
   

PURCHASE PROBABILITY 
PREDICTION 

Predicting likelihood of a new customer 
returning for a second purchase using 

machine learning methods 
Olivia Alstermark & Evangelina Stolt 

Master Thesis, 30 Credits 
M.Sc. Industrial Engineering and Management, 300 Credits 

Spring term 2021  



Copyrigth © 2021 Olivia Alstermark and Evangelina Stolt
All rights reserved

Purchase Probability Prediction
Predicting likelihood of a new customer returning for a second purchase using machine learning methods

Department of Mathematics and Mathematical Statistics
Ume̊a University
Ume̊a, Sweden

Supervisors:
Natalya Pya Arnqvist, Ume̊a University
Wilhelm Back, Klarna Bank AB

Examiner:
Konrad Abramowicz, Ume̊a University

ii



Abstract

When a company evaluates a customer for being a potential prospect, one of the key questions to answer
is whether the customer will generate profit in the long run. A possible step to answer this question is
to predict the likelihood of the customer returning to the company again after the initial purchase. The
aim of this master thesis is to investigate the possibility of using machine learning techniques to predict
the likelihood of a new customer returning for a second purchase within a certain time frame.

To investigate to what degree machine learning techniques can be used to predict probability of return,
a number of di↵erent model setups of Logistic Lasso, Support Vector Machine and Extreme Gradient
Boosting are tested. Model development is performed to ensure well-calibrated probability predictions
and to possibly overcome the di�culty followed from an imbalanced ratio of returning and non-returning
customers. Throughout the thesis work, a number of actions are taken in order to account for data
protection. One such action is to add noise to the response feature, ensuring that the true fraction of
returning and non-returning customers cannot be derived. To further guarantee data protection, axes
values of evaluation plots are removed and evaluation metrics are scaled. Nevertheless, it is perfectly
possible to select the superior model out of all investigated models.

The results obtained show that the best performing model is a Platt calibrated Extreme Gradient Boosting
model, which has much higher performance than the other models with regards to considered evaluation
metrics, while also providing predicted probabilities of high quality. Further, the results indicate that the
setups investigated to account for imbalanced data do not improve model performance. The main con-
clusion is that it is possible to obtain probability predictions of high quality for new customers returning
to a company for a second purchase within a certain time frame, using machine learning techniques. This
provides a powerful tool for a company when evaluating potential prospects.

Keywords: Purchase Probability Prediction, Machine Learning Models, Well-Calibrated Probabilities,
Imbalanced Data, Data Protection
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Sammanfattning

När ett företag utvärderar en potentiell kund är det viktigt att bedöma om kunden i fr̊aga förväntas
generera l̊angsiktig avkastning. Ett möjligt steg för att evaluera detta är att estimera sannolikheten att
kunden återvänder till företaget för ytterligare ett köp. Syftet med denna masteruppsats är därför att
undersöka möjligheten att använda maskininlärningstekniker för att prediktera sannolikheten att en ny
kund återvänder till företaget för ett andra köp, inom en viss given tidsram.

För att undersöka till vilken grad maskininlärningstekniker kan användas för att uppskatta sannolikheten
att en ny kund återkommer testas ett antal olika uppsättningar av Logistic Lasso, Support Vector Ma-
chine och Extreme Gradient Boosting. Samtidigt appliceras ett antal olika metoder för att säkerställa
välkalibrerade estimat av sannolikheter samt för att potentiellt överkomma sv̊arigheterna som följer av
ett obalanserat förh̊allande mellan återkommande och icke-̊aterkommande kunder i datasetet. Under hela
uppsatsarbetet vidtas dessutom ett antal åtgärder för att säkerställa dataskydd. Bland annat adderas
brus till den beroende variabeln, p̊a s̊a vis kan den verkliga andelen återkommande kunder i förh̊allande
till icke-̊aterkommande kunder inte härledas fr̊an resultaten i rapporten. Dessutom maskeras axlar i fig-
urer och prestationsmått skalas, för att säkerställa att företagskänslig information inte kan tolkas. Trots
dessa åtgärder är det dock fullt möjligt att avgöra vilken av de undersökta modellerna som presterar bäst.

De erh̊allna resultaten visar att den bäst presterande modellen är en Extreme Gradient Boosting modell,
kalibrerad med hjälp av Platt Scaling. Denna modell har avsevärt högre prestationsmått och genererar
mer högkvalitativa sannolikhetsprediktioner, jämfört med de andra studerade modellerna. Vidare syns
tydliga indikationer p̊a att de åtgärder som testats för att hantera obalansen i data inte ger n̊agra
prestationsökningarn, snarare tvärtom. Slutligen kan det konstateras att det, med hjälp av mask-
ininlärningstekniker, i hög grad är möjligt att ta fram högkvalitativa sannolikhetsprediktioner gällande
nya kunders potentialla återkommande för ett andra köp, inom en viss given tidsram. Arbetet visar p̊a
ett kraftfullt verktyg som företag kan använda sig av för att utvärdera potentiella kunder.
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1 INTRODUCTION

1 Introduction

This section gives an introduction to the subject and objectives of this master thesis. This includes a
brief background of the subject and the company concerned, Klarna Bank AB, as well as a problem
description. Also, the general aim of the thesis together with the research questions posed and the
problem delimitations are presented.

1.1 Background

Klarna is today one of Europe’s largest banks (Klarna Bank AB, 2021a). The company was founded
in 2005 in Stockholm, with the mission to make paying as simple, safe and smooth as possible. Today
Klarna provides payment solutions for 90 million customers across more than 250 000 merchants in 17
countries. These payment solutions include direct payments, pay after delivery options and installment
plans in a smooth one-click purchase experience that lets customers pay when and how they prefer, just
according to Klarna’s mission. For more information about the company and their products, see Klarna’s
web page “About Us”.

In this thesis, only new customers are considered. Here, a new customer is defined as a private per-
son that is using a Klarna product, that this thesis is limited to, for the first time. An important key
performance indicator (KPI) of business performance is a customer’s lifetime value (CLV). CLV reflects
the profit a specific customer is expected to generate over its lifetime as a customer, including both
the historical and the expected future profit (Klarna, 2021c). Hence, using CLV to evaluate a potential
prospect naturally allows for strategic long term decision making regarding acquisition and retention of
customers.

1.2 Problem Description

When evaluating a customer for being a potential prospect, one of the key questions to answer is whether
the customer will generate profit in the long run, i.e. has a positive CLV. In order to answer this question,
a company needs to evaluate the expected future profit of the specific customer. In Klarna’s case, the
trade-o↵ between the expected number of future purchases and the credit risk of a specific customer
has to be taken into consideration during this evaluation. A possible step of deciding on this process is
to predict the likelihood of a customer returning to use the company’s products again after an initial
purchase. This likelihood can later be used in order to calculate the expected CLV.

By using data mining together with data analysis techniques, solid models can be built for evaluat-
ing the expected attributes of a potential customer, and thereby enhance the decision making regarding
potential prospects (Ahlemeyer-Stubbe and Coleman, 2014). This thesis will explore the use of data min-
ing together with data analysis techniques in order to predict future purchase behaviour of customers.
Specifically, supervised machine learning (ML) methods based on customers purchase history will be
addressed. This is done as a part of Klarna’s aim to thoroughly evaluate customers’ CLVs in order to be
able to make more solid decisions regarding the acquisition phase of new customers.

1



1 INTRODUCTION

1.3 Aim of Thesis

The aim of this master thesis is to, based on historical customer data, investigate the possibility to use
machine learning to predict the likelihood of a new customer returning to make a second purchase within
a certain time frame. This study will therefore address the following research questions:

• What machine learning techniques can be used to predict the likelihood of a new customer returning
to make a second purchase within a certain time frame?

• To what degree can such machine learning techniques help to predict the likelihood of a new
customer returning to make a second purchase within a certain time frame?

• To what extent is it possible to find potential drivers for likelihood of a new customer returning to
make a second purchase within a certain time frame using machine learning models?

1.4 Delimitations

The main delimitation for this thesis is the amount of time available for the project. The project is
limited to the period of the Swedish spring term of 2021. A large part of the timeline is dedicated to
data preprocessing and construction of the actual data sets. As a consequence, less time is available for
the modelling process.

An additional delimitation due to the time limit concerns the possibility to apply feature engineering. As
a consequence, models are mainly built upon the features that already exist in the database today. The
features used in the thesis has also been delimited to be extracted from a specific subset of tables in the
database, by request from the company.

Another delimitation of the project is that it only covers private customers and a limited collection
of Klarna’s products, which includes three di↵erent payment methods: fixed amount installment, re-
volving installment and an interest-free pay later product. Additionally, only one geographic market is
considered. Finally, because the number of products analyzed is restricted and since the focus of the
thesis is on new customers, the number of observations is a limitation. However, as many observations as
possible are gathered from as many consecutive years as possible. For more detailed information about
the data, see Section 3.1.

1.5 Confidentiality

Due to confidentiality and data protection, the data set used in this thesis will not reflect the true un-
derlying data. This has been ensured by adding noise to the response feature, to manipulate the ratio
between returning and non-returning customers. Further, detailed information about features, as well as
the size and balance ratio of the data set, will not be disclosed in this report. Neither will the market nor
the time period corresponding to the data set be stated. In addition, because of the confidentiality, the
values of the evaluation metrics presented for the models are scaled such that the exact values cannot
be derived. Instead, the scaling is applied in such a way that the models under evaluation easily can be
compared towards each other. Plots of results are also scaled and/or presented without axis values, to
make sure that no detailed insights about the data can be derived from these either. As a consequence of
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the confidentiality and data protection, the ability for detailed motivations to parts of the model imple-
mentations are somewhat limited as well as a quantified analysis and conclusions regarding the problem
space of this thesis. However, a parallel project, performed on the true data set, is conducted and de-
livered to Klarna, where motivation of the models and interpretation of the results are presented in the
corresponding way as in this report. Hence, it is possible to apply the methods presented in this thesis
report and generalize the findings of this project to similar problems. In addition, since two comparable
projects are performed on di↵erent data sets, comparison of findings from the project presented in this
report and the true project can be made. See Section 6 for a detailed analysis and discussion regarding
this comparison. It should be noted though, that the actual results from the true project are not disclosed
in this report.

The actions of manipulating the balance in the data and scaling values of the evaluation metrics have
been performed in accordance with what has been requested by Klarna, in order to protect the data. All
presented results, including plots, in this thesis report have been disclosed after discussion and approval
by the company. For further motivation regarding data protection, see Section 2.1.
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2 Theory

In this section the underlying theory for this thesis is given. The section is divided into four main
parts: 2.1 Data Cleaning & Preprocessing, 2.2 Classification Methods, 2.3 Model Tuning and 2.4 Model
Evaluation. Each of these parts defines the specific underlying theory regarding each of these processes
of the thesis work, accordingly.

2.1 Data Cleaning & Preprocessing

In this section the specific underlying theory for the data cleaning and preprocessing performed in this
thesis is given.

Correlation

Correlation quantifies the association, or the statistical relationship, between a pair of continuous vari-
ables. This can be measured by using, for example, Pearson’s correlation coe�cient ⇢. Pearson’s corre-
lation coe�cient is calculated as the covariance of two variables, X and Y , divided by the product of the
standard deviation of the two features respectively as follows,

⇢X,Y =
cov(X,Y )

�X�Y

. (1)

The Pearson’s correlation coe�cient returns a value between -1 and 1, which represents the limits of
a full negative correlation to a full positive correlation. Hence, a value of 0 represents no correlation
(Shalev-Shwartz and Ben-David, 2014).

Collinearity

Two or more features are said to be collinear if there exists a strong linear relationship between them.
An example of a perfect collinearity is Equation (2) below,

X2 = �1X1. (2)

This applies if there exists a parameter �1 such that Equation (2) holds, which means that there is an
exact linear relationship between X1 and X2.

Multicollinearity is a special case of collinearity. This is the case where a strong linear relationship exists
between three or more independent features. Equation (3) is an example of perfect multicollinearity,
where one feature in a set of n number of features is a linear combination of the other n� 1 features.

Xn = �1X1 + �2X2 + ...+ �n�1Xn�1 (3)

Collinearity between features can cause problems in regression models, making it hard to distinguish the
individual e↵ect from a collinear feature on the response and may also damage the accuracy of estimates of
regression coe�cients (Alin, 2010). See Section 2.2.1 for details on how to estimate regression coe�cients.
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Chi-Squared Contingency Table Test

A contingency table can be combined with a chi-squared test, further denoted �
2-test, to evaluate the

significance of relationship between a pair of categorical features. The contingency table represent the
frequency distribution of a pair of categorical features, and is formed by listing the levels of the first
feature as rows in the table and the levels of the second feature as columns. Each cell in the table
represents the observed frequency of the corresponding row and column levels (Urdan, 2005, p. 162-165).
For an example of a contingency table for two categorical features with di↵erent number of levels, see
Figure 1 below.

Figure 1: An example of a contingency table of two categorical features with di↵erent
number of levels. Oij is an observed frequency where i = 1, 2 represents the level of
Feature 1 and j = 1, 2, 3 represents the level of Feature 2. Hence, Oij is the observed
number of observations in the data that belongs to level i of Feature 1 and level j of
Feature 2. Ri is the row total for level i, and Cj is the column total of level j. The
lower right most cell is the sum of all observed frequencies and will hence be the total
number of observations in the data set, N .

In a �
2-test for independence between a pair of categorical features, the contingency table is used to test

the null hypothesis ”no dependency between the pair of categorical features”. Let i = 1, 2, ..., r denote the
r levels of the first feature in the pair, and j = 1, 2, ..., c denote the c levels of the second feature. Also, let
N be the total number of observations in the sample. For each cell ij in the contingency table, the observed

frequency, Oij , and the expected frequency, Eij =
(RiCj)

N
, is used to calculate (Oij�Eij)

2

Eij
. Then, the sum

of the calculated (Oij�Eij)
2

Eij
-terms is used to define a test statistic �2 so that �2 =

P
c

i=1

P
r

j=1
(Oij�Eij)

2

Eij
.

For a specific ↵ value, the critical value of the �2 distribution with a specific degree of freedom, (i�1)(j�1),
can be found. If the calculated test statistic from the contingency table is greater than or equal to the
critical value, the null hypothesis is rejected (Urdan, 2005, p. 162-165).
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Kernel Density Estimate Plot

Kernel density estimate (KDE) plots are used to visualize the distribution of the observations in a data
set. In comparison to a regular histogram, the KDE plot o↵ers a continuous probability density curve
which is often more suitable for interpretation than the histogram. This is because instead of binning
the observations and counting the frequency within each bin as the histogram does, the KDE uses a
Gaussian kernel to smooth the data to produce a continuous density estimate. When using the KDE
plot, the bandwidth must be set. A small bandwidth allows the plot to fluctuate more according to the
data, while a wider bandwidth gives a smoother curve (Waskom, 2020a).

Binning

Binning is a technique that can be useful to stabilize and improve ML models performance but also
to highlight important information for a specific business perspective. The binning technique can, for
example, be used to highlight more strong di↵erences between levels that are especially important for
that specific business point of view or to group observations into more generally used classes, such as
commonly used age ranges. Binning is a data preprocessing technique that classifies continuous features
into di↵erent levels, so called bins. Binning can be done either manually by applying domain knowledge
and business rules, or by using automatic techniques based on statistics and analytics (Ahlemeyer-Stubbe
and Coleman, 2014, p. 72-77). In this thesis, the main strategy for binning is to either use domain knowl-
edge or a quantile method. Hence, only the quantile method is defined further, even though a number of
additional methods exist.

