

Civilingenjör i System i Teknik och Samhälle

Uppsala universitets logotyp

UPTEC STS 21025

Examensarbete 30 hp
Maj 2021

Multimodal Convolutional
Graph Neural Networks for
Information Extraction from
Visually Rich Documents
Kevin Ajamlou
Max Sonebäck

Error! Reference source not found.

Teknisk-naturvetenskapliga fakulteten

Uppsala universitet, Utgivningsort Uppsala

Handledare: Emil Fleron (Violet AI Labs) Ämnesgranskare: Anders Brun

Examinator: Elísabet Andrésdóttir

Uppsala universitets logotyp

Multimodal Convolutional Graph Neural Networks for
Information Extraction from Visually Rich Documents

Kevin Ajamlou
Max Sonebäck

Abstract
Monotonous and repetitive tasks consume a lot of time and resources in businesses today and
the incentive to fully or partially automate said tasks, in order to relieve office workers and
increase productivity in the industry, is therefore high. One such task is to process and extract
information from Visually Rich Documents (VRD:s), e.g., documents where the visual attributes
contain important information about the contents of the document. A lot of recent studies have
focused on information extraction from invoices, where graph based convolutional nerual
networks have shown a lot of promise for extracting relevant entities. By modelling the invoice
as a graph, the text of the invoice can be modelled as nodes and the topological relationship
between nodes, i.e., the visual representation of the document, can be preserved by connecting
the nodes through edges. The idea is then to propagate the features of neighboring nodes to
each other in order to find meaningful patterns for distinct entities in the document, based on
both the features of the node itself as well as the features of its neighbors.

This master thesis aims to investigate, analyze and compare the performances of state-of-the-
art multimodal graph based convolutional neural networks, as well as evaluate how well the
models generalize across unseen invoice templates. Three models, with two different model
architecture designs, have been trained with either underlying ChebNet or GCN convolutional
layers. Two of these models have been re-trained, and compared to their predecessors, using
the over-smoothing combatting technique DropEdge. All models have been tested on two
datasets - one containing both seen and unseen templates and a subset of the previous
dataset, containing only invoices with unseen templates.

The results show that multimodal graph based convolutional neural networks are a viable option
for information extraction from invoices and that the models built in this thesis show great
potential to generalize across unseen invoice templates. Moreover, due to an inherent sparse
nature of graphs modeled from invoices, DropEdge does not yield an overall better performance
for the models.

Teknisk-naturvetenskapliga fakulteten, Uppsala universitet. Utgivningsort Uppsala. Handledare: Emil Fleron (Violet AI Labs), Ämnesgranskare: Anders Brun, Examinator: Elísabet Andrésdóttir

Populärvetenskaplig Sammanfattning

Enligt en studie från 2017 [1] lägger kontorsarbetare världen över i snitt 552 timmar om året på
administrativa eller repetitiva arbetsuppgifter, samtidigt som 75 % av de tillfrågade anger att de gärna
hade överlåtit allt eller vissa delar av detta arbete till automatiserade processer. En sådan arbetsuppgift
som förekommer inom de flesta företag, och som innehåller både repetitiva och strukturerade delmoment,
är informationsextrahering från Visuellt Berikade Dokument, eller Visually Rich Documents, VRD:s. Ett
VRD är ett dokument där layouten på dokumentet innehåller stora delar av dokumentets information
och där stora delar av förståelsen för innehållet skulle begränsas om dokumentet komprimerades till en
löpande text och där de visuella attributen inte togs i beaktande. Ett exempel på detta är fakturor, vilket
också är den typ av VRD som kommer utgöra basen för detta examensarbete. Givet ett textfält, eller
en entitet, med textinnehållet "1049" är det svårt att veta om detta är ett totalbelopp, ett momsbelopp
eller ett fakturanummer om vi inte tar i beaktande vad som också står i textrutorna över, under såväl
som till höger och vänster om entiteten. Det blir alltså viktigt att analysera den visuella kontexten såväl
som det faktiska textinnehållet av ett givet textfält för att förstå dess betydelse.

Violet AI Lab är ett företag som fokuserar på att leverera AI-drivna lösningar till andra verksamheter.
En sådan lösning de utvecklat är en informationsextraheringsalgoritm som extraherar olika entiteter,
till exempel totalbelopp, OCR-nummer och förfallodatum, från fakturor. Deras nuvarande algoritm
använder sig av en samling traditionella maskininlärningsmodeller tillsammans med heuristiska regler för
att sammankoppla nyckel-värdepar och på så vis extrahera viktig information från dokumenten. Idén
för detta examensarbete uppstod när ny forskning pekat på att multimodala tillvägagångssätt visat stor
potential inom detta fält.

En maskininlärningsmodell som tar flera modaliteter, det vill säga informationskanaler av olika karaktär,
till exempel ljud, bild eller text, i beaktande sägs vara multimodal. Genom att använda ett
multimodalt tillvägagångssätt går det alltså att bibehålla både den visuella såväl som den textuella
kontexten av ett VRD för att processera och tolka dokument. Vidare är neurala nätverk en familj av
maskininlärningsmodeller som bygger på att sammankoppla nätverk av artificiella neuroner och träna
dessa till att hitta betydelsefulla mönster i den underliggande datan.

Genom att modellera fakturorna som grafer, där varje ord representeras av en nod och där noderna
har kanter till sina närmaste grannar kan både textinnehållet och den visuella kontexten användas för
att träna dessa modeller. Attributen för en nod blandas samman, eller konvolveras med attributen
från närliggande noder för att på så vis skapa en ny betydelsefull representation av noden baserat på
dess lokala kontext. Denna nya representation kan sedan användas av modellerna för att prediktera
om den givna noden tillhör en av de i förväg bestämda klasserna som ska extraheras, till exempel
totalbelopp eller fakturanummer. För att kunna träna ett neuralt nätverk på graf-data krävs en speciell
typ av nätverksdesign, något som kallas för Graph Neural Networks (GNN:s). En viss typ av GNN,
vars huvudfokus är att just konvolvera attributen mellan noder, kallas för Convolutional Graph Neural
Networks, eller ConvGNN:s. Inom ConvGNN-familjen har just spektrala ConvGNN:s visat mycket stor
potential inom informationsextrahering från VRD:s, därför kommer modellerna i detta examensarbete
att baseras på två olika spektrala ConvGNN-lager, nämligen ChebNet och Graph Convolution Network
(GCN). I linje med ny forskning kommer vi i detta examensarbete bygga tre olika multimodala neurala
nätverk baserade på dessa två konvolveringslager.

ConvGNN:s är fortfarande ett relativt ungt forskningsområde och det finns således vissa problem
som forskningsvärlden fortfarande arbetar hårt med att lösa. Ett sådant problem är att de nya
nod-representationerna som skapas vid en konvolvering börjar likna varandra mer och mer för varje
konvolvering, även för noder som tillhör olika klasser. Detta fenomen, som kallas over-smoothing, gör
det svårt att bygga djupa ConvGNN-arkitekturer och således också svårare att hitta komplexa samband
mellan noder som ligger långt från varandra i grafen. En teknik för att motverka over-smoothing är
DropEdge, som bygger på att slumpmässigt, med en given sannolikhet, ta bort vissa av de kanter som
finns i grafen under träning av modellen. För att undersöka vilken inverkan DropEdge har på modellerna
i detta examensarbete kommer två av modellerna att tränas om med DropEdge implementerat och där

olika sannolikheter kommer att testas.

Något som tidigare varit populärt för att extrahera information från VRD:s har varit mall-baserade
modeller. Dessa bygger på att strukturen för dokumentet hårdkodas in i extraktionsalgoritmen, där text
på en given position i dokumentet svarar mot en given entitet som ska extraheras. En stor nackdel med
detta är dock att denna typ av design skalar väldigt dåligt inom verkliga applikationsområden, då ett
dokument som bygger på en ny mall potentiellt skulle kunna störa extraktionsprocessen. En stor fördel
med att använda sig av ConvGNN:s istället är att forskning pekar på att dessa modeller är mall-agnostiska,
det vill säga att ConvGNN-baserade modeller även fungerar på dokument som bygger på mallar som inte
förekommit under träning. För att undersöka detta kommer modellerna i detta examensarbete att testas
på en delmängd av fakturor som är baserade på mallar som antas inte förekomma under träning.

Tidigare forskning inom informationsextrahering från fakturor med hjälp av ConvGNN:s har använt sig
av förhållandevis små datamängder, där storleken på datamängderna har legat inom spannet av 3000 -
4000 fakturor. Till detta projekt har vi fått tillgång till 83 672 unika fakturor från 18 272 olika utfärdare.
Uppgiften har varit att extrahera 13 olika klasser som förekommit i varierande grad på fakturorna i
datamängden. En 14:e klass, undefined, har skapats för att kategorisera alla ord som inte tillhör någon
av de förstnämnda 13 klasserna. De olika modellerna har sedan testats på en testmängd bestående av
4136 fakturor, samt en delmängd av denna bestående av 393 fakturor med mallar som inte förekommer
i träningsmängden.

Våra resultat visar att en multimodal ConvGNN-baserad lösning kan vara ett gångbart alternativ för
informationsextrahering från fakturor. Den bäst presterande modellen, en ChebNet-baserad modell
bestående av 4 konvolveringslager med ett avslutande linjärt lager, uppvisade ett makrogenomsnitt F1

på 0.7119, precision på 0.8259 och recall på 0.6255. Dessa siffror ökade dock med 15.5 %, 1.8 % samt 28.7
% när de 4 minst förekommande klasserna inte räknades med i resultaten. Samma modell presterade
även bäst på delmängden av fakturor med osedda mallar och hade där ett makrogenomsnitt F1 på
0.6015, precision på 0.6816 och recall på 0.5382. Vidare såg vi en genomgående prestationssänkning för
modellerna efter applicerandet av DropEdge i takt med att dess effekt ökade i styrka. Vissa undantag var
för en GCN-baserade modellerna som fick en svag ökning i F1, precision och recall för probabiliteterna
p = 0.10 och p = 0.20.

2

Acknowledgements
This master thesis project has been carried out at Uppsala University in collaboration with Violet AI
Lab, a Stockholm based machine learning company specialized in artificial intelligence and machine
learning applications. We would first like to extend our thanks and utmost appreciation to Emil Fleron
and Mikael Nelsson, our supervisors at Violet AI Lab, for providing us with excellent help, as well as
thank all the company’s employees who helped us throughout the process, in particular Anna Rydin and
Johannes Koch. We would also like to thank our subject reviewer, Anders Brun, for aiding us when
aid was needed. Lastly, we would like to thank Péter Nagy, CEO of Violet AI Lab, for giving us the
opportunity to write our master thesis in collaboration with the company. Without aforementioned’s
help and contributions, this project would not have been feasible.

Contents

1 Introduction 1
1.1 Background . 1
1.2 Purpose . 2
1.3 Organization of the Work . 2

2 Related Work 3
2.1 Attend, Copy, Parse: End-to-end Information Extraction from Documents 3
2.2 Graph Convolution for Multimodal Information Extraction from Visually Rich Documents 3
2.3 An Invoice Reading System Using a Graph Convolutional Network 3
2.4 Choice of Basis for Our Thesis . 3

3 Neural Network Anatomy 4
3.1 Artificial Neural Network Fundamentals . 4

3.1.1 The Artificial Neuron . 4
3.1.2 Activation Functions . 4
3.1.3 Multilayer Perceptron . 5

3.2 Convolutional Neural Networks . 6

4 Graph Neural Networks 8
4.1 Graph Theory . 8
4.2 Convolutional Graph Neural Networks . 10

4.2.1 Spectral Graph Convolutions . 11
4.2.2 ChebNet . 11
4.2.3 GCN . 13

5 Model Training 15
5.1 Loss Function . 15
5.2 Gradient descent . 16
5.3 Backpropagation . 16
5.4 Stochastic Gradient Descent & Mini-batching . 17
5.5 Overfitting . 18

5.5.1 Train, Test & Validation Splits . 18
5.5.2 Early Stopping . 18
5.5.3 L2 Regularization . 19
5.5.4 DropEdge . 19

6 Evaluation Metrics 21
6.1 Confusion Matrix . 21
6.2 Accuracy . 21
6.3 Recall . 21
6.4 Precision . 22
6.5 F1-Score . 22
6.6 Macro Average . 22

7 Data 24
7.1 Data Sources . 24
7.2 Data Preprocessing . 27

7.2.1 Data Cleaning . 27
7.2.2 Constructing the Annotated Dataset . 28

7.3 Graph Modelling . 29
7.4 Train, Test & Validation Datasets . 32
7.5 Discrepancies in the Data . 34

8 Feature Calculation 37
8.1 Byte Pair Encoding & Word Embeddings . 37

8.1.1 Byte Pair Encoding . 37
8.1.2 Byte Pair Embedding & GloVe . 37

8.2 Node Features . 38

9 Models 40
9.1 ChebNet . 41
9.2 GCN . 42

10 System Overview 43
10.1 Tools . 43
10.2 System Data Flow . 43

11 Results 45

12 Discussion 52
12.1 Performance Difference Between Models . 52
12.2 DropEdge . 53
12.3 Impact of Data Discrepancies . 54
12.4 Per-Class Performances . 55
12.5 Logit Analysis . 57
12.6 Level of Template Agnosticism . 58

13 Future Work 60

14 Summary & Conclusion 61

1 Introduction
1.1 Background
Visually Rich Documents (VRD:s) such as banking documents, receipts and invoices, play an integral role
in our day to day lives, especially in the world of business. The defining characteristics of a VRD is the
importance of visual cues and layout information embedded into the document, where any removal of such
visual features would reduce the information quality of the document as a whole. VRD processing, such
as extracting due dates from invoices or other types of information extractions, is often a monotonous
task historically achieved through manual labor. Automatic assistance of said tasks could potentially
lead to a great reduction in both time consumed as well as money spent for companies which handle and
process VRD:s. However, automatic handling of VRD:s becomes a complicated subject matter because
of the entanglement of information in the visual cues of the document and any representation of a VRD
that only leverages textual information results in loss of information. Furthermore, any template-based
model, i.e., where the schema of the document is hard-coded into the extraction process, would scale
poorly as there is no standardization for where certain values must appear and any previously unseen
template, e.g., an invoice from a new vendor, would potentially break the model [2].

In recent years, multimodal approaches have become a hot research topic [2], [3], [4]. A multimodal
model is simply a model which can process data from multiple modalities, such as audio, video and
linguistic data. For VRD:s, it is important to take both the layout as well as the textual information into
consideration when extracting information. In the field of information extraction from invoices, a tactic
which has shown promise in recent research [2], [3], [5] is to preserve the layout information as well as the
textual content of the invoice by modelling the invoice as a network graph. The graph is in turn fed to a
Convolutional Graph Neural Network (ConvGNN) to extract the relevant information. There has been
a surge of different ConvGNN designs as of late, although the goal is shared among these models: to
generate a representation of each node through aggregation of a nodes own features with the features of
its neighbors, thus informing each node of its local context [6]. In the context of information extraction
from invoices, these newly generated node features can then be used in order to predict the class of a
node, e.g., whether a node contains the total amount, due date, invoice number and so on.

A particular type of ConvGNN:s that has shown a lot of potential in the field of information extraction
from invoices are the spectral based ConvGNN:s [3]. Spectral based ConvGNN:s are based heavily on
spectral graph theory and aggregates node features by treating the features as signals and convolving
them in the spectral domain. However, transforming features to the spectral domain is a costly operation
which involves eigen-decomposition of the graph Laplacian, which is why ConvGNN:s such as ChebNet
[7] and Graph Convolutional Networks (GCN) [8], the two graph convolution layer designs that will be
inspected in this thesis, resorts to approximating the spectral transformation and convolution through
Chebyshev polynomials instead.

However, the field of spectral graph convolutions is still young and there are some problems with the
current strategies that the scientific community is struggling to solve. One such problem is the problem of
over-smoothing, where the feature representations of nodes from different classes become indistinguishable
from each other as the network grows deeper and more complex [9]. Rong et al. [10] propose the idea
of randomly removing some of the edges from a given graph to relieve some of the over-smoothing, a
technique that they fittingly call DropEdge.

This thesis aims to evaluate and compare the predictive power of ChebNet and GCN for information
extraction of invoices by labeling nodes in graph representations of invoices as one of 14 different classes.
We also want to see if the DropEdge technique has any effect on the final results. The training is done
on a labeled invoice dataset consisting of 83 672 unique Swedish invoices from 18 272 different vendors.
The size of this dataset is unprecedented, as previous studies in the field of convolutional graph neural
networks have been limited to at most a couple of thousand invoices [3], [5]. Each entity (e.g., the due
date, the VAT amount et cetera) of the invoices has been labeled by a mixture of automated processes
and human supervision as well as intervention, where needed. This data was sourced by a third party
before the inception of the project idea, thus making the actual sourcing not a part of this thesis.

1

1.2 Purpose
The purpose of this thesis is to evaluate and analyze the performances of state-of-the-art graph based
neural networks on the task of extracting information from invoices, as well as evaluate how well the
networks generalize for unseen invoice templates. Three models are built using either underlying ChebNet
or GCN convolution layers. The models are trained and compared with respect to their macro average
recall, precision and F1-score. The two deepest models are also retrained using DropEdge with different
drop probabilities, and will be compared to their previous results.

1.3 Organization of the Work
This master thesis has been done in collaboration with the Stockholm based machine-learning applications
company Violet AI Labs. The idea for writing a thesis about multimodal information extraction from
invoices came from this project’s supervisors, who wanted to investigate how the company’s current
machine-learning models compares to state-of-the-art approaches on said task.

During the course of the project, weekly follow up meetings have been conducted with the project
supervisors and machine learning engineers at the company, where focus have been on discussing
the current status of the project as well as further ideas and improvements to implement. Several
presentations for the company’s employees have been carried out as well, both for machine-learning
engineers and data scientists, as well as for laymen and employees not working directly with machine-
learning technologies. The presentations have consisted of describing the current statuses of the project,
the theories on which our thesis are based on as well as how we, the authors, have chosen to carry it
out.

2

2 Related Work
The following section describes related research done in the field of information extraction from VRD:s,
with three different approaches being presented.

2.1 Attend, Copy, Parse: End-to-end Information Extraction from Documents
Palm [4] proposes in his research paper “Attend, Copy, Parse: End-to-end information extraction from
documents” an end-to-end approach for information extraction from VRD:s (end-to-end meaning string
outputs extracted from PDF or document image input). Palm introduces an “Attend, Copy, Parse”
architecture, utilizing a deep neural network model that can be trained directly on end-to-end data.
Since end-to-end data is easy to come by, the author argues that using his proposed system eliminates
the need for the expensive work of word-level labeling, which state-of-the-art word classification methods
for information extraction currently rely on. Palm evaluates his proposed architecture on a large dataset
consisting of invoices and outperforms production system based state-of-the-art word classification.
However, such an approach assumes text to only have sequential relations in the horizontal plane and
does not take the 2-dimensional nature of invoices into account.

2.2 Graph Convolution for Multimodal Information Extraction from Visually Rich
Documents

Unlike [4], Liu et al. [5] propose in their research paper “Graph Convolution for Multimodal Information
Extraction from Visually Rich Documents” a different approach for information extraction from VRD:s
(receipts), namely a multimodal approach using Convolutional Graph Neural Networks. In their model,
they combine textual and visual information present in these VRD:s where graph embeddings are trained
to summarize the context of text segments in the document. According to the authors, their system
outperforms classic information extraction models by significant margins. The authors use a dataset
consisting of government regulated invoices, meaning that they all follow the same template.

2.3 An Invoice Reading System Using a Graph Convolutional Network
Like [5], Lohani et al. [3] propose in their paper, “An Invoice Reading System Using a Graph Convolutional
Network”, a system for reading digitized invoice images. This approach highlights the most useful
billing entities, such as total amount, VAT amount and net amount, without the need of any particular
parameterization. According to the authors, the power in the system lies in the fact that the method
generalizes to both seen and unseen templates and layouts of invoice, thus making it template agnostic.
The authors achieve a complete invoice reading upto 27 classes of interest, without the need of any
template configuration or information. It is however noteworthy that the authors never states the number
of different vendors that are present in their dataset and it is hence difficult to determine the level of
template agnosticism of their model.

2.4 Choice of Basis for Our Thesis
Comparing approaches and models is not a straightforward task, since the research done by the different
teams involves different datasets, entities to classify and evaluation metrics. The basis for this thesis is
the work done by [3], described in Section 2.3. The reasons for basing our work in [3]’s work, and not
the work from the other two described in Sections 2.1 and 2.2, is mainly due to [3]’s model’s ability to
classify several different entities, its high achieved scores and its supposed ability to generalize across
invoice templates.

3

3 Neural Network Anatomy
The following sections aim to provide a high-level fundamental understanding of machine learning and
artificial neural networks in order to facilitate the understanding of the concepts our models are based
on, which will be further explained in Section 4.

3.1 Artificial Neural Network Fundamentals
One of the true challenges in machine learning is to solve tasks that are easy for humans to perform
but hard for humans to formally explain. In other words, problems humans solve intuitively that feel
automatic, e.g., recognizing faces in images, spoken words or written text pose challenges for computers
to solve as well. The machine learning solution to these problems can be described as the process of
computers learning from experiences and understanding the world in terms of hierarchical concepts that
build on top of simpler concepts. This process, in the field of machine learning, is referred to as deep
learning. The word “deep” refers to the depth of layers, where a layer is the highest-level building block,
in a so-called artificial neural network (ANN) [11].

3.1.1 The Artificial Neuron
In order to understand neural networks, one must first be acquainted with the most fundamental
component of any ANN, the artificial neuron. The neuron is a node in the ANN which receives signals
from the environment in the network, gathers all these signals and transmits a single signal of its own,
an output, to other connected neurons. In order to compute the output, z, from the neuron, we need to
have an input vector x = [x1, x2, . . . , xN], a set of weights w = [w1, w2, . . . , wN] and a bias b. The output
z can then be computed with Equation 1 [12]:

z =

N∑
i=0

wixi + b. (1)

The firing and signal strength of a neuron is controlled by an activation function, to which the output
z is passed [12], which will be further explained in Section 3.1.2. Figure 3.1.1 illustrates an artificial
neuron.

Figure 1: An artificial neuron. Before the signal reaches the node, every input xn is multiplied by the
corresponding weight, wn.

An ANN is a layered network of neurons and consist of an input layer, a number of hidden layers and an
output layer. The neurons in one layer are either partially or fully connected (FC) to the neurons in the
next layer [11]. This will be further discussed in Section 3.1.3.

