinal, fusiform, superior temporal
(temporal lobe), medial orbitofrontal (frontal lobe) regions,
and insula. Measures of ectopic fat (VAT, MFI, and Liver
PDFF) showed no significant associations with area. Peak
positive effect sizes were observed for thickness of the lat-
eral occipital region (occipital lobe) for VAT, ASAT, VAT
+ASAT, BMI, and waist circumference, but not the other
measures. For TTMV we observed an overall positive pat-
tern with peak effect sizes for thickness of the banks of the
superior temporal sulcus/superior temporal (temporal lobe)
regions. Anthropometric measures had significant p in
[4.8 × 10−12, 4.1 × 10−05] and effect sizes |r | in [0.06, 0.10],
while body composition measures had p in [1.05 × 10−10,
4.1 × 10−05] and |r | in [0.06, 0.09]. There were indications
of some nonlinearities (|r | ≤0.07).

Discussion
In the largest study of body–brain relationships to date,

we mapped connections between brain structures and
anthropometric measures (i.e., BMI, WHR, and waist

Fig. 3 Linear body–brain association patterns across cortical parcellations for anthropometric measures (n= 24,728). Results from model 2c
that investigates body–brain connections through the inclusion of linear and quadratic terms of anthropometric measures, here showing the results
of the linear term for (a) BMI, (b) WHR, and (c) waist circumference. The regression model was adjusted for age, age2, sex, age-by-sex, age2-by-sex,
intracranial volume (except cortical thickness), lifestyle/metabolic factors, Euler number, and site. Figure was created using the ggseg85 R function. BMI
body mass index, r partial correlation coefficient, WHR waist-to-hip ratio.
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circumference) in 24,728 generally healthy participants
without secondary disease effects. Further, we examined
novel body MRI measures of adipose and muscle tissue in
a subsample (n= 4973). For global brain measures, the
observed effect sizes were strongest between anthropo-
metric and body composition measures and cortical/cer-
ebellum and brain stem structures. Widespread regional
association patterns were observed across the cortex for
both anthropometric and body composition measures,
with opposing patterns between measures of adipose and
muscle tissue. Together, these findings revealed a picture
of distributed small, highly significant, associations
between anthropometrics and body composition and the
majority of brain structures. This comprehensive map of
widespread body–brain relationships can be used to
delineate their role in human health.
For global brain measures, we observed negative and

nonlinear associations between anthropometric measures
and cerebellar/cortical gray matter, brain stem structures,
and positive associations with ventricles. Across the cor-
tex, widespread regional associations were observed with
peak negative effect sizes in temporal and occipital lobe
and insula. These findings are in line with our hypothesis
and prior research showing smaller gray matter volume6–9,

and regional cortical10,11 and cerebellar reductions10 in
obese individuals. These structures are also frequently
implicated in brain disorders3. Brain atrophy is observed at
higher ages14. Although cross-sectional evidence and small
effect sizes, our findings suggest accelerating brain atrophy
at higher levels of adipose tissue, possibly relating to reg-
ulatory differences in brain and body lipids. We observed
the strongest nonlinear effect sizes for waist cir-
cumference, which may imply accelerated reductions
particularly at higher abdominal adipose tissue. Prior
studies on subcortical structures and anthropometrics are
limited. Here, we showed a mixed subcortical association
pattern, that were similar across anthropometric measures.
Accumbens, a structure associated with motivation and
reward, and part of the dopamine motivation system36,
showed the strongest positive associations. This is gen-
erally in line with prior studies documenting larger
accumbens volume in children with increased genetic risk
for obesity37, and in predominantly adult obesity across
patients with major depressive disorders and healthy
controls11, and increased accumbens cell density in obese
children38, and supports the assumption of a critical role of
brain mechanisms for reward and reinforcement learning
for lifestyle and dietary choices and obesity.