The quantile method works by first ordering data according to its values and then dividing it into a
prespecified number of quantiles. A common rule of thumb is to use 4-6 quantiles, in order to com-
promise between too much variation and too little variation in values (Ahlemeyer-Stubbe and Coleman,
2014, p. 72-77). Using the quantile method, discretization is performed so that each bin contains ap-
proximately the same number of observations (Scikit-Learn Developers, 2020a).

Binning is often combined with an encoding strategy, i.e. the created bins are encoded in a prespec-
ified manner. A number of di↵erent encoding strategies exist. In this thesis, binning is performed using
an ordinal encoding. Hence, only the ordinal encoding is further defined. This works by returning the
bin identifier encoded as an integer value, where the bin identifiers are ordered according to its original
values ordering (Scikit-Learn Developers, 2020a).

One-Hot Encoding

Many ML algorithms require the input data to be of numerical form. This is because some algorithms,
such as SVM as described in Section 2.2.3, is algebraic. Hence, categorical data, i.e. data consisting of
one or more fixed possible values that do not have a numerical meaning, must be transformed. One way
of transforming categorical data to numerical data is by one-hot encoding. For a categorical feature of
n number of levels, this works by creating a new binary feature for each level of the categorical feature,
where 1 represent presence and 0 represent absence, before removing the original feature. This results in
a new data set of n new binary features (Géron, 2019, p. 64-65).
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This way of encoding data does not only transform the data into a numerical format suitable for ML
algorithms, it also circumvent the problem that ML algorithms, due to their algebraic nature, assumes
that two nearby values are more similar than two distant values. Hence, one-hot encoding can be applied
to already numerical values to obviate this issue. Further, one-hot encoding can also be used as a method
to handle the issue that many algorithms cannot interpret and operate on missing values. In one-hot
encoding, missing values can be treated as another level of the feature and hence be encoded accordingly.

Although, when performing one-hot encoding one must be aware of the potential risk of inducing mul-
ticollinearity, as described in Equation (3). This can be the case when using an algorithm that includes
an intercept but that also requires independence of features, such as logistic regression as described in
Section 2.2.1. This since all n features together with the intercept in such a case becomes a linear combi-
nation. This is often referred to as the ”dummy trap”. In order to avoid this, either the intercept of the
model or one level, i.e. one of the created binary features, per categorical feature needs to be removed.

Train-, Validation- and Test Sets

Randomly splitting the full data set into train-, validation- and test sets of specified sizes is done to make
sure that a model is not evaluated on the same data set as it was trained. The split could, for example,
be 70% train data, 15% validation data and 15% test data. A common way to use these data sets is as
follows; The train set is used to train multiple models with di↵erent hyperparameter settings. Then, the
di↵erent models are evaluated on the held out validation set, and the best performing model is chosen to
be refitted on the full training set before finally being evaluated on the test (Géron, 2019, p. 48-49).

Imbalanced Data

An imbalanced data set is one where there is a significant imbalance between the classes, i.e where
one of the classes is severely over-represented in the response feature. The class of less observations
is referred to as the minority class, and the greater class is commonly called the majority class. The
aim of a classification model is, most often, to have good predictive performance on both of the classes.
Unfortunately, classifiers tend to perform very well on the majority class while extremely poorly on the
minority class, which can cause severe problems if such a model is set in production (He and Garcia,
2009, p. 1264).

Random Undersampling

A number of di↵erent methods can be used to modify an imbalanced data set to a more balanced
one, which often empowers the classification performance. One such method is random undersampling.
Random undersampling is a sampling technique applied to an imbalanced training data set to successively
remove randomly selected observations from the majority class until a balance between the number of
observations in the classes is achieved (He and Garcia, 2009, p. 1266-1267). An obvious disadvantage
of undersampling is that training instances are removed, which can cause the classifier to miss out on
important attributes in the majority class (He and Garcia, 2009, p. 1267). When using undersampling,
consider not sampling the test data set. In that way, a model can be trained on balanced data while
evaluated on an imbalanced data that is similar to the real world case.
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Data Protection

When handling business data, privacy and security must be taken into account to ensure that confiden-
tiality of entities involved is not compromised. This could regard both personal identifying information
or sensitive business information, not to be disclosed to the general public. Here, one commonly used
approach to prevent the disclosure of sensitive information is data de-identification. This is the process
in which personal identifying information is excluded or denatured to such extent that a person’s identity
or a company’s sensitive data cannot be reconstructed. Data that has been de-identified can however
in conjunction with supplemental data often be used to derive the true underlying values. Hence, noise
addition is recommended to be considered in combination with data de-identification. Using traditional
noise addition methods, transformed data should have the same statistical properties as the original
data. This is a problem when the actual statistical properties in the original data is sensitive informa-
tion. Hence, one approach could be to add observations to the data set, not reflecting the true statistical
properties, in order to make the data fully confidential. However, generating fully confidential data comes
with a trade-o↵ between utility and privacy; the more close the masked data is to the original, the less
confidential the data set becomes, but the more unlike original the masked data set is, the more secure
but the less predictive powers. Hence, utility of the masked data set might be lost as a consequence of
removing statistical characteristics from the origin data set (Mivule, 2013).

2.2 Classification Methods

This section theoretically defines the three classifiers used in this thesis, as well as complementary theory
regarding methods used for the specific implementations of the considered models.

2.2.1 Logistic Regression

Logistic regression is one of the most widely used binary classification methods today, and is especially
suitable to use for problems seeking to predict the posterior probabilities of two classes while ensuring
that the predictions are restricted to remain within the [0, 1] interval and sum up to 1 (Hastie et al.,
2009, p. 119).

Logistic Model

Assume that X = (X1, X2, ..., Xp)T is a vector of p independent predictors, and that Y is a binary 0/1
encoded response, where yi = 1 when the observation Xi belongs to class 1, and yi = 0 when Xi belongs
to class 0. The probability of X belonging to class 1 can then be formulated as

p(X) = Pr(Y = 1|X1, X2, ..., Xp). (4)

To model the relationship between the probability p(X) and the predictors X, logistic regression uses the
logistic function to ensure that the predicted probabilities are restricted to the [0, 1] range. The logistic
function is defined as

p(X) =
e
�0+�1X1+···+�pXp

1 + e�0+�1X1+···+�pXp
, (5)

where �0,�1, ...,�p are unknown regression coe�cients of the model. Using the logistic function, the
modelled probabilities will always have an S-shaped curve (James et al., 2013, p. 131-132). For details
on how the regression coe�cients are estimated, see below.
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It is possible to manipulate Equation (5) to obtain the odds

p(X)

1� p(X)
= e

�0+�1X1+···+�pXp , (6)

which can take on any value between 0 and 1. An odds value close to 0 would correspond to a very low
probability in Equation (4), while a value close to 1 would correspond to a high probability. By taking
the logarithmic of both sides of Equation (6), the odds can be used to derive the logit:

log

✓
p(X)

1� p(X)

◆
= �0 + �1X1 + · · ·+ �pXp. (7)

Using the logit, the e↵ects of changing the values of the predictors in the logistic regression model can
be interpreted. More specifically, increasing, for example, the predictor X1 by one unit changes the logit
by �1 according to Equation (7). Because logistic regression does not model the relationships between
the probabilities and the predictors as a straight line though, �1 does not correspond to the change in
p(X) caused by increasing X1 by one unit. Instead, since the relation is characterized by an S-shaped
curve, the change in p(X) depends on the current value of X1. However, increasing X1 will cause p(X)
to increase if �1 is positive, and vice versa (James et al., 2013, p. 132-133). This possibility to interpret
the e↵ects of the predictors on the response is one of the strengths of the logistic regression that many
modern ML models lack.

Estimating Regression Coe�cients

The regression coe�cients, �0,�1, ...,�p, in Equation (5) are unknown and must hence be estimated
using training data. To fit the logistic regression model to the training data, i.e to estimate the un-
known coe�cients, maximum likelihood is the most commonly used method. The aim of maximum
likelihood when fitting a logistic regression model is to find estimates of �0,�1, ...,�p such that plugging
them into the logistic function in Equation (5) returns predicted probabilities of the reference label,
Pr(Y = 1|X1, X2, ..., Xp), that are as close as possible to 1 for all observations where the observed re-
sponse value is 1, and are as close to 0 as possible for all observations where the observed response value
is 0 (James et al., 2013, p. 133).

The likelihood function over N observations for logistic regression of the binary case can be formulated
as follows,

L(�) =
NY

i=1

p(xi;�)
yi(1� p(xi;�))

1�yi ,

where � = (�0,�1, ...,�p)T and xi is a vector of the ith observation of the p predictors, including a
constant term of 1 to accommodate for the intercept (Hastie et al., 2009, p. 120). The corresponding log
likelihood function is:

`(�) = log(L(�))

=
NX

i=1

{yi log p (xi;�) + (1� yi) log (1� p (xi;�))}

=
NX

i=1

n
yi�

Txi � log
⇣
1 + e

�Txi

⌘o
(8)
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To find the estimates of the regression coe�cients, �̂ = (�̂0, �̂1, ..., �̂p)T , the log likelihood function is
maximized with respect to �. The optimization can be made using, for example, the Newton-Raphson
algorithm, which iteratively updates the estimations of � using the Hessian matrix (Hastie et al., 2009,
p. 121-122). For more details on the Newton-Raphson algorithm, see Hastie et al. (2009, p. 120-121).

To make a probability prediction using the estimated logistic regression coe�cients, simply plug the
estimations �̂ and the p observed predictor values, xi, into Equation (5).

Logistic Lasso

When fitting a model to training data, subset selection procedures can be used to retain a certain set of
predictors while discarding the rest. This is commonly used to produce models that potentially are more
interpretable and also possibly have lower prediction errors than the full model. However, subset selection
procedures often result in high variance and hence does not succeed in reducing the prediction error of
the full model as desired. However, shrinkage methods do not su↵er as much from high variation and
can hence be an alternative to subset selection procedures. Shrinkage methods regularize, or shrink, the
regression coe�cient estimates �̂ towards zero in order to reduce their variance. A number of di↵erent
techniques can be used to accomplish this, where lasso shrinkage method is one of them (Hastie et al.,
2009, p. 61-69).

L1 regularized logistic regression, throughout this thesis referred to as logistic lasso, is a special case
of the logistic regression where the lasso shrinkage method is used when fitting the model to the training
data. The lasso shrinkage method uses the `

1-norm to penalize large values of � and hence shrink the
values. The `

1-norm of � is defined as ||�||1 =
P

p

1 |�j | where p is the number of predictors in the full
model. Consequently, the logistic lasso model is fit by maximizing a `

1-penalized version of Equation (8)
according to,

NX

i=1

h
yi

⇣
�Txi

⌘
� log

⇣
1 + e

�Txi

⌘i
� �

pX

j=1

|�j | , (9)

where � is the cost hyperparameter controlling the strength of the penalization. The hyperparameter �
can be tuned using, for example, cross-validation (see Section 2.3). Note that the intercept term most
commonly is not penalized.

An interesting attribute of the lasso shrinkage method is that it not only shrinks the estimated coef-
ficients towards zero, it actually encourages a number of coe�cients to be exactly zero. Hence, lasso
shrinkage can serve as an automatic feature selection when the cost parameter � is large enough.

2.2.2 Extreme Gradient Boosting

Extreme gradient boosting, further referred to as XGBoost, is a technique for performing supervised ML
tasks and has proven to demonstrate state-of-the-art results on a wide range of problems. The technique
is built upon the ideas of decision tree ensembles, regularization and gradient boosting with a few nifty
tricks (Chen and Guestrin, 2016). Below, the fundamental theories are presented in order to define
XGBoost fully.
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Decision Tree

A decision tree is a predictor h : X ! Y that predicts the label associated with an instance x by letting
x travel from the root of a tree to a leaf (Shalev-Shwartz and Ben-David, 2014, p. 250). Decision
trees can be applied for a number of di↵erent prediction problems, for example, it can be used for both
classification and regression. A classification tree predicts a qualitative response and a regression tree
predicts a quantitative response.

Figure 2: An example of a decision tree and its di↵erent parts. The leaf nodes in
the tree represent the predictions. In a classification tree the leaf nodes would have
qualitative values, representing the predicted response.

In Figure 2, an example of a decision tree is shown. At each node on the root-to-leaf path, the successor
child is chosen on the basis of a splitting of the input space. Usually, this splitting is based either on one
of the features of x or on a predefined set of splitting rules. Each leaf contains a specific label, which
will be the predicted response. In a binary classification tree, these leaf nodes can be represented by, for
example, zeros and ones.

Due to the decision tree’s simplicity, it is easy to understand and interpret. Although, this comes with a
disadvantage; a small decision tree, i.e. a tree with only a few branches, can be a so called weak learner.
A weak learner is an ML algorithm that provides an accuracy just slightly better than random guessing
(Shalev-Shwartz and Ben-David, 2014, p. 131). This can often be bypassed by using methods such as
ensemble models, as described in the following section.

Ensemble Method with Regularized Learning Objective

The idea of the ensemble method is to build a solid predictive model by combining a collection of simpler
models (Hastie et al., 2009, p. 650). Below is an example of a tree based ensemble model described.
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Let D = {(xi, yi)} where |D| = n,xi 2 Rm
, yi 2 R, n is the number of observations and m is the number

of features. Then a tree ensemble model, defined as follows,

ŷi = �(xi) =
KX

k=1

fk(xi), fk 2 F

uses K additive functions to predict the output. Here, F = {f(x) = wq(x)} (q : Rm ! T,w 2 RT ) is the
space of trees, where q represent the structure of each tree that maps an example to the corresponding
leaf index, T is the number of leaves in the tree, each fk corresponds to an independent tree structure q

and leaf weights w. The tree ensemble model in XGBoost consist of a set of classification and regression
trees (CART), meaning that the trees contains a real score instead of a decision value, as in a traditional
decision tree. In such ensemble model, every tree contains a continuous score on each of the leafs, here wi

is used to represent the score on the i-th leaf. For each example, a decision rule in the tree is used, given
by q, to classify it into leaves. The final prediction is then calculated by summing up the score, given by
w, in the corresponding leaves. This prediction value can then have di↵erent interpretations, depending
on the task. In this thesis, where a probabilistic classifier is desired, the predictions are transformed using
the logistic function, as in Equation (5), to get the probability of positive class (XGBoost Developers,
2020).

To learn the set of functions to be used in the model, the following regularized objective is minimized

L(�) =
X

i

l(ŷi, yi) +
X

k

⌦(fk),

where ⌦(f) = �T +
1

2
�||w||2

(10)

and l is a di↵erentiable convex loss function that measures the di↵erence between the prediction ŷi and
the target yi and ⌦ penalizes the complexity of the model. For example, in this thesis, where a binary
classification problem with the aim to output a probability is considered, the negative log likelihood, as
defined in Equation (8), is used as loss function. Here, T is the number of leaves in the tree, � is the
penalization term of T and � is the regularization term which penalizes the weights w of di↵erent leaves.
This regularization helps avoiding over-fitting and the regularization objective will tend to select a model
employing simple and predictive functions (Chen and Guestrin, 2016).

Gradient Tree Boosting

The regularized objective function in Equation (10) includes functions as parameters and hence cannot be
optimized using traditional optimization methods in Euclidean space. Instead, the model can be trained

in an additive manner. This is done as follows. For each tree, a prediction ŷ
(t)
i

is calculated for the i-th
instance and the t-th iteration, then the ft that results in the most improvement for the model is greedily
added to Equation (10) according to,

L(t) =
nX

i=1

l(yi, ŷ
(t�1)
i

+ ft(xi)) + ⌦(ft).