3.1.2 Activation Functions
After we have received an input to the neuron, we want the output from the nodes to be sensitive in
certain areas, thus the use of an activation function. The application of an activation function defines
which neurons to trigger in each layer, where only the neurons with relevant information are activated.
The main utility of applying an activation function is to introduce non-linearity in the network [13], since
this allows the model to learn more complex functions. Different types of activation functions can be
used for this task, but this thesis will solely utilize the activation functions known as Rectified Linear
Unit (ReLU) and softmax. The ReLU function is defined as

4

ReLU(z) = max(0, z), (2)

where the output is equal to z for positive inputs and 0 for negative inputs, which is illustrated in Figure
2 [13].

Figure 2: Plot of the ReLU function.

The softmax function normalizes the output from a neural network which converts them to values that
sum up to one. The function is defined as:

σsoftmax(z)i =
ezi∑K
j=1 e

zj
(3)

for i = 1, . . . ,K and z = [z1, . . . , zK] ∈ RK [13]. An illustration of this conversion is shown in Figure
3.

Figure 3: The result of applying softmax to the outputs from the neurons. The values from the softmax
output sum up to 1.

3.1.3 Multilayer Perceptron
A Multilayer Perceptron (MLP), also referred to as a feedforward artificial neural network, is the
archetypal deep learning model. The aim of an MLP is to approximate some function f∗, and it is
suitable for classification problems where the inputs to the network are assigned a label or a class. Say
we have a classifier y = f∗(x) which maps an input x to a class y, the MLP defines the output of the
network as y = f(x; θ), where θ represents the weights and biases w and b, and learns the value of θ that
yields a function approximation as accurate as possible. Between every layer in the network, activation
functions are utilized. The procedure of learning to map input values to output values is called training
[11]. An MLP utilizes a technique called backpropagation when training the network, which will be further
explained in Section 5.3.

In an MLP network, every unit (neuron) in one layer is connected to every unit in the next layer. In
other words, the MLP network is a fully connected one [11]. An MLP consists of three or more layers,
Figure 4 illustrates a typical MLP structure.

5

Input layer

Hidden layer

Output layer

Figure 4: A simple MLP network consisting of an input layer, a hidden layer and an output layer. An
MLP consists of three or more layers, meaning the number of hidden layers can differ from MLP to MLP.
Modified image from [11].

An MLP is called a feedforward network due to the fact that there are no feedback connections where
the outputs of the model are fed back into itself. Instead, all connections in the model move from input
to output, layer by layer [11].

3.2 Convolutional Neural Networks
A Convolutional Neural Network (CNN) is a specialized kind of neural network, used for processing
data that has a grid-like topology. As the name suggests, CNN:s are neural networks that, in place of
general matrix multiplication, utilize convolution in at least one of their layers. [11]. Where traditional
neural networks’ output units interact with every input unit, convolutional neural networks have sparse
interactions. This sparsity can be achieved through a kernel used to extract features from the input data.
Using this approach, it is possible to store fewer parameters which in turn reduces memory requirements.
This also improves statistical efficiency and requires fewer operations for computing the output. Figure
5 illustrates the difference in connectivity between the nodes, in regard to convolutional layers and
traditional neural network layers [11].

Figure 5: The top layer shows the sparse connectivity using convolution, the bottom layer shows the
connectivity using matrix multiplication. With a kernel of 3, only 3 outputs are affected by input x.
With matrix multiplication all outputs are affected by input x. Modified image from Goodfellow et al.
[11].

CNN:s are typically composed of three different layers – a convolutional layer, a pooling layer and a fully
connected layer. The task of the convolutional layer is to take an input consisting of a numerical matrix
representation of said input and extract convolved features. Doing so utilizes a filter of a set size, which
“walks” through the numerical representation, and the dot product of the entries of the filters as well as
the input at a given position thus creating a new, convolved, feature. A simplified example of operations
in the convolutional layer are seen in Figure 6. In this example, the 2×2 filter starts at the top left corner
of the matrix, and strides one step at a time to the right. This continues until the filter reaches the edge
of the input matrix and is then positioned at the same starting position but one step down, row wise.
The iteration process stops when the filter reaches the lower right corner of the input matrix [13].

6

1 1 1 0

0 0 1 0

1 0 0 1

1 1 0 0

1 1

1 1 2 3 2

1 1 2

3 1 1

Input Convolutional Feature

Filter

Figure 6: A simple example of a convolutional operation.

In the next layer, the pooling layer, specific functions known as pooling functions are performed to reduce
the dimensionality of the network. In other words, the pooling function replaces the output at a certain
location with a statistical summary of the nearby outputs [13]. Lastly, the fully connected layer flattens
the results before being passed as output.

The deeper the network architecture, the more abstract features we allow the network to learn. For
intuitive purposes, the learning process for CNN:s applied to, e.g., an image, can be summarized as
follows:

• As the learning goes deeper in the network, the complexity in each filter increases; the first layers
learn to detect basic features (e.g., corners and edges)

• The middle layers’ filters are trained to detect parts of objects (e.g., a nose, an ear)

• The last and final layers learn to recognize full objects (e.g., a face) for different representations

7

4 Graph Neural Networks
The following sections build upon Section 3 and aim to further describe the concepts that our model
architecture is based on and focus specifically on graph theory coupled with convolutional neural
networks.

A Graph Neural Network (GNN) is a neural network model adapted for graphs as input. By processing
the graph directly, GNN:s preserve the topology information within the graph which would otherwise
be lost using traditional processing methods, as the graph would be squished and reshaped into vectors
before being fed to a neural network. GNN:s can be combined with different types of extensions, e.g.,
convolutions, to better facilitate training and learning [14]. To better understand GNN:s and their
extensions, it is vital to first understand the fundamentals of graph theory.

4.1 Graph Theory
The concept of a graph can sometimes vary; however this thesis will rely on the definition of a simple
graph as explained by [15]:

A graph is constructed through two basic elements: vertices (also known as nodes) and edges. A graph
G consists of the pair (V,E), where V is a finite set of vertices and E is an unordered set of pairwise
subsets of V called edges, such that the edges in E describe the connections of vertices in V . The edges of
a graph can either be directed or undirected depending on whether there exists a directional dependency
between vertices or not. An example of an undirected graph consisting of 5 vertices and 6 edges can be
seen in Figure 7.

3

2

1

4

0

Figure 7: An undirected graph consisting of the vertices V = {0, 1, 2, 3, 4} and the edges E =
{{0, 1}, {0, 2}, {0, 3}, {1, 2}, {1, 4}, {2, 4}}.

A useful and elegant way to fully represent a graph is through the adjacency matrix [16]. If we let
G = (V,E), where V = {v1, v2, . . . , vN} and the subset {vi, vj} can be found in E such that {vi, vj}
forms an edge, we say that the vertices vi and vj are adjacent. From this, we can construct the adjacency
matrix A ∈ RN×N of G (N = the number of nodes in V), where the elements in A are given by Equation
4.

aij =

{
1, if vi and vj are adjacent,
0, otherwise.

(4)

From this, it follows that for an undirected graph which does not allow for loops, A is symmetric, and the
trace of A is zero. The equation for the adjacency matrix for the example graph in Figure 7 can be found
in Equation 5. Note that the blue numbers indicate the row and column-wise index positions.

A =


0 1 2 3 4

0 0 1 1 1 0
1 1 0 1 0 1
2 1 1 0 0 1
3 1 0 0 0 0
4 0 1 1 0 0

 . (5)

8

Furthermore, we can also describe the number of edges which terminate at a given vertex, i.e., how many
connections a given node in V is part of, by calculating the degree matrix. If we let D ∈ RN×N denote
the degree matrix of graph G, the elements in D are given by Equation 6.

dij =

{
deg(vi), if i = j,
0, otherwise.

(6)

Where deg(vi) denotes the degree of vertex vi, i.e., the number of edges which contains vertex vi. Equation
8.1.2 illustrates the degree matrix of the graph found in Figure 7.

D =


0 1 2 3 4

0 3 0 0 0 0
1 0 3 0 0 0
2 0 0 3 0 0
3 0 0 0 1 0
4 0 0 0 0 2

 . (7)

Another important matrix representation of the graph, especially in the field of spectral graph theory
and graph convolutions, is the Laplacian matrix, or simply the Laplacian. The simplest form of the
Laplacian can be derived from the adjacency matrix and the degree matrix, such that L = D −A, where
L ∈ RN×N . The elements in L are given by Equation 8.

lij =


deg(vi), if i = j,
−1, if i 6= j and vi is adjacent to vj ,
0, otherwise.

(8)

Since D is a diagonal matrix and A is symmetric for undirected graphs, it naturally follows that L is also
symmetric. Given the same adjacency and degree matrix used in previous examples, the corresponding
unnormalized Laplacian is represented in Equation 9.

L =


0 1 2 3 4

0 3 −1 −1 −1 0
1 −1 3 −1 0 −1
2 −1 1 3 0 −1
3 −1 0 0 1 0
4 0 −1 −1 0 2

 . (9)

The normalized Laplacian matrix is defined by Equation 10 [17].

L = D−
1
2 LD−

1
2

= IN −D−
1
2 AD−

1
2 .

(10)

Here, IN is the identity matrix of dimension N × N . Recent works in graph convolutions and graph
node classification such as [7] and [8] build upon spectral graph theory, which gives rise to the need
of transforming the graph into the spectral domain. Through eigen-decomposition of the Laplacian we
achieve Equation 11.

L = U ΛU T . (11)

Λ ∈ RN×N is the diagonal matrix with its diagonal elements being the eigenvalues sorted in ascending
order and U ∈ RN×N is composed of the eigenvectors corresponding to the eigenvalues in Λ [7]. The

9

matrices U and U T can then be used as transformation matrices between the vertex domain and the
spectral domain, respectively [7].

4.2 Convolutional Graph Neural Networks
The Convolutional Graph Neural Network (ConvGNN) is a special type of GNN that can be seen as a
generalization of a CNN [6]. As already mentioned in Section 3.2, CNN:s has the ability to learn local
structures in the input data. It achieves this by exploiting the underlying grid-like structure of the data
by learning filter weights which correspond to the Euclidean position of the pixels. However, graph data
representations are not necessarily neatly structured onto a grid, rather they can be highly irregular and
in non-Euclidean domain, removing the possibility to apply a CNN onto graph data out-of-the-box [7],
see Figure 8.

Figure 8: The pixels of an image can be represented as a graph (left) where the green node represents
a centered pixel and the orange nodes are its neighbors. To capture this region in a CNN, we simply
apply a 3× 3 filter, as it is apparent that the neighborhood of the centered vertex naturally aligns with
its position in Euclidean space. However, the neighborhood of a vertex in a more general graph (right)
is not necessarily tied to the Euclidean space. Furthermore, the number of neighbors of a node in the
rightmost graph may vary, while the number of edges from a node in the leftmost graph is fixed (except
for nodes at the borders).

However, there are still multiple ways to achieve convolutions on graph data and generalizations of
CNN:s has been a hot research topic in recent years [3], [7], [8], [18]. We want to note that there is
some discrepancy regarding the umbrella term for Convolutional Graph Neural Networks, where they
are sometimes referred to as Graph Convolutional Networks (GCN) [3], and sometimes referred to as
ConvGNN, [6]. To avoid confusion between the model family of convolutional graph neural nets and the
specific model presented by Kipf & Welling [8] which is also called GCN, we have chosen to use ConvGNN
to denote the umbrella term. Whenever we refer to the specific model presented by Defferrard [7] or Kipf
& Welling [8], we will use the term ChebNet and GCN, respectively.

Recent ConvGNN:s often have a similar structure, where the input of a ConvGNN model consists of
[6]:

• A feature matrix X ∈ RN×F where N is the number of vertices and F is the number of features
for each node.

• A representation of a graph in matrix form, often the adjacency matrix A or some variation thereof.

The goal is then, for some graph G = (V,E), to learn a function f of the features in G which produces
a node-level output Z ∈ RN×F ′ , where F ′ is the number of node-level output features. If we let H (l)

be the output feature matrix at the lth layer, then H(0) = X and H (L) = Z , where L is the number of
layers. A single layer in the neural network can then be described as according to Equation 12.

H (l+1) = f(H (l),A). (12)

Specific ConvGNN models, such as ChebNet [7] and GCN [8], then only differs in how f(·, ·) is chosen
and parameterized [6].

10

As discussed in 3.2, the pooling layer is an important building block for most CNN:s and can indeed
be implemented for graph convolutions as well [7]. However, this technique is used when classifying
complete graphs, not individual nodes within graphs. Hence, we omit the pooling layer completely in
this thesis.

4.2.1 Spectral Graph Convolutions
A certain family of ConvGNN:s of which both ChebNet and GCN belong to is the spectral based graph
convolution family. Spectral based graph convolutions are based on the idea that node features can be
treated as signals and that convolutions of signals in the vertex domain can be treated as multiplication in
the spectral domain [8], [7]. To operate in the spectral domain, the graph feature matrix H (l) ∈ RN×F ,
where N is the number of nodes and F is the number of node features at layer l, first needs to be
transformed through a change of basis. Recall that we can derive the normalized Laplacian matrix L
from the adjacency matrix A of an undirected graph as defined by Equation 10, and that L can be
eigen-decomposed to U ΛU T as defined by Equation 11. The eigenvectors in U can be used to form a
new basis in the spectral domain. The spectral transformation Ĥ (l) of input matrix H (l) is defined by
[19]

Ĥ
(l)

= U TH (l), (13)

and the transformation back to the vertex domain is defined as

H (l) = U Ĥ
(l)
. (14)

We can also understand the eigenvalues Λ of L as the frequencies of the graph. Hence, we can construct
a filter gθ where θ are learnable parameters, operating on the Laplacian as such [7]:

gθ(L) = gθ(U ΛU T)

= U gθ(Λ)U T .
(15)

Through Equation 13, 14 and 15, convolving H (l) with gθ can now be expressed as

H (l) ∗ gθ(L) = gθ(L)H (l)

= U gθ(Λ)U TH (l).
(16)

Simply put, the idea is to transform H (l) to the frequency domain, convolve the frequencies through the
filter operation and then convert the features back to the vertex domain. Different spectral based graph
convolutions mainly differ in the formulation of filter gθ [6].

4.2.2 ChebNet
The ChebNet convolution layer is designed using the following filter for graph convolutions [7]:

gθ(L) =
K−1∑
k=0

θkTk(L̃). (17)

As both the eigen-decomposition of L and the change of basis between the vertex domain and the
spectral domain needed in Equation 16 are costly operations, the proposed filter gθ is parameterized
as a polynomial function of L and is calculated as a Chebychev polynomial approximation. As proven
by Hammond et al. [20], by using a Chebyshev polynomial approximation for computing gθ(L), we
bypass the need for eigen-decomposing L as well as the need for transforming the feature matrix between
domains. The kth order Chebychev polynomial of x, denoted as Tk(x), is defined as

11

Tk(x) = 2xTk−1(x)− Tk−2(x)
T0(x) = 1

T1(x) = x.

(18)

Through this Chebyshev polynomial approximation of the convolution filter, we not only lower the time
complexity of the convolution, we also allow for the filter to be applied locally. The parameter K denotes
the locality of the filter, i.e., we center the filter with a radius of K hops around a node. In other words,
K is analogous to the filter size of a CNN. By using a Chebyshev approximation of gθ(L) with locality
K, we reduce the time complexity of the entire filtering operation from O(n3) down to O(K|E|) [7] [6],
where |E| is the number of edges in the graph. L̃ is a scaled version of L such that

L̃ =
2L
λmax

− IN . (19)

where λmax is the largest eigenvalue of L. This rescaling is necessary as the Chebyshev polynomials form
an orthonormal basis on the interval [−1, 1] and the original Laplacian lies within the interval [0, λmax].
θk are learnable Chebyshev coefficients at hop k, such that θk ∈ RF×F ′ , where F is the number of features
going into the model and F ′ is the length of the feature map going out of the model.

The spectral convolution of a feature matrix H (l) can now be defined as

H (l) ∗ gθ = gθ(L̃)H (l)

= [Ĥ
(l)

0 , Ĥ
(l)

1 , . . . , Ĥ
(l)

K−1]Θ
(l),

(20)

where

Ĥ
(l)

k = 2L̃Ĥ
(l)

k−1 − Ĥ
(l)

k−2

Ĥ
(l)

0 = H (l)

Ĥ
(l)

1 = L̃H (l),

(21)

and where Θ(l) = [θ
(l)
0 , θ

(l)
1 , . . . , θ

(l)
K−1] is a vector of size K containing the learnable parameters for each

hop at the lth layer. Now, a single layer can be described as

H (l+1) = σ(

K−1∑
k=0

Ĥ
(l)

k θ
(l)
k), (22)

where H (l+1) ∈ RN×F ′ . For a graphical illustration of how Equation 22 convolves the features of a single
node with its K = 3 neighborhood, please refer to Figure 9.

12

D

C

B

E

A3

2

1

4

0 3

2

1

4

03

2

1

4

0

Figure 9: A Chebyshev convolution forK = 3 for one specific node (node 0). The adjacent nodes affecting
the feature representation of node 0 are indicated with a circle. θ(l)k represent the F × F ′ dimensional
weights at hop k.

4.2.3 GCN
Kipf & Welling [8] present the following architecture for a multi-layered GCN:

H (l+1) = σ(D̃
− 1

2 ÃD̃
− 1

2) (23)

To understand this architecture, we once again consider graph G = (V,E) where V ∈ RN , the
corresponding adjacency matrix A ∈ RN×N and some input matrix H (l) ∈ RN×F of node features
at layer l. The GCN layer proceeds with a similar idea of a spectral filter as ChebNet, as defined by
Equation 17. However, GCN limits the number of K-hops per layer to 1, such that the features of a
centered vertex only convolve with features of nodes with which it shares an edge. The idea is then to
stack multiple layers in succession to receive a set of useful convolutional filter functions instead of relying
on the parametrization of K [8]. Furthermore, λmax in Equation 19 is approximated to λmax ≈ 2. This
simplification, in conjunction with the definition of L stated in Equation 10, simplifies Equation 19 as
follows:

L̃ = L − IN

= −D−
1
2 AD−

1
2 .

(24)

Under the simplifications made in Equation 24 as well as by limiting the number of hops to 1, the
convolution of a feature vector h(l)i ∈ H (l) for node i and the spectral filter gθ can be defined as

h
(l)
i ∗ gθ(L̃) = θ0h

(l)
i + θ1(L − IN)h

(l)
i

= θ0h
(l)
i − θ1D

− 1
2 AD−

1
2h

(l)
i .

(25)

Here, θ0 and θ1 are parameter vectors for k = 0 and k = 1. To reduce the risk of overfitting, [8] further
approximate θ0 = −θ1 and reformulate the parameters as a single parameter θ, such that the convolution
expression can be rewritten as

h
(l)
i ∗ gθ(L̃) ≈ θ(IN + D−

1
2 AD−

1
2)h

(l)
i . (26)

Since D−
1
2 AD−

1
2 has eigenvalues in the range [0, 2], the expression is renormalized in terms of Ã and

D̃ as such:

IN + D−
1
2 AD−

1
2 −→ D̃

− 1
2 ÃD̃

− 1
2 . (27)

13

Here, Ã is the adjacency matrix of the original graph G with added self-loops, such that Ã = A + λIN ,
i.e., every node is also set as a neighbor to itself. λ is a potentially trainable parameter which adjusts
the importance of features for the centered vertex. However, Kipf & Welling [8] fixes λ = 1 in their
report. D̃ is the degree matrix of Ã. This renormalization reduces the risk for numerical instabilities
and vanishing/exploding gradients during backpropagation (see Section 5.3).

This far, the theory behind a GCN has been explained in terms of a single node feature vector h(l)i . The
idea can however be generalized over a feature matrix H (l) as such:

H (l) ∗ gθ(L̃) = D̃
− 1

2 ÃD̃
− 1

2 H (l)θ(l), (28)

where θ(l) ∈ RF×F ′ is the trainable weight matrix at the lth layer. By applying a nonlinearization
function σ(·) to Equation 28, we end up with the Equation for the output feature map H (l+1) ∈ RN×F ′

stated in Equation 23.

14

5 Model Training
For a machine learning model to be of any real use it first needs to be trained on data. In the following
section we will go through common techniques used for adjusting the weights and biases of a deep learning
model. Sections 5.1 - 5.3 will explain how to measure the difference between a model’s prediction and
the “true” value as well as how this measurement can be used to update the model’s parameters. Section
5.4 will explain the concept of epochs and batches and Section 5.5 will go through some pitfalls when
training a model and how to counter them.

5.1 Loss Function
In order to determine how well a model fits the training data, it is essential to measure how the model’s
predictions compare to the true values, i.e., how big the difference is between the two. Functions that
describe these differences are called loss functions, which takes both the predicted values and the true
values as input, such that L(ŷ(xi; θ), yi) [13]. Here, L is the loss function, ŷ(xi; θ) is the model output
based on the feature vector xi for a single data point i and the model parameters θ, while yi denotes the
true value of i. The loss function calculates the difference between the model output and the true value
for each individual data point in the dataset.

An example of a loss function, which is also used in this thesis, is the Multiclass Cross Entropy (CE) loss
function [21]. This is, as the name entails, a loss function for multiclass machine learning problems and
operates on the logits produced by a softmax activation function. The logits from the softmax output
can be interpreted as a form of certainty of membership for each class [13]. The CE loss function assigns
a low loss when the certainty for the correct class is high, and a high loss when the inverse is true. We
calculate the cross entropy by taking the negative log likelihood for each true label as such:

L(ŷ(xi; θ), yi) = −
M∑
m=1

(yimlog(σ(ŷ(xi; θ))m)). (29)

Here, M is the total number of classes and σ(·) denotes the softmax activation function. If we imagine
a multiclass classification problem with three possible classes and datapoint i belongs to the third class,
then yi would be a vector such that yi = [0, 0, 1]. Imagine also that the model output ŷ(xi; θ) for the
same data point is equal to ŷ(xi; θ) = [1, 3, 5] and softmax(ŷ(xi; θ)) ≈ [0.016, 0.117, 0.867]. The loss
would then be calculated as:

L(ŷ(xi; θ), yi) = −
3∑

m=1

(yimlog(softmax(ŷ(xi; θ))m))

≈ −1× (0× log(0.016) + 0× log(0.117) + 1× log(0.867))
≈ 0.06.

(30)

In this example, the model is fairly certain that data point i does indeed belong to the third class, leading
to a low loss.