Fig. 4 Linear body–brain association patterns for anthropometric and body composition measures (n= 4973). Results from model 2c that
investigates body–brain connections through the inclusion of linear and quadratic terms of anthropometric and body composition measures, here
showing the results for the linear term for in (a) anthropometric measures, and in (b) body composition measures, on brain structure. The regression
model was adjusted for age, age2, sex, age-by-sex, age2-by-sex, intracranial volume (except cortical thickness), lifestyle/metabolic factors, Euler
number, and site. Significant associations indicated by asterisk. Dependent variables CSF, lateral/3rd ventricle were log-transformed. ASAT abdominal
subcutaneous adipose tissue, BMI body mass index, GM gray matter, MFI Muscle Fat Infiltration, PDFF proton density fat fraction, TTMV total thigh
muscle volume, VAT visceral adipose tissue, WC waist circumference, WHR waist-to-hip ratio, WM white matter.
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The association patterns were similar for anthropo-
metric and adipose tissue measures, showing smaller
global measures of cortical/cerebellum structures for
most measures. For cortical thickness/volume, we
observed patterns of peak negative effect sizes in tem-
poral, insula, and precentral regions that appear fairly
general. This may suggest that general mechanisms rela-
ted to adipose tissue accumulation also affect cortical
structures. Notably, cortical area did not show any sig-
nificant associations with measures of ectopic fat, but did
show significant associations with the other anthropo-
metric and adipose tissue measures. We might speculate,
in light of the genetic contribution to surface area39 and
abdominal adipose tissue40,41, that common genetic fac-
tors are involved. However, this may also reflect links
between adipose tissue and lifestyle-related metabolic risk
factors13,41. Our observation of an opposing pattern for
muscle volume is in line with literature suggesting a link
between fitness and brain structure18,19, and between
muscular strength and brain health42. Further investiga-
tions in intervention studies are needed.

Our findings point towards ongoing biological pro-
cesses related to adipose tissue may also affect brain
structures, or vice versa, in generally healthy individuals.
Obesity is prevalent in psychiatric disorders4, and adi-
pose tissue may contribute to both psychiatric and
somatic outcomes. Indeed, non-alcoholic fatty liver
disease is linked with metabolic factors, shows increas-
ing prevalence, and increased mortality from cardio-
vascular disease43. Studies indicate links between non-
alcoholic fatty liver disease and sarcopenia44,45—a
muscle disease characterized by low muscular strength
and muscle fat infiltration46. Both non-alcoholic fatty
liver disease and sarcopenia are linked to both metabolic
factors45 and brain-related traits including cognition47–
50 and mood47–49,51. Further, non-alcoholic fatty liver
disease has together with type 2 diabetes been associated
with brain structure alterations52,53. This suggests that
understanding the complex mechanisms relating regio-
nal adipose tissue with brain-related traits may be
important for understanding the interplay between
cardiometabolic and mental disorders.

Fig. 5 Linear body–brain association patterns across cortical parcellations for body composition measures (n= 4973). Results from model
2c that investigates body–brain connections through the inclusion of linear and quadratic body composition terms, here showing the results of the
linear term for (a) VAT, (b) ASAT, (c) VAT+ ASAT, (d) Liver PDFF, (e) MFI, and (f) TTMV. The regression model was adjusted for age, age2, sex, age-by-
sex, age2-by-sex, intracranial volume (except cortical thickness), lifestyle/metabolic factors, Euler number, and site. Figure created using the ggseg85 R
function. ASAT abdominal subcutaneous adipose tissue, MFI Muscle Fat Infiltration, PDFF proton density fat fraction, TTMV total thigh muscle volume,
VAT visceral adipose tissue.
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It is also of interest that the association patterns were
similar for regional adipose tissue measures versus general
anthropometric measures. Further, the association pat-
terns appeared more focused across cortical parcellations
in the full sample, demonstrating the need for large
samples when investigating complex human phenotypes
driven by multiple small effects. Contrary to our expec-
tations, we did not observe stronger associations between
ectopic fat and brain structures. Instead, we observed a
largely analogous pattern across anthropometric and
adipose tissue measures. Effect sizes were generally
stronger in the full sample and for anthropometric mea-
sures, which may reflect the need for large samples when
dealing with small effects and the combinatorial effects of
multiple factors that likely influence anthropometric
measures. Still, the body composition measures from body
MRI may capture more specific features, but were avail-
able for only ~20% of the sample.
Earlier studies have linked vascular risk factors to brain