Further, a second-order approximation can be used to quickly optimize the objective in the general setting
according to,
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L(t) '
nX

i=1

[l(yi, ŷ
(t�1)) + gift(xi) +

1

2
hif

2
t
(xi)] + ⌦(ft),

where gi = @ŷ(t�1)l(yi, ŷ
(t�1)) and hi = @

2
ŷ(t�1)l(yi, ŷ

(t�1)) are the first and second order gradient statistics
on the loss function. By removing the constant terms the following simplified objective at step t is
obtained,

eL(t) =
nX

i=1

[gift(xi) +
1

2
hif

2
t
(xi)] + ⌦(ft). (11)

Define Ij = {i|q(xi = j)} as the instance set of leaf j. Equation (11) can then be rewritten by expanding
⌦ as follows,

eL(t) =
nX

i=1

[gift(xi) +
1

2
hif

2
t
(xi)] + �T +

1

2
�

TX

j=1

w
2
j

=
TX

j=1

[(
X

i2Ij

gi)wj +
1

2
(
X

i2Ij

hi + �)w2
j
] + �T.

For a fixed structure of q(x) the optimal weight w⇤
j
can be calculated as,

w
⇤
j
= �

P
i2Ij

giP
i2Ij

hi + �
+ �T.

The corresponding optimal value can then be calculated by,

eL(t)(q) = �1

2

TX

j=1

(
P

i2Ij
gi)2P

i2Ij
hi + �

+ �T. (12)

Equation (12) can be used as a scoring function to measure the quality of a tree structure q in order to
decide upon most optimal split. Although, it is impossible to enumerate all the possible tree structures
q. Instead, a greedy algorithm that starts from a single leaf and iteratively adds branches to the tree
can be used. Assume that IL and IR are the instance sets of left and right nodes after the split. Letting
I = IL [ IR, then the loss reduction after the split is given by,

Lsplit =
1

2

"
(
P

i2IL
gi)2P

i2IL
hi + �

+
(
P

i2IR
gi)2P

i2IR
hi + �

�
(
P

i2I
gi)2P

i2I
hi + �

#
� �

13



2 THEORY

which is used for evaluating the split candidates (Chen and Guestrin, 2016). Lsplit can be interpreted
as the gain for adding the specific branch. Hence, if the gain is smaller than 0 there is no benefit from
adding the branch (XGBoost developers, 2020a).

To summarize the tricks of XGBoost; the model uses the second-order gradients of the loss function
which provides e↵ective information about the direction of gradients to successfully obtain the minimum,
and the advanced regularization improves model generalization. Also, the training of the model is fast
and can be parallelized. Hence, the XGBoost employs a number of practical tricks that makes it excep-
tionally successful.

Another benefit of using XGBoost is that it is relatively straightforward to retrieve importance scores
for each attribute (Brownlee, 2020c). This score implies how useful or valuable each feature was in the
construction of the boosted decision trees within the model. The more often a feature is used to make key
decisions, the higher the relative importance. Since the score is calculated explicitly for each attribute in
the data set, it allows for ranking and comparison between features. One example of such an importance
score is by calculate the number of times a feature is used to split the data across all trees (XGBoost
developers, 2020c). Further in the report, this score is referred to as the F score.

Class-Weighted Extreme Gradient Boosting

Imbalanced data sets, as defined in Section 2.1, can negatively a↵ect the training of a XGBoost classifier.
One way to prevent this is by balancing the class weights (XGBoost developers, 2020d). For a binary
problem, this can be done by balancing the positive class relative to the negative class via a hyperparam-
eter, further refered to as the class-weight hyperparameter. Here, the negative class refers to the majority
class and the positive class refers to the minority class. As defined in above section, XGBoost is trained
to minimize a loss function (see Equation (10)). For example, in a binary classification problem using a
logistic regression as learning task, the loss function is the negative log-likelihood. Further, the gradient
in boosting refers to the steepness of this loss function, e.g. the amount of error. Here, a small gradient
means a small error and hence a small change to the model to correct the error. On the contrary, a
large error gradient during training result in a large correction. As defined in above sections, gradients
are used in XGBoost as the basis for fitting subsequent trees added to boost or correct errors made by
the existing state of the ensemble of decision trees. Here, the class-weight hyperparameter is used to
scale the gradient for the positive class. The e↵ect is that that errors made by the model during training
on the positive class is scaled and encourages the model to over-correct them. Hence, this can help the
model achieve better performance when making predictions on the positive class. Although, pushed too
far the result might instead be overfitting of positive class at the cost of worse performance on either
the negative class or both classes. A sensible value to set this hyperparameter to is the inverse of the
class distribution (Brownlee, 2020b). A fast and acceptable way to estimate this value, using only the
training data set, is to take the total number of examples in majority class divided by the total number
of examples in the minority class (XGBoost developers, 2020c).

2.2.3 Support Vector Machine

The support vector machine (SVM) is an ML algorithm that has been shown to perform well on a variety
of problems, and is commonly used for binary classification problems. While the SVM have the ability
to provide non-linear solutions, the method is developed from the maximal margin classifier (MMC) and
the soft margin classifier (SMC) where both methods provide linear solutions (James et al., 2013, p.
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337). Because the SVM is deeply grounded in the theory of MMC and SMC, the theory of the two linear
classifiers will be covered before defining the SVM binary classifier.

Maximal Margin Classifier

For a p-dimensional space, a hyperplane is defined as a flat (p-1)-dimensional subspace. The mathematical
definition of a p-dimensional hyperplane is:

�0 + �1X1 + �2X2 + . . .+ �pXp = 0 (13)

If a point X = (X1, X2, ..., Xp)T satisfies Equation (13), it is concluded to lie on the hyperplane. How-
ever, if X does not satisfy Equation (13), the sign of the left hand side in Equation (13) can be used to
determine on which side of the hyperplane the point is located. Hence, the hyperplane can be used to
split a p-dimensional space into two (James et al., 2013, p. 338).

Now assume that for a binary classification problem in the p-dimensional space, there exists a hyperplane
that is able to perfectly separate the two classes from each other. Such a hyperplane is referred to as a
separating hyperplane. Further, assume that the two classes in the data set are labeled as 1 for the first
class, and �1 for the second class. For an observation xi = (x1i, x2i, ..., xpi)T , the separating hyperplane
will then have the following attributes

�0 + �1xi1 + �2xi2 + . . .+ �pxip > 0 if yi = 1

�0 + �1xi1 + �2xi2 + . . .+ �pxip < 0 if yi = �1

Hence, if a separating hyperplane exists, it can be used to classify a new observation based on which side
of the hyperplane the observation is located. If there exists a hyperplane that separates the two classes
perfectly, there are as a fact an infinite number of hyperplanes that are able to do so. One way to decide
which of the hyperplanes to use as a classifier is to select the MMC.

The margin of a separating hyperplane is defined as the smallest perpendicular distance from any training
observation to the plane. The MMC is hence the separating hyperplane that maximizes the margin to
the training observations, which is expected to also have a large margin to the test observations. The
observations located on the margin of the hyperplane are referred to as support vectors. If the support
vectors are moved slightly, then the whole MMC is moved. Hence, the classifier only depends on the
support vectors, and any other of the observations could possibly be moved without a↵ecting the final
classifier (as long as they don’t move across the boundaries defined by the margin) (James et al., 2013,
p. 339-342). See Figure 3 for a visualisation of an MMC in a two-dimensional space.
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Figure 3: An example of a maximal margin classifier in a two-dimensional space
with two classes. The solid line is the hyperplane that maximizes the margin to the
training observations, i.e the distance from the solid line to any of the two dashed
lines. The dashed lines are the boundaries set by the margin, and the observations
on the dashed lines are referred to as support vectors. (James et al., 2013, p. 342)

To fit the MMC, an optimization problem is solved. For details, see Hastie et al. (2009, p. 343).

Soft Margin Classifier

For some problems, it is not possible to find a separating hyperplane and hence no MMC can be fit. In
other cases, because separating hyperplanes can be very sensitive to specific observations of the train-
ing data and hence tend to overfit, the MMC may not even be desirable (James et al., 2013, p. 344).
However, the theory of the the MMC can be extended to what in this thesis will be referred to as an SMC.

An SMC is a margin classifier that does not perfectly separate the two classes. Instead, it allows for
some miss-classifications on the training data to avoid overfitting. More specifically, the SMC allows
some of the training observations to lie on the incorrect side of the margin or hyperplane (James et al.,
2013, p. 345). For an example of a soft margin classifier see Figure 4.
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Figure 4: An example of a soft margin classifier in a two-dimensional space with
two classes. The solid line is the hyperplane, and the dashed lines are the margins.
Observations 1 and 8 are on the wrong sides of the margins, while observations 11
and 12 are located on the wrong sides of the hyperplane (James et al., 2013, p. 346).

To fit the SMC, the following optimization problem is solved

Maximize M
�0,�1,...,�p

(14)

subject to
pX

j=1

�
2
j
= 1, (15)

yi (�0 + �1xi1 + �2xi2 + . . .+ �pxip) � M (1� ✏i) , (16)

✏i � 0,
nX

i=1

✏i  C, (17)

where �0,�1, . . . ,�p are set to maximize the width of the margin, M , conditional to Equation (15)-(17)
(Hastie et al., 2009, p.418-419). ✏i are called slack parameters and reflect the position of the ith obser-
vation in relation to the hyperplane and margin. If ✏i = 0, the ith observation is on the correct side
of the margin, else it is on the wrong side of the margin or even the wrong side of the hyperplane. If
✏i > 0 it is said to violate the margin. C is a non-negative parameter used to control the budget for the
amount of violations that are tolerated. Increasing C will cause the classifier to tolerate more violations
to the margin, and the margin will consequently become wider. As C decreases, the width of margin also
decreases. The hyperparameter C is often tuned using cross-validation (James et al., 2013, p. 347).

In comparison to the MMC, not only observations located exactly on the margin are defined as sup-
port vectors in an SMC, but also the observations that violate the margin. Increasing C will allow for
more support vectors which in turn may cause the classifier to have low variance and high bias, and vice
versa. Hence, C controls the bias-variance trade-o↵ for the soft margin classifier. As with the MMC, a
new observation is classified by investigating at which side of the hyperplane the observation is located
(James et al., 2013, p. 346-348).
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Support Vector Machine

So far, the MMC and SMC have both provided linear classifiers. However, some problems are too com-
plex to be properly solved using linear solutions. By mapping the feature space to a higher degree, it
is possible to define a linear decision boundary in the higher dimension feature space that corresponds
to a non-linear boundary in the original feature space. The SVM allows for non-linear solutions in the
original feature space, by applying kernels to map the features to higher dimensions (James et al., 2013,
p. 350).

Actually, Equation (14) - (17) can be solved using only the inner product of the training observations.
The inner product of two observations of p features, xi and xi0 , is defined as:

hxi, xi0i =
pX

j=1

xijxi0j .

Therefore, the SMC can be represented as

f(x) = �0 +
nX

i=1

↵i hx, xii ,

where there is one ↵-parameter per training observation. Hence, to estimate the ↵1, . . . ,↵n and �0 pa-
rameters, only the n(n � 1)/2 inner products between the training observations have to be computed.
However, for each training observation which is not a support vector, ↵i will in fact become 0. As a
consequence, to classify a new observation, x, only the inner products to the support vectors are needed
(James et al., 2013, p. 350-351).

However to actually map the feature space to a higher dimension, the inner product has to be gen-
eralized using a kernel function, K(xi, xi0). The kernel function is more specifically used to measure the
similarity between two observation xi and xi0 . Combining the SMC with a non-linear kernel function
results in the SVM (James et al., 2013, p. 352). To define K, a number of di↵erent functions can be
used. The selection of kernel depends very much on the specific problem, and if needed the kernel can
be tuned using cross-validation. However, a commonly used kernel is the radial basis function (RBF)
(James et al., 2013, p. 352):

K (xi, xi0) = exp

0

@��

pX

j=1

(xij � xi0j)
2

1

A . (18)

The hyperparameter � in the RBF kernel is a positive constant called the radius parameter that rep-
resents the radius. The radius parameter controls the curvature of the RBF SVMs decision boundary
(Boyle, 2011, p. 7). If the squared Eucledian distance,

P
p

j=1(xij � xi0j)2, between a test observation
x
⇤ and a training observation xi is large, the RBF value will according to Equation (18) be very small

(James et al., 2013, p.352-353).

Finally, note that the SVM does not naturally produce a probabilistic output. However, there exist
techniques for transforming the predicted classes into probabilities on the [0, 1] scale. In this thesis, the
calibration method known as Platt scaling is used to calibrate the SVM. In Platt scaling, the outputs
from the SVM are fed to a sigmoid function to convert the outputs to the [0, 1] scale (see Section 2.3).
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However, to get an estimate of the corresponding probabilities produced by the SVM prior to calibration,
min-max scaling is used, as described in Section 2.3. Then, the outputs from the SVM, i.e the distances
from each of the observation to the hyperplane, are inputted to the min-max scaling function.

Class-Weighted Support Vector Machine

If the training data that the SVM is fitted to is imbalanced, as defined in Section 2.1, the classifier
may perform poorly because favoring the majority class generally leads to better optimization results for
the model (Brownlee, 2020a). To compensate for the imbalanced training data and get a more reliable
classifier, class weights can be applied to the SVM. As described in Section 2.2.3, a SVM model uses a
hyperparameter, C, to control the extent to which observations are allowed to violate the margin of the
classifier, where a large C allows for a wider and softer margin. By combining C with class weights, wk,
a class specific Ck can be used to force the SVM to balance the favouring of the classes;

Ck = wkC,

where k = 1, 2 for a binary problem. In a regular SVM model, both of the classes in the data are given
equal weights, i.e they are given the same possibility to violate the margin, resulting in a symmetric
margin. In a class-weighted SVM, wk instead di↵ers between the classes so that the minority class gets a
smaller weight causing a harder margin for minority class where less observations are allowed to violate
the margin than for the majority class (Brownlee, 2020a). In other words, the class-weighted SVM learns
the decision boundary based on the relative importance of observations in the training data, allowing for
less misclassifications of the minority class. The weights in a class-weighted SVM can be tuned using
cross-validation or set manually. One way to manually define the weights is to simply set the weight
proportional to the sizes of the classes (Scikit-Learn developers, 2020a).

2.3 Model Tuning

This section defines the specific underlying theory for the model tuning process.

Stratified K-Fold Cross-Validation

In a K-fold cross-validation (CV), the training data is randomly split into K subsets of as equal size as
possible. K� 1 folds are used to train the model and the remaining fold is used together with the chosen
evaluation metric (usually an error metric) to evaluate the model performance. For a K-fold CV, this
procedure is repeated K times, but where the fold used for evaluation constantly is changed so that the
model at the end has been trained and evaluated on the full data set, but at each time with di↵erent
train- and validation folds. Finally the average performance of the model over the K-folds is calculated
(Hastie et al., 2009, p. 241-242). See Figure 5 for an example of the 5-fold CV process.
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Figure 5: Visualization of the data splitting made using five-fold cross-validation.
The model is trained and evaluated for five iterations. In each iteration, the model is
trained using four of the folds, and the remaining fold is used for evaluation. After the
five iterations, the whole training set will have been used for training and evaluation,
and the average performance over the folds is calculated.