By averaging the loss over all data points, we achieve the cost function J(θ) which is defined as follows
[13]:

J(θ) =
1

N

N∑
i=1

L(ŷ(xi; θ), yi). (31)

Here, N denotes the total number of data points in the training dataset. The cost function now gives us
the average loss over all predictions for the whole dataset and functions as a measure for how well the
model on average fits the training data.

15

5.2 Gradient descent
Training a model implies that we choose the parameters θ such that we minimize the cost function J(θ)
in order to ensure that the difference between the model predictions ŷ and the true values y become as
small as possible. The parameter learning problem can then be defined as follows [13]:

θlearned = arg min
θ

J(θ). (32)

If θ consisted of a single unknown scalar ϑ such that J(θ) = J(ϑ), a simple way of optimizing J(ϑ) would
be to calculate the derivative J ′(ϑ) and adjust ϑ with some step size γ ≥ 0, also called the learning rate,
in the negative direction of the slope [11]. ϑ can then be updated as follows:

ϑ(k+1) = ϑ(k) − γJ ′(ϑ(k)). (33)

Where k denotes the current iteration of ϑ. In neural networks however, θ is most often not a scalar but a
matrix consisting of multiple parameters, in which case a simple derivative is not sufficient. However, the
same concept can be reapplied using the partial derivatives of J(θ) with respect to all parameters in θ. By
calculating the gradient ∇θJ(θ), we get a vector consisting of the partial derivatives with respect to the
parameters in θ, where the element on index position i in ∇θJ(θ) corresponds to the parameter on index
position i in θ [11]. Similarly to Equation 33 we can now update the parameters in θ through:

θ(k+1) = θ(k) − γ∇θJ(θ(k)). (34)

The act of learning new parameters in θ by adjusting them in the negative direction of their partial
derivative counterpart in ∇θJ(θ) is called gradient descent [11].

5.3 Backpropagation
Before adjusting the parameters in accordance with the gradient, the gradient first needs to be computed.
This is often done using the backpropagation, which builds on the concepts of the calculus chain rule [13].
The calculus chain rule [22] states that:

If z = f(y) is is a differentiable function of y and y = g(x) is a differentiable function of x,
then z = f(g(x)) is a differentiable function of x and dz

dx = dz
dy ×

dy
dx .

This idea can be expanded and applied to the cost, weights and biases of a neural network. Consider a
neural net with L layers, where each layer l consists of the following components:

z(l) = W (l)q(l−1) + b(l)

q(l) = σ(z(l)),
(35)

with the last output layer:

z(L) = W (L)q(L−1) + b(L)

q(L) = σ(z(L)),
(36)

where q(L) is the model prediction ŷ and is evaluated by some cost function J(ŷ, y). To compute the
change in J with respect to the weights W (L), we would through the chain rule achieve:

∂J
∂W (L) = ∂J

∂q(L) × ∂q(L)

∂z(L) × ∂z(L)

∂W (L) . (37)

By evaluating how changes in W (L) affects z(L), how changes in z(L) affects q(L) and how changes in
q(L) in turn affects J , we can measure how changes in W (L) affects J . This can analogously be done
for the biases in b(L) as well. From here, it is possible to recursively calculate the partial derivatives
further down in the network, caching the already calculated derivatives to optimize calculation times [13]

16

[11]. The partial derivative of J with respect to the weights in layer L − 1 would then be calculated as
follows:

∂J
∂W (L−1) = ∂J

∂q(L) × ∂q(L)

∂z(L) × ∂z(L)

∂q(L−1) × ∂q(L−1)

∂z(L−1) × ∂z(L−1)

∂W (L−1) . (38)

Notice that the first two terms in 38 have already been calculated in 37 and the cached results can be
reused to save on computation time. This is done for all weights and biases throughout the layers in
the network, starting with the last layer and moving backwards through the network, reusing the partial
derivatives that have already been calculated in previous layers to construct ∇θJ [13]. This, in essence,
is the backpropagation algorithm.

5.4 Stochastic Gradient Descent & Mini-batching
For very large datasets, it might not be feasible or computationally efficient to calculate the gradient
of the cost function for the whole dataset each time. However, by calculating the gradient over smaller
subsamples of the dataset, also known as mini-batches, we can still get an approximation of the gradient
over the whole dataset [13]. The cost function for a mini-batch would then be defined as:

J(θ) =
1

Nb

Nb∑
i=1

L(ŷ(xi; θ), yi), (39)

where Nb denotes the size of a mini-batch. The model parameters θ can subsequently be updated based
on the gradient of a single mini-batch as follows:

θ(t+1) = θ(t) − γ 1

Nb
∇θ

Nb∑
i=1

L(ŷ(xi; θ
(t)), yi), (40)

A full sweep over the whole dataset, where θ has been updated based on the gradients of all subsequent
mini-batches, is called an epoch. When splitting the dataset into mini-batches, it is important to ensure
that the data points in the set are independent from each other [11]. In the case of invoices, it might be the
case that the first 100 invoices are all from the same vendor, the next 100 invoices are from another vendor
and so on, depending on how the data was collected. In that case, each mini-batch would be heavily
biased towards a specific vendor which might have a negative impact on the algorithm’s effectiveness [11].
To ensure that each mini-batch represents the whole dataset as well as possible, the dataset should be
shuffled at the start of each epoch before being split into mini-batches.

In the context of graph neural networks, a mini-batch m of k invoices where m contains N nodes, m
consists of [23]:

1. A feature matrix X ∈ RN×F

2. A label vector y ∈ RN

3. An unlinked adjacency matrix A ∈ RN×N consisting of adjacency matrices A1 , . . . ,Ak .

To illustrate this, imagine a mini-batchm containing invoices I, J andK, where each invoice is represented
as a graph by feature matrix Xi , label vector yi and adjacency matrix Ai . The graph representation of
m would then be constructed as illustrated in Figure 10.

17

Figure 10: A representation of how 3 invoices I, J and K are stacked to produce a mini-batch. Notice
how the adjacency matrices are stacked diagonally in A, this ensures that nodes from one invoice can
not propagate its node features to nodes in the next invoice.

In other words, the node features and node labels are simply concatenated in the node dimension. The
adjacency matrices of invoice I, J and K are stacked diagonally such that the mini-batch functions as
one large graph, consisting of multiple unlinked subgraphs.

5.5 Overfitting
As discussed in Section 5.3, a neural network is trained through the use of backpropagation. As a
reminder, the backpropagation algorithm calculates the gradient of the cost function to find the direction
at which the weights and biases lead to an increased cost of the model predictions. By adjusting the
weights and biases in the opposite direction of the gradient with some step size, the model learns to
minimize the cost of its predictions with respect to the data. With this in mind, it is tempting to believe
that more training always leads to a better performing model, which is not always the case. If the
model is left to learn from the data for too long, it might tune its parameters to fit the data too well,
which leads to a very complex model that performs well on the training data but that generalizes badly
over new, previously unseen, data. This is called overfitting [13] and in this section we will describe a
few methods used in this thesis to reduce the risk of this, namely train/test/validation splitting, early
stopping, L2-regularization and DropEdge.

5.5.1 Train, Test & Validation Splits
A common tactic for combatting overfitting is to divide the available dataset into two randomly shuffled
and non-overlapping subsets called the training set and the validation set [13]. A third randomly shuffled
and non-overlapping set, known as the test set, is utilized in conjunction with the previous two. While
the test set itself does not contribute to a reduction of model complexity, it does give a fair estimation of
the final model performance. The following section will describe the use of these three sets.

The training set is used to train the model: this set contains the data which is fed to the model and used
to adjust the model parameters in the backpropagation algorithm. The training set is commonly split
into mini-batches as described by Section 5.4 and a full sweep over the batches in the training set is what
constitutes an epoch.

After training a model for one full epoch, the model can be evaluated on some metric, e.g., the cost or
any of the metrics mentioned in Section 6, using the validation set. The validation set gives an unbiased
approximation of the model performance, since no data from the validation set has been used during
the training process. Each time a model performs better on the validation set, a checkpoint of the
best-performing model with respect to the validation set can be saved. By selecting a model based on
metrics calculated on the validation set and not on the training set, the risk of overfitting the model to
the training data is reduced [13].

After training and selecting the best-performing model, it is common practise to evaluate the model
on some metric. Since the model is chosen specifically for its performance on the validation set, any
evaluation of model performance will be biased if the validation set is re-used for this evaluation [13].
Hence, the test set is used as a final set of data points to get a fair evaluation of the model performance
on unseen data. In other words, the test set itself does little to prevent overfit, but rather gives a fair
estimation of the final model performance.

5.5.2 Early Stopping
Early stopping is a method often used in conjunction with the technique of selecting a model based on the
validation set, which might further decrease the risk of overfitting. Early stopping builds upon the idea

18

that after some number of epochs, the training error and the validation error will start to diverge, i.e.,
the model starts to overfit to the training data and generalization over unseen data worsens. By setting a
window size, also known as the patience, for the number of epochs which the validation performance has
not increased, the training can be stopped before the set number of epochs has passed. By prematurely
ending the training process after n consecutive iterations of not improving the validation performance, the
risk of overfitting potentially decreases even further. However, implementing such a method requires some
level of fine tuning, since stopping the training too early may result in a model that is too simple, while
stopping the training too late may result in a model that still overfits to the training data [24].

5.5.3 L2 Regularization
L2-regularization, also known as weight decay or ridge regression, is another technique for reducing the
risk of overfitting a model to the training data. L2 Regularization introduces a penalty term ‖θ‖22 to the
cost function J(θ) where θ is the model parameters, such that:

J(θ)regularized = J(θ) +
λ

2
‖θ‖22 . (41)

Since the model parameters are learned through minimizing the cost function, the introduced penalty
term forces the model to both keep the original cost function small as well as pushing the weights θ of
the model towards zero, reducing the risk of the model overfitting its parameters to the training data.
λ is called the regularization parameter and is a design choice [13]. The choice of λ = 0 is the same as
omitting L2 regularization completely, while larger λ penalizes larger values for θ more heavily.

5.5.4 DropEdge
Yet another method of battling overfitting is to fit all possible neural network models on the same dataset
in order to average each model prediction, creating an ensemble of models. This ensemble is most useful
when the individual models are different from each other, which in a neural network setting means they
should either be trained on different data or have different architectures. Training several neural networks
with different architectures is a daunting task, since finding optimal hyperparameters for each one of these
is time consuming and with each network comes potentially a vast number of computations. In order to
combat this, a single model can be implemented to simulate having a large number of neural network
architectures by, given a certain probability, randomly dropping some units (i.e., neurons) in the network
along with their corresponding connections between other network units. The method of utilizing this
technique is called dropout and is used in neural networks to battle overfitting [25]. When developing
graph convolutional neural networks, however, another main obstacle is the problem of over-smoothing
the model. Over-smoothing means that node representations become more and more similar to each
other, eventually resulting in indistinguishable nodes. More specifically, the representations of adjacent
nodes in graph convolutions are pushed to mix with each other such that, in the extreme case of having
an infinite number of layers, all representations of the nodes converge to a stationary point resulting in
vanishing gradients. This makes the nodes unrelated to the input features and occurs through the effect
of Laplacian smoothing, hence the name over-smoothing [26].

While dropout combats overfitting, a technique known as DropEdge, proposed by Rong et al. [10], is
one used specifically for graph input to battle both overfitting and over-smoothing. Instead of dropping
layerwise units as in dropout [25], DropEdge randomly removes edges from the graph by removing some
of the adjacency matrix’s connections according to a certain probability. This is done at each training
batch stage, generating a “new” dataset for each stage. This results in a slower convergence speed but in
turn tackles over-smoothing [10].

When applying DropEdge to a neural network, different random deformed copies are generated from the
original graph, thus the randomness and the diversity of the input data is augmented and in turn prevents
overfitting to a higher degree. [26].

DropEdge is only used during training, and at each batch DropEdge enforces V p non-zero elements in the
adjacency matrix, given a probability p, to be converted to zeroes, where V is the total amount of edges
present in the adjacency matrix and p is the probability of dropping an edge. The original adjacency
matrix is denoted as A and we get the resulting adjacency matrix Adrop. A is then calculated as

19

Adrop = A−A′, (42)

where A′ is the sparse matrix expanded from A [26]. An example of applying DropEdge for the graph
in Figure 7 can be seen in Figure 11.

0 1 1 1 0

1 0 1 0 1

1 1 0 0 1

1 0 0 0 0

0 1 1 0 0

0 1 0 1 0

1 0 1 0 0

0 1 0 0 1

1 0 0 0 0

0 1 0 0 0

3

2

1

4

0 3

2

1

4

0

Figure 11: Example of illustration of applying DropEdge, with an arbitrary probability p, on the graph
from Figure 7. Red squares indicate which edges that have been dropped. The far-right graph is the
result after dropping the edges.

20

6 Evaluation Metrics
When building machine learning models, it is not only important to build a model but to modify it using
certain feedback on the model’s performance. Using an evaluation metric quantifies the performance of
that predictive model into useful feedback. There are a number of important evaluation metrics to take
into consideration when constructing these models, namely the accuracy, precision, recall and F1score
[13]. A common property of all these metrics is that they all fall in the range [0, 1] where a value close to
1 is good and a value close to 0 indicates a problem with the model. Before delving too deep into these
metrics, however, it would be wise to first mention the confusion matrix.

6.1 Confusion Matrix
The confusion matrix is a useful table which describes the performance on a set of test data where the
true values are known. The validation data is split into the four groups true negative, false negative, false
positive and true positive, depending on y and ŷ (the output predicted by the model). The four groups
can be exemplified with a classifier which predicts the presence of cancer in patients: True positives
(TP) indicate predictions where the patient has cancer, and in reality does have it; True negatives (TN)
indicate predictions of patients not having cancer and where the patient indeed did not have cancer; False
positives (FP), also called Type I error, indicate predictions of patients having the disease when they in
fact do not have it; False negatives (FN), also known as Type II error, indicates predictions of patients
not having the disease when they in fact do have it [13]. An illustration of a confusion matrix is shown
in Table 1.

Table 1: Confusion matrix for a binary classifier. 1 denotes “has cancer” and -1 denotes “does not have
cancer”, in the cancer example. Columns represent the true value, while rows represent the predicted
value.

y = −1 y = 1 Total

ŷ(x) = −1 TN FN N∗
ŷ(x) = 1 FP TP P∗
Total N P n

6.2 Accuracy
However, the confusion matrix is seldom used as a metric in itself but is rather used to derive other
metrics from it. One such metric is the accuracy, i.e., how many of the predictions that were correctly
classified out of the total dataset [13]. The accuracy can be calculated as:

accuracy =
TP + TN

TP + TN + FP + FN
. (43)

The accuracy metric, while popular, can often be misleading. Let us go back to the example of patients
with cancer and let us assume that we have a heavily imbalanced dataset where each row represents
a patient and only 0.1 % of all patients in the dataset have cancer. A model trained for classifying
said patients as either “has cancer” or “does not have cancer” would still get an accuracy of 99.9 % by
classifying all patients as “does not have cancer”. Depending on the problem at hand and the cost for
misclassification, accuracy might not be the best choice for evaluating the model.

6.3 Recall
Another useful metric is the recall, which is often used when the cost of false negatives is high, i.e., it is
a measure of the Type II error. The recall metric is calculated as:

recall =
TP

P
=

TP

TP + FN
. (44)

If we re-evaluate our previous model which predicts all patients as not having cancer on a dataset
consisting of 10 000 patients, we can calculate the corresponding confusion matrix as seen in Table
2.

21

Table 2: Confusion matrix for a binary classifier. 1 denotes “has cancer” and -1 denotes “does not have
cancer”, in the cancer example. Columns represent the true value, while rows represent the predicted
value.

y = −1 y = 1 Total

ŷ(x) = −1 9990 10 10 000
ŷ(x) = 1 0 0 0

Total 9990 10 10 000

From the confusion matrix, we get that TP = 0 and that P = 10 which we can use to calculate the recall
as

recall =
TP

P
=

0

10
= 0. (45)

Even if the model would correctly predict cancer in one of the patients, the recall would still only be 0.1
which, in the case evaluating a model which predicts cancer in patients, probably is a better choice of
metric compared to the accuracy.

6.4 Precision
Precision is a metric used when, instead of assigning a high cost to false negatives, we assign a high cost
to false positives [13], i.e., Type I errors. This metric is favorable in situations such as spam detection,
where an email classified as “spam” when in fact it is not may result in loss of important information.
The precision metric is calculated as follows:

precision =
TP

P∗
=

TP

TP + FP
. (46)

6.5 F1-Score
Analyzing recall and precision on their own could also lead to misleading results. Using the same dataset
of patients as mentioned before, processed by a model which classifies all patients as having cancer would
result in a perfect recall of 1, although with a less-than-desirable precision of 0.001. This tradeoff between
recall and precision is very common, where an increase in one of these metrics leads to a decrease in the
other [27]. One measurement of this trade-off is called the F1-score, F -score, F -measure or simply F1

[27] which may also be used as a performance metric. The F1-score is the summary of the precision and
recall by their harmonic mean:

F1 = 2× precision× recall
precision+ recall

. (47)

While the F1-score might be harder to interpret than the metrics mentioned earlier, it is still a very useful
metric since it, for datasets which have a heavy class imbalance in favor of the true negative class in the
dataset, effectively captures the trade-off between the precision and the recall [13].

6.6 Macro Average
When evaluating performance across multiple classes, macro averaging is a useful evaluation metric
method which averages some metric (e.g., F1-score, recall or precision) over all classes and gives an equal
weight to every class regardless of frequency [27]. This means that, for a classification problem with 3
classes C ∈ {X,Y, Z}, even though class X may contain 99 % of all data and class Y and Z contain 0.5 %
of the data each, the precision or recall score from each class would still contribute equally to the macro
average.

To compute the macro average of either precision or recall for classes C ∈ {X,Y, Z}, we first create a
global contingency table, whose cell values are the sums of the related cells in the per class confusion
matrices, in order to then use this table to compute the averaged performance scores, see Table 3.

22

Table 3: Contingency table of 3 separate classes X, Y and Z. Here, precision has been chosen as the
relevant metric.

TP FP FN precision

Class X TPX FPX FNX precisionX
Class Y TPY FPY FNY precisionY
Class Z TPZ FPZ FNZ precisionZ

To calculate the precisionmacro, we simply compute the precision for each row in the contingency table and
then average the per-class precision scores in order to compute a global mean. This process is analogous
for recall as well. Consequently, the precisionmacro and recallmacro are calculated according to Equation
48 and 50 respectively [27].

precisionmacro =
precision1 + precision2, . . . , precisionn

n
, (48)

recallmacro =
recall1 + recall2, . . . , recalln

n
. (49)

The macro average F1-score is then calculated as previously shown but based on the precisionmacro and
recallmacro [27]:

F1macro = 2× precisionmacro × recallmacro
precisionmacro + recallmacro

. (50)

23

7 Data
Previous researchers in the field of convolutional graph neural networks have seldom had access to more
than a few thousand invoices with labeled bounding boxes [5], [3]. For this thesis, 83 672 unique Swedish
invoices from 18 272 vendors have been acquired through a third party. These vendors do not necessarily
provide their own unique invoice templates, but it is highly likely that this is the case. This thesis will for
the sake of simplicity regard the 18 272 different vendors to be equal to 18 272 different templates.

The data from these invoices are divided into two datasets: The first dataset, which will henceforth be
denoted as the OCR dataset or OCR data, is the raw data sourced directly from the output of the OCR
engine Google Vision, containing information such as the text content of a word, the bounding box of said
word (i.e., the pixel position) and the page on which the word occurs. The second dataset, subsequently
called the label dataset or label data, also consists of bounding boxes, page numbers and with the addition
that the text value contained by the bounding box has been parsed and standardized. The label dataset
only contains information about words belonging to the entity classes of interest. These entity classes are
further elaborated upon in section 7.1.

Section 7.1 describes the structure of the raw data that has already been acquired, i.e., the OCR data and
the label data. In Section 7.2 we review the cleaning process of the two datasets and how the two cleaned
datasets are merged to create a single annotated dataset. Section 7.3 presents how the annotated dataset
is used to model the data into a graph representation of an invoice through the form of an adjacency
matrix. Section 7.4 describes how the annotated dataset is split into train-, test- and validation datasets,
as well as some insights acquired from the train dataset.

7.1 Data Sources
The raw, unlabeled, OCR data is sourced from the OCR engine Google Vision and is a set of JSON-
files, where each JSON-file corresponds to a single invoice and contains a set of fields containing data
corresponding to the words present in the invoice. Each field consists of bounding box coordinates for a
given word, the page of where the bounding box is present, which invoice ID the bounding box belongs to
as well as the text content within the bounding box. A bounding box is defined by the x and y coordinate
of its top left corner of the box, as well as its width and height. The coordinates are measured by their
pixel position on the invoice image. Figure 12 shows what the bounding boxes look like overlaid on a
dummy invoice, i.e., what the OCR engine has extracted from the invoice.

24

Invoice
Example Company Ltd.
Company Street 1
123 45 Company Town, Sweden
Phone number: +46 123456789

Company Logo Text

Invoice Date:

Invoice Number:

Customer Number:

Expiration Date:

Default Interest:

Payment Terms:

Reference Name:

01.01.2021

12345

6789

15.01.2021

5.00%

14 Days

C. Companyson

Recipient
Customer Company Ltd.
Carl Companyson
Customer Street 1
678 90 Customer Town, Sweden

Figure 12: The extracted words and corresponding bounding boxes for each text value overlaid on a
dummy invoice. The invoice in the figure is in English for exemplification purposes, while the invoices in
the real dataset are in Swedish.

The label data also consists of a set of JSON-files with a similar structure as the OCR dataset, where
each JSON-file contains information about a single invoice. In the label dataset, a single field consists of
a bounding box, a semi-automatically annotated label (annotated through a combination of legacy entity
extraction models and human supervision by a third party) corresponding to the bounding box, the page
number for which the bounding box exists and a formatted value of the text content within the bounding
box. The formatting rules for the value differ depending on the label. In the scope of this project, only
the label and the bounding box coordinates (x and y coordinates as well as height and width) are utilized
when training and evaluating the model, the formatted value is only used when cleaning the dataset. An
overview of the different labels used by our model and their expected text content can be found in Table
4.

25

Table 4: An overview of the label data. Label is the name of the class, Explanation explains the purpose
of the entity and the expected value/format denotes the expected data type or text content.