structure6,9. Our study further corroborates this in gen-
erally healthy individuals, and indicates an association
between adipose tissue distribution and brain structure.
Effect sizes and significance levels were attenuated when
we adjusted for lifestyle and metabolic factors, suggestive
of complex body–brain mechanisms. Self-reported diag-
nosis of hypercholesterolemia, hypertension, or diabetes—
factors related to metabolic health—were associated with
several brain structures. In line with prior research54,
current cigarette smoking was associated with thinner
cortex. Thus, cardiometabolic risk factors appear impor-
tant for brain health, and may underlie the cardiometa-
bolic comorbidity in psychiatric and other brain disorders.
The observed body–brain connections cut across several

anthropometric and body compositions measures and
brain structures, and appeared fairly global. Causal
mechanisms are unknown and likely highly complex and
multifactorial. Our findings of a negative link between
adipose tissue and brain structure could be mediated by
modifiable lifestyle choices with known links to obesity1;
e.g., metabolic factors could influence both somatic and
brain health, impaired brain health could influence somatic
health, or the effects could be reciprocal as previously
implied for obesity and depression2. Further, physical fit-
ness and activity are associated with reduced risk for obe-
sity1, may counteract a genetic predisposition for obesity15,
have neuroprotective effects55, and have been positively
related to brain structure18,19—as also corroborated by this
study. This further support the notion that lifestyle inter-
ventions for promoting metabolic health may be important
for brain health56,57. Although it is premature to conclude,
from a public health perspective, this may imply that life-
style interventions for normalizing adipose tissue compo-
sition and promoting physical activity may affect biological
processes related to brain function and disease.

The high degree of somatic comorbidity in psychiatric
and other brain disorders requires a better understanding
of the complex biological body–brain interactions, and of
how they relate to lifestyle or environmental factors. The
observed body–brain connections could be associated
with obesity-related neuroinflammatory processes58. A
recent large-scale meta-analysis showed increased risk for
vascular dementia—similar to other vascular conditions—
in both underweight and obese individuals59, which is
interesting in light of our observed nonlinear associations
between anthropometrics and body composition and
brain structure. Shared genetic underpinnings may
influence both adipose tissue accumulation and brain
structure, similar to the genetic overlap relating immune-
related disorders60, BMI17, or cardiovascular risk fac-
tors61, to brain disorders. Circuits that link cerebral cortex
and muscle tissue and adrenal medulla have been iden-
tified in monkeys, which may imply that cortical regions
influence the functioning of internal organs and relate to
somatic comorbidities of mental states62. Yet other
complex biological and possibly polygenic processes,
lifestyle/environmental factors, and/or their combinator-
ial effects could influence the findings. To understand
both nature and nurture of somatic comorbidities in
psychiatric disorders, and brain disorders per se, further
mechanistic investigations are warranted. The findings of
this study may suggest that anthropometrics and body
composition are important confounding factors that
should be considered in future case-control studies.
The findings of the present study suggests multiple