K is usually set to five or 10, but can take on any value less or equal to the number of training examples,
N . The bias-variance trade-o↵ must be taken into consideration when choosing K, where a greater K

leads to lower bias but a higher variance. K = 5 or 10 has empirically been shown to balance the bias-
variance trade-o↵. The benefit from using, for example, five-fold CV instead of the method that splits
data into fixed training and validation sets (see Section 2.1) is hence that five-fold CV has lower bias
while it allows for more data to be used for training. At the same time, five-fold CV has lower variance
and better time complexity than using a greater values of K (James et al., 2013, p. 183-184).

Stratified K-fold CV is a special case of K-fold CV where the splitting into folds is not completely
random. Instead, the balance between the classes in the full training set is made sure to be preserved
in each of the folds (Scikit-Learn developers, 2020). The split in a stratified five-fold CV is displayed in
Figure 6. For example, if a full training set has 90% of negative observations and 10% of positives, so
will each of the folds.
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Figure 6: Visualization of how the proportions of positive and negative observations
are kept when splitting into folds in a stratified five-fold cross-validation. The blue
bins represent the majority class in the data and the white bins represent the minority
class.

Bayesian Optimization for Hyperparameter Tuning

Many ML algorithms depend on a number of di↵erent hyperparameters that need to be set manually. For
example, in the XGBoost algorithm there are the penalizing terms, � and �, in the regularized objective
function, as seen in Equation (10). The process of choosing a set of optimal hyperparameters, i.e. the
hyperparamters that return the best performing model, is called tuning. The tuning process is often
a hard task that requires expert experience, unwritten rules of thumb and sometimes even brute-force
search. Obviously, this can be a time-consuming and often an impossible task to perform by just set-
ting the hyperparameters manually. Instead automatic approaches that can optimize the performance of
a given learning algorithm is an alternative. Bayesian optimization is a suitable method to do so, with
proven advantages and impressive results compared to other commonly used methods (Snoek et al., 2012).

As in other kinds of optimizations, Bayesian optimization aims to find the maximum or minimum of
a function f(x) on some bounded set X . But unlike many other optimization algorithms, Bayesian opti-
mization works by constructing a probabilistic model for f(x) that is exploited in order to make decisions
about where in X to next evaluate the function. The idea is to use all information available from the
previous evaluations of f(x), in order to optimize. This results in a procedure that can find the optimum
with relatively few evaluations. The method is more formally described below.

When performing Bayesian optimization one must first select a prior over functions. This will express
assumptions about the function being optimized. Throughout this thesis work the Gaussian process (GP)
prior is used. The prior distribution on functions will take the form f : X ! R. The GP is then defined
by the property that any finite set of N points {xn 2 X}N

n=1 induces a multivariate Gaussian distribution
on RN . The nth of these points is taken to be the function value f(xn). The support and properties
of the resulting distribution on functions are determined by a mean function m : X ! R and a positive
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definite covariance function K : X x X ! R.

The function f(x) is, as above stated, assumed to be drawn from GP prior, the observations are of
the form {xn, yn}Nn=1 where yn ⇠ N (f(xn), v) and v is the variance of noise introduced into the function
observations. This prior and these data induce a posterior over functions; an acquisition function, which
is denoted by a : X ! R+. This function determines what point in X that should be evaluated next
via a proxy optimization xnext = argmaxxa(x). There are several di↵erent acquisition functions that can
be used. In general, the acquisition function depends on the previous observations, as well as the GP
hyperparameters. Under the GP prior these acquisition functions depend on the model solely through
its predictive mean function µ(x) and predictive variance function �

2(x). Here, the best current value
is defined as xbest = argminxn

f(xn) and the cumulative distribution function of the standard normal is
defined as �(.). Throughout this thesis work the Expected improvement acquisition function is used.
This function maximizes the expected improvement over the current best, in order to decide on the next
step. The Expected improvement function has a closed form under the GP as follows,

aEI(x) = �(x)(�(x)�(�(x)) +N (�(x); 0, 1)),

where �(x) =
f(xbest)� µ(x)

�(x)
.

In short, Bayesian optimization for hyperparameter tuning can be summarized by building a probability
model of the objective function and then using this model to select the most promising hyperparameters
to evaluate in the true objective function (Snoek et al., 2012).

Platt Scaling

Platt scaling is a method for mapping binary classification predictions to posterior probabilities, and
was originally developed to transform the outputs of a SVM to posterior probabilities. Platt scaling can
however also be used to calibrate predicted probabilities from, for example, boosted trees to improve
prediction quality (Niculescu-Mizil and Caruana, 2005).

The scaling is done by passing the predictions from the uncalibrated model, f(x), through a sigmoid
function

P (y = 1 | f(x)) = 1

1 + exp(Af(x) +B)
,

where A and B are two scalar parameters estimated using maximum likelihood (Niculescu-Mizil and
Caruana, 2005). Essentially, Platt scaling fits a logistic regression on the predicted outputs from the
uncalibrated model and uses the true class labels from the original data set as labels in the regression, to
produce well-calibrated probabilistic outputs. To avoid overfitting the training data, the calibration can
be performed using a validation data set completely held out from the training phase of the uncalibrated
model (Niculescu-Mizil and Caruana, 2005).

Reliability Plot

Even if an ML method may output predicted probabilities, it is often important to make sure that the
obtained probabilities are actually well-calibrated. Boosted trees can, for example, output probabilities,
but often tend to push them away from 0 and 1, which can be damaging for the quality of the probability
predictions (Niculescu-Mizil and Caruana, 2005). To investigate whether the predicted probabilities of a
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(binary) model are well-calibrated or instead could need some calibration, a reliability plot can be used.

In a reliability plot, the predicted probabilities of a model are partitioned into B bins where each bin
represents a specific interval of probabilities within the [0, 1] interval. For each bin, b = 1, 2, 3..., B, the
average predicted probability of the positive class is calculated, as well as the relative frequency of the
positive observed samples. The relative frequency of positive samples in a bin is calculated by observing
how many samples in the bin that have a positive true class label before dividing this amount by the
total number of samples in the bin. The average predicted probabilities are plotted against the relative
frequencies of the positive samples to obtain the reliability plot (Scikit-Learn developers, 2020b). See
Figure 7 for examples of reliability plots for three di↵erent models.

Figure 7: Reliability plot of three di↵erent models is presented in the upper plot.
The dashed y = x line indicates a perfectly calibrated model. The bar plot under
the reliability plot displays the distributions of the predicted probabilities of the four
models.

If the predicted probabilities follow the dashed y = x line in the upper plot of Figure 7, it indicates that
the predicted probabilities are perfectly calibrated. For example, in a bin with an average probability of
0.8, the actual frequency of the true positive class labels in the bin should be close to 80% if the model
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is well-calibrated (Scikit-Learn developers, 2020b). Since the predicted probabilities of, for example, the
SVM model in the upper plot in Figure 7 does not follow the dashed line and instead behaves according to
a sigmoid curve, this indicates that Platt scaling could be useful. In contrast, the logistic regression gives
well-calibrated probability predictions and does not require calibration (Niculescu-Mizil and Caruana,
2005).

The well-calibrated predictions for the logistic regression in Figure 7 is not a unique case. Logistic
regression is a method that has proven to be generally well-calibrated. One important note regarding
already well-calibrated methods is that applying Platt scaling on these methods is not beneficial and
might actually hurt the performance when the calibration sets are small. This since the calibration then
moves probability mass away from 0 and 1 (Niculescu-Mizil and Caruana, 2005).

Min-Max Scaling

To produce a reliability curve for a model whose output values are not naturally interpreted as probabili-
ties or restricted to the [0, 1] interval (for example, a SVM model prior to Platt scaling), min-max scaling
can be used to produce estimates of the corresponding probabilities. An observation xi is converted to
the [0, 1] scale using min-max scaling according to:

x
⇤
i
=

xi �minx
maxx �minx

where minx and maxx are the minimum and maximum values of the feature x respectively, and x
⇤
i
is the

min-max scaled value of observation xi (Han and Kamber, 2011, p. 114).

2.4 Model Evaluation

This section defines the specific underlying theory for the model evaluation process.

Confusion Matrix

A confusion matrix is a performance measurement that summarizes the performance of a classifier in
regards to the true labels in the test data set. For the binary case consisting of two possible outputs
values, the confusion matrix is a two-dimensional matrix. One dimension in the matrix represents the
predicted class given a specific threshold of the classifier and the other dimension represents the true class
of the observation (James et al., 2013). Hence, four outcomes exist, as follows:

1. Both predicted class and true class are negative. This is known as true negative (TN).

2. Predicted class is positive but true class is negative. This is known as false positive (FP).

3. Predicted class is negative but true class is positive. This is known as false negative (FN).

4. Both predicted class and true class are positive. This is known as true positive (TP).

The confusion matrix for the binary case with two outputs is illustrated in Figure 8 below.
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Figure 8: Confusion matrix for a binary classification case, using a specific threshold.
The number of true negatives (TN), false positives (FP), false negatives (FN) and true
positives (TP) are represented.

Receiver Operating Characteristic Curve

A commonly used tool for evaluation of binary classifiers is the receiver operating characteristic (ROC)
curve. To create the ROC curve of a classifier, the true positive rate (TPR) and the false positive rate
(FPR) are needed. These are defined as,

TPR =
TP

TP + FN

FPR =
FP

TN + FP
(19)

based on definitions listed in the section for confusion matrix above.

The ROC curve plots the TPR of the classifier against the FPR, for a number of possible threshold
values ranging from 0 to 1. A threshold is used in a classifier in order to decide what class a prediction
should be assigned to based on which side of the threshold the predicted probability is located (Géron,
2019, p. 120). For example, if the threshold is 0.50 then all predicted probabilities of values greater than
0.50 will be considered to belong to class 1, and vice versa. Therefore, the ROC curve can serve as a way
to compare di↵erent models over all possible thresholds, while visualising the trade-o↵ between TPR and
FPR. For problems where a crisp class prediction is desired instead of a probability output, a ROC curve
can hence be used to decide upon a suitable threshold. For any given FPR, the higher the corresponding
TPR, the better the predictive power of the model. Hence, the higher the ROC curve is, the better the
predictive power is (Agresti, 2012, p. 224). For an example of a ROC curve, see Figure 9 below.
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Figure 9: An example of a reciever operating characteristic curve (ROC) for a model,
plotting true positive rate (TPR) versus the false positive rate (FPR) over all possible
threshold values. The blue curve is the ROC curve and the black dashed line is a no
skill model operating completely random.

By calculating the area under the ROC curve, a popular evaluation metric called area under curve can
be derived. This is defined in the following section.

ROC Area Under Curve

Area under the ROC curve (ROC AUC) is a metric derived from the ROC curve that makes it easy to
compare di↵erent classifiers’ overall performances over all possible thresholds. Just as the name suggests,
the ROC AUC is the calculated area under the ROC curve. Because AUC is calculated over all possible
thresholds, it is a threshold invariant evaluation metric that can be used to asses the quality of the prob-
ability predictions without explicitly deciding upon a single threshold to use to convert the probabilities
to crisp class labels (Google Developers, 2020).

A classifier’s ROC AUC value can be interpreted as the probability that a random positive observa-
tion will get a higher predicted probability of being positive than a random negative observation, i.e the
probability that the model will rank a positive observation higher than a negative observation (Google
Developers, 2020). The ROC AUC can take on any value between 0 and 1, where the higher the value,
the better predictive power of the model. A ROC AUC value of 0.5 indicates a classifier that is no better
than random guessing, which corresponds to a y = x curve with intercept in y = 0 in the ROC curve
(Agresti, 2012, p. 224). For more details on the interpretation of ROC AUC, refer to Section 6.3.4 in
Agresti (2012).

Precision-Recall Curve

Even if the ROC curve may serve as a better evaluation metric than, for example, overall accuracy of a
classifier, since it has an intuitive interpretation and is commonly used, it does still have some drawbacks.
Actually, the ROC curve tends to present an overly optimistic assessment of the model performance for
models trained on imbalanced data. In such cases, the precision-recall curve (PR curve) may serve as
a more reliable evaluation metric (He and Garcia, 2009, p. 1278). To formulate the PR curve, two
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definitions derived from the confusion matrix in Section 2.4 are needed:

Precision =
TP

TP + FP
(20)

Recall = TPR =
TP

TP + FN
(21)

In the PR curve, the precision and recall of a classifier are plotted against each other. The higher the
curve is to the upper right corner of the plot, the better the classifier. The baseline in the plot, indicating
a random performance, is based on the number of positive observations in the data in relation to the
total number of observations (Saito and Rehmsmeier, 2015). If, for example, a data set has 50% positive
observations, the baseline would be located at y = 0.50. See Figure 10 below for an example of a PR
curve.

Figure 10: The precision-recall curve of an example model is displayed in blue. The
black dashed line represents a classifier no better than random guessing, on a data
set where positive and negative classes are of equal sizes.

To exemplify the reason why a PR curve is more reliable on imbalanced data than the ROC curve,
consider an imbalanced data set where the number of observations in the negative class is much greater
than the number of positive observations. Now, if a classifier trained on the imbalanced data set has a
great change in the number of FPs, the FPR (see Equation (19)) in the ROC curve will still not change
much since the number of negative observations is very big (He and Garcia, 2009, p. 1278). Hence, this
change will be hard to detect in the ROC curve. However since the denominator in the precision metric,
see Equation (20), focuses on the predicted positives instead of the overall number of negatives in the
data, the precision metric is better able to capture a great change in FPs on imbalanced data (He and
Garcia, 2009, p. 1278).

PR Area Under Curve

As with the ROC curve, it is possible to use the PR curve to quantify the performance of the model in
one single value by calculating the area under the curve. This metric is called the PR area under the
curve (PR AUC). The PR AUC can take on any value between 0 and 1, where the closer the value gets
to 1, the better predictive power of the classifier. A value equal to the baseline value, calculated as the
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fraction of positive observations in the data set, indicates a model that is no better than chance (Saito
and Rehmsmeier, 2015).

From the close relationship between the ROC- and the PR curves, an interesting property of the PR
AUC can be derived. Davis and Goadrich (2006) shows that a curve dominates in ROC space if and
only if it dominates in PR space. They also note significant di↵erences in the two types of curves for
algorithm design. That is, algorithms which optimize the ROC AUC are not guaranteed to optimize the
PR AUC. Hence, maximizing the PR AUC of a classifier is preferred in order to also maximize the ROC
AUC simultaneously. For proofs see Davis and Goadrich (2006).

Over- & Underfitting

A model is said to be overfitting the training data if it performs well on the training data, but is unable
to generalize well to other data sets such as the test data set. Overfitting essentially follows from a
model being too complex and hence adapting too closely to the noise in the training data. On the
contrary, underfitting occurs when a model is too simple to explain the underlying patterns in data in an
appropriate way (Géron, 2019, p. 43-47). In ideal situations, the performances should be equal on the
training and test sets as this indicates a robust model that can be used to make reliable predictions on
a new data set.
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3 Method

In order to answer the research questions stated in Section 1.3 the project is divided into a number of
di↵erent phases, as illustrated in Figure 11. These phases are performed stepwise, in a somewhat iterative
manner. Data extraction, data cleaning and response engineering are performed first. This is followed
by an iterative phase of preprocessing and modelling. This iterative methods is adopted in order to allow
for a continuously increased understanding of the data extracted and potential solutions, while refining
the preprocessing to the most appropriate for the data and problem space.

Figure 11: A summarizing illustration over the processes in the project - from data
extraction to final model selection.

3.1 Data

This section describes the data used in this thesis, together with a thorough description of the methods
applied onto the data to prepare it for modelling. This includes the whole process from data extraction,
data cleaning, response engineering to data preprocessing.