Label Explanation Expected Value/Format

amountCurrency Currency for the amount A string, eg “sek”, “kr”, “kronor”

amountFreightPack Shipping cost An integer or a float

amountNet Total net amount An integer or a float

amountRndDiff Amount to be rounded off from total amount An integer or a float

amountTot Total amount incl. net and VAT amount An integer or a float

amountVat Total VAT amount An integer or a float

dueDate Date of invoice expiration Any representation of a date,

eg., 2007/09/13, 13-09-18, “den

19 februari 2021”

invDate Date of invoice creation see dueDate

invNo Number/ID of invoice A sequence of digits and/or

letters and special characters

ocrNo Payment reference An integer

orderNo Order number An integer

referenceName A name for the invoice reference A name/an alphanumeric code

type The type of the document A string, e.g., “Faktura”,

“Kreditfaktura”, “Påminnelse”

An example of label data for a dummy invoice can be found in Figure 13, where the fields have been
drawn on the corresponding invoice. The text in orange is the label, i.e., its class, the text contained by
the bounding box is the unparsed value of the field.

26

Invoice
Example Company Ltd.
Company Street 1
123 45 Company Town, Sweden
Phone number: +46 123456789

Company Logo Text

Invoice Date:

Invoice Number:

Customer Number:

Expiration Date:

Default Interest:

Payment Terms:

Reference Name:

01.01.2021

12345

6789

15.01.2021

5.00%

14 Days

C. Companyson

Recipient
Customer Company Ltd.
Carl Companyson
Customer Street 1
678 90 Customer Town, Sweden

invDate

invNo

dueDate

referenceName

type

Figure 13: The label data overlaid on the dummy invoice.

7.2 Data Preprocessing
The following section will describe the data preprocessing steps required to prepare the label data and
OCR data before feeding the data to the models. Section 7.2.1 will describe how the two datasets are
cleaned and Section 7.2.2 describes how the two datasets are merged into a single dataset.

7.2.1 Data Cleaning
The process of cleaning both the label data and the OCR data is done much in the same way for
both datasets. First, the data cleaning pipeline will be presented in chronological order, followed by a
motivation of the different steps within the pipeline. All steps are applied on both datasets unless it is
explicitly stated otherwise.

1. Remove invoices with badly structured JSON data. There is a clear structure within the
vast majority of the OCR:ed JSON data but some invoices do not follow this convention. Removing
those invoices makes the total number of invoices present in the dataset to 82 668.

2. Remove small bounding boxes. Bounding boxes which are only a few pixels high or wide exist
in both the OCR data and the label data. These bounding boxes are often either artifacts produced
from random noise interpreted as text in the OCR data or, in the case of the label dataset, a product
of human error where labels which are non-existent in a specific invoice still have been registered
into the dataset. Hence, all data points in both datasets, which have either a height or a width
that is less than 0.2 % of the page height or the page width, are removed.

3. Remove bounding boxes close to the document border. Most of the valuable information
of an invoice can be found within a certain area with some margin to the page border. At the same
time, a lot of artifacts produced by the OCR engine occur near said borders. Faulty data points
from the label dataset which contains wrongful information are also often found near the borders
or in the corners of an invoice. Hence, only data points which have an x-value within the range
5% < x < 95% of the page width and have a y-value within the range 5% < y < 95% of the page
height are kept.

4. Lowercase text content (Only for OCR data). To make sure that the casing of letters do not
affect future feature calculations such as word embeddings, all text fields are lowercased.

27

5. Strip special characters (Only for OCR data). The OCR engine often interprets noise, such as
ink blots or speckles on an invoice, as either of the special characters “* ! ;”. Leading or trailing
special characters are hence stripped from the text value of each data point.

6. Remove data points with empty text content. To make sure that there are no data points
from the label datasets which have empty value-fields, said data points are removed. After step 5
in the data cleaning pipeline, some data points in the OCR data may also have empty text fields.
These data points are removed as well.

7.2.2 Constructing the Annotated Dataset
As the OCR dataset does not contain any labels and the label dataset does not contain any information
about unlabeled words, we need to merge the two datasets in order to create a dataset which is useful for
training a model. This merged dataset will henceforth be called the annotated dataset. The annotated
dataset is created by, for each invoice, extracting the labels and the bounding box coordinates for each
row in the labeled dataset and then finding the corresponding bounding box or bounding boxes in the
OCR dataset. If any number of bounding boxes in the OCR dataset overlap a bounding box in the
label dataset by a certain percentage (in this case 30 %), the bounding boxes in the OCR dataset are
considered to belong to the corresponding label from the label dataset. However, as the two datasets
contain images in both PDF (Portable Document Format) and TIF (Tagged Image File Format) formats
with different resolutions (200 and 300 dots per inch, DPI, respectively), looking at the overlap ratio
between the bounding boxes from the two datasets becomes redundant since they operate in different
scales in the x and y coordinates. To mitigate this problem, the x and y coordinates are normalized based
on the height and width of the invoice image, read at the corresponding resolution for each dataset. By
using normalized coordinates instead of pixel positions relative to the DPI resolution, the problem of
mismatching scales is omitted. If a bounding box in the OCR data does not have a corresponding label
from the label data associated to it, its label is set to undefined. Figure 14 illustrates all the bounding
boxes and their corresponding labels overlaid on a dummy invoice. As the figure shows, the entity
referenceName is divided into two bounding boxes, as a result from the OCR extraction, and thus both
bounding boxes receive the label referenceName.

Invoice
Example Company Ltd.
Company Street 1
123 45 Company Town, Sweden
Phone number: +46 123456789

Company Logo Text

Invoice Date:

Invoice Number:

Customer Number:

Expiration Date:

Default Interest:

Payment Terms:

Reference Name:

01.01.2021

12345

6789

15.01.2021

5.00%

14 Days

C. Companyson

Recipient
Customer Company Ltd.
Carl Companyson
Customer Street 1
678 90 Customer Town, Sweden

invDate

invNo

dueDate

referenceName

type

referenceName

Figure 14: The annotated dataset overlaid on the dummy invoice. Each bounding box has a corresponding
label, such as invDate or dueDate. The labels of bounding boxes labeled as undefined have been removed
from this image in order to avoid occlusion, in actuality these labels would be present.

28

7.3 Graph Modelling
After cleaning the data and merging the two datasets of label data and OCR data into a single annotated
dataset, the data needs to be modeled into graphs, where each word is represented as a node and each
invoice corresponds to a single graph. The graph structure chosen for this thesis is a structure similar
to the one proposed by [3]. To enforce that an invoice is read from left to right and top to bottom, we
first construct lines of words. Algorithm 1 defines how lines are formed and is an extension of the line
formation algorithm presented by [3].

Algorithm 1 Line Formation
1: Sort words based on Top coordinate and page number 2: Form lines as group of words which obeys
the following:

Two words (Wa and Wb) are in the same line if:
Wa is on the same page as Wb AND
Wa is not in already in a line AND
Wb is not already in a line AND
Top(Wa) ≤ Bottom(Wb) AND
Bottom(Wa) ≥ Top(Wb)

3: Sort words in each line based on Left coordinate

To decrease ambiguity where a node can appear in many lines and in turn the need for processing the
same node multiple times, we have added the constraint that a word can only belong to a single line.
Since [3] only works with single paged invoices, we have also added the constraint that two nodes need to
be on the same page to be able to belong to the same line. When building the graph, each line is processed
from top to bottom, starting with the left-most word in each line, simulating a similar processing flow of
the data as humans have when interpreting invoices written in many Western languages.

An undirected graph representation of an invoice is defined as Ginvoice = (V ,E), where each vertex
vi ∈ V is a representation of a word Wi and each edge eij = (vi, vj) ∈ E describes a nearest neighbor
relationship between two nodes, where edges are constructed through Algorithm 2.

Algorithm 2 Graph Modeling
1: Read words from each line starting from the topmost line going towards the bottommost line
2: For each word Wsource, perform the following:

2.1: Check words that are on the same page, to the right and in vertical projection of Wsource

2.2: Calculate the Horizontal Relative Distance, HRD, between Wsource and the target words
based on Wsource rightmost coordinate and the target words leftmost coordinates
2.3: Select the word Wtarget with the shortest HRD as nearest Right neighbor to Wsource,
provided that Wtarget does not already have a Left neighbor at a closer or equal HRD and
that Wsource 6=Wtarget

2.3.1: In case Wtarget already has a Left neighbor Wleft at a further HRD than to
Wsource, remove the neighbor relationship between Wtarget and Wleft

2.3.2: In case Wtarget already has a Left neighbor at a closer or equal distance to
Wsource, iterate over all target words, sorted in ascending order with respect to the
HRD, until the criterion in 2.3 is met or until there are no more available nodes.

2.4 Repeat steps from 2.1 to 2.3 similarly for retrieving nearest neighbor words in the vertical
direction by taking the horizontal projection of words on the same page as Wsource as well
as being below Wsource, calculating the Vertical Relative Distance, VRD, and choosing words
being further to the left in case of ambiguity
2.5 Draw edges between the source word and its 4 nearest neighbors if they are available

3: Connect the last word of a page (furthest down and to the right) with the first word (furthest up and
to the left) on the next page by setting the last word as the Top neighbor to the first word on the next
page

Since Ginvoice is undirected, any time Wtarget is set as the Bottom or Right neighbor of word Wsource,
Wsource is also set as the Top or Left neighbor of Wtarget, respectively. As a given node is restricted to

29

having at most one neighbor in each of the major directions (i.e., top, bottom, left, right), each node has
at most 4 neighbors, resulting in a sparse graph.

The criterion for a node being in vertical projection of Wsource is defined as follows:

1. Left(Wsource) < Right(Wtarget) AND

2. Top(Wsource) ≤ Bottom(Wtarget) AND

3. Bottom(Wsource) ≥ Top(Wtarget)

Analogously, the criterion for a node being in horizontal projection of Wsource is defined as:

1. Bottom(Wsource) < Top(Wtarget) AND

2. Left(Wsource) ≤ Right(Wtarget) AND

3. Right(Wsource) ≥ Left(Wtarget)

An illustration of the vertical and horizontal projection of a given source node can be seen in Figure
15.

y

x

Vertical
Projection

Horizontal
Projection

Figure 15: An illustration of possible Right neighbors (Word1 and Word2), as well as Bottom neighbors
(Word3 and Word4) for Wordsource. Here, RDV and RDH denote the Vertical Relative Distance and
Horizontal Relative Distance, respectively.

The relative distance between two nodes are calculated as follows:

RDH = Left(Wtarget)−Right(Wsource)

RDV = Top(Wtarget)−Bottom(Wsource).

The result is an adjacency matrix fully describing the structure of the graph. A visualization of how the
nodes in an invoice graph representation are connected to their nearest neighbors can be found in Figure
16. A further demonstration of how different pages in an invoice graph are connected to each other can
be found in Figure 17.

30

Invoice
Example Company Ltd.
Company Street 1
123 45 Company Town, Sweden
Phone number: +46 123456789

Company Logo Text

Invoice Date:

Invoice Number:

Customer Number:

Expiration Date:

Default Interest:

Payment Terms:

Reference Name:

01.01.2021

12345

6789

15.01.2021

5.00%

14 Days

C. Companyson

Recipient
Customer Company Ltd.
Carl Companyson
Customer Street 1
678 90 Customer Town, Sweden

Figure 16: The resulting graph after applying the Algorithm 2 on a dummy invoice.

Figure 17: Graph representation of the nodes and edges present in a two-paged graph. The “waist”
present in the middle of the two large clusters indicates a connection between two pages.

Although this graph structure is heavily inspired by Lohani et al. [3], there are a few key differences
in our approach. Firstly, our approach allows for multi-page invoices of any size, while [3] assumes that
each invoice only contains a single page. This is an important addition, as multiple pages and collective
invoices are a common occurrence in the business world. Secondly, [3] places much more emphasis on the
importance of top/left coordinate priority when creating edges. e.g., if a node in line l finds a nearest

31

bottom neighbor, then that edge is set and fixed throughout the graph modelling process even though
there may be other nodes on subsequent lines that are substantially closer. Our approach relaxes this
criteria and only enforces top/left priority in case of ambiguity, resulting in less edges between nodes which
are not spatially close to each other. A comparison between the approach from [3] and our extension can
be found in Figure 18.

A C

D

G

H

E

J

A

D

G

H

E

I

Lohani Ours

B CB

J

F

I

F

Line 1

Line 2

Line 3

Line 4

Line 5

Line 1

Line 2

Line 3

Line 4

Line 5

Figure 18: The left-most graph illustrates how nodes may be connected using [3]’s approach, while
the right-most graph illustrates how nodes may connect using our extension. The figure illustrates the
difference in vertical connections between nodes, however, the same differences can be found for horizontal
edges as well. Note that the direction of the arrows only indicates source- and target nodes (i.e., arrows
goes from the source node to the target node) and does not indicate any directionality of the edge.

7.4 Train, Test & Validation Datasets
After we have modelled the graph and calculated features associated with each node we can split the data
into train, test and validation datasets. We perform a split into a ratio of 90%, 5% and 5% respectively,
where we shuffle the data randomly based on invoice ID:s, thus keeping entire invoices intact within the
dataset. From the split, we can gather insights about our training dataset, which we can see in Figures
19 and 20.

Figure 19 illustrates the relationship between all occurring 14 classes of interest. If we exclude the
undefined class from the diagram, we gain a better understanding of how many data points of interest
belonging to the different classes and how they stand in proportion to each other. Figure 20 demonstrates
that the amountTot class stands for the majority of data points compared to the other 12 classes. The
classes amountNet, dueDate, invDate, amountVat, invNo and type all have a somewhat equal amount of
occurrences. The rest of the classes, amountRndDiff, orderNo, referenceName and amountFreightPack
in particular, do not occur as often as the rest. In fact, the total number of occurrences of these “minor”
classes combined are roughly as many as the type class.

un
de

fin
ed

am
ou

nt
To

t

am
ou

nt
Net

du
eD

at
e

inv
Dat

e

am
ou

nt
Vat

inv
No

ty
pe

am
ou

nt
Cur

re
nc

y
oc

rN
o

am
ou

nt
Rnd

Diff

or
de

rN
o

re
fer

en
ce

Nam
e

am
ou

nt
Fr

eig
ht

Pa
ck

Label

0.0

0.5

1.0

1.5

2.0

co
un

t

1e7

Figure 19: A bar plot illustrating the number of nodes belonging to each class in the training dataset.

32

am
ou

nt
To

t

am
ou

nt
Net

du
eD

at
e

inv
Dat

e

am
ou

nt
Vat

inv
No

ty
pe

am
ou

nt
Cur

re
nc

y
oc

rN
o

am
ou

nt
Rnd

Diff

or
de

rN
o

re
fer

en
ce

Nam
e

am
ou

nt
Fr

eig
ht

Pa
ck

Label

0

20000

40000

60000

80000

100000

co
un

t

Figure 20: A bar plot illustrating the number of nodes belonging to each class in the training dataset.
The label undefined has been omitted.

From these insights, it becomes evident that the class undefined alone stands for the vast majority of
all data points. The class undefined occurs roughly 23.20 million times in a dataset containing around
23.86 million data points, which amounts to approximately 97%. Table 5 shows the ratio of all occurring
classes within the training dataset.

Table 5: The ratio of occurrence between the classes, within the training dataset. In descending order.

Label Ratio

undefined 97.23 %
amountTot 0.44 %
amountNet 0.39 %
dueDate 0.33 %
invDate 0.32 %
amountVat 0.32 %
invNo 0.30 %
type 0.30 %
amountCurrency 0.20 %
ocrNo 0.12 %
amountRndDiff 0.045 %
orderNo 0.026 %
referenceName 0.0045 %
amountFreightPack 0.0017 %

After the train, test and validation split we can gather further insights into the distribution of vendors
between the different sets. Table 6 describes how many unique vendors to each are present in each
respective set.

Table 6: Details on vendor occurrence between the dataset splits.

Number of invoices Number of unique vendors Number of vendors unique to split

Training set 74 396 17 289 13 504
Validation set 4136 2719 394
Test set 4136 2691 386

By analyzing how many unseen vendors’ invoices are present in the test and validation set respectively,
we gather that roughly 15 % of all vendors in both the test and validation set are not present in the train

33

dataset. If we look at vendors not present in both the train and validation set, only in the test set, this
number goes down to around 14 %, which corresponds to 393 invoices.

7.5 Discrepancies in the Data
By manually inspecting invoices, errors in the underlying data become apparent which may result in
poor performance for all models. A common occurrence among many of the classes, although especially
prominent for entities regarding amounts and dates, is that the values of said entities occur in multiple
bounding boxes in an invoice where only one of the bounding boxes is labeled as the correct entity. The
rest, even though they hold the same information, have a ground truth label of undefined. An example
of this is Figure 21, where the total amount is found in multiple places on the same page of an invoice,
but only one of the bounding boxes is labeled as amountTot. When inspecting multiple invoices from
the same vendor, it also becomes apparent that there is no consistency in which fields that correspond
to the ground truth. i.e., the node which corresponds to the ground truth node (and in extension also
its neighborhood) varies greatly between different invoices, even when the invoices are from the same
vendor. See Figure 21 as an example.

Figure 21: Example of an invoice where the total amount (i.e., “3 949,00”) appears twice on the same
page. Depending on the invoice, any of these two fields could be labeled amountTot, while the other is
labeled as undefined.

Another problem with the underlying label data is that there are format inconsistencies and wrongly
annotated nodes. This is a product of: bounding boxes from the label data sometimes overlapping more
OCR bounding boxes than they should (see 22), label data and OCR data sometimes have mismatching
scales (see Figure 23) or label data simply being wrong due to human error during the creation of the
label dataset (see Figure 24).

34

ATT BETALA 3 694,00 kr
Label: amountTot

Figure 22: The bounding box in the label data (orange) for the amountTot entity on this invoice spans the
three boxes containing “3”, “694,00” and “kr”, although the last box should be labeled as amountCurrency
or perhaps undefined.

OCR/Fakturanummer
Förfallodag

012345678910
2018-03-10

Label: invNo

Figure 23: Because the scale of the OCR data (blue bounding boxes) and label data (orange bounding
box) does not match, both the due date and the invoice number gets annotated as invNo during the
creation of the annotated dataset.

Konton eller via bankgiro,
er balanskonto

Fakturanr 1234567891011

er balanskonto

Label: amountTot 1234567891011
Label: amountNet

Figure 24: Extracted entities from different locations within an invoice. The OCR number is wrongly
labeled as amountTot (left) and amountNet (right) because of errors existing in the label data.

There are also errors in the data stemming from the OCR engine when extracting the bounding boxes
of words, which give rise to spurious nodes in the graph representation of an invoice. For some words,
multiple bounding boxes of various sizes are spawned. This results in multiple overlapping bounding boxes
which all attempt to represent the same word, see Figure 25. This gives an untrue graph representation
of the invoice and because of the algorithm we use to annotate the OCR data in section 7.2.2, noise in
the patterns for recognizing a certain label is introduced.

Sum fritt: -991,20 Sum pliktig :

KID: 0123456789101112

Label: amountNet

Figure 25: An example of when the OCR engine has produced multiple bounding boxes for each word in
a given section. Because of how the algorithm for creating the annotated dataset is constructed, both of
the blue bounding boxes surrounding “-991,20” will be labeled as amountNet.

There are also some instances where two entities are confused with each other in the label dataset, see
Figure 26. Here, the label bounding box which should encapsulate the OCR bounding boxes belonging
to the amountTot entity instead encapsulates the amountNet OCR bounding boxes. The opposite is true
for the amountNet entity and will in this case be labeled as amountTot.

35

Summa exkl moms
Moms
Summa SEK

49 050,00

49 050,00

Label: amountTot

Label: amountNet

Figure 26: The bounding boxes for the labels amountTot (top orange bounding box) and amountNet
(bottom orange bounding box) have been swapped in the label data.

Tabel 7 shows the result of manually inspecting 100 invoices and noting the occurrences for each
discrepancy. The table shows the number of invoices these discrepancies are present in, not the number
of discrepancies.

Table 7: Frequency of discrepancies on 100 manually inspected invoices.

Type of discrepancy Number of invoices where
the discrepancy is present

Entity is located on several places in one invoice and
labeled once (see Figure 21) 73

Overlap (see Figure 22) 4

Entity is present in invoice but labeled as undefined,
regardless of frequency of occurrence 78

Label data and OCR data are incorrectly scaled (see
Figure 23) 1

The OCR-engine has produced several bounding
boxes for the same node (see Figure 25) 16

Entity is incorrectly labeled as another entity, with
the exception of undefined (see Figure 26) 12

The inspection has only been done on 100 invoices, i.e., a small fraction of the dataset, but the invoices
have been randomly selected and provides us with an idea of the frequency of occurring errors within
the data. These prevalent discrepancies can very well occur often enough to penalize our model’s
performance.

36

8 Feature Calculation
This section describes what features are associated with each node and how they are calculated. Section
8.1 describes the use of Byte Pair Encoding and Byte Pair Embedding to calculate features, Section 8.2
describes all node features chosen for the nodes in the graph to be fed to the model.

8.1 Byte Pair Encoding & Word Embeddings
In order to produce useful features for the text values present in an invoice, we need to represent said values
in a useful manner. Word embedding is a word representation that allows for words with similar meaning
to be similarly represented by preserving the syntactic and semantic similarities through projections in
a continuous space of words. The individual words are represented as real-valued vectors in a predefined
vector space, where each word is mapped to one vector and the corresponding vector values are learned
in such a way that it resembles a neural network [28].

8.1.1 Byte Pair Encoding
For this thesis, the data compression algorithm Byte Pair Encoding (BPE) is used together with GloVe,
in order to create the word embeddings used as features for the models (the utilization of GloVe together
with BPE is explained in Section 8.1.2).

BPE compresses data through an iterative process by replacing the most frequently occurring adjacent
byte pairs with bytes not present in the original data. The process ends when there are no more pairs
occurring more than once [29]. For instance, let us say we have the text string KHJERUKHJHJ. The pair
HJ is the most frequently occurring one and will be replaced by a byte not present within it, e.g., A.
The resulting text string will be KAERUKAA, with the most frequently occurring byte pair KA. KA will
be replaced by another unseen byte, e.g., B, which yields the string BERUBA. The resulting text string
does not have any more frequently occurring byte pairs, which means that it cannot be compressed any
further and thus the process ends. Decompression of the data can be done by performing the steps in
reversed order [29]. The process is illustrated as follows:

Original data: KHJERUKHJHJ
First iteration - swap HJ to A: KAERUKAA
Second iteration - swap KA to B: BERUBA

.