small effects, in line with previous reports on the rela-
tionship between BMI and brain structure9,11. A similar
pattern of small and distributed effects are also observed
across a series of studies relating sociodemographic and
lifestyle factors63–66, and mental disorders3,67–79, to brain
structures, as well as studies of neuroimaging genet-
ics3,28,39,80. This is in line with the concept that small
effects are the new normal in brain imaging research28,80,
and of small polygenic effects and genetic pleiotropy
across psychiatric disorders81, making single underlying
causal mechanisms unlikely80. Combinatorial complex
mechanisms of additive small effects are more likely, and
these can only be robustly captured by large studies with
adequate power to identify true effects with stable esti-
mates of effect sizes28. Thus, large-scale investigations are
needed, where effect size convergence and increasing
accuracy is obtained28, but this is challenging to achieve.
To our knowledge, this is the first study of its magnitude
investigating anthropometrics, body composition, and
brain structure in largely healthy individuals. Through
such large-scale investigations we may better understand
small, but normal, body–brain processes. This will pro-
vide us with a better understanding of putative interactive
or confounding factors in psychiatric and other brain
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disorders, thereby enhancing our conceptual under-
standing of the complex mechanisms at play.
This study had some limitations. Data from the UK

Biobank are released in bulks, and we may only work with
the data we have access to. At the time of MRI, the
available diagnostic information was self-reported and we
did not have available serum measures. We neither
investigate cumulative or unit effect of alcohol con-
sumption or cigarette smoking, nor severity of hyperten-
sion, hypercholesterolemia, or diabetes diagnosis. The
observed liver–brain associations could be influenced by
alcohol consumption although this was not captured by
the current study. The subsample with available body
MRI may have been underpowered to detect small
body–brain associations in generally healthy individuals.
We limited our investigations to coarser brain measures,
and vertex-wise analyses might provide a more refined
picture. Findings deviated somewhat from prior studies
using partly overlapping samples8,9,82, probably due to
differences in inclusion/exclusion criteria, sample size,
image processing, and analyses pipeline. The exploratory
cross-sectional design makes it difficult to disentangle
cause from effect, determine underlying body–brain
mechanisms, and draw final conclusions. For the statis-
tical analyses, we used multiple linear regression, and we
did not investigate multivariate association patterns of the
body–brain-link. Further investigations of multivariate
and possibly sex- or age-specific body–brain patterns of
anthropometrics, body composition, metabolic markers,
and brain structure, together with links to cognition, brain
disorders, lifestyle, and genotype are needed. Additionally,
UK Biobank participants are healthier than the general
UK population83, likely reflecting that ability and will-
ingness to participate in medical research is not randomly
distributed in the population. For MRI studies, physical
constraints of the MRI scanner (e.g., difficult to scan
severely obese participants), contraindicators of MRI, and
participant removal during quality assessment (e.g., due to
motion) may further bias the sample. Future investiga-
tions of how the MRI subsample compares to the full UK
Biobank sample would be interesting.
Strengths of the study include an unprecedented sample

size, more than double that of prior UK Biobank stu-
dies8,9,82, that were assessed using standardized proce-
dures and MRI protocols29. Fully automated data
cleaning, inclusion and exclusion criteria, and quality
control limits chance for subjective variations or errors.
We build upon confirmatory analyses of known age- and
sex-related associations on both anthropometrics and
body composition12 and brain structure14,84 that largely
mirrored the current knowledge, which strengthened our
confidence in the reported body–brain patterns. We
applied rigorous diagnosis-based exclusion criteria to
capture normative body–brain associations in generally

healthy individuals, and rigorous correction for multiple
comparisons.

Conclusions
Through large-scale body–brain mapping we link nor-

mally varying anthropometric and body composition mea-
sures to brain structure in a largely healthy population. The
results imply correlated associations between higher adipose
tissue and poor metabolic health and brain structure,
affecting global brain structures, brain cavities, and accum-
bens. While the causal mechanism remain unknown, it is of
vital importance to investigate the underlying complex
body–brain pathways, shared mechanisms of cardiometa-
bolic risk factors and brain disorders, and lifestyle-related
modifying factors. If brain structure alterations can be linked
to lifestyle-related anthropometric and body composition
characteristics, then preventive public health interventions
for normalizing cardiometabolic risk factors could prevent
the development of disorders of the body and the brain.
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