Data Description

Each observation in the data set represents a purchase made by a new customer at one of Klarna’s mer-
chants in a specific geographical market, using one of Klarna’s three financing payment methods: fixed
amount installment, revolving installment or an interest-free pay later product. For each new customer,
the data set covers the customer’s first purchase and the customer’s potential second purchase. The data
set contains 156 features that reflect information about each specific purchase, such as personal infor-
mation about the customer and order-specific information. There are both numerical and categorical
features in the data set.

The response is of binary nature where an observed value of 1 indicates that the customer has returned
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for a second purchase within a pre-specified time frame, and a 0 indicates that the customer has not
returned during that time frame. See below for a detailed explanation of how the response feature is
engineered from the initial data set.

Further information regarding the data set can not be given in this thesis, due to confidentiality rea-
sons.

Data Extraction

The data set is retrieved from internal databases by using Structured Query Language (SQL). In order to
extract only the features that are assumed to be of interest for this master thesis specific problem space,
an initial exploration of what data exist in the database is conducted. Based on domain knowledge,
features that hypothetically might have a relation to the response are retrieved from the database. This
process is restricted to a specific database table, in order limit the scope of the thesis while ensuring a
realistic and relevant data set. The selected features are stored in a file that later on is used for data
cleaning and preprocessing.

Data Cleaning

The data set extracted is cleaned by adjusting incorrectly formatted data, incomplete data, and removing
unnecessary features and duplicates. For example, it is ensured that only one observation per each unique
purchase exists, cells containing special characters is replaced by more suitable characters and missing
values are replaced with NaN-values. Features that are used only for filtering data from the database
and features that consist of only one unique value are removed. Also, features containing more than 50%
missing values are treated as incomplete data and hence removed. Additionally, features with a single
value representing more than 90% of the observed values are considered to hold too little information
and are removed. The data cleaning is partly performed before loading data into a file by using SQL but
also after the file of the data set is retrieved by using Python.

Response Engineering

The response used for modelling is not originally present in the data set, and must hence be engineered
manually. A look ahead time frame is defined as a specific number of days post first purchase. To decide
upon which look ahead time frame that can be of greatest business value for Klarna to analyze and make
predictions on, the days between each new customer’s first and second purchase (if any) are calculated
and visualized in a plot. Figure 12 displays an example of such a plot. The point when the curve of
days between purchases starts to converge is then set to be used as the look ahead time frame when
engineering the response feature.
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Figure 12: A fictional visualization of the number of days between 1st and 2nd
purchase. This gives a feeling of how the real plot (that can not be disclosed in this
report due to confidentiality) is used to decide upon which look ahead time frame
that can be of greatest business value for Klarna to analyze and make predictions on.

The response for a specific observation is calculated by using first and potential second purchases of
the customers. Here, it is analyzed if the customer corresponding to an observed first purchase returns
for a second purchase within the decided look ahead time frame. For example, for a response feature
that indicates if a customer has returned to Klarna to make another purchase within 30 days after the
observed first purchase or not, the value of the response is set to 1 if the customer has returned and 0
otherwise. This is calculated by iterating through the observations 30 days after the first purchase, while
documenting if the customer is present in these observations. Naturally, it is not possible to construct
a response for the last observation in the data set because of the look ahead time frame, and these
observations are therefore removed after the response feature is engineered. In addition, the observations
corresponding to second purchases are also removed. Further, due to confidentiality, noise is added to the
response feature. This is done by adding observations that do not reflect the true data, resulting in a data
set unable to reveal any information regarding the true underlying balance of the response feature. This
step of adding noise to the response feature is obviously not performed in the true project presented to
Klarna. Further details on how noise is added can not be given, to prevent the risk of reverse engineering
of the true data set. For further motivation regarding data protection, see Section 2.1. For a visualization
of the final response feature, Y, see Figure 13 below.
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Figure 13: Visualization of the response vector, Y used in this thesis. 0 indicates
that the customer is not returning for a second purchase within the predetermined
time frame, 1 indicates that the customer does return. Note, this visualized vector is
a completely hypothetical example.

Data Preprocessing

Data preprocessing is applied on the cleaned data set by using Python. At this stage, data is manipulated
and processed in order to be suitable for modelling. Because regression models assume the explanatory
features to be independent in order to be able to use regression coe�cients for inference (see Section
2.2.1) while the other two studied models in this thesis do not, two di↵erent data sets are prepared. The
preprocessing includes a number of di↵erent steps, where a few of the steps di↵er between the two data
sets. The steps can be divided into four sub-parts, as described in the paragraphs below. Each step is
performed on both data sets, if nothing else stated.

Part 1 The first part of data preprocessing is data manipulation. This includes the following steps:

• Data set is split into two sets: one for the explanatory features and one for the response feature.
No preprocessing is performed on the response feature.

• Binary features of boolean values are converted to zeroes and ones.

• Data types of features are defined. Categorical features are defined as categorical and numerical
features are defined as numerical, represented by integers or floats.

Part 2 The second part of the data preprocessing is to remove features of too strong association. The
steps performed varies depending on which of the two data sets that is being processed, as defined in the
list below:

• For both data sets, features are removed with respect to high correlation between numerical features.
This is conducted by calculating the pairwise Pearson standard correlation coe�cient between all
numerical features in the data set, as defined in Equation (1) in Section 2.1. If the absolute value
of a correlation coe�cient is higher than 0.9, the feature in the corresponding pair that has the
greatest absolute correlation toward all other features in the data set is removed.
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• For the data set prepared for regression models, features are removed with respect to pairwise asso-
ciation between categorical features. This is done by using a contingency table for each categorical
feature pair, where the association between the features is investigated using a Pearson’s �

2-test,
as defined in Section 2.1. If the association is significant at significance level of 5%, the feature in
the pair that shows significant association to the most number of other features is removed from
the data set.

• For the data set prepared for regression models, features are removed with respect to pairwise
association between numerical and categorical features. To do this, each remaining categorical
feature is plotted against each remaining numerical feature using box plots. If the box plot shows
signs of association between a pair of features, the feature that most often shows association to
other features is removed.

Part 3 The third step of the data preprocessing regards binning and one-hot encoding of features, as
defined in Section 2.1. This is done by performing the following steps:

• Numerical features are binned. All numerical features of more than 10 unique values are automati-
cally binned into five bins using a quantile strategy and ordinal encoding, as defined in Section 2.1.
If a binned feature ends up with only one distinct bin, because of the nature of the quantile binning
strategy, the feature is removed from the data set.

• Categorical features are binned. All categorical features of more than 10 categories are investigated
for being binned into fewer bins. This is done manually, taking the nature of the feature or domain
knowledge into consideration when forming bins. For example, a feature reflecting the month at
the time of a purchase is left with its 12 original categories while a feature reflecting the day of
the month is binned from 31 categories to four bins to now instead reflect the week of the month
instead.

• Missing values are handled by one-hot encoding, as defined in Section 2.1. For each feature that
has a NaN-value, a binary feature that is active if a row in the original feature has a NaN-value, is
created. The NaN-value in original feature is then replaced with a zero. These new binary features
are further referred to as NaN-features. See Figure 14 for a visualizing example of the data set after
this step is performed.

• Categorical features of more than two categories are one-hot encoded, according to Section 2.1.
After the encoding, each category of an original feature is represented by its own new binary
feature in the data set.

• Values of the categorical features, including the one-hot encoded, are converted to integers.
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Figure 14: Visualization of a binned and one-hot encoded example data set. Here,
each column in the left matrix represent an encoded feature and each row an obser-
vation. The example data set consist of an example binary feature X1 containing
NaN-values that has been encoded into a NaN-feature, X1NaN, and X2 that has
three original levels as well as NaN-values, that has been encoded accordingly. The
hypothetical response feature Y, can also be seen in the figure.

Part 4 The last step of data preprocessing is splitting the data into train-, validation- and test sets, as
defined in Section 2.1. Here, only the data set prepared for the SVM and the XGBoost models will be
assigned a validation set. This since this data set will be used to later perform model calibration, which
is only performed on these models. See Section 2.3 for further motivation. Also, two di↵erent types of
splits are performed on each of the two data sets; one split is made to preserve the proportions of classes
in original data sets, while the other split is made in order to generate a balanced training set, as defined
in Section 2.1. The steps to perform at this part of the preprocessing varies depending on which of the
two data sets that are being processed, as defined in the list below:

• The data set prepared for regression models is split into training- and test sets. Approximately 70%
of the available observations are dedicated for training and the remaining 30% for testing. This is
done in a stratified manner, preserving the balance between the two classes as in original data set.
These training- and test sets are together further referred to as the Regression data set.

• The data set prepared for regression models is split into training- and test sets while applying
random undersampling, as defined in Section 2.1, on the training set to get a balanced training set.
Here, proportion in split of training- and test set are defined such that final balanced training set
and test set have approximately a ratio of 70% and 30%, respectively. These training- and test sets
are together further referred to as the Balanced Regression data set.

• The data set prepared for the SVM and XGBoost models is split into training-, validation- and test
set. A split is used such that 70% of the available observations are dedicated for training, 15% for
validation and the remaining 15% for testing. This is done in a stratified manner, preserving the
balance between the two classes as in data set being splitted. These training-, validation- and test
sets are together further referred to as the ML data set.

• The data set prepared for the SVM and XGBoost is split into training- validation- and test sets while
applying random undersampling, as defined in Section 2.1, on the training set to get a balanced
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training set. The split is defined such that final balanced training set, validation set and test set
have approximately the ratios of 70%, 15% and 15%, respectively. These training-, validation- and
test sets are together further referred to as the Balanced ML data set.

3.2 Model Development

This section describes the modelling development phase of the project work. Modelling development is
an iterative phase of building a model, tuning hyperparameters, training the tuned model and finally
evaluating model performance. Below are the di↵erent approaches for the three models used in this
thesis: logistic regression, XGBoost and SVM described. Here, only the final settings that the iterative
modelling process has led up to, for each di↵erent model setup, are presented.

Initial Model Selection

When selecting models to investigate in this thesis work, the choice is mainly based on literature reviews
and what previous similar studies indicate as appropriate models. Empirical research shows that after
calibration (see Section 2.3), the models that predict the most accurate probabilities are boosted trees,
random forests and SVMs. Logistic regression does however most often provide good predicted probabili-
ties without any need for calibration (Niculescu-Mizil and Caruana, 2005). This is one of the motivations
to why logistic regression, XGBoost and SVM are investigated in this thesis.

An additional strength of logistic regression is the ability of the regression coe�cients to be interpreted
(see Section 2.2.1), making it an interesting first candidate to evaluate in order to potentially gain more
insights regarding the e↵ects of di↵erent features on the response. The logistic regression is in further
extended to the logistic lasso in this thesis because of its ability to provide an automated feature selection
(see Section 3.2). Further motivation for the chosen models is that XGBoost, as described in Section
3.2, has proven to demonstrate state-of-the art results on a wide range of problems. Also, since the
training of an XGBoost model is fast and can be parallelized, this motivates the use of the model for this
time-limited project even further. Finally, as mentioned in Section 2.2.3, the SVM algorithm has been
shown to have good results on a variety of problems, making it the third and final algorithm investigated
in this thesis.

Hyperparameters Tuning

For each of the three classifiers investigated, the hyperparameters of the models are tuned using the
Bayesian optimization algorithm (see Section 2.3) in combination with stratified five-fold CV (see Section
2.3) on the training data set (see Section 2.1). The optimization algorithm performs a search over the
pre-specified intervals of hyperparameter values to maximize the mean PR AUC (see Section 2.4) value
over the five validation folds. The optimization algorithm is restricted to a maximum of 25 search rounds
per model due to the time limit of this thesis project. If an optimized hyperparameter value lie on the
boundary of its tuning interval, the optimization is performed again on a wider interval.

The PR AUC is used as the metric to maximize during tuning since it by definition has a strong fo-
cus on the positive class (see Equation (20) and (21)), which can be a strength when applied on an
imbalanced data set (see Section 2.1). Additionally, using an algorithm that maximizes the PR AUC
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implies that also the ROC AUC is maximized (see Section 2.4), while the opposite is not guaranteed.
Hence, the PR AUC is a more e�cient optimization metric than the ROC AUC.

Logistic Regression

Initially, a number of simple logistic regression models are set up using the full data set, but also a
number of di↵erent subsamples. Here, regression coe�cients (see Section 2.2.1) and other model statis-
tics are studied with the aim to gain a deeper understanding of the data. Stepwise backward selection
based on significance of feature e↵ects is performed on these simple initial logistic regression models,
in order to investigate how feature selection a↵ects the performance of the models. Parallel to this, a
logistic regression model using automatic feature selection, lasso shrinkage methods (see Section 2.2.1), is
implemented. These initial models derived from di↵erent feature selection techniques show very similar
performance when evaluated and compared. Hence, the decision is made to only move forward with the
logistic regression using the lasso shrinkage method (further referred to as logistic lasso) on the full data
set. This with the main reason being the time limit of this thesis. This model setup is also applied onto
a data set with a balanced training set, because imbalance between the classes in the response (see Sec-
tion 2.1) has been encountered. Further, only these two logistic lasso models are explained in more detail.

The two logistic lasso models are implemented on the two di↵erent data sets and further named ac-
cording to the list below:

1. Regular Logistic Lasso: Implemented using the Regression data set.

2. Balanced Logistic Lasso: Implemented using the Balanced Regression data set.

Further, the cost parameter, �, as defined in Equation (9), is tuned on the interval [0.001, 10], according
to the process described above in Section 3.2. Also, the intercept is not used, in order to avoid the dummy
trap, as defined in Section 2.1. In the cases where the solver does not converge, the maximum number
of iterations are manually increased from default 100 until the solver successfully converges. All other
hyperparameters are set according to default values, see Scikit-learn documentation about the logistic
regression classifier for more information (Scikit-Learn Developers, 2020b).

The setting of the cost parameter and the maximum number of iterations obtained from tuning are
used to fit the optimal version for each of the two logistic lasso models, on the full training set.

Once the logistic lasso models are implemented, model evaluation process is performed, as described
below. Here, the logistic lasso models are compared against each other using the evaluation metrics, in
order to decide upon which logistic lasso has the best performance. The chosen best performing model
is then used as one of the candidate models in final model selection later on.
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Extreme Gradient Boosting

Three di↵erent XGBoost models, as defined in Section 2.2.2, are implemented with slightly di↵erent
setups, in order to investigate how di↵erent settings a↵ect the ML algorithm’s performance on this
specific problem space. The three models are implemented on two di↵erent data sets, as described below:

1. Regular XGBoost: Implemented using the ML data set.

2. Class-Weighted XGBoost: Implemented using the ML data set, with balanced class weights,
according to definition of class-weighted XGBoost given in Section 2.2.2. The hyperparameter is
set according to the recommendation, i.e. the ratio of the number of examples in majority class
over the number of examples in the minority class in training data set.

3. Balanced XGBoost: Implemented using the Balanced ML data set.

Initially, only a few hyperparameters are used when performing hyperparameter tuning. More hyper-
parameters are then added to the tuning process and kept if improved performance can be seen for the
models. Further, only the final setup for hyperparameters used in tuning is presented. Here, a number of
hyperparameters are set to fixed values for all three XGBoost models. The learning task is set to logistic
regression for binary classification with probability output and hence corresponding learning objective,
i.e. the loss function l presented in Equation (10), is set to negative log likelihood. Number of sub-trees
that is used in the tuning process is set to 1000, with an early stopping condition set to 10, specifying
that the algorithm will stop if the performance has not improved for 10 rounds.