8.1.2 Byte Pair Embedding & GloVe
A utilization of BPE is through Byte Pair Embedding (BPEmb) which is based on the BPE algorithm
and is a collection of pre-trained sub-word embeddings in 275 languages, trained on the contents of the
website Wikipedia. More specifically, BPEmb is the combination of applying BPE tokenization and the
Global Vectors method (GloVe) in order to create said subword embeddings [30]. In the context of this
thesis, BPEmb is highly useful when coupled with OCR:ed information from invoices, since it is able to
deduce the meaning of words correctly even if the words are incorrectly read by the OCR engine, due to
the subwords present.

GloVe is a method used to obtain vector representations of words through unsupervised learning on
global corpus statistics of word-word co-occurrences. GloVe is built upon the idea of being able to derive
semantic relationships between words’ co-occurrences, i.e., the probabilities of words co-occurring in a
given corpus [31].

Deriving the word-word co-occurrences starts with constructing the so-called co-occurrence matrix X ,
where X ij denote the number of times the word j co-occurs with the word i. For instance, given the
sentence Steam is a gas. Ice is a solid. the co-occurrence matrix can be constructed as follows [31]:

37



Steam is a gas Ice solid .
Steam 0 1 0 0 0 0 0

is 1 0 2 0 0 0 0
a 0 2 0 1 0 1 0

gas 0 0 1 0 0 0 1
Ice 0 1 0 0 0 0 0

solid 0 0 1 0 0 0 1
. 0 0 0 1 0 1 0


.

Here, we see that, e.g., the word is co-occurs with the word a twice, and with the words Steam and
Ice once. From the co-occurrence matrix we can derive the probability of the word j appearing in the
context of the word i by denoting Pij = P (j|i) = Xij/Xi. If we let i = ice and j = steam, the ratio of
the word-word co-occurrence for these words can be analyzed by testing different probe words, denoted
as k [31]. If a word k is related to the word ice but not to steam we get a smaller ratio than vice versa,
i.e., a word k related to the word steam but not ice. Table 8 illustrates these co-occurrence probabilities
for different k’s.

Table 8: Probabilities for co-occurrence for the words i = ice and j = steam. The choices of k have been
selected from a large corpus. A higher value for P (k|i)/P (k|j) indicates a stronger relation to the word
k. Table and data derived from [31].

Probability and Ratio k = solid k = gas k = water k = fashion

P (k|ice) 1.9× 10−4 6.6× 10−5 3.0× 10−3 1.7× 10−5

P (k|steam) 2.2× 10−5 7.8× 10−4 2.2× 10−3 1.8× 10−5

P (k|ice)/P (k|steam) 8.9 8.5× 10−2 1.36 0.96

In short, the word embedding collection BPEmb is the result of applying BPE tokenization together
with GloVe, and trained on the contents of Wikipedia. BPEmb allows for guessing the meaning of
unknown or out-of-vocabulary words where BPE provides a subword segmentation without requiring
tokenization.

8.2 Node Features
After the data has been modelled into a graph, each node in the graph will be associated with a certain
number of calculated features, each of which are described in Table 9.

38

Table 9: The features associated with each node.

Feature Comment

isAlpha Boolean describing if the text is alphabetical or not.

isAlphaNumeric Boolean describing if the text is a alphanumeric

isCurrency Boolean describing if the text is a currency or not

isDate Boolean describing if the text can be parsed as a date
or not

isNumericWithDecimal Boolean describing if the text is a number with
decimals or not

RDB
Vertical relative distance to the bottom neighbor
node, defaults to 1 if no neighbor is present

RDL
Horizontal relative distance to the left neighbor node,
defaults to 1 if no neighbor is present

RDR
Horizontal relative distance to the right neighbor
node, defaults to 1 if no neighbor is present

RDT
Vertical relative distance to the top neighbor node,
defaults to 1 if no neighbor is present

Word embeddings A vector of length 300 containing embedded values
of the word

The choice of features and the way they are calculated has been done very much like the way proposed
by [3]. The calculations of the word embeddings differ slightly, however. When utilizing BPEmb, a single
word can be segmented into at least 1 and up to n subwords, where n→∞ for large enough words. Each
subword is then represented by an embedding vector of length k, where k is a design parameter and set
to 300 in this thesis. This results in that a word consisting of only one subword would be represented
by an embedding matrix of size (1, 300), and that a word segmented into 3 subwords would produce an
embedding matrix with the shape (3, 300). To enforce a fixed dimension for the embedding features, the
column-wise mean is used as the embedding representation of the word. The choice of k = 300 is based
on the research done by [3]. Another key difference from the method implemented by [3] is the size of
the vocabulary used from BPEmb and the language used, which is the size 200 000 and the Swedish
language. In general, a large vocabulary size results in frequent words not being split into segmentations,
which in this case means that it minimizes the need of mean pooling the embedding vector to form a
dimension of 300.

39

9 Models
This section aims to describe the architecture of the different models used in the thesis. Section 9.1
describes the ChebNet model and section 9.2 describes the two GCNmodels. Each of the models presented
are trained with the same hyperparameters, which are shown in Table 10. Moreover, GCN-4 and ChebNet
are both retrained using DropEdge before feeding the adjacency matrix to the network. Multiclass Cross
Entropy is used to calculate the cost for each batch.

Table 10: Hyperparameter values for the models.

Hyperparameter Value

Batch size 600
Learning rate 1 · 10−3
No. of epochs 2000
Patience 50
Weight decay 1 · 10−5

A general representation of the model architecture can be found in 27. Note that the number of input
features are consistent between models (i.e., F = 310), although the dimensions of the hidden feature
embeddings as well as the L number of stacked ConvGNN layers may differ. The model is fed a graph
consisting of N nodes, where N may differ between invoices, and is represented by its adjacency matrix A
and the corresponding feature matrix X . A and X are processed by L stacked graph convolution layers,
each followed by a ReLU activation function. The first layer maps the F input features of each node to
C output channels. Each consecutive convolutional layer then increases the number of output channels
by a factor of 2, such that the number of parameters θ(l) at the lth layer follows the pattern:

size(θ(l)) = K × 2l−2C × 2l−1C. (51)

Where K is the number of hops and C is the initial filter size of the first convolution layer. Note that
for GCN-based models, K is implicitly set to 1. After convolving the node feature representations L
times, The feature map H(L) is fed to a FC layer which maps each node feature vector h(L)i to a logit
vector oi ∈ RP , where P is the number of labels. The FC layer is followed by a softmax activation
function, resulting in an output vector where each index position of the output vector corresponds to a
label (including undefined), and the index position with the row-wise highest logit value is the predicted
label for a given node. The entire architecture is illustrated in Figure 27.

40

Adjacency
Matrix

Feature Matrix

Input

Convolution + ReLU Convolution + ReLU

Graph Convolutions

...

Input Graph

Convolutional
layers

Readout

Output

.

.

.

.

.

.

FC-Layer

Softmax

.

.

.

Figure 27: The general architecture of the models. A model is fed a graph representation of an invoice
consisting of an adjacency matrix A and a feature map X . The features of each node are then convolved
L times and the resulting feature map is fed through a fully connected layer, followed by a softmax
activation function. The resulting output is a matrix of size RN×P where P is the number of classes and
the predicted class of each node is the class which corresponds to the index of the highest logit. The
main difference between the models is the choice of convolution layers, as well as the choice for C and L.

9.1 ChebNet
The ChebNet model is the same model as proposed by [3] and consists of four ChebNet graph convolution
layers (Section 4.2.2), where the Chebyshev filters’ sizes increase with a factor of 2 per layer. The first
layer has a filter size of 16, the second layer size 32 and so on, all the way up to a filter size of 128 in the
fourth layer. We also set K = 3 in order to keep each convolution at most 2 steps away from the center
vertex at each layer (recall from section 4.2.2 that the hyperparameter K determines the locality of the
filter). Each layer is followed by a ReLU function. The fifth layer is a FC layer that reduces the dimension
down from 128 to the number of classes, i.e. 14. Finally, a Softmax activation function provides us with a
class label to each word in the invoice. Recall that we have 14 classes of interest, including the undefined
class for irrelevant entities. The model has an added bias vector for each layer. For a parameter count of
the model and its layers, please refer to Table 11.

41

Table 11: The parameter count for each layer as well as the total amount of trainable parameters in the
ChebNet network.

Parameter Layer 1 Layer 2 Layer 3 Layer 4 FC Layer

Weights 3× 310× 16 3× 16× 32 3× 32× 64 3× 64× 128 128× 14
Bias 16 32 64 128 14

Total 49 182

9.2 GCN
Two different models have been built using a GCN based architecture. The first GCN model, henceforth
called GCN-4, is very similar to the ChebNet model. GCN-4 consists of 4 GCN layers, where the size of
each layer filter increases by a factor of 2 at every lth layer, starting with a filter size of 16 and ending
with the fourth layer with a filter of size 128. As in 9.1, each layer is also followed by a ReLU function.
The fifth layer is a FC layer, reducing the number of dimensions from 128 down to the number of classes,
i.e. 14. The FC layer is followed by a Softmax function.

As a benchmark model, as well as because of concerns regarding over-smoothing for deep GCN models
[10], we have also built and trained a shallow GCN model, GCN-2. GCN-2 consists of two GCN layers
with a filter size of 32 and 64, respectively, where each layer is followed by a ReLU function, as in
previously mentioned models. The last layer is a FC layer which reduces the dimensions from 64 to 14
and is followed by a Softmax function.

Both models have a fixed λ = 1 as weight for the added self-loops. Each model has an added bias vector
for each layer in the network. Please refer to Table 12 as well as Table 13 for an overview of the parameter
count.

Table 12: The parameter count for each layer as well as the total amount of trainable parameters in the
GCN-4 network.

Parameter Layer 1 Layer 2 Layer 3 Layer 4 FC Layer

Weights 310× 16 16× 32 32× 64 64× 128 128× 14
Bias 16 32 64 128 14

Total 17 758

Table 13: The parameter count for each layer as well as the total amount of trainable parameters in the
GCN-2 network.

Parameter Layer 1 Layer 2 FC Layer

Weights 310× 32 32× 64 64× 14
Bias 32 64 14

Total 12 974

42

10 System Overview
This section aims to describe the different tools and frameworks used to build the entire system, as well
as summarize the entire system from a high-level point of view.

10.1 Tools
Pandas [32] and Numpy [33] are two Python libraries used for processing tabular data and have been
used extensively in this thesis for cleaning, preprocessing and merging the OCR and label data into the
annotated dataset, as well as for feature calculations.

To model the tabular data in the annotated dataset into a graph structure, the library NetworkX [34] has
been leveraged. NetworkX has been chosen for this task because of its high compatibility with Pandas,
PyTorch [35] as well as Pytorch Geometric [23]. PyTorch is a tensor library which allows for deep learning
and model training on both the CPU as well as the GPU. PyTorch Geometric is an extension library of
PyTorch, aimed towards deep learning on irregular data such as graphs. Tabular data has been modelled
into graphs through NetworkX, which in turn has been converted into its tensor representation through
PyTorch Geometric to prepare the data for model training and GPU accelerated computing. PyTorch,
in conjunction with PyTorch Geometric, has been used for building and training the neural network
models. Scikit-Learn [36] has been used for calculating the metrics for model evaluation. Calculating the
word embedding features, through BPEmb (8.1.2), has been done by implementing the BPEmb Python
package, provided by the method’s creators [30].

Monitoring and logging metrics and statistics from the training processes have been done with the use of
TensorBoard [37]. While TensorBoard is technically a TensorFlow visualization toolkit, it works equally
well for monitoring models made in Pytorch. A full list of the Python libraries with their respective
versions used in this thesis can be found in the appendix.

Regarding hardware, processing and computation have been done on an NVIDIA GeForce RTX 2080 Ti
(GPU) and an Intel Core i9-9820 3.30GHz (CPU).

10.2 System Data Flow
Sections 3 - 5 and 7 - 9 explain the main building blocks needed for each step in the extraction process.
Figure 28 illustrates how these building blocks are connected to go from raw data to extracted entities of
invoices. We have chosen to illustrate the data flow in two parts: the data flow during the training phase
(where multiple invoices with labeled nodes are processed to train a model) , as well as the data flow during
the production phase (where a single invoice with unlabeled nodes is processed by the model).

During the training phase, the OCR- and label datasets are first merged into a single annotated dataset
(Section 7.2). The annotated dataset is then passed to the graph modeller (Section 7.3) as well as
the feature calculator (Section 8) processes to model the invoices as graphs. Remember that a graph
representation of a single invoice with N nodes consists of 1 adjacency matrix A ∈ RN×N denoting the
edges between nodes, 1 feature matrix X ∈ RN×F where xi ∈ X corresponds to the features of node i
and 1 label vector y ∈ RN where yi is the label of node i. When all invoices have been modelled into
graphs, the model is ready to be trained.

The Batch Graph Generator splits invoices from the train dataset into mini-batches of size 600,
constructing one large graph representation out of 600 invoice graph representations (Section 5.4). These
mini-batches are then sent, one mini-batch at a time, to the ConvGNN model, which produces a vector
ŷ of predicted labels for each node in the mini-batch. The Multiclass Cross Entropy Cost between ŷ and
label vector y is then calculated (Section 5.1) and used to update the parameters of the model through
backpropagation (Section 5.3). The training stops when the model has not improved its performance on
the validation set for 50 consecutive epochs.

The data in the production phase flows similarly to that in the training phase, with a few key differences.
An invoice is modelled into a graph directly from the OCR data, as no label data is available. Hence, no
label vector is produced during the feature calculation process. The invoice graph representation is then
fed to the trained ConvGNN model, which in turn produces a vector ŷ of predicted labels for each node
in the invoice. Each node which is not labeled as undefined can be seen as an extracted entity.

43

OCR Data

Feature CalculatorGraph Modeller

Adjacency Matrix

Batch Graph
Generator

Batch Graph

ConvGNN Model

Label Data

Annotated Data

Extracted Entities
Vector

Feature Matrix Label Vector

NodesEdges

Unlinked
Graph

Cost Calculation
& Backprop.

Relative Distances

Data Preparation

Training Loop

OCR Data

Feature CalculatorGraph Modeller

Adjacency Matrix

ConvGNN Model

Extracted Entities
Vector

Feature Matrix

NodesEdges

Relative Distances

Data Preparation

Entity Extraction

Data Flow in Training Phase Data Flow in Production Phase

Figure 28: An overview of the complete system data flow during both the training and production phase.
Rectangles indicate persistent storage, parallelograms indicate processes and arrows indicate the direction
of the data flow. Coloured groups have been added to clarify how different stages of the pipeline relates
to graph data representation of invoices.

44

11 Results
This section describes the results given by the models proposed in Section 9. For each model, the results
present are the macro average for F1-score, precision and recall, all evaluated on the test dataset. A
full list of the F1-score, precision and recall for each model and each individual label, as well as the
confusion matrix for each respective model can be found in Appendix A. The F1macro, precisionmacro
and recallmacro of each model can be found in Table 14. The confusion matrix for the best performing
model can be found in Figure 29 as well as Figure 30 and the per-label metrics for the best model can
be found in Table 15. The per-label performance for each model can be found in Appendix A.

Furthermore, this section will describe the results of the models on unseen invoice templates, see Table
16. The confusion matrix for the best performing model can be found in Figures 31 and 32. The per-
label performance of the best performing model can be found in Table 17. That is, the model will be
evaluated on invoices belonging to vendors which the model has not seen during training (as described in
Section 7.4). The per-label performance on the unseen subset for each model can be found in Appendix
A.

Table 14: Comparison of the macro average performance of the tested models. The highest metric scores
have been highlighted in grey.

Model name F1 Precision Recall

ChebNet 0.7119 0.8259 0.6255
ChebNet + DropEdge, p = 0.10 0.7088 0.8243 0.6217
ChebNet + DropEdge, p = 0.20 0.6709 0.7604 0.6003
ChebNet + DropEdge, p = 0.50 0.6253 0.7140 0.5563
ChebNet + DropEdge, p = 0.80 0.4963 0.6565 0.3989
GCN-2 0.5262 0.6354 0.4490
GCN-4 0.5309 0.6684 0.4404
GCN-4 + DropEdge, p = 0.10 0.5381 0.6514 0.4584
GCN-4 + DropEdge, p = 0.20 0.5069 0.6843 0.4025
GCN-4 + DropEdge, p = 0.50 0.3259 0.4932 0.2433
GCN-4 + DropEdge, p = 0.80 0.1095 0.2048 0.0747

Table 15: The corresponding performance metrics for each entity for the ChebNet model.

Entity F1 Precision Recall

amountCurrency 0.7387 0.7918 0.6923
amountFreightPack 0.1250 1.0000 0.0667
amountNet 0.7360 0.7964 0.6842
amountRndDiff 0.3420 0.7333 0.2230
amountTot 0.8172 0.8258 0.8088
amountVat 0.8170 0.8348 0.7881
dueDate 0.8110 0.8171 0.8050
invDate 0.8681 0.8641 0.8723
invNo 0.8166 0.8565 0.7802
ocrNo 0.7108 0.7215 0.7003
orderNo 0.4696 0.8682 0.3218
referenceName 0.1639 0.5556 0.0962
type 0.9132 0.9040 0.9227
undefined 0.9948 0.9938 0.9958

Macro average 0.7119 0.8259 0.6255
Validation loss 0.0320

45

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el
1244761 901 837 604 766 541 418 361 450 342 47 17 4 0

1063 4721 29 11 0 0 0 0 12 1 0 0 0 0

1538 52 3533 30 0 0 0 0 10 1 0 0 0 0

847 7 31 3324 0 0 0 0 8 0 1 0 0 0

822 0 0 0 3508 27 0 0 0 1 0 0 0 0

500 0 0 0 19 3674 12 7 0 0 0 0 0 0

756 0 0 0 0 8 3038 14 0 78 0 0 0 0

302 0 0 0 0 0 1 3616 0 0 0 0 0 0

766 36 6 3 0 0 0 0 1825 0 0 0 0 0

387 0 0 0 0 2 78 2 0 1096 0 0 0 0

450 0 0 10 0 0 0 0 0 0 132 0 0 0

236 0 0 0 0 0 0 0 0 0 0 112 0 0

47 0 0 0 0 0 0 0 0 0 0 0 5 0

28 0 0 0 0 0 0 0 0 0 0 0 0 2

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1252503 5717 4436 3982 4293 4252 3547 4000 2305 1519 180 129 9 2

Total Predicted

1286874

Total

Figure 29: Discrete confusion matrix for the ChebNet model performance. The diagonal shows the per-
class accuracy for each class. For instance, 4721 labels that were of the class amountTot have been classed
as such. Meanwhile, 1063 labels that belong to the class amountTot have been classed as undefined.

46

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.18 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.30 0.01 0.68 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.00 0.01 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.19 0.00 0.00 0.00 0.80 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.12 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.19 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.02 0.00 0.00 0.00 0.00

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.00 0.00

0.25 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.70 0.00 0.00 0.00 0.00

0.76 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.22 0.00 0.00 0.00

0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.32 0.00 0.00

0.90 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.10 0.00

0.93 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

Figure 30: Normalized confusion matrix of the ChebNet model, evaluated on the test set. The diagonal
shows the per-class accuracy for each class where decimals are rounded to the nearest hundredth. For
instance, 81 % of the labels that were of the class amountTot have been classed as such. Meanwhile,
18 % of the labels that belong to the class amountTot have been classed as undefined. The last 1% is
distributed among other labels as can be seen in Figure 29.

Section 7.4 illustrates how approximately 9% of the test dataset contains invoices with unseen templates.
The performance of the different models on the subset of invoices with unseen templates in the test set
can be found in Table 16. Table 17 and Figures 31 and 32 show the best model’s performance on these
invoices alone. A comparison of the best performing model’s performance on the complete dataset versus
the performance on invoices with only unseen templates can be found in Table 18.

47

Table 16: Comparison of the macro average performance of the tested models on unseen templates. The
best performing model has its metrics highlighted.

Model name F1 Precision Recall

ChebNet 0.6015 0.6816 0.5382
ChebNet + DropEdge, p = 0.10 0.5789 0.6343 0.5325
ChebNet + DropEdge, p = 0.20 0.5633 0.6123 0.5215
ChebNet + DropEdge, p = 0.50 0.5252 0.5773 0.4818
ChebNet + DropEdge, p = 0.80 0.4496 0.5563 0.3773
GCN-2 0.4727 0.5613 0.4083
GCN-4 0.4602 0.5493 0.3959
GCN-4 + DropEdge, p = 0.10 0.4824 0.5594 0.4241
GCN-4 + DropEdge, p = 0.20 0.4536 0.5486 0.3867
GCN-4 + DropEdge, p = 0.50 0.3328 0.5179 0.2451
GCN-4 + DropEdge, p = 0.80 0.1090 0.2010 0.0748

Table 17: The corresponding per-class performance metrics for each entity for the best performing model,
ChebNet, calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountCurrency 0.6378 0.7108 0.5784
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.6811 0.7870 0.6004
amountRndDiff 0.0417 0.5000 0.0217
amountTot 0.7912 0.8399 0.7479
amountVat 0.8000 0.8314 0.7709
dueDate 0.7284 0.7739 0.6879
invDate 0.7954 0.7903 0.8005
invNo 0.7273 0.8025 0.6649
ocrNo 0.6691 0.6475 0.6923
orderNo 0.2000 1.0000 0.1111
referenceName 0.0000 0.0000 0.0000
type 0.8674 0.8698 0.8650
undefined 0.9917 0.9895 0.9940

Macro average 0.6015 0.6816 0.5382

48

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el
89301 70 78 49 80 75 52 45 43 46 1 0 0 0

144 451 4 2 0 0 0 0 1 1 0 0 0 0

189 12 314 5 0 0 0 0 3 0 0 0 0 0

81 0 3 286 0 0 0 0 1 0 0 0 0 0

127 0 0 0 291 5 0 0 0 0 0 0 0 0

72 0 0 0 5 309 0 0 0 0 0 0 0 0

121 0 0 0 0 2 252 2 0 2 0 0 0 0

48 0 0 0 0 0 1 314 0 0 0 0 0 0

81 4 0 1 0 0 0 0 118 0 0 0 0 0

31 0 0 0 0 0 9 0 0 90 0 0 0 0

44 0 0 1 0 0 0 0 0 0 1 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

90252 537 399 344 376 391 314 361 166 139 2 1 0 0

Total Predicted

93282

Total

Figure 31: Discrete confusion matrix for the ChebNet model’s performance on only the unseen invoice
templates.

49

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l
0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.24 0.75 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.36 0.02 0.60 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

0.22 0.00 0.01 0.77 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.30 0.00 0.00 0.00 0.69 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.19 0.00 0.00 0.00 0.01 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.32 0.00 0.00 0.00 0.00 0.01 0.66 0.01 0.00 0.01 0.00 0.00 0.00 0.00

0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00

0.40 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.00 0.00 0.00 0.00 0.00

0.24 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.69 0.00 0.00 0.00 0.00

0.96 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 32: Normalized confusion matrix for the ChebNet model’s performance on only the unseen invoice
templates, rounded to the nearest hundredth. The per-class accuracy can be found in the diagonal of the
matrix.

50

Table 18: Comparison of F1-scores for each label as well as the macro average of the model when evaluated
on the complete dataset versus invoices with unseen templates. The rightmost column illustrates the
relative change, where the F1-score for the complete dataset has been used as reference.

Label F1 - Complete Dataset F1 - Unseen Templates Relative Change

amountCurrency 0.7387 0.6378 −13.66%
amountFreightPack 0.1250 0.0000 −100%
amountNet 0.7360 0.6811 −7.46%
amountRndDiff 0.3420 0.0417 −87.81%
amountTot 0.8172 0.7912 −3.18%
amountVat 0.8107 0.8000 −1.32%
dueDate 0.8110 0.7284 −10.19%
invDate 0.8681 0.7954 −8.38%
invNo 0.8166 0.7273 −10.94%
ocrNo 0.7108 0.6691 −5.87%
orderNo 0.4696 0.2000 −57.41%
referenceName 0.1639 0.0000 −100%
type 0.9132 0.8674 −5.02%
undefined 0.9948 0.9917 −0.31%
Macro average 0.7119 0.6015 −15.51%

51

12 Discussion
The following sections will analyze and discuss the results shown in Section 11 as well as identify
underlying errors within the invoice dataset and the logit outputs from the ChebNet model, which
can explain the behavior of all different models. Furthermore, while recallmacro, precisionmacro and
the F1macro score have been published for all the models, we denote the precisionmacro and the F1macro

metrics to be the most important metrics for deciding which model is best suited for information extraction
of invoices. In practice, it is better to get no prediction output for a given label (i.e., the model labels
the node as undefined) than to get a nonsense-prediction. However, the F1macro score is still taken into
account to make sure that the model is somewhat well-rounded.

12.1 Performance Difference Between Models
When analyzing Table 14 it becomes evident that the ChebNet model without DropEdge has the highest
performance for all metrics. Not only does the ChebNet model outperform the other models on per-
class F1-score, precision and recall, it also showcases a lower validation loss, as well as a higher F1macro,
precisionmacro and recallmacro. One explanation could be that, for the ChebNet model, the features of
a centered vertex convolve with features of nodes that are further away compared to the GCN models.
In other words, the ChebNet performs more K-hops per layer compared to GCN-2 and GCN-4, making
it possible for the model to learn both local and more global patterns in invoices. As the deepest GCN
model, GCN-4, has an equal amount of stacked layers as the ChebNet model, the GCN models are fairly
constrained in terms of the size of convolutional neighborhoods as compared to the ChebNet model.
Furthermore, the ChebNet model has a larger amount of trainable parameters at each layer (almost three
times as many, see Table 11, 12 and 13), making it more complex and potentially better at learning
complex patterns in the underlying training data. The combination of a lower K and a simpler network
architecture can explain why the GCN models do not perform as well as the ChebNet model.

Regarding GCN-4 and GCN-2, we can see that the deeper GCN-4 performs slightly better than its
shallower counterpart. This is in line with the previous reasoning regarding the impact of a larger K-
locality for a model as GCN-4 convolves a centered node’s features with nodes that are up to 4 hops away,
compared to 2 hops for the GCN-2 model. This can further be explained by the fact that GCN-4 is a
deeper network and thus is more able to capture underlying structural data. Moreover, even though GCN-
2’s first layer is twice the size of GCN-4’s first layer, which may result in a greater feature representation
of the original input nodes, the level of depth in GCN-4 as compared to GCN-2 can compensate for this
narrower layer, since GCN relies on stacking multiple layers to account for a fixed K. However, it is
possible that the narrowness of the first convolutional layer in GCN-4 contributes to the fact that we do
not see an even greater increase in performance. Reducing the number of features from 310 down to 32
is already a reduction of almost 90 %, by halving that to 16 we end up with a feature representation of
circa 5 % of the original input node features.

Another reason as to why GCN-4 shows only a slight increase in performance as compared to GCN-2
may be because of over-smoothing. Recall that over-smoothing occurs when node representations become
more and more similar to each other and, in the extreme case, results in indistinguishable node features.
This can happen when representations of nodes converge to a stationary point through the effect of,
e.g., having too deep of a network. GCN-4 is not particularly deep, it is however deeper than GCN-2.
However, if over-smoothing was an occurring problem for GCN-4, DropEdge should in theory have made
a difference in performance for said model. This is further discussed in Section 12.2.

Another insight from training the different models is that none of the models have diverging train and
validation loss curves. Figure 33 shows the train and validation loss curves for the ChebNet model (train
and validation loss curves for the rest of the models can be found in Appendix A).

52

0

0.04

0.08

0.12

-100 100 300 500 700 900

0

0.02

0.04

0.06

0.08

0.1

0.12

-100 0 100 200 300 400 500 600 700 800

Figure 33: The train (left) and validation (right) loss curves for the ChebNet model. The y-axis shows
the calculated loss while the x-axis shows at which epoch the loss has been calculated.

As Figure 33 shows, the curves follow each other closely and do not diverge. The same phenomenon can
be found when inspecting the loss curves of the other models as well. This may imply that none of the
models are complex enough to accurately describe the training data, as it never seems to overfit to it.
While we do utilize L2-regularization to prevent overfitting, the regularization term is quite small and we
did still expect some level of overfitting to occur. If the models are in fact too simple, it may be the case
that the regularization techniques in place damage the performance of the models instead of improving
it. It may be worthwhile to test running the models both completely without L2-regularization as well as
with an increased patience to see if it has a positive impact on the performance. Moreover, early stopping
is also utilized to prevent overfitting and the behavior of the loss curves can imply that our patience for
early stopping is too narrow and that increasing it could yield a lower validation loss. Furthermore, if the
models have oversimplified network architectures, a wider and/or deeper network design could in theory
achieve better results.

12.2 DropEdge
Recall from Section 5.5.4 that DropEdge is a technique used to combat both overfitting and over-
smoothing by enforcing some non-zero elements in the adjacency matrix, at random with a probability
p, to be converted to zeroes, thus dropping some connections between the nodes. Doing so introduces
sparsity in the network, which when applied can reduce overfitting and over-smoothing.

Table 14 in Section 11 shows the difference in performance between the different models, both with
and without applying DropEdge. The results clearly demonstrate that neither ChebNet or GCN-4 in
general benefited from utilizing DropEdge, since the performance for both of these models decreased as
the effects of DropEdge was increased, i.e., as p increases, the model performance drops. The exception
is DropEdge with p = 0.10 for the GCN-4 model, which has a slight increase for the recallmacro and in
turn a slightly higher F1macro score as well, as compared to GCN-4 without DropEdge. However, as the
precisionmacro has dropped for the DropEdge model, it is still arguably a worse model than the standard
GCN-4 in the context of information extraction from invoices. This suggests that, for the current graph
data representation and model architecture for ChebNet and GCN-4, DropEdge makes the network too
sparse as the graph representation we have chosen for our invoice data (see Section 7.3) is already very
sparse even before applying DropEdge. This can lead to the network not being able to capture the
underlying structure in the data while utilizing DropEdge, thus underfitting the model.

Another explanation to why we don’t see any performance gain from DropEdge can be related to the
implementation of early stopping. As mentioned in Section 9 the patience for each model during training
is set to a size of 50, meaning that training will stop after 50 consecutive epochs in which the validation
loss has not improved. Applying DropEdge results in slower convergence and hurts the performance
during the earlier stages of training, and by setting a patience window that is too small could disallow
the network to converge to the lowest possible validation error, as stated in 5.5.4. Furthermore, as the
models run a risk of being too simple to properly capture the patterns in the underlying data, the overfit
reducing properties in DropEdge may lead to a reduced model performance.

53

12.3 Impact of Data Discrepancies
In Section 7.5 we discuss some of the identified discrepancies in the data which could have a negative effect
on the performance of the models. In this section, we have analyzed how the ChebNet model performs
on the invoices discussed in Section 7.5 and hypothesize on how the aforementioned discrepancies may
impact the results seen in e.g., Figure 30 in Section 11.

When revisiting the invoices illustrated in Figure 24 and 25 in Section 7.5 and feeding them to the trained
ChebNet model, we can indeed see that the model struggles with the aforementioned entities. In Figure
34, we can see that the model fails to classify the ocrNo entity to the left but does indeed classify the
ocrNo entity to the right as the correct label. However, since the ground truth label is incorrect, the
model is still penalized.

Konton eller via bankgiro,
er balanskonto

Fakturanr 1234567891011

er balanskonto

True Label: amountTot

1234567891011
True Label: amountNet

Predicted: ocrNo
Predicted: undefined

Figure 34: The OCR number is wrongly labeled as amountTot (left) and amountNet (right) because of
errors existing in the label data which have a negative effect on the model performance.

In Figure 35, we can see that the model struggles to correctly extract the amountNet entity. This may be
caused by the multiple bounding boxes spawned for each individual word. By having multiple bounding
boxes for a single word, the surrounding neighborhood of the amountNet entity becomes noisy, which
may have a negative impact on the node feature representations after convolving the node signals.

Sum fritt: -991,20 Sum pliktig :

KID: 0123456789101112

Predicted: undefined

Predicted: undefined

True Label: amountNet
True Label: amountNet

Figure 35: An example of when the OCR engine has produced multiple bounding boxes for each word in
a given section. The model believes that all nodes should be labeled as undefined. However, the two red
nodes both have the ground truth label amountNet.

There are also multiple cases where the discrepancy described in 21 had a negative effect on the model
performance metrics. Figure 36 is an example of when the correct value has been extracted by the
ChebNet model, but the model is still evaluated as being wrong since the incorrect node was classified as
amountNet, even though it contains the correct text value.

54

Ej momspl. Öresavrundning Summa exkl. moms

815,00
True Label: undefined

Predicted: amountNet
815,00
True Label: amountNet

Predicted: undefined

Figure 36: The model correctly extracts the amountNet value of 815,00, but predicted the wrong node as
belonging to the aforementioned class. Green bounding boxes indicate nodes that are correctly classified
as undefined.

By inspecting the confusion matrices in Figure 29 and Figure 30 in Section 11, one can see that there are
some classes being confused for each other by the model, one such example is amountTot and amountNet.
While the two classes are fairly similar in nature and would explain a lot, if not most of this confusion,
another plausible explanation for this is the discrepancy illustrated in Figure 26, Section 7.5. As we
can see in Figure 37, the two red boxes at the top of the figure are correctly classified by the model as
amountNet, but would be penalized during training for this since the nodes have the wrong ground truth
label amountTot. The same is true for the bottom and right-most two nodes, but where the total amount
is actually labeled as amountNet.

Summa exkl moms
Moms
Summa SEK

49 050,00

49 050,00

Predicted: amountNet

Predicted: amountTot

True Label: amountTot

True Label: amountNet

Figure 37: The model correctly classified the two top-right nodes as amountNet and the two bottom-right
nodes as amountTot. However, the nodes have the wrong ground truth label. Green nodes are correctly
classified as undefined.

The same kind of issue in the data can also be found between the classes invNo and ocrNo, which could
explain part of why 5 % of all ocrNo nodes are classified as invNo, as well as why 2 % of the invNo nodes
are labeled as ocrNo.

Furthermore, in Figure 30, Section 11 we see that roughly 1 % of all occurring amountCurrency labels
are classified as amountTot, the type of aforementioned mislabeling illustrated in Figure 22 (Section 7.5)
is a plausible explanation for this phenomenon.

12.4 Per-Class Performances
As already established in Sections 7.5 and 12.3, there exists noise in the data of various degrees and of
different character for the different classes. Arguably, the model still performs well on classes which
have a relatively high number of occurrences in the data (e.g., amountTot, dueDate and invDate),
while it performs poorly on classes with fewer occurrences (e.g., amountRndDiff, referenceName and
orderNo).

Investigating the confusion matrix for the ChebNet model (Figure 30, Section 11) we see that even the
best model showcases a subpar performance for the classes amountRndDiff, orderNo, referenceName and
amountFreightPack, compared to the other class performances, where the highest F1-score of these four
classes is roughly 0.47 (orderNo). We also see that the nodes the model failed to classify correctly and
that have a true label that belong to either of these four aforementioned classes, have been classified
as undefined almost exclusively. If we also look at Figure 19 from Section 7.4, we recall that the class
undefined accounts for a vast majority (∼ 97 %) of all class occurrences. Furthermore, Figure 20 from the
same section aptly illustrates how imbalanced the dataset is in regards to the four aforementioned classes.
Out of more than 80000 invoices, only a small fraction of these contain nodes belonging to amountRndDiff,

55

orderNo, referenceName and amountFreightPack. Given these insights, our hypothesis is that our model
performs poorly on these four classes because there simply is not enough data for the model to be able
to capture the underlying structure of nodes belonging to said classes. Section 12.5 delves deeper into
the reasons for the way these nodes are classified. However, if we omit the aforementioned four least
frequently occurring classes from Table 15 and instead calculate the macro averages for the remaining 10
classes based on the performance metrics of the ChebNet model, we see an increase of the F1-score by
+15.5 % (from 0.7119 to 0.8224), of the precision by +1.7 (from 0.8259 to 0.8406) and of the recall by
28.7% (from 0.6255 to 0.8050). Table 19 shows the new macro averages for the evaluation on these 10
classes.

Table 19: Per-class performance metrics for the 10 most frequently occurring entities within the training
set, evaluated using the ChebNet model. The entities are in descending order in regard to their frequency
of occurrence. The four least frequently occurring entities have been omitted when calculating the new
macro averages and have been struckthrough.

Frequency Entity F1 Precision Recall

97.23 % undefined 0.9948 0.9938 0.9958
0.44 % amountTot 0.8172 0.8258 0.8088
0.39 % amountNet 0.7360 0.7964 0.6842
0.33 % amountVat 0.8107 0.8348 0.7881
0.32 % dueDate 0.8110 0.8171 0.8050
0.32 % invDate 0.8681 0.8641 0.8723
0.30 % invNo 0.8166 0.8565 0.7802
0.30 % type 0.9132 0.9040 0.9227
0.20 % amountCurrency 0.7387 0.7918 0.6923
0.12 % ocrNo 0.7108 0.7215 0.7003
0.045 % amountRndDiff 0.3420 0.7333 0.2230
0.026 % orderNo 0.4696 0.8682 0.3218
0.0045 % referenceName 0.1639 0.5556 0.0962
0.0017 % amountFreightPack 0.1250 1.0000 0.0667

Macro average 0.8224 0.8406 0.8050

As Table 19 suggests, there may very well be a correlation between the frequency of occurrence of a class
and the ChebNet model’s performance on these classes.

From Figure 20 in Section 11, it also becomes clear that the amountTot and amountNet classes occur in
the vast majority of invoices, while classes such as dueDate, invDate and type occur more infrequently
(albeit relatively often compared to other classes). The amountVat class occurs as often as dueDate,
invDate and type. Despite the high occurrence of the amount classes, our model is better at classifying
dueDate, invDate and type. This may be linked to the complex nature of the amount classes’ data as
well as the errors present within them, as described in Section 7.5. A total/net/VAT amount value can
occur in several different formats and places on an invoice, such as “12345,00”, “12 345,00” or “12345”
et cetera, whereas a date value follows standardized formats such as “2021.01.02”, “02.01.2021” or “2
januari 2021” which is easily picked up by the date parser in the feature calculator process. In addition,
if there are dates present within an invoice, it will most likely be an invoice or due date, whereas the
amount values are non standardized format numbers which can be similar to values unrelated to currency
amounts, e.g., article quantities or page numbers. In other words, the amount node values’ are possibly
not as distinguishable and unique as compared to e.g., date nodes. Furthermore, as we have also seen in
Section 7.5, the total/net/VAT amount values can occur in several different places on one unique invoice.
Moreover, where on the invoice the labeled value is placed differs from invoice to invoice. This results
in different neighborhood relationships based on the location of the labeled value. On the contrary, an
invoice usually has one due date and one invoice date, and standardized values and neighbors on top of
that, which yields a lower variance in unseen data and thus may make it easier for the model to learn
and classify these representations.

It is worth to note that a lot of nodes are misclassified as undefined, as can be seen in any of the

56

confusion matrices, e.g., Figure 29. While it would be ideal to have a model that perfectly classifies each
node correctly, the next best option is to have a model that defaults to undefined when it is not sure of its
predictions. From a business perspective, it is often better to get no prediction at all (e.g., a node that is
misclassified as undefined) than to get a nonsensical one (e.g., a node with the true label amountTot that
is misclassified as an amountNet). For instance, say we want to extract the amountNet, amountTot and
amountVat values for accounting purposes. Then, it is better to not extract an entity (i.e., classify the
entity as undefined) than to incorrectly extract, say, a net amount as a total amount, since incorrectly
extracted entities can have severe consequences for this purpose.

12.5 Logit Analysis
The logit output of the models can be interpreted as how certain the models are that the classifications
hold true. By analyzing the logit output of the best performing model we can more aptly gain an
understanding of the beliefs it has. In this section, we will focus more on the less frequent classes. The
full list of logit plots for each label can be found in Appendix B.

In Figure 38, we can see that a majority of amountRndDiff nodes are classified as undefined with a high
degree of certainty. Through manual inspection of 100 randomly selected invoices from the validation
dataset, we can see that while a majority of the inspected invoices have nodes which contain information
about the rounding difference, they are not present in the label dataset and are hence labeled as undefined.
Out of the 100 inspected invoices, 59 % of the invoices have nodes which should be classified as belonging
to the amountRndDiff class. This can be compared to the training set which contains 74 396 invoices,
out of which only 10 450, or roughly 14 %, of the invoices have fields labeled as amountRndDiff.

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

20

40

60

80

100

120

De
ns

ity

True label - undefined
Predicted Label

undefined
dueDate
ocrNo
amountCurrency
amountVat
amountTot
invNo
type
amountNet
invDate
amountRndDiff
orderNo
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

2

4

6

8

De
ns

ity

True label - type
Predicted Label

type
undefined

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - invNo
Predicted Label

invNo
undefined
ocrNo
type
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

1

2

3

4

5

6

De
ns

ity

True label - invDate
Predicted Label

invDate
undefined
dueDate
type
invNo
ocrNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - dueDate
Predicted Label

dueDate
undefined
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountNet
Predicted Label

amountNet
undefined
amountTot
amountVat
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountVat
Predicted Label

amountVat
undefined
amountTot
amountNet
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

True label - amountRndDiff
Predicted Label

amountRndDiff
undefined
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - amountTot
Predicted Label

amountTot
undefined
amountNet
amountCurrency
ocrNo
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

True label - ocrNo
Predicted Label

ocrNo
undefined
invNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountCurrency
Predicted Label

amountCurrency
undefined
amountVat
amountNet
amountTot

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - orderNo
Predicted Label

undefined
orderNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

True label - referenceName
Predicted Label

undefined
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountFreightPack
Predicted Label

undefined

Figure 38: Kernel Density Estimation plot of predicted label logits, given the true label amountRndDiff.
Most nodes belonging to this class are classified as undefined, where the majority of these classifications
have a logit value of > 0.7.

While the manual inspection of 100 invoices is too small of a number to give a true estimation of the
number of invoices that actually contain information about the rounding difference, if our analysis is
any indication of the true distribution of this class, this means that the model is actively trained to
classify nodes from the amountRndDiff class as nodes belonging to the undefined class in the majority
of cases. This would explain both the high concentration of classifications with the undefined label for
amountRndDiff nodes, as well as the high value of the logits when doing so. A similar pattern can
be found when analyzing the logits of the orderNo, referenceName and amountFreightPack as well, see
Figure 39, although further inspection of the aforementioned labels are needed to be able to draw a
similar conclusion regarding issues with the annotation of these labels.

57

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

20

40

60

80

100

120

De
ns

ity

True label - undefined
Predicted Label

undefined
dueDate
ocrNo
amountCurrency
amountVat
amountTot
invNo
type
amountNet
invDate
amountRndDiff
orderNo
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

2

4

6

8

De
ns

ity

True label - type
Predicted Label

type
undefined

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - invNo
Predicted Label

invNo
undefined
ocrNo
type
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

1

2

3

4

5

6

De
ns

ity

True label - invDate
Predicted Label

invDate
undefined
dueDate
type
invNo
ocrNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - dueDate
Predicted Label

dueDate
undefined
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountNet
Predicted Label

amountNet
undefined
amountTot
amountVat
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountVat
Predicted Label

amountVat
undefined
amountTot
amountNet
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

True label - amountRndDiff
Predicted Label

amountRndDiff
undefined
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - amountTot
Predicted Label

amountTot
undefined
amountNet
amountCurrency
ocrNo
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

True label - ocrNo
Predicted Label

ocrNo
undefined
invNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountCurrency
Predicted Label

amountCurrency
undefined
amountVat
amountNet
amountTot

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - orderNo
Predicted Label

undefined
orderNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

True label - referenceName
Predicted Label

undefined
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountFreightPack
Predicted Label

undefined

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

20

40

60

80

100

120

De
ns

ity

True label - undefined
Predicted Label

undefined
dueDate
ocrNo
amountCurrency
amountVat
amountTot
invNo
type
amountNet
invDate
amountRndDiff
orderNo
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

2

4

6

8

De
ns

ity

True label - type
Predicted Label

type
undefined

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - invNo
Predicted Label

invNo
undefined
ocrNo
type
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

1

2

3

4

5

6

De
ns

ity

True label - invDate
Predicted Label

invDate
undefined
dueDate
type
invNo
ocrNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - dueDate
Predicted Label

dueDate
undefined
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountNet
Predicted Label

amountNet
undefined
amountTot
amountVat
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountVat
Predicted Label

amountVat
undefined
amountTot
amountNet
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

True label - amountRndDiff
Predicted Label

amountRndDiff
undefined
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - amountTot
Predicted Label

amountTot
undefined
amountNet
amountCurrency
ocrNo
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

True label - ocrNo
Predicted Label

ocrNo
undefined
invNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountCurrency
Predicted Label

amountCurrency
undefined
amountVat
amountNet
amountTot

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - orderNo
Predicted Label

undefined
orderNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

True label - referenceName
Predicted Label

undefined
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountFreightPack
Predicted Label

undefined

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

20

40

60

80

100

120

De
ns

ity

True label - undefined
Predicted Label

undefined
dueDate
ocrNo
amountCurrency
amountVat
amountTot
invNo
type
amountNet
invDate
amountRndDiff
orderNo
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

2

4

6

8

De
ns

ity

True label - type
Predicted Label

type
undefined

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - invNo
Predicted Label

invNo
undefined
ocrNo
type
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

1

2

3

4

5

6

De
ns

ity

True label - invDate
Predicted Label

invDate
undefined
dueDate
type
invNo
ocrNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - dueDate
Predicted Label

dueDate
undefined
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountNet
Predicted Label

amountNet
undefined
amountTot
amountVat
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountVat
Predicted Label

amountVat
undefined
amountTot
amountNet
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

True label - amountRndDiff
Predicted Label

amountRndDiff
undefined
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - amountTot
Predicted Label

amountTot
undefined
amountNet
amountCurrency
ocrNo
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

True label - ocrNo
Predicted Label

ocrNo
undefined
invNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountCurrency
Predicted Label

amountCurrency
undefined
amountVat
amountNet
amountTot

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - orderNo
Predicted Label

undefined
orderNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

True label - referenceName
Predicted Label

undefined
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountFreightPack
Predicted Label

undefined

Figure 39: Kernel Density Estimation plots of predicted label logits, given the true label referenceName,
orderNo and amountFreightPack, respectively. Most nodes belonging to these classes are classified as
undefined, where the majority of these classifications have a logit value of > 0.6.