Further, for each of these three models, a number of hyperparameters are tuned, using the same setup, as
described in Table 1 below. All other hyperparameter are set according to default values, see XGBoost
library documentation for more information (XGBoost developers, 2020c).

Table 1: Hyperparameter settings used for tuning of the XGBoost models. The
intervals of the hyperparameter values are continuous between the specified interval
boundaries, except for maximum depth of each tree which is a discrete interval. For
more information of the specific hyperparameters in the implementation, see XGBoost
library documentation (XGBoost developers, 2020c).

Hyperparameter Setting (from, to)
Maximum depth of each tree [2, 20]
Minimum loss reduction required for further partition on a leaf node [0, 10]
L1 regularization term on leaf weights [0.1, 100]
Step size shrinkage on feature weights [0.001, 1]
Maximum allowed delta step for each leaf output [0, 10]
Sub-sample ratio of columns in data set used by each tree [0.3, 0.8]

For each of the three models, the corresponding number of sub-trees for the setting of hyperparameters
obtained from tuning is saved. This is then used together with the setting obtained from tuning to finally
fit the optimal version of each of the three XGBoost models on the full training set.

Once the XGBoost models are implemented, model evaluation process is performed, as described be-
low. Here, the three XGBoost models are compared against each other using the evaluation metrics, in
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order to decide upon which XGBoost has the best performance. The chosen best performing model is
then used as one of the candidate models in final model selection later on.

Support Vector Machine

Three di↵erent SVM models are implemented with slightly di↵erent setups in order to investigate how
di↵erent settings a↵ect the ML algorithm’s performance for this specific problem space. The three SVM
models are also implemented on two di↵erent data sets, as described below:

1. Regular SVM: Implemented using the ML data set.

2. Class-Weighted SVM: Implemented using the ML data set, with applied class weights according
to the balance in the data as described in Section 2.2.3.

3. Balanced SVM: Implemented using the Balanced ML data set.

Each of these three models is implemented using the RBF-kernel function (see Section 2.2.3) and tuned
on the same intervals of hyperparameters values, described in Table 2 below. Other kernel functions are
tested as well, but since none of them clearly outperforms the RBF-kernel, only the models with the
RBF-kernel are presented further. All other hyperparameter values are set according to their default
values, see Scikit-Learn’s documentation on support vector classifiers for more information (Scikit-Learn
developers, 2020a). Because tuning the SVM models is very time consuming, a random subsample of
approximately 10% the size of the full training data is used during this process.

Table 2: Hyperparameter settings used for tuning of SVM models. The intervals
of the hyperparameter values are continuous between the specified boundaries. For
theory on the di↵erent hyperparameters, see Section 2.2.3. Note that the bias-variance
hyperparameter tuned is defined as the inverse of the cost parameter C defined in
Section 2.2.3, refer to Scikit-Learn developers (2020a) for details.

Hyperparameter Tuning Interval
Bias-Variance Hyperparameter, 1/C [1, 104]
Radius Parameter, � [10�8, 102]

For each of the three SVM models, the optimal hyperparameters settings observed from the tuning are
used to finally fit the optimal version of the model on the training set. Again, training a SVM models is
very time consuming and hence the same random subset used for tuning is considered for model training.
Model evaluation process is then performed, as described below. At this stage, the three SVM models
are compared against each other, in order to decide upon which SVM model has the best performance.
The best performing SVM model is then re-trained on the full training data set and used as one of the
final candidate models in the final model selection later on.

Model Evaluation

As a first step in the validation of the tuned and trained models, a reliability plot is made for each model
to validate the quality of the predicted probabilities. The plot is made using the test data set, where
predicted probabilities of good quality would follow the x = y line (see Section 2.3 for more details).
The histogram in the reliability plot (see Figure 7) is used to validate the distribution of the predicted
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probabilities, taking the balance in the data into consideration. However, due to confidentiality reasons,
these histograms will not be displayed in this report. If the reliability plot of a model indicates that the
predictions might need calibration to improve reliability, Platt scaling is performed using the validation
data set. Note that calibration is not applied onto the Logistic Lasso models since empirical studies show
that these models are su�ciently calibrated by nature. See Section 2.3 for a detailed definition of Platt
scaling and motivation regarding when to perform calibration. Notice also that for uncalibrated SVM
models, the outputs from the models are not suitable for being plotted in reliability plots (since these
requires the prediction to be represented as probabilities, see Section 7). Hence, the uncalibrated SVM
predictions are min-max scaled (see Section 2.3) to corresponding probability estimations on the [0, 1]
interval before passed to the reliability plot. The evaluation is then continued as described below.

Each model is evaluated using the ROC AUC and PR AUC together with the ROC curve, the PR
curve and the reliability plot (for further details on each of these, refer to Section 2.4). Each of these
metrics and plots are obtained using the test data set (see Section 2.1). Both the ROC and the PR
metrics are used since they focus on slightly di↵erent behaviours of the models. By using both metrics,
the FPR and the precision performances of the models can be targeted and evaluated (see Equation (19)
and (20) for details).

A final model evaluation is made by comparing the PR AUC calculated on the test set, to the PR
AUC calculated on the training set. This is performed to identify if a model shows signs of over- or
underfitting the training data (see Section 2.4). For each model, the comparison is made by dividing the
PR AUC calculated on the training set by the PR AUC calculated on the test set. A value close to one
indicates that a model generalizes well and hence is able to perform similar on both training and test
data sets. On the contrary, a value well above one indicates that the model tends to overfit the training
data.

Feature Importance Analysis

A feature importance analysis is performed for the model chosen in the final model selection. This is
done in order to investigate if any potential drivers for likelihood of customers returning to make another
purchase within a certain time frame can be found. Due to the time limitation of this thesis work,
this feature importance analysis is only performed on the final model chosen. Hence, this process is
model dependent, since the three algorithms investigated in this thesis provides di↵erent opportunities
for investigation of feature importance. Once the most important features are found, KDE plots (see
Section 2.1) and Box plots are made with respect to response in order to gain more insight about the
potentially drivers of the response.

3.3 Softwares Used

SQL is the software used for data extraction from the internal database and for initial data cleaning.
The programming language Python is then used throughout the whole process of data cleaning, data
preprocessing and modelling. Python is used together with a number of di↵erent open source libraries
and packages.

In particular, the extracted data is cleaned and preprocessed using Pandas and NumPy libraries in
Python. Pandas is a data analysis and manipulation tool built on top of the Python programming lan-
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guage (The Pandas development team, 2020). NumPy is also a data analysis tool but with the aim to
enable numerical computational power of programming languages like C and Fortran to Python (NumPy,
2020). With these two packages combined, a powerful and e↵ective preprocessing is enabled. These two
libraries are also complemented with the SciPy library that provides, for instance, statistics (SciPy de-
velopers, 2021).

Throughout the thesis work Matplotlib and Seaborn are used for visualization. Matplotlib is a compre-
hensive library for creating visualizations in Python (The Matplotlib development team, 2021). Seaborn
provides a high-level interface for producing informative statistical graphics (Waskom, 2020b). This li-
brary is built on top of the Matplotlib library and integrates closely with Pandas data structures. Hence
it is a suitable choice for this thesis work.

The main libraries that are used for modelling are Scikit-Learn and XGBoost. Scikit-Learn is a li-
brary that enables ML in Python and is built upon previously used libraries such as Numpy, SciPy and
Matplotlib (Scikit-Learn developers, 2020c). The library is simple to use and provides e�cient tools for
predictive data analysis. Thanks to the compatibility with the previously used libraries and the acces-
sibility of state-of-the art machine learning techniques Scikit-Learn is an obvious choice for this thesis.
However, when it comes to gradient boosting, XGBoost was chosen as the go-to library since it has many
computationally advantages compared to other implementations of gradient boosting in Python. XG-
Boost is an e�cient and flexible library that provides parallel computation and hence solves ML problems
in a fast and accurate way (XGBoost developers, 2020b).

During the initial modelling process some additional libraries are used as well, since di↵erent libraries
provide di↵erent statistics when modelling in Python. As an example, statsmodel is used for initial
logistic regression modelling because it provides an extensive list of the summary results for each estima-
tor (Statsmodels-developers, 2021), in contrast to other modelling libraries available in Python. Hence,
statsmodels library was used as a complement during the initial modelling phase.

Tuning of hyperparameters is performed, as stated above, using the Bayesian optimization algorithm.
This is available in the Scikit-Learn library. However, for tuning hyperparameters of the XGBoost the
bayesian-optimization package is used due to non-compatibility with Scikit-Learn inbuilt function. Model
evaluation is performed using in-built functions of the previously stated libraries. As an example, Scikit-
Learn is used for extracting PR- and ROC curves and corresponding AUC scores.
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4 Results

The models implemented within each of the three classification algorithms are all evaluated using the
evaluation metrics and plots defined in Section 3.2. Based on the evaluation metrics and plots, the best
performing model per classification algorithm is selected (see Appendix A for the results within each
classification algorithm). The three best models, further referred to as the final candidate models, are
compared based on the corresponding evaluation metrics and plots presented in Section 4.1. Further,
the results of the final candidate models are analysed and compared towards each other with the aim to
conclude upon which of the models is the best performing one for the problem space of this thesis. The
final model selection is presented in Section 4.2, followed by a feature importance analysis in Section 4.3.

4.1 Final Candidate Models

Throughout this section, all the evaluation metrics and plots of the final candidate models are presented,
interpreted and analyzed in order to select the final best performing model. The final candidate models
are, as concluded from the results and interpretations presented in Appendix A, the Regular Logistic
Lasso, the Calibrated Regular XGBoost and the Calibrated Regular SVM. All results presented in this
section are calculated using the test set. For optimal hyperparameter settings of the three final candidate
models see Appendix B.

Figure 15: Receiver operating characteristic (ROC) curves for the three final can-
didate models. The colored curves represents the ROC curves for the three final
candidate models, and the black dashed x = y line represents a no skill model no
better than random guessing. The axes values are removed due to confidentiality.

According to Figure 15, the Calibrated Regular XGBoost is the best performing model in terms of ROC,
since it has the highest ROC curve of the final candidate models. The second best model in terms of the
ROC curve is the Calibrated Regular SVM, closely followed by the Regular Logistic Lasso. Each of the
three models has very stable and similar curves where TPR successively increases with the increase in
FPR, with a steeper change in TPR when FPR is small. Additionally, all three models are converging
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toward a constant TPR at approximately the same FPR value, and every model performs better than a
no skill model.

Figure 16: Precision-recall (PR) curves for the three final candidate models. The
colored curves represent the PR curves for the three final candidate models, and the
black dashed x = y line represents a no skill model no better than random guessing.
The axes values are removed due to confidentiality.

The PR curves of the final candidate models displayed in Figure 16, indicate that the Calibrated Regular
XGBoost is the best performing in terms of PR, since its curve is the highest located over all possible
recall values. The plot also shows that the Calibrated Regular XGBoost is especially better than the
other models with a high precision value when the recall is small. Although the curve of the Calibrated
Regular SVM is located above the Regular Logistic Lasso along almost the whole recall-axis, the two
curves do cross each other for small recall values. Hence, when recall is close to 0 and starts to increase,
the precision of the Regular Logistic Lasso decreases faster than Calibrated Regular SVM whose curve
stays more stable. All final candidate models outperform a no skill model.

Table 3: Evaluation metrics for the three candidate models in comparison to a no
skill model. The receiver operating characteristic area under curve (ROC AUC) values
and the precision-recall area under curve (PR AUC) values are all scaled in relation
to the best performing model (in this case, the Calibrated Regular XGBoost model)
due to confidentiality. Both metrics are calculated on the test set. The corresponding
no skill ROC AUC value is excluded from the table, to prevent the actual ROC AUC
values from being derived.

Model
ROC AUC
(scaled)

PR AUC
(scaled)

No Skill 0.572
Calibrated Regular SVM 0.931 0.865
Calibrated Regular XGBoost 1.000 1.000
Regular Logistic Lasso 0.897 0.827
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Table 3 quantifies the results obtained from Figure 15 and Figure 16. According to the ROC AUC values
(calculated on the test set and scaled with respect to the best performing model), the Calibrated Regular
XGBoost is the best performing in terms of ROC AUC. Recall from Section 2.4 how ROC AUC values
can be used to interpret how likely a model is to rank a random positive observation higher than a ran-
dom negative observation. However, since the ROC AUC values in this results section are scaled, they
cannot be interpreted directly but must instead be interpreted in relation to the ROC AUC performance
of the best model. Hence, the Calibrated Regular SVM’s scaled ROC AUC value of 0.931 indicates that
the SVM model is 93.1% as likely as the XGBoost model to predict a higher probability of return for
a random returning new customer than a random non-returning new customer. In the same manner,
the Regular Logistic Lasso is 89.7% as likely as the Calibrated Regular XGBoost to predict a higher
probability of return for a random returning new customer than a random non-returning new customer

The PR AUC values in Table 3 tells a similar story as the ROC AUC values. According to the PR AUC
metric, the Calibrated Regular XGBoost is the best performing model. This means that over all possible
values of recall, the XGBoost model performs the best in terms of precision. The second best model in
terms of PR AUC is the Calibrated Regular SVM, which results in a PR AUC value of 0.865 the size of
the Calibrated Regular XGBoost’s PR AUC value. In the same manner, Regular Logistic Lasso results
in a PR AUC value of 0.827 the size of the Calibrated Regular XGBoost’s. All three models outperform
a no skill model.

Figure 17: Reliability plot for the three candidate models. A good model would
ideally follow the black dashed x = y line, indicating predicted probabilities of perfect
quality. The plot is conducted on the test data set. The axes values are cropped and
removed due to confidentiality.

The reliability plots of the candidate models, displayed in Figure 17, indicate that all three models are
relatively well-calibrated for the majority of the lower mean predicted probability values. For mean
predictions of greater values, located slightly to the right from the middle of the x-axis, each of the
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models tends to over-predict the probability of return. Besides this, the Calibrated Regular XGBoost
gives mean probability values much higher than those of the logistic lasso and the SVM model. Even if
the XGBoost model tends to over-predict the probabilities for some intervals of these higher values, it is
still considered as a strength to be able to produce such higher probabilities. This since it is important
to find a model that is able to predict probabilities along the whole [0, 1] interval and hence is capable of
predicting as well high as low probabilities of new customers returning. Hence, the Calibrated Regular
XGBoost is considered to result in the most well-calibrated predictions among the three final candidate
models considered.

Table 4: The precision-recall area under curve (PR AUC) is calculated on both
training- and test sets to allow for analysis of eventual tendencies of overfitting. Due
to confidentiality, training performance is scaled so that the PR AUC calculated on
the training data set is divided by the PR AUC calculated on the test set. A scaled
value greater than 1 indicates that the model tends to overfit the training data.

Model PR AUC training set
PR AUC test set

Calibrated Regular SVM 0.994
Calibrated Regular XGBoost 1.075
Regular Logistic Lasso 1.000

For each final candidate model, the fraction of the PR AUC calculated on the training data set in relation
to the PR AUC calculated on the test data set are displayed in Table 4. According to the table, the
Calibrated Regular SVM and the Regular Logistic Lasso are both performing just as well on the test data
set as on the training data set. However, the Calibrated Regular XGBoost shows signs of overfitting to
the training data, since its performance is slightly worse on the test set than on the training set.

4.2 Final Model Selection

The results displayed and interpreted in Section 4.1 show that the Calibrated Regular XGBoost is, without
doubt, the best performing model with respect to both ROC and PR. The Calibrated Regular XGBoost
also results in much higher predicted probabilities than those of the logistic lasso and the SVM model.
In addition, this model keeps the probabilities relatively well-calibrated, although it tends to over-predict
for some high mean predicted probability intervals.