12.6 Level of Template Agnosticism
In Section 2 it is stated that one of the main reasons for choosing to implement Lohani et al.’s [3]
architecture for this project was due to their model’s ability to generalize across templates, i.e., its high
level of template agnosticism. Recall from Section 7.4 that roughly 14% of the vendors in the test set
are not present in either the train or validation set, meaning that the invoices by these vendors have
templates that are assumed to remain unseen during training. It should be noted, however, that the
whole test dataset contains more than 4000 invoices, while the subset of invoices with unseen templates
consists of less than 400. We are aware that the small size of the subset may indeed bring results of less
statistical significance and that a larger number of invoices with unseen templates would give a better
approximation of the model performance.

Table 16 in Section 11 once again shows that the ChebNet model has the best performance with respect
to all three metrics on the unseen template subset. However, the overall performance on the unseen
template subset has decreased when compared to the whole dataset, as can be seen in Table 18 in the
same Section. While the model still performs fairly well on more commonly occurring classes, exhibiting
a relative decrease in F1 performance in the range 1.32 - 13.66 %, it becomes apparent that the model
experiences the heaviest losses in performance for predictions over the less frequent classes (i.e., ocrNo,
amountRndDiff, orderNo, referenceName and amountFreightPack) with a relative decrease of up to 100
%. The poor performance on these classes is not surprising, however, as the model already performs
poorly on these classes even when evaluating the model on the whole test set, as discussed in Section
12.4.

We can also see a trend where, when applying DropEdge to the model, the performance of the model

58

decreases as the effects of DropEdge increases. This is somewhat surprising as DropEdge should reduce
some of the overfitting of the model and we would have thought that this would result in a slightly better
performance on invoices with unseen templates. A similar reasoning for explaining the performance
drop on the whole dataset when applying DropEdge could be applied here as well, i.e., because of the
relatively small number of learnable parameters (roughly 49 000) and regularizing an already overly
simplified model could indeed impact the performance of the model negatively. Furthermore, the already
sparse connectivity in the input graph could lead to DropEdge dropping vital edges for node classification.
It is interesting however, that the GCN-4 with an added DropEdge probability of p = 0.10 shows a better
performance with regards to all metrics when compared to its DropEdge-less counterpart. It also shows
an increase in both F1macro and recallmacro when compared to GCN-2. To be able to more accurately
determine if DropEdge has a positive effect or not on invoices with unseen templates, it would be beneficial
to perform a study where the test set contained a larger fraction of invoices with unseen templates to be
able to draw clearer conclusions on the effects of DropEdge in this scenario.

59

13 Future Work
There are a number of changes and additions to the system that can be implemented in future work in
order to improve the models’ overall performances. As aforementioned, the amount of errors in the data
due to mistakes made by humans are considerable. Errors such as mislabeled text values are easy, albeit
time consuming, to mitigate, and if these errors are taken care of, better data would be fed into the
network which would most likely yield better results.

Another improvement would be to tune certain parameters. The hyperparameters, e.g., the learning rate
and the patience window, can be fine tuned to optimal values via the help of methods such as grid search
(i.e., performing a search through a subset of the hyperparameter space of a learning algorithm). We
can also add more/other features to each node. For instance, other booleans such as isFirstName, isCity,
isZipCode et cetera, may provide the network with a better understanding of each text value.

Furthermore, instead of comparing predicted labels to the true labels of a given node, a third improvement
could be to compare the predicted labels’ text value against the true labels’ either formatted value or
raw text value, which can prove to be a more fair performance evaluation. Recall from Section 7.1
that the true label’s value is a processed, parsed and possibly human-corrected text value (e.g., the
text value “10 450,00” is formatted as “10450.00”). Comparing the inherent text values of the classes
to the true, formatted, value can therefore provide a better and more fair understanding of the model
performances. This will require some post processing heuristics in order to match the predicted label’s
text value against the formatted value. This would change the evaluation to being based on whether
the correct information has been extracted instead of being based on whether the correct node has been
extracted or not. However, as shown in Section 7.5, even though a true label is set to e.g., amountNet
its actual text value can be something else entirely, e.g., an OCR number as in Figure 24 in Section 7.5.
Hence, this approach could come with its own fair share of problems.

To gain an even better understanding of the level of template agnosticism of the model, it would be
interesting to enforce a larger fraction of the vendors in the different dataset splits to be unique. As of
today, only 393 invoices in the test set have templates not present in the validation and train splits. To
increase this number and in turn get results with a greater level of statistical significance, especially for
the less frequent classes, one could use a stratified split over different vendors to control the distribution
of templates between the splits, instead of the random split used today.

Yet another alternative for possibly improving the overall performances would be to utilize batch
normalization. Batch normalization is a technique that can stabilize the learning process by standardizing
the inputs to a layer for each mini-batch. This can have the effect of accelerating the training by, in
some cases, halving the amount of needed epochs while simultaneously reducing the generalization error
[38].

Our architecture might just be too simple and not complex enough (which may be a reason for DropEdge
not improving the models’ performances) and having a more complex architecture, either by making the
network wider or deeper (or both), could yield more favorable results.

60

14 Summary & Conclusion
The purpose of this thesis is to evaluate and compare three deep learning models, using two different
architecture designs. Three different convolutional graph neural network models - ChebNet, GCN-2 and
GCN-4 - have been trained, evaluated and compared on the same task: extracting information from
invoices. Two of these three, ChebNet and GCN-4, have also been extended with the overfitting and
over-smoothing battling technique DropEdge and re-trained with different dropping probabilities. The
raw data for this task has been sourced with the help of an OCR engine and consists of text present in the
invoices as well as corresponding bounding box positions for each value. The data has been processed,
cleaned and turned into graph representations for each invoice, in order to be fed into a convolutional
graph neural network.

The models have all been trained on a set of 74 492 invoices and tested on 4140 invoices. The results
show that the best performing model when looking at the evaluation metrics F1macro, precisionmacro and
recallmacro is the ChebNet model with a F1macro of 0.7119, a precisionmacro of 0.8259 and a recallmacro of
0.6255. The ChebNet model yields promising results even on invoices with unseen templates, especially
on the most frequently occurring classes. Furthermore, GCN-4 proves to yield better performance than
its shallower and less complex counterpart, GCN-2, albeit only with a small margin.

Analysis of the data shows underlying, inherent errors in the data which might have a significant impact
on the outcome of the models. Wrongly labeled nodes, spurious nodes created by OCR artifacts, and
missing node labels are a few of the errors found in the data which have a negative impact on the
performance of the model, especially for the more infrequent occurring classes.

The reason for the overfitting and over-smoothing battling technique DropEdge not improving
performance across the networks might have to do with the fact that the networks already are sparse
and relatively simple in nature. Utilizing DropEdge introduces even more sparsiness which leads to
underfitting the model, thus making the network unable to capture underlying trends in the data as
deftly as without applying DropEdge.

The conclusion we gather is that convolutional graph neural networks prove to be useful for information
extraction from visually rich documents, even for VRD:s with unseen templates. Moreover, due to the
sparse nature of invoice documents as well as the low complexity of the network architectures, applying
DropEdge for small networks operating on sparse graphs does not yield better performance in general,
with the exception of GCN-4 with p = 0.10.

Lastly, there are some improvements that can be made to further enhance, as well as give further
insights, to the different models’ performances. These include tuning hyperparameters, applying batch
normalization, adding new or other features, enforcing stratified sampling over vendors for better insight
into the level of template agnosticism, and, most importantly, fixing the present errors in the data.

61

References
[1] DJS Research, “Global productivity study.” https://info.unit4.com/rs/900-SZD-631/

images/Unit4_Market_Research_Infographic_HiRes_nobleed_v3.pdf, 2017.

[2] F. Krieger, P. Drews, B. Funk, and T. Wobbe, “Information extraction from invoices: A graph neural
network approach for datasets with high layout variety,” 03 2021.

[3] D. Lohani, B. Abdel, and Y. Belaïd, “An Invoice Reading System using a Graph Convolutional
Network,” in International Workshop on Robust Reading, (PERTH, Australia), Dec. 2018.

[4] R. B. Palm, F. Laws, and O. Winther, “Attend, copy, parse – end-to-end information extraction from
documents,” 2021.

[5] X. Liu, F. Gao, Q. Zhang, and H. Zhao, “Graph convolution for multimodal information extraction
from visually rich documents,” 2019.

[6] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and P. S. Yu, “A comprehensive survey on graph neural
networks,” IEEE Transactions on Neural Networks and Learning Systems, vol. 32, p. 4–24, Jan 2021.

[7] M. Defferrard, X. Bresson, and P. Vandergheynst, “Convolutional neural networks on graphs with
fast localized spectral filtering,” 2017.

[8] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional networks,” 2017.

[9] D. Chen, Y. Lin, W. Li, P. Li, J. Zhou, and X. Sun, “Measuring and relieving the over-smoothing
problem for graph neural networks from the topological view,” 2019.

[10] Y. Rong, W. Huang, T. Xu, and J. Huang, “Dropedge: Towards deep graph convolutional networks
on node classification,” in International Conference on Learning Representations, 2020.

[11] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning, pp. 5, 82–92, 151–153, 168–169, 204–212,
277–282, 330–332, 335–337. Adaptive Computation and Machine Learning series, MIT Press, 2016.

[12] A. Engelbrecht, Computational Intelligence: An Introduction, pp. 17–18. Wiley, 2007.

[13] A. Lindholm, N. Wahlström, F. Lindsten, and T. B. Schön, Machine Learning - A First Course for
Engineers and Scientists, pp. 40–43, 51–53, 60, 62–68, 75–78, 93, 98–100,113–114, 117–118, 120–122,
124–129. 2021.

[14] F. Scarselli, M. Gori, A. Tsoi, M. Hagenbuchner, and G. Monfardini, “The graph neural network
model,” IEEE Transactions on Neural Networks, vol. 20, pp. 61–80, 2009.

[15] E. Williamson, Lists, Decisions and Graphs, p. 148. S. Gill Williamson, 2010.

[16] N. Biggs, Algebraic Graph Theory, pp. 7–11. Cambridge: Cambridge University Press, second ed.,
1993.

[17] F. R. K. Chung, Spectral Graph Theory, pp. 2–3. American Mathematical Society, 1997.

[18] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun, “Spectral networks and locally connected networks
on graphs,” 2014.

[19] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and P. Vandergheynst, “Signal processing on
graphs: Extending high-dimensional data analysis to networks and other irregular data domains,”
CoRR, vol. abs/1211.0053, 2012.

[20] D. K. Hammond, P. Vandergheynst, and R. Gribonval, “Wavelets on graphs via spectral graph
theory,” Applied and Computational Harmonic Analysis, vol. 30, no. 2, pp. 129–150, 2011.

[21] C. M. Bishop, Pattern Recognition and Machine Learning (Information Science and Statistics),
pp. 209–210. Berlin, Heidelberg: Springer-Verlag, 2006.

[22] R. Larson and B. H. Edwards, Calculus, p. 134. 2016.

[23] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” in ICLR
Workshop on Representation Learning on Graphs and Manifolds, 2019.

62

[24] Y. Yao, L. Rosasco, and A. Caponnetto, “On early stopping in gradient descent learning,” Constr.
Approx, pp. 289–315, 2007.

[25] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple
way to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15,
no. 56, pp. 1929–1958, 2014.

[26] C. Yang, R. Wang, S. Yao, S. Liu, and T. Abdelzaher, “Revisiting over-smoothing in deep gcns,”
2020.

[27] Y. Yang, “An evaluation of statistical approaches to text categorization,” Journal of Information
Retrieval, vol. 1, pp. 67–88, 1999.

[28] S. Ghannay, B. Favre, Y. Estève, and N. Camelin, “Word embedding evaluation and combination,”
in Proceedings of the Tenth International Conference on Language Resources and Evaluation
(LREC’16), (Portorož, Slovenia), pp. 300–305, European Language Resources Association (ELRA),
May 2016.

[29] P. Gage, “A new algorithm for data compression,” The C Users Journal archive, vol. 12, pp. 23–38,
1994.

[30] B. Heinzerling and M. Strube, “BPEmb: Tokenization-free pre-trained subword embeddings in 275
languages,” in Proceedings of the Eleventh International Conference on Language Resources and
Evaluation (LREC 2018), (Miyazaki, Japan), European Language Resources Association (ELRA),
May 2018.

[31] J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors for word representation,” in
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP),
(Doha, Qatar), pp. 1532–1543, Association for Computational Linguistics, Oct. 2014.

[32] T. pandas development team, “pandas-dev/pandas: Pandas,” Feb. 2020.

[33] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser,
J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett,
A. Haldane, J. F. del R’ıo, M. Wiebe, P. Peterson, P. G’erard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array programming with NumPy,”
Nature, vol. 585, pp. 357–362, Sept. 2020.

[34] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure, dynamics, and function
using networkx,” in Proceedings of the 7th Python in Science Conference (G. Varoquaux, T. Vaught,
and J. Millman, eds.), (Pasadena, CA USA), pp. 11 – 15, 2008.

[35] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein,
L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy,
B. Steiner, L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-performance
deep learning library,” in Advances in Neural Information Processing Systems 32 (H. Wallach,
H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett, eds.), pp. 8024–8035, Curran
Associates, Inc., 2019.

[36] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal of Machine
Learning Research, vol. 12, pp. 2825–2830, 2011.

[37] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, “TensorFlow: Large-scale machine
learning on heterogeneous systems,” 2015. Software available from tensorflow.org.

[38] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by reducing
internal covariate shift,” 2015.

63

Appendix A
Results for GCN-2

Table 20: The corresponding performance metrics for each entity for the GCN-2 model, evaluated on the
test set.

Entity F1 Precision Recall

amountCurrency 0.6064 0.7530 0.5076
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.5191 0.7017 0.4119
amountRndDiff 0.1083 0.4932 0.0608
amountTot 0.6998 0.7965 0.6241
amountVat 0.5860 0.7479 0.4817
dueDate 0.6969 0.7525 0.6489
invDate 0.7249 0.7545 0.6975
invNo 0.5940 0.7188 0.5062
ocrNo 0.5375 0.6500 0.4581
orderNo 0.0865 0.7273 0.0460
referenceName 0.0000 0.0000 0.0000
type 0.8295 0.8125 0.8472
undefined 0.9917 0.9881 0.9953

Macro average 0.5262 0.6354 0.4490
Validation loss 0.0530

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

1244130 828 727 541 809 819 655 748 419 331 36 6 0 0

2115 3643 19 41 0 0 0 0 18 1 0 0 0 0

2900 36 2127 99 0 0 0 0 1 1 0 0 0 0

1988 40 156 2032 0 0 0 0 1 0 1 0 0 0

1404 0 0 0 2828 126 0 0 0 0 0 0 0 0

1137 0 0 0 120 2938 13 4 0 0 0 0 0 0

1847 0 0 0 0 9 1971 14 0 53 0 0 0 0

596 0 0 0 0 1 2 3320 0 0 0 0 0 0

1267 27 0 3 1 0 0 0 1338 0 0 0 0 0

747 0 0 0 0 1 100 0 0 717 0 0 0 0

555 0 0 1 0 0 0 0 0 0 36 0 0 0

331 0 0 0 0 0 1 0 0 0 0 16 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0

28 0 2 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1259097 4574 3031 2717 3758 3894 2742 4086 1777 1103 73 22 0 0

Total Predicted

1286874

Total

Figure 40: Discrete confusion matrix for the GCN-2 model on the whole test set.

64

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.36 0.62 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.56 0.01 0.41 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.47 0.01 0.04 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.32 0.00 0.00 0.00 0.65 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.27 0.00 0.00 0.00 0.03 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.47 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.85 0.00 0.00 0.00 0.00 0.00 0.00

0.48 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00

0.48 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.46 0.00 0.00 0.00 0.00

0.94 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.00

0.95 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.93 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 41: Normalized confusion matrix for the GCN-2 model on the whole test set.

Table 21: The corresponding per-class performance metrics for each entity for the GCN-2 model,
calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountCurrency 0.5477 0.7355 0.4363
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.4245 0.6653 0.3117
amountRndDiff 0.0400 0.2500 0.0217
amountTot 0.6402 0.8307 0.5207
amountVat 0.6044 0.8165 0.4798
dueDate 0.6287 0.6943 0.5745
invDate 0.7000 0.7316 0.6710
invNo 0.4825 0.6532 0.3826
ocrNo 0.5752 0.6771 0.5000
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.8226 0.8214 0.8237
undefined 0.9884 0.9825 0.9944

Macro average 0.4727 0.5613 0.4083

65

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

89339 54 62 24 93 80 60 63 31 30 3 1 0 0

281 314 3 4 0 0 0 0 1 0 0 0 0 0

343 6 163 11 0 0 0 0 0 0 0 0 0 0

176 1 16 178 0 0 0 0 0 0 0 0 0 0

169 0 0 0 243 11 0 0 0 0 0 0 0 0

111 0 0 0 14 259 1 1 0 0 0 0 0 0

228 0 0 0 0 4 145 1 0 1 0 0 0 0

62 0 0 0 0 0 2 299 0 0 0 0 0 0

111 3 0 1 0 0 0 0 89 0 0 0 0 0

51 0 0 0 0 0 14 0 0 65 0 0 0 0

45 0 0 0 0 0 0 0 0 0 1 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

90929 378 245 218 350 354 222 364 121 96 4 1 0 0

Total Predicted

93282

Total

Figure 42: Discrete confusion matrix for the GCN-2 model on the unseen templates subset.

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.47 0.52 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.66 0.01 0.31 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.47 0.00 0.04 0.48 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.40 0.00 0.00 0.00 0.57 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.00 0.00 0.00 0.04 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.60 0.00 0.00 0.00 0.00 0.01 0.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.17 0.00 0.00 0.00 0.00 0.00 0.01 0.82 0.00 0.00 0.00 0.00 0.00 0.00

0.54 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00

0.39 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.50 0.00 0.00 0.00 0.00

0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 43: Normalized confusion matrix for the GCN-2 model on the unseen templates subset.

66

0

0.04

0.08

0.12

0 200 400 600 800 1k

(a) Train loss

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100 200 300 400 500 600 700 800 900

(b) Validation loss

Figure 44: The train (a) and validation (b) loss curves for the GCN-2 model. The y-axis shows the
calculated loss while the x-axis shows at which epoch the loss has been calculated.

Results for GCN-4

Table 22: The corresponding performance metrics for each entity for the GCN-4 model, evaluated on the
test set.

Entity F1 Precision Recall

amountCurrency 0.6212 0.7760 0.5178
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.5272 0.7104 0.4191
amountRndDiff 0.0297 0.6429 0.0152
amountTot 0.6978 0.7760 0.6339
amountVat 0.6164 0.7176 0.5403
dueDate 0.7035 0.7612 0.6540
invDate 0.7373 0.7983 0.6849
invNo 0.5754 0.7478 0.4676
ocrNo 0.5051 0.6555 0.4109
orderNo 0.0771 0.9333 0.0402
referenceName 0.0000 0.0000 0.0000
type 0.8163 0.8492 0.7859
undefined 0.9918 0.9880 0.9956

Macro average 0.5309 0.6683 0.4404
Validation loss 0.0550

67

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

1244538 926 729 684 792 666 528 532 358 290 5 1 0 0

2062 3700 14 31 2 0 0 0 28 0 0 0 0 0

2788 43 2164 165 0 0 0 0 3 1 0 0 0 0

1751 52 131 2279 0 0 0 0 5 0 0 0 0 0

1459 0 0 0 2850 49 0 0 0 0 0 0 0 0

1209 0 0 0 98 2885 18 2 0 0 0 0 0 0

2001 0 0 0 1 11 1821 13 0 47 0 0 0 0

837 0 0 0 0 0 2 3080 0 0 0 0 0 0

1212 43 4 10 1 1 0 0 1365 0 0 0 0 0

854 1 0 0 0 2 65 0 0 643 0 0 0 0

572 3 1 7 0 0 0 0 0 0 9 0 0 0

333 0 0 0 0 0 1 0 0 0 0 14 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0 3 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1259695 4768 3046 3176 3744 3614 2435 3627 1759 981 14 15 0 0

Total Predicted

1286874

Total

Figure 45: Discrete confusion matrix for the GCN-4 model on the whole test set.

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.35 0.63 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.54 0.01 0.42 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.42 0.01 0.03 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.33 0.00 0.00 0.00 0.65 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.00 0.00 0.00 0.02 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.51 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00

0.46 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00

0.55 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.41 0.00 0.00 0.00 0.00

0.97 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.90 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 46: Normalized confusion matrix for the GCN-4 model on the whole test set.