A drawback of the Calibrated Regular XGBoost, is its tendency to overfit the data (see Table 4). In other
words, it tends to perform better on the training set than on the test set, and is hence less reliable than
the other two final candidate models when tested on new data sets. However, since additional actions
could be taken in order to prevent the model from overfitting (as discussed in Section 6), the positive
attributes of the Calibrated Regular XGBoost are concluded to compensate for the undesirable overfitting
tendency. Therefore, the Calibrated Regular XGBoost is concluded the final best performing model for
the problem space of this thesis work.
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4.3 Feature Importance Analysis

The final best performing model, the Calibrated Regular XGBoost, provides the possibility to study
the feature importance using the F-score, as defined in Section 3.2. The F-score for the final model is
presented in Figure 18. Here, only the top 20 most important features are included, since the other
100+ features are argued not to be of any interest for the purpose of this analysis. For the features
excluded from the figure, the F-scores continue to steadily decrease down towards a value of zero. Here,
an over-representation of NaN-features can be noted for very low F-score values. From the Figure 18, it is
clear that there is a distinction between the importance of di↵erent features. Feature 1 seems to greatly
outperform all other features, when it comes to the F-score. This is a strong indication of a highly likely
driver for the response. Also the three following features, Feature 1-4, seem to be of great importance.
These four features are hence extracted to further study their relation to the response.

Figure 18: Visualization of the feature importance for the Calibrated Regular XG-
Boost model. Here, the feature importance is measured by the F-score, representing
number of times a feature is used to split in the model, as defined in Section 3.2.

KDE plots for the top four most important features in the Calibrated Regular XGBoost model are
displayed in Figure 19. These plots visualize the conditional densities over the observed values for each
of the four features respectively, in relation to the response classes. In general, the observations for
non-returning customers have a higher density than the returning customers along all feature values,
corresponding to the fact that the data is imbalanced. Besides this, the distributions for each of the two
response classes looks very much alike, ranging over the same features values without any clear separation
between the response classes. According to the density plots, there is indeed an indication that these
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features could be potential drivers for the response, because of the di↵erence in the densities between the
response classes. For example, for any given observation, there is a higher probability that the observation
belongs to a non-returner than a returner. However, distinct separations of the classes over the feature
values would indicate better drivers of the response and hence better opportunities for the model.

Figure 19: Kernel density estimate (KDE) is plotted for the top four most impor-
tant features in the Calibrated Regular XGBoost. This visualizes the distribution of
observations in the full data set used in this thesis study. The plots are made using
the features prior to binning, to allow for more intuitive interpretations. The axes
values are cropped and removed due to confidentiality.
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Figure 20 displays box plots of the top four most important features in the Calibrated Regular XGBoost
model, in relation to the response. In comparison to the KDE plots in Figure 19, the box plots better
allow for interpretation of how the values of the features di↵er between the two response classes without
impact from the imbalance in the data. According to the box plots, the returning customers tend to have
narrower interquartile ranges than the non-returning customers. Meanwhile, the median of the returning
class is for all four features slightly lower than for the non-returners. In addition, the upper quartiles
also tend to be be lower for returning customers. Hence, even if the values of the top four features
are relatively similar between the response classes, the box plots reveal that the values of the returning
customers are more skewed towards lower values, than those of the non-returning customers. Note that
these plots have been made using the features prior to binning. Hence, the outliers obtained in the box
plots are not able to a↵ect the model as heavily as they would have if the data was not binned.
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Figure 20: Box plots for the top four most important features in the Calibrated
Regular XGBoost. Here, the distribution of the observations in each feature, with
regards to the two categories in response, is shown. The boxes show the quartiles,
and the whiskers show the rest of the distribution except for observations regarded
as outliers which are indicated as dots. The plots are made using the features prior
to binning, to allow for more intuitive interpretations. The axes values are removed
due to confidentiality.
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5 Conclusion

After completing the implementation, evaluation and analysis of the ML models presented in the method
section of this report, the research questions that define the specific problem space of this thesis work
can finally be answered as follows:

• What machine learning techniques can be used to predict the likelihood of a new cus-
tomer returning to make a second purchase within a certain time frame?

A number of di↵erent variations of logistic regression, XGBoost and SVM models have been imple-
mented and analyzed in this thesis. According to the results, it is concluded that each of these three
di↵erent classification algorithms can be used to predict the likelihood of new customers returning
to make a second purchase within a certain time frame, but the performance of the classifiers di↵ers.

The results of the thesis demonstrates that the best performing models in terms of ROC and
PR AUC are the models fitted to the original, imbalanced training data, without any class-weights
applied within the algorithms. More precisely, all three investigated algorithms are found to overfit
to balanced training data, while class-weighted XGBoost and SVM perform well but not better
than the regular versions of the algorithms.

In order for the models considered in this study to be applicable on problems in a real business
setting, it should be stressed that the predicted probabilities must be reliable. While all of the
implemented models are better than random guessing at predicting the probability of return of a
new customer within a certain time frame, the logistic regression fitted to the original data is the
only one out of the investigated models that does not need calibration to produce reliable proba-
bility predictions on this problem space. However, Platt calibration of XGBoost and SVM models
are proven to produce a significant improvement in the reliability of the probability predictions,
where both of the algorithms are shown to produce high quality predictions according to reliability
plots after calibration. The calibrated best XGBoost model is able to predict higher probabilities
of return than both the best logistic regression and the best SVM and hence concluded to be the
superior of the models in terms of reliable predictions.

• To what degree can such machine learning techniques help to predict the likelihood of
a new customer returning to make a second purchase within a certain time frame?

Due to the imbalance in the data used in this thesis, a number of evaluation metrics, both tra-
ditional and non-traditional, are used to evaluate the model performance. PR metrics are used
during hyperparameter tuning and model evaluation to allow for a greater focus on the returning
customers than using solely ROC metrics would do, while ROC AUC allows for a more intuitive and
commonly used interpretation of the model performance. Meanwhile, reliability plots are used to
validate the quality of the predicted probabilities which is of absolute importance when predicting
probability of return of a new customer. Combined with an evaluation of overfitting, this provides a
nuanced and detailed assessment of model performance. The test results of the best models within
each of the three ML algorithms investigated indicate that the calibrated XGBoost fitted to the
original training data set is the most powerful in terms of ROC- and PR metrics, and produces
high quality predictions according to the reliability plots.
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Due to confidentiality, no specific numbers can be given for the exact performance of the mod-
els. Hence, the exact degree to which ML techniques can help to predict the likelihood of a new
customer returning for a second purchase cannot be concluded. However, comparing the perfor-
mance of the best models from each of the three algorithms concludes XGBoost to be superior,
when accurate probability predictions as well as high ROC- and PR AUC values are considered.
Hence, the XGBoost is the model that to the highest observed degree is able to predict probabilities
of return. Still, all models implemented provide predictions that indeed are better than random
guessing.

• To what extent is it possible to find potential drivers for likelihood of a new customer
returning to make a second purchase within a certain time frame using machine learn-
ing models?

The fact that the final best model is able to separate between returning and non-returning new
customers, to some extent, indicates that it is possible to find drivers for likelihood of new cus-
tomers returning to make a second purchase within a certain time frame, using machine learning
methods. Further, the feature importance analysis of best model shows that there indeed exist
features of higher importance than others. Here, the importance score di↵ers highly between the
most important and the least important features, and decreases steadily over the number of fea-
tures. This indicates that the most important features actually can be concluded as highly likely
drivers of the likelihood of new customers returning to make another purchase within a certain time
frame. These findings serve as extremely insightful information to the company when evaluating
new prospects in terms of expected CLV. Out of the three models investigated, interpretation of
feature importance that can be used to derive potential drivers of response is foremost available
for logistic lasso in terms of estimated regularized regression coe�cients and for XGBoost models
in terms of, for example, F-score. While SVM lacks this opportunity of interpretation, the logistic
lasso and XGBoost algorithms are, as a consequence, better candidate algorithms when the goal is
to find drivers of response.
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6 Discussion

In this section the thesis study presented is discussed with regards to the results obtained and the general
method performed. Here, di�culties encountered as well as the pros and cons of the results, are discussed
from a wider perspective. Also, further research recommendations are provided and discussed.

During the tuning process of the hyperparameters in the di↵erent models, the optimal hyperparame-
ter settings have di↵ered slightly between tuning runs using di↵erent random states. This is assumed to
be because of the stochastic nature of the Bayesian optimization algorithm. Hence, to get more trustwor-
thy results from the tuning, the Bayesian optimization should preferably be performed for a number of
di↵erent random states for each model, to see if any set of optimal hyperparameter occurs more frequently
than others. However, this has not been performed during this thesis work due to a number of reasons.
First of all, because of the time limit for this thesis. In addition, the results of the evaluation metrics
have been fairly stable and the final candidate models have still performed di↵erent enough for a final
comparison, even if the optimal hyperparameter settings have changed slightly. To avoid the dependence
of the optimal hyperparameter values on the random state, other tuning algorithms have been considered,
such as the grid search and the random search. However, as grid search is very time consuming when a
large number of di↵erent hyperparameter values are to be investigated, this option was excluded. Also,
since the random search operates much more randomly than the Bayesian optimization algorithm, the
Bayesian optimization algorithm was considered to be the best option.

Even though using the seemingly most time e�cient yet high performing tuning process, the tuning
and the training process of the SVM models have been extremely time consuming in comparison to those
of the logistic regression and XGBoost models. This even though the tuning and training of the SVM
models have been performed on a subsample of approximately 10% the size of the full training data.
Obviously, this has been a major drawback of the SVM algorithm. It is possible that the performance of
the SVM models can be improved, compared to what this thesis result shows, by putting e↵ort in tuning
on bigger data sets. Anyhow, due to the time complexity and because even the best of the SVM models
is clearly outperformed by the best XGBoost, this has not been further examined.

The results of Section 4.1 show that the best model, the Calibrated Regular XGBoost, tends to overfit the
training data. Hence, if a corresponding model is to be used in production to make real time decisions, it
is recommended that some further actions are taken to prevent this. For example, additional tuning ses-
sions could be performed for this model. Tuning the hyperparameter more (with several runs as described
above, for reliable results) and/or with more hyperparameters used could potentially help to regularize
the model. If this cannot be performed with success, one must take into consideration the possibility of
the model performing worse than the results of Section 4.1 show, due to the overfitting tendency, before
putting the model into production. Further, to be able to make a well motivated decision upon this,
it is recommended that the model is evaluated on several test data samples to map the stability of the
model’s performance. These two recommendations has not been performed during the time of this thesis
because of the time limit. As the best SVM model however does not su↵er from any tendencies to overfit
training data, putting some extra e↵ort into the SVM might also be interesting to investigate further.

Further, the best model in this thesis, the Calibrated Regular XGBoost, does not produce an opti-
mal ROC curve, as can be seen in Figure 15. This indicates that there is a room for improvement.
However, keeping in mind that the features used have been limited, that noise has been added to the
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response and that the main goal of the thesis is to find a model that can predict the human mind and
behavior, the results may still be considered as relatively good. The visualization of distributions of the
four most important features in this model, presented in Section 4.3, indicates the complexity of this
problem space. As concluded in results, no clear distinction between the distribution of the two response
classes can be seen and it is hence understandable that this is a di�cult problem to model with such data.

Additionally, the indirect aim of this thesis has not only been to model the behaviour of a human,
it has actually also been to do this with a completely new customer (of the products limited to this the-
sis) which is an even harder task. This is because the company simply does not have as much data on new
customers as they do on established customers. Clear indications of the importance of high quality data
are seen in the result. The feature importance analysis of Section 4.3 reveals that the features with least
importance often are NaN-features. This indicates that, if no data is available for a new customer, i.e.
instead a NaN-value is present, not much impact can be seen on the model. Which in turn, means that
not much can be said using this model with such data, or rather lack of data, indicating the importance
of available data. This further confirms the di�culty to model new customers, whom often the company
lack some data of.

Further di�culties followed from the focus on new customers are the task to explicitly define this specific
customer segment. This is especially di�cult for a large company with extensive data sources, when only
focusing on a small part of the data source. In addition, a lot of di↵erent attributes of as well customers
as products must be taken into consideration when attempting to define a completely new customer of
a specific product. As a consequence, the definition of a new customer used in this study to extract
the data set from the database might not provide an explicit definition and hence not a 100% correct
extraction of the customer segment of interest. Due to this, the data set might include observations that
do not belong in the desired customer segment, which might negatively a↵ect the model’s performance.
Hence, to prevent this, it is recommended to further look into possibilities to refine the definition used
to filter out data in further research with similar setups.

The study presented in this report has not only been conducted on a manipulated data set, as this
report entails, but also on a true data set (as explained in Section 1.5). When comparing the results of
the two di↵erent projects, many similarities are observed. For example, the finding that the least impor-
tant features often are NaN-features, as mentioned above, are also found when studying the result of the
true data set. Additional similarities between the two projects are that both results reveals promising
performances for each of the three algorithms tested. In both studies, all three algorithms perform better
than random guessing. Meanwhile, it is important to highlight that the study performed on the true
data set results in much better model performances than those of the models presented in this report.
From this it can be argued that the method used for adding noise in the response feature, as presented
in Section 3.1, might not be optimal in order to succeed in the trade-o↵ between utility and privacy, as
explained in Section 2.1. There might be other techniques to add noise and mask the true balance in the
data, without a↵ecting the performance negatively to an extent similar to this study. Even so, it can be
concluded that adding noise in the way it was done in this study, did indeed result in a true indication
of the potential of the modelling approach used that corresponds to the results obtained in the parallel
study performed on the true data set.

Another proposal for improvement is to go beyond the data limitation presented in this thesis by extend-
ing the current data set with other types of data. This since a great limitation for the performance of the
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models investigated throughout this thesis has been the data. Not only has the size of the data set been
a limitation, where more observations possibly could have increased model performances, but also the
actual features used. As this thesis has been executed at a specific department and team at Klarna, the
features used for the thesis have been limited to the ones used by the team on a daily basis, on request of
the company. Going beyond this limitation is motivated by the fact that there are clear indications, as
discussed previously, that the problem space investigated is very complex and that the data used do not
clearly provide a distinct separation between the two classes in the response. Complementing the data set
currently used with data from other sources, preferably with features of di↵erent characteristics, might
improve the model performance. It might also be good to choose additional features that the company
actually can a↵ect itself by, for example, interaction with the customer. This is in order to find drivers
that can be used to increase the customer return.

Interesting to note also, is that this proposed improvement of adding more features could provide further
value to the company. This since a case study of customer segments for di↵erent predicted probability
intervals has been conducted on the true data set, based on the feature importance analysis. Although,
these results can not be disclosed in this report due to confidentiality. This case study has given valuable
insights for the company regarding drivers of return. However, since none of the features currently used
are features that the company has influence on, this only provides understanding regarding drivers of
return. If additional features that the company can a↵ect itself are used, it could open up for possible
insights about how the company can a↵ect customer return.

Another way to circumvent the problem of the data limitation is to try other sampling techniques to
handle the imbalance in data. This is since, in the study presented in this report, only random under-
sampling has been tested for balancing the data. As presented in Section 2.1, this technique has the
disadvantage of reducing number of observations and hence further reducing the data set. By using other
techniques, such as random oversampling that instead duplicates examples from the minority class, better
performance could potentially be obtained for the models implemented on the balanced data sets.

A further recommendation is to consider the time complexity of the SVM models. This is motivated
by the fact that the SVM models are much more time consuming to tune and train than the other mod-
els, while being well outperformed by XGBoost as shown in Section 4.1. SVM is not recommended for
further analysis on this problem space if time is limited. However, it could be of interest to investigate
if the SVM algorithm performs better on this problem space if tuned on a bigger data set, as discussed
above. Although, a probably more advantageous further research would be to exploit the XGBoost al-
gorithm to a deeper extent. This by combining the recommendations regarding refining of model tuning
and evaluation, as discussed before.

Finally, since all the final candidate models produce similar predictions for lower probabilities, while
the final SVM and the XGBoost tend to over-predict higher probabilities, it could be interesting to im-
plement an additional model that potentially under-predicts higher probabilities to complement these.
If a model that under-predicts high probabilities of return can be found, a final proposal of further re-
search would be to ensemble this model with the final chosen XGBoost model that over-predicts higher
probabilities, presented in Section 4.1. By combining several models of di↵erent strengths, it might be
possible to develop a model with higher performance from that of the Candidate Regular XGBoost.
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A COMPLEMENTARY RESULTS

A Complementary Results

The resulting evaluation metrics for each of the models based on the three di↵erent classification al-
gorithms (see Section 3.2) are presented in this appendix. The results are evaluated using the same
reasoning as presented in the result section for the final candidate models, Section 4.1. The conclusion
from this model evaluation is used to decide on which models should be used as final candidate models
in the final model selection. Below are results and interpretations briefly explained for each classifier. All
results presented in this appendix are calculated using the test set.

A.1 Logistic Regression Models

Figure 21 shows the ROC curves for the two logistic lasso models considered. Here, not much can be said
about a potential distinction between the models’ performance, since the curves almost perfectly overlap
each other. Other evaluation metrics must be considered in order to decide upon which of the logistic
regression models to select as a final candidate model.

Figure 21: Receiver operating characteristic (ROC) curves for the two logistic lasso
models. The colored curves represent the ROC curves for the models, and the black
dashed x = y line represents a no skill model, no better than random guessing. The
axes values are removed due to confidentiality.

Figure 21 demonstrates the PR curves for the two logistic lasso models presented. As for the ROC curves,
not much can be said about a potential distinction between the models’ performance here either. This
is due to the fact that the curves almost perfectly overlap each other. Other evaluation metrics must be
considered in order to decide upon which of the logistic regression models to chose as a final candidate
model.
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Figure 22: Precision-recall (PR) curves for the two logistic lasso models. The
colored curves represent the PR curves for the models, and the black dashed x = y

line represents a no skill model, no better than random guessing. The axes values are
removed due to confidentiality.

Although, when the AUC values are studied for the two logistic lasso models, see Table 5, a minimal
distinction between the models can actually be seen, indicating that the Regular Logistic Lasso performs
slightly better than the Balanced Logistic Lasso regarding ROC AUC and PR AUC values.

Table 5: Evaluation metrics for the two logistic lasso models in comparison to a
no skill-model. The receiver operating characteristic area under curve (ROC AUC)
values and the precision-recall area under curve (PR AUC) values are all scaled in
relation to the best performing model (in this case, the Regular Logistic Lasso model)
due to confidentiality. Both metrics are calculated on the test set. The corresponding
no skill ROC AUC value is excluded from the table, to prevent the actual ROC AUC
values from being derived.

Model
ROC AUC
(scaled)

PR AUC
(scaled)

No Skill 0.629
Regular Logistic Lasso 1.000 1.000
Balanced Logistic Lasso 0.996 0.998

When studying the reliability plot for the two logistic lasso models shown in Figure 23, the first clear
distinction between the two models can be seen. Here the pink curve, representing the Balanced Logistic
Lasso model shows signs of some problems. This model curve does not follow the black dashed line. This
in contrast to the blue curve, representing the Regular Logistic Lasso that almost perfectly align with
the black dashed line.
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Figure 23: Reliability plot for the two logistic lasso models. A model curve would
ideally follow the black dashed x = y line, indicating predicted probabilities of perfect
quality. The axes values are cropped and removed due to confidentiality.

Below in Table 6 even one more clear distinction between the two models performance can be seen,
indicating that the Regular Logistic Lasso is slightly better. This since the Balanced Logistic Lasso has
a value well above one, showing clear signs of overfitting, while the Regular Logistic Lasso has a value
very close to one and hence no indication of a troubling overfitting.

Table 6: The precision-recall area under curve (PR AUC) is calculated on both
training- and test sets to allow for analysis of eventual tendencies of overfitting. Due
to confidentiality, training performance is scaled so that the PR AUC calculated on
the training data set is divided by the PR AUC calculated on the test data set. A
scaled value greater than one indicates that the model tends to overfit the training
data.

Model PR AUC training set
PR AUC test set

Regular Logistic Lasso 1.010
Balanced Logistic Lasso 1.612

Following from the reasoning from above resulting evaluation metrics, the Regular Logistic Lasso seems
to be the most well performing model of the two logistic lasso models evaluate and is hence chosen as
one of the final candidate models.

A.2 Extreme Gradient Boosting Models

From Figure 24 below, it is clear that all of the three XGBoost models are not perfectly calibrated and
hence might be improved by applying calibration.
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Figure 24: Reliability plot for the three XGBoost models before calibration. A
model curve would ideally follow the black dashed y = x line, indicating predicted
probabilities of perfect quality. The axes values are cropped and removed due to
confidentiality.

In Figure 25 below, the three calibrated XGBoost models are presented. It is clear that the models’
predicted probabilities did improve by applying calibration since they now follow the black dashed y = x

line more closely. Although, it is not totally clear which model performs the best. The three XGBoost
models perform approximately the same for the mean predicted values located to the left side of the
plot, but diverge for greater predicted values. However, since the Calibrated Regular XGBoost seems
to be able to predict relatively well-calibrated probabilities on a wider interval, compared to the other
XGBoost models, this model is considered as the most well-calibrated model.

60



A COMPLEMENTARY RESULTS

Figure 25: Reliability plot for the three XGBoost models after calibration is applied.
A model curve would ideally follow the back dashed x = y line, indicating predicted
probabilities of perfect quality. The axes values are cropped and removed due to
confidentiality.

Figure 26 presents the ROC curves for the three XGBoost models. Here, not much can be said about
a potential distinction between the models’ performance, since the curves almost perfectly overlap each
other. From this, it can not be decided which of the XGBoost models to chose as a final candidate model.

Figure 26: Receiver operating characteristic (ROC) curves for the three XGBoost
models. The colored curves represents the ROC curves for the models, and the black
dashed y = x-line represents a no skill-model no better than random guessing. The
axes values are removed due to confidentiality.
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Figure 27 demonstrates the PR curves for the three XGBoost models. As for the ROC curves, not much
can be said about a potential distinction between the models’ performance here either. This is since the
curves almost perfectly overlap each other. Once again, other evaluation metrics must be considered in
order to decide upon which of the XGBoost models to select as a final candidate model.

Figure 27: Precision-recall (PR) curves for the three XGBoost models. The colored
curves represent the PR curves for the models, and the black dashed x = y line
represents a no skill model, no better than random guessing. The axes values are
removed due to confidentiality.

Although, when the AUC values are studied for the three XGBoost models shown below in Table 7, some
distinction between the models can actually be seen, indicating that the Regular XGBoost performs
slightly better than the other two XGBoost models with respect to ROC AUC and PR AUC.

Table 7: Evaluation metrics for the three XGBoost models in comparison to a no
skill-model no better than random guessing. The receiver operating characteristic
area under curve (ROC AUC) values and the precision-recall area under curve (PR
AUC) values are all scaled in relation to the best performing model (in this case, the
Regular XGBoost model) due to confidentiality. Both metrics are calculated on the
test set. The corresponding no skill ROC AUC value is excluded from the table, to
prevent the actual ROC AUC values from being derived.

Model
ROC AUC
(scaled)

PR AUC
(scaled)

No Skill 0.572
Calibrated Regular XGBoost 1.00 1.000
Calibrated Class-Weighted XGBoost 0.995 0.982
Calibrated Balanced XGBoost 0.990 0.980

Below in Table 8 some even clearer distinction between the models performance can be seen. Here, the
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Calibrated Balanced XGBoost has a value well above one, showing clear signs of overfitting, while the
other two models have a value very close to one and hence no indication of a troubling overfitting.

Table 8: The precision-recall area under curve (PR AUC) is calculated on both
training- and test sets to allow for analysis of eventual tendencies of overfitting. Due
to confidentiality, training performance is scaled so that the PR AUC calculated on
the training data set is divided by the PR AUC calculated on the test data set. A
scaled value greater than 1 indicates that the model tends to overfit the training data.

Model PR AUC training set
PR AUC test set

Calibrated Regular XGBoost 1.075
Calibrated Class-Weighted XGBoost 1.027
Calibrated Balanced XGBoost 1.527

Following from the obtained evaluation metric values above, the Calibrated Regular XGBoost seems to
be the most well performing model out of the three XGBoost models evaluated and hence chosen as one
of the final candidate models.

A.3 Support Vector Machine Models

Reliability plots for the SVM models are presented in Figure 28. Since none of the models follow the black
dashed y = x-line closely, it is concluded that each of them needs calibration before further evaluation.

Figure 28: Reliability plot for the three SVM models before calibration. A model
curve would ideally follow the back dashed x = y line, indicating predicted probabili-
ties of perfect quality. The axes values are cropped and removed due to confidentiality.
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In Figure 29 below, the three calibrated SVMmodels are presented. According to this plot, the calibration
did improve the models’ predicted probabilities and the corresponding curves are now following the y = x

line more closely. The three SVM models perform approximately the same for lower mean predicted
values, but di↵er for greater predicted values. The Calibrated Balanced SVM does not produce predictions
of as high values as the other two models. The Calibrated Regular SVM and the Calibrated Class-
Weighted SVM on the other hand, are able to predict higher probabilities than those of the Calibrated
Balanced SVM but the models behaviour is slightly di↵erent for these higher values. The class-weighted
SVM tends to slightly over-predict for the higher values at first, but then instead heavily under-predicts
for the highest predicted values. The Calibrated Regular SVM tends to over-predict for all of these
higher mean predicted values. Hence, comparing the weaknesses of the Calibrated Regular SVM and the
Calibrated Class-Weighted SVM towards each other, the Calibrated Regular SVM is considered as the
best model with respect to the reliability of the predicted probabilities. This is due to the fact that even
if the Calibrated Regular SVM tends to over-predict over a region of predicted values, it does it to a
lesser extent and hence it is more reliable than the Calibrated Class-Weighted SVM for these values.

Figure 29: Reliability plot for the three SVM models after calibration is applied.
A model curve would ideally follow the back dashed x = y line, indicating predicted
probabilities of perfect quality. The axes values are cropped and removed due to
confidentiality.

According to Figure 30 below, the Calibrated Regular SVM and the Calibrated Class-Weighted SVM
are performing similarly, and it is hence impossible to say which of the two models performs the best in
terms of PR curves. However, the Calibrated Balanced SVM has the worst performing PR curve over all
recall-values. The ROC curves in Figure 31 tell a similar story, where the Calibrated Regular SVM and
the Calibrated Class-Weighted SVM are inseparable but clearly outperforming the Calibrated Balanced
SVM.
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Figure 30: Precision-recall (PR) curves for the three SVM models. The colored
curves represent the PR curves for the models, and the black dashed x = y line
represents a no skill-model, no better than random guessing. The axes values are
removed due to confidentiality.

Figure 31: Receiver operating characteristic (ROC) curves for the three SVM mod-
els. The colored curves represent the ROC curves for the models, and the black
dashed x = y line represents a no skill model, no better than random guessing. The
axes values are removed due to confidentiality.
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Table 9: Evaluation metrics for the three SVM models in comparison to a no skill
model, no better than random guessing. The receiver operating characteristic area
under curve (ROC AUC) values and the precision-recall area under curve (PR AUC)
values are all scaled in relation to the best performing model (in this case, the Regular
SVM model) due to confidentiality. Both metrics are calculated on the test set. The
corresponding no skill ROC AUC value is excluded from the table, to prevent the
actual ROC AUC values from being derived.

Model
ROC AUC
(scaled)

PR AUC
(scaled)

No Skill 0.643
Calibrated Regular SVM 1.000 1.000
Calibrated Class-Weighted SVM 0.998 0.997
Calibrated Balanced SVM 0.953 0.917

The scaled ROC AUC and PR AUC values in Table 9 identify the Calibrated Regular SVM as the
best SVM model, closely followed by the Calibrated Class-Weighted SVM. Actually, with such a small
di↵erence in performance between the models, it is again hard to tell if the regular or the class-weighted
SVM is the best.

Table 10: The precision-recall area under curve (PR AUC) is calculated on both
training- and test sets to allow for analysis of eventual tendencies of overfitting. Due
to confidentiality, training performance is scaled so that the PR AUC calculated on
the training data set is divided by the PR AUC calculated on the test data set. A
scaled value greater than one indicates that the model tends to overfit the training
data.

Model PR AUC training set
PR AUC test set

Calibrated Regular SVM 1.003
Calibrated Class-Weighted SVM 1.002
Calibrated Balanced SVM 1.303

According to the fraction between the PR performance on training and test data sets, the Calibrated
Regular SVM and the Calibrated Class-Weighted SVM are both reliable when applied on a unseen data
set. However, the Calibrated Balanced SVM shows strong signs of overfitting the training data.

Weighting all the results presented in this section together, the Calibrated Regular SVM is considered as
the best model out of the three evaluated SVM models.
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B Optimal Hyperparameters

The obtained optimal hyperparameters from tuning using Bayesian Optimization, as described in Section
3.2, for the final candidate models are presented in this appendix.

Regular Logistic Lasso

The optimal hyperparameter settings for the Regular Logistic Lasso are presented in Table 11.

Table 11: Optimal hyperparameter settings obtained for the Regular Logistic Lasso
after hyperparameter tuning using Bayesian Optimization, as described in Section
3.2.

Hyperparameter Optimal setting
Cost parameter, � 0.126
Maximum number of iterations 200

Calibrated Regular XGBoost

The optimal hyperparameter settings for the Calibrated Regular XGBoost are presented in Table 12.

Table 12: Optimal hyperparameter settings obtained for the Calibrated Regular
XGBoost after hyperparameter tuning using Bayesian Optimization, as described in
Section 3.2.

Hyperparameter Optimal setting
Maximum depth of each tree 15
Minimum loss reduction required for further partition on a leaf node 5.306
L1 regularization term on leaf weights 18.452
Step size shrinkage on feature weights 0.016
Maximum allowed delta step for each leaf output 2.032
Sub-sample ratio of columns in data set used by each tree 0.476
Number of gradient boosted trees 999

Calibrated Regular SVM

The optimal hyperparameter settings for the Calibrated Regular SVM are presented in Table 13.

Table 13: Optimal hyperparameter settings obtained for the Calibrated Regular
SVM after hyperparameter tuning using Bayesian Optimization, as described in Sec-
tion 3.2.

Hyperparameter Optimal setting
Bias-Variance Hyperparameter, 1/C 1230
Radius Parameter, � 10�8
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The optimal setting of the radius parameter �, displayed in Table 13, is in fact located on the lower
boundary of the interval of values used for tuning of the Calibrated Regular SVM. The tuning was made
in several steps, where the lower boundary was decreased step wise as the optimal value was located
on the boundary. However, the improvement in the PR AUC (which is to be maximized during the
hyperparameter tuning as described in Section 3.2) did not significantly improve from the last rounds of
decreasing the lower boundary of �. Hence, because the tuning process is time complex, the decision to
let the optimal setting of � to be located at the boundary was made.
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