68

Table 23: The corresponding per-class performance metrics for each entity for the GCN-4 model,
calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountCurrency 0.5079 0.7207 0.3922
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.4846 0.7354 0.3614
amountRndDiff 0.0000 0.0000 0.0000
amountTot 0.6399 0.8096 0.5290
amountVat 0.6541 0.7849 0.5606
dueDate 0.6313 0.7190 0.5626
invDate 0.7079 0.7730 0.6528
invNo 0.4664 0.7059 0.3483
ocrNo 0.4929 0.6420 0.4000
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.7775 0.8176 0.7410
undefined 0.9884 0.9825 0.9944

Macro average 0.4602 0.5493 0.3959

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

89379 57 58 37 84 67 47 57 26 28 0 0 0 0

277 319 2 3 0 0 0 0 2 0 0 0 0 0

310 8 189 14 0 0 0 0 2 0 0 0 0 0

148 6 8 208 0 0 0 0 1 0 0 0 0 0

180 0 0 0 238 5 0 0 0 0 0 0 0 0

125 0 0 0 8 252 1 0 0 0 0 0 0 0

240 0 0 0 1 2 132 3 0 1 0 0 0 0

94 0 0 0 0 0 0 269 0 0 0 0 0 0

119 4 0 1 0 0 0 0 80 0 0 0 0 0

71 0 0 0 0 0 7 0 0 52 0 0 0 0

44 0 0 2 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

91001 394 257 265 331 326 187 329 111 81 0 0 0 0

Total Predicted

93282

Total

Figure 47: Discrete confusion matrix for the GCN-4 model on the unseen templates subset.

69

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.46 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.59 0.02 0.36 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.40 0.02 0.02 0.56 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.43 0.00 0.00 0.00 0.56 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.32 0.00 0.00 0.00 0.02 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.63 0.00 0.00 0.00 0.00 0.01 0.35 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00

0.58 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.39 0.00 0.00 0.00 0.00 0.00

0.55 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.40 0.00 0.00 0.00 0.00

0.96 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 48: Normalized confusion matrix for the GCN-4 model on the unseen templates subset.

0

0.04

0.08

0.12

0 200 400 600 800 1k

(a) Train loss

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100 200 300 400 500 600 700 800 900

(b) Validation loss

Figure 49: The train (a) and validation (b) loss curves for the GCN-4 model. The y-axis shows the
calculated loss while the x-axis shows at which epoch the loss has been calculated.

70

Results for GCN-4 + DropEdge, p = 0.10

Table 24: The corresponding performance metrics for each entity for the GCN-4 + DropEdge model with
p = 0.10, evaluated on the test set.

Entity F1 Precision Recall

amountCurrency 0.6283 0.7847 0.5239
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.5526 0.6922 0.4599
amountRndDiff 0.0264 0.6154 0.0135
amountTot 0.7218 0.7886 0.6654
amountVat 0.6312 0.7427 0.5488
dueDate 0.7146 0.7598 0.6744
invDate 0.7421 0.7871 0.7020
invNo 0.5791 0.7535 0.4702
ocrNo 0.5353 0.6556 0.4524
orderNo 0.1845 0.6981 0.1063
referenceName 0.0000 0.0000 0.0000
type 0.8284 0.8532 0.8051
undefined 0.9920 0.9886 0.9954

Macro average 0.5381 0.6514 0.4584
Validation loss 0.0510

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

1244333 930 864 630 831 721 510 529 369 311 5 16 0 0

1875 3884 26 44 0 0 0 0 8 0 0 0 0 0

2638 35 2375 114 0 0 0 0 0 2 0 0 0 0

1706 35 160 2315 0 0 0 0 2 0 0 0 0 0

1349 0 0 0 2939 70 0 0 0 0 0 0 0 0

1147 0 0 0 98 2957 6 4 0 0 0 0 0 0

1985 1 0 0 0 8 1831 10 0 59 0 0 0 0

763 0 0 0 0 0 1 3155 0 0 0 0 0 0

1208 37 4 6 0 0 0 0 1381 0 0 0 0 0

774 1 0 0 0 1 81 0 0 708 0 0 0 0

575 2 0 7 0 0 0 0 0 0 8 0 0 0

310 0 0 0 0 0 1 0 0 0 0 37 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0 2 1 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1258742 4925 3431 3117 3868 3757 2430 3698 1760 1080 13 53 0 0

Total Predicted

1286874

Total

Figure 50: Discrete confusion matrix for the GCN-4 + DropEdge model with p = 0.10 on the whole test
set.

71

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.32 0.67 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.51 0.01 0.46 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.40 0.01 0.04 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.31 0.00 0.00 0.00 0.67 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.27 0.00 0.00 0.00 0.02 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.51 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.02 0.00 0.00 0.00 0.00

0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00

0.46 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.52 0.00 0.00 0.00 0.00 0.00

0.49 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.45 0.00 0.00 0.00 0.00

0.97 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00

0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.90 0.00 0.07 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 51: Normalized confusion matrix for the GCN-4 + DropEdge model with p = 0.10 on the whole
test set.

Table 25: The corresponding per-class performance metrics for each entity for the GCN-4 + DropEdge
model with p = 0.10, calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountCurrency 0.5919 0.8120 0.4657
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.5111 0.7148 0.3977
amountRndDiff 0.0000 0.0000 0.0000
amountTot 0.6860 0.8218 0.5887
amountVat 0.6591 0.8226 0.5499
dueDate 0.6735 0.7415 0.6170
invDate 0.7270 0.7726 0.6865
invNo 0.5078 0.7449 0.3852
ocrNo 0.5236 0.5922 0.4692
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.8034 0.8256 0.7824
undefined 0.9890 0.9835 0.9946

Macro average 0.4824 0.5594 0.4241

72

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

89356 64 71 31 83 72 43 58 22 39 0 1 0 0

243 355 3 2 0 0 0 0 0 0 0 0 0 0

299 6 208 10 0 0 0 0 0 0 0 0 0 0

156 2 9 204 0 0 0 0 0 0 0 0 0 0

158 0 0 0 261 4 0 0 0 0 0 0 0 0

112 0 0 0 8 265 1 0 0 0 0 0 0 0

226 0 0 0 0 2 146 2 0 3 0 0 0 0

78 0 0 0 0 0 1 284 0 0 0 0 0 0

104 4 0 1 0 0 0 0 95 0 0 0 0 0

63 1 0 0 0 0 5 0 0 61 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

90855 432 291 248 352 343 196 344 117 103 0 1 0 0

Total Predicted

93282

Total

Figure 52: Discrete confusion matrix for the GCN-4 + DropEdge model with p = 0.10 on the unseen
templates subset.

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.40 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.57 0.01 0.40 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.42 0.01 0.02 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.37 0.00 0.00 0.00 0.62 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.00 0.00 0.00 0.02 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.60 0.00 0.00 0.00 0.00 0.01 0.39 0.01 0.00 0.01 0.00 0.00 0.00 0.00

0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.00 0.00 0.00 0.00

0.51 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.47 0.00 0.00 0.00 0.00 0.00

0.48 0.01 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.47 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 53: Normalized confusion matrix for the GCN-4 + DropEdge model with p = 0.10 on the unseen
templates subset.

73

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1k 1.2k

(a) Train loss

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1k 1.2k

(b) Validation loss

Figure 54: The train (a) and validation (b) loss curves for the GCN-4 + DropEdge model with p = 0.10.
The y-axis shows the calculated loss while the x-axis shows at which epoch the loss has been calculated.

Results for GCN-4 + DropEdge, p = 0.20

Table 26: The corresponding performance metrics for each entity for the GCN-4 + DropEdge model with
p = 0.20, evaluated on the test set.

Entity F1 Precision Recall

amountCurrency 0.5918 0.7739 0.4791
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.4312 0.6848 0.3147
amountRndDiff 0.0034 1.0000 0.0017
amountTot 0.6868 0.7749 0.6168
amountVat 0.5667 0.7137 0.4699
dueDate 0.6610 0.7448 0.5941
invDate 0.6887 0.7545 0.6334
invNo 0.5129 0.6954 0.4063
ocrNo 0.4130 0.6432 0.3042
orderNo 0.0114 1.0000 0.0057
referenceName 0.0000 0.0000 0.0000
type 0.8114 0.8087 0.8142
undefined 0.9911 0.9866 0.9956

Macro average 0.5069 0.6843 0.4025
Validation loss 0.0580

74

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

1244556 914 562 590 767 741 598 735 358 228 0 0 0 0

2170 3600 21 36 0 0 0 0 10 0 0 0 0 0

3339 44 1625 154 0 0 0 0 1 1 0 0 0 0

2024 50 162 1982 0 0 0 0 0 0 0 0 0 0

1647 0 0 0 2589 122 0 0 0 0 0 0 0 0

1417 0 0 0 120 2668 3 4 0 0 0 0 0 0

2256 1 0 0 0 4 1582 16 0 35 0 0 0 0

728 0 0 0 0 0 0 3191 0 0 0 0 0 0

1338 32 0 3 0 0 0 0 1263 0 0 0 0 0

998 0 0 0 0 1 90 0 0 476 0 0 0 0

574 5 0 12 0 0 0 0 0 0 1 0 0 0

344 0 0 0 0 0 2 0 0 0 0 2 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0

27 0 3 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1261470 4646 2373 2777 3476 3536 2275 3946 1632 740 1 2 0 0

Total Predicted

1286874

Total

Figure 55: Discrete confusion matrix for the GCN-4 + DropEdge model with p = 0.20 on the whole test
set.

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.37 0.62 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.65 0.01 0.31 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.48 0.01 0.04 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.38 0.00 0.00 0.00 0.59 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.34 0.00 0.00 0.00 0.03 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.58 0.00 0.00 0.00 0.00 0.00 0.41 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00

0.51 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.48 0.00 0.00 0.00 0.00 0.00

0.64 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.30 0.00 0.00 0.00 0.00

0.97 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.99 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.01 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.90 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 56: Normalized confusion matrix for the GCN-4 + DropEdge model with p = 0.20 on the whole
test set.

75

Table 27: The corresponding per-class performance metrics for each entity for the GCN-4 + DropEdge
model with p = 0.20, calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountCurrency 0.5392 0.7478 0.4216
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.3854 0.7287 0.2620
amountRndDiff 0.0000 0.0000 0.0000
amountTot 0.6633 0.8380 0.5489
amountVat 0.5824 0.7609 0.4717
dueDate 0.6222 0.7147 0.5508
invDate 0.7131 0.7711 0.6632
invNo 0.4727 0.7128 0.3536
ocrNo 0.4423 0.5897 0.3538
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.8136 0.8348 0.7934
undefined 0.9883 0.9816 0.9952

Macro average 0.4536 0.5486 0.3867

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

89408 46 41 39 84 66 46 54 26 30 0 0 0 0

267 331 2 1 0 0 0 0 2 0 0 0 0 0

360 10 137 15 0 0 0 0 1 0 0 0 0 0

183 5 8 175 0 0 0 0 0 0 0 0 0 0

181 0 0 0 233 9 0 0 0 0 0 0 0 0

121 0 0 0 9 256 0 0 0 0 0 0 0 0

239 0 0 0 0 1 134 3 0 2 0 0 0 0

75 0 0 0 0 0 0 288 0 0 0 0 0 0

115 3 0 0 0 0 0 0 86 0 0 0 0 0

76 0 0 0 0 0 8 0 0 46 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

91085 395 188 230 326 332 188 345 115 78 0 0 0 0

Total Predicted

93282

Total

Figure 57: Discrete confusion matrix for the GCN-4 + DropEdge model with p = 0.20 on the unseen
templates subset.

76

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.44 0.55 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.69 0.02 0.26 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.49 0.01 0.02 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.43 0.00 0.00 0.00 0.55 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.31 0.00 0.00 0.00 0.02 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.63 0.00 0.00 0.00 0.00 0.00 0.35 0.01 0.00 0.01 0.00 0.00 0.00 0.00

0.21 0.00 0.00 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.00 0.00 0.00 0.00

0.56 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.42 0.00 0.00 0.00 0.00 0.00

0.58 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.35 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 58: Normalized confusion matrix for the GCN-4 + DropEdge model with p = 0.20 on the unseen
templates subset.

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1k

(a) Train loss

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1k 1.2k

(b) Validation loss

Figure 59: The train (a) and validation (b) loss curves for the GCN-4 + DropEdge model with p = 0.20.
The y-axis shows the calculated loss while the x-axis shows at which epoch the loss has been calculated.

77

Results for GCN-4 + DropEdge, p = 0.50

Table 28: The corresponding performance metrics for each entity for the GCN-4 + DropEdge model with
p = 0.50, evaluated on the test set.

Entity F1 Precision Recall

amountCurrency 0.1415 0.6306 0.0797
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.1411 0.5691 0.0806
amountRndDiff 0.0000 0.0000 0.0000
amountTot 0.5474 0.7077 0.4463
amountVat 0.2856 0.6878 0.1802
dueDate 0.4835 0.6625 0.3807
invDate 0.6113 0.6379 0.5869
invNo 0.1166 0.5510 0.0652
ocrNo 0.0983 0.6748 0.0530
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.6441 0.8038 0.5374
undefined 0.9884 0.9800 0.9968

Macro average 0.3259 0.4932 0.2433
Validation loss 0.0750

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

1246073 871 255 252 676 1095 179 502 111 35 0 0 0 0

3209 2605 1 12 0 1 0 0 9 0 0 0 0 0

4646 32 416 69 0 0 0 0 0 1 0 0 0 0

3290 108 58 760 1 0 0 0 1 0 0 0 0 0

2417 1 0 0 1659 281 0 0 0 0 0 0 0 0

1571 0 0 0 166 2472 1 2 0 0 0 0 0 0

3600 0 0 0 1 25 254 10 0 4 0 0 0 0

1810 0 0 0 0 0 3 2106 0 0 0 0 0 0

2366 57 0 3 0 0 0 0 210 0 0 0 0 0

1455 0 0 0 1 2 24 0 0 83 0 0 0 0

574 7 0 9 0 0 0 0 2 0 0 0 0 0

348 0 0 0 0 0 0 0 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 1 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1271440 3681 731 1105 2504 3876 461 2620 333 123 0 0 0 0

Total Predicted

1286874

Total

Figure 60: Discrete confusion matrix for the GCN-4 + DropEdge model with p = 0.50 on the whole test
set.

78

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.55 0.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.90 0.01 0.08 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.78 0.03 0.01 0.18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.55 0.00 0.00 0.00 0.38 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.37 0.00 0.00 0.00 0.04 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.92 0.00 0.00 0.00 0.00 0.01 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.46 0.00 0.00 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.00 0.00 0.00

0.90 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00

0.93 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.05 0.00 0.00 0.00 0.00

0.97 0.01 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.97 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 61: Normalized confusion matrix for the GCN-4 + DropEdge model with p = 0.50 on the whole
test set.

Table 29: The corresponding per-class performance metrics for each entity for the GCN-4 + DropEdge
model with p = 0.50, calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountCurrency 0.1459 0.5862 0.0833
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.0977 0.5600 0.0535
amountRndDiff 0.0000 0.0000 0.0000
amountTot 0.5082 0.7420 0.3864
amountVat 0.2838 0.8000 0.1725
dueDate 0.4604 0.6481 0.3570
invDate 0.6630 0.7003 0.6295
invNo 0.1274 0.6000 0.0712
ocrNo 0.2252 0.8095 0.1308
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.6623 0.8299 0.5510
undefined 0.9852 0.9740 0.9966

Macro average 0.3328 0.5179 0.2451

79

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

89534 54 16 11 75 82 14 40 10 4 0 0 0 0

367 233 1 0 0 1 0 0 1 0 0 0 0 0

483 7 28 5 0 0 0 0 0 0 0 0 0 0

288 15 4 64 0 0 0 0 0 0 0 0 0 0

252 0 0 0 151 20 0 0 0 0 0 0 0 0

136 0 0 0 7 243 0 0 0 0 0 0 0 0

350 0 0 0 0 1 27 1 0 0 0 0 0 0

161 0 0 0 0 0 2 200 0 0 0 0 0 0

184 3 0 0 0 0 0 0 17 0 0 0 0 0

111 0 0 0 0 0 2 0 0 17 0 0 0 0

43 2 0 0 0 0 0 0 1 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

3 0 1 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

91922 314 50 80 233 347 45 241 29 21 0 0 0 0

Total Predicted

93282

Total

Figure 62: Discrete confusion matrix for the GCN-4 + DropEdge model with p = 0.50 on the unseen
templates subset.

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.61 0.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.92 0.01 0.05 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.78 0.04 0.01 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.60 0.00 0.00 0.00 0.36 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.35 0.00 0.00 0.00 0.02 0.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.92 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.44 0.00 0.00 0.00 0.00 0.00 0.01 0.55 0.00 0.00 0.00 0.00 0.00 0.00

0.90 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.00 0.00 0.00

0.85 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.13 0.00 0.00 0.00 0.00

0.93 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.75 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 63: Normalized confusion matrix for the GCN-4 + DropEdge model with p = 0.50 on the unseen
templates subset.

80

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1k 1.2k

(a) Train loss

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1k 1.2k

(b) Validation loss

Figure 64: The train (a) and validation (b) loss curves for the GCN-4 + DropEdge model with p = 0.50.
The y-axis shows the calculated loss while the x-axis shows at which epoch the loss has been calculated.

Results for GCN-4 + DropEdge, p = 0.80

Table 30: The corresponding performance metrics for each entity for the GCN-4 + DropEdge model with
p = 0.80, evaluated on the test set.

Entity F1 Precision Recall

amountCurrency 0.0000 0.0000 0.0000
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.0000 0.0000 0.0000
amountRndDiff 0.0000 0.0000 0.0000
amountTot 0.0492 0.6866 0.0255
amountVat 0.0000 0.0000 0.0000
dueDate 0.0000 0.0000 0.0000
invDate 0.0205 0.5366 0.0104
invNo 0.0000 0.0000 0.0000
ocrNo 0.0000 0.0000 0.0000
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.0196 0.6724 0.0100
undefined 0.9855 0.9716 0.9999

Macro average 0.1095 0.2048 0.0747
Validation loss 0.1020

81

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

1249948 45 0 0 3 32 0 18 3 0 0 0 0 0

5688 149 0 0 0 0 0 0 0 0 0 0 0 0

5162 2 0 0 0 0 0 0 0 0 0 0 0 0

4216 2 0 0 0 0 0 0 0 0 0 0 0 0

4354 0 0 0 0 4 0 0 0 0 0 0 0 0

4167 0 0 0 1 44 0 0 0 0 0 0 0 0

3892 0 0 0 0 1 0 1 0 0 0 0 0 0

3880 0 0 0 0 0 0 39 0 0 0 0 0 0

2618 18 0 0 0 0 0 0 0 0 0 0 0 0

1564 0 0 0 0 1 0 0 0 0 0 0 0 0

591 1 0 0 0 0 0 0 0 0 0 0 0 0

348 0 0 0 0 0 0 0 0 0 0 0 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1286510 217 0 0 4 82 0 58 3 0 0 0 0 0

Total Predicted

1286874

Total

Figure 65: Discrete confusion matrix for the GCN-4 + DropEdge model with p = 0.80 on the whole test
set.

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.97 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.99 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.99 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 66: Normalized confusion matrix for the GCN-4 + DropEdge model with p = 0.80 on the whole
test set.

82

Table 31: The corresponding per-class performance metrics for each entity for the GCN-4 + DropEdge
model with p = 0.80, calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountCurrency 0.0000 0.0000 0.0000
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.0000 0.0000 0.0000
amountRndDiff 0.0000 0.0000 0.0000
amountTot 0.0546 0.8500 0.0282
amountVat 0.0000 0.0000 0.0000
dueDate 0.0000 0.0000 0.0000
invDate 0.0051 0.2500 0.0026
invNo 0.0000 0.0000 0.0000
ocrNo 0.0000 0.0000 0.0000
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.0323 0.7500 0.0165
undefined 0.9813 0.9634 0.9999

Macro average 0.1090 0.2010 0.0748

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

89834 2 0 0 0 2 0 2 0 0 0 0 0 0

586 17 0 0 0 0 0 0 0 0 0 0 0 0

523 0 0 0 0 0 0 0 0 0 0 0 0 0

371 0 0 0 0 0 0 0 0 0 0 0 0 0

423 0 0 0 0 0 0 0 0 0 0 0 0 0

385 0 0 0 0 1 0 0 0 0 0 0 0 0

379 0 0 0 0 0 0 0 0 0 0 0 0 0

357 0 0 0 0 0 0 6 0 0 0 0 0 0

203 1 0 0 0 0 0 0 0 0 0 0 0 0

129 0 0 0 0 1 0 0 0 0 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

93250 20 0 0 0 4 0 8 0 0 0 0 0 0

Total Predicted

93282

Total

Figure 67: Discrete confusion matrix for the GCN-4 + DropEdge model with p = 0.80 on the unseen
templates subset.

83

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.97 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.99 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 68: Normalized confusion matrix for the GCN-4 + DropEdge model with p = 0.80 on the unseen
templates subset.

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1k 1.2k

(a) Train loss

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1k 1.2k

(b) Validation loss

Figure 69: The train (a) and validation (b) loss curves for the GCN-4 + DropEdge model with p = 0.80.
The y-axis shows the calculated loss while the x-axis shows at which epoch the loss has been calculated.

84

ChebNet + DropEdge, p = 0.10

Table 32: The corresponding performance metrics for each entity for the ChebNet + DropEdge model
with p = 0.10, evaluated on the test set.

Entity F1 Precision Recall

amountCurrency 0.7212 0.8090 0.6506
amountFreightPack 0.0645 1.0000 0.0333
amountNet 0.7361 0.8082 0.6758
amountRndDiff 0.2979 0.7000 0.1892
amountTot 0.8126 0.8167 0.8085
amountVat 0.8025 0.8309 0.7760
dueDate 0.8069 0.8172 0.7969
invDate 0.8592 0.8564 0.8621
invNo 0.8186 0.8438 0.7948
ocrNo 0.6920 0.7151 0.6703
orderNo 0.5236 0.8313 0.3822
referenceName 0.2462 0.6154 0.1538
type 0.9089 0.9028 0.9150
undefined 0.9946 0.9938 0.9957

Macro average 0.7088 0.8243 0.6217
Validation loss 0.0330

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

1244685 964 793 616 760 583 467 364 391 347 47 27 5 0

1086 4719 14 5 0 0 0 0 12 1 0 0 0 0

1584 52 3490 36 0 0 0 0 1 1 0 0 0 0

916 9 18 3273 0 0 0 0 1 0 1 0 0 0

868 0 0 0 3473 16 0 0 0 1 0 0 0 0

553 0 0 0 17 3631 8 3 0 0 0 0 0 0

707 0 0 0 0 8 3095 16 0 68 0 0 0 0

331 0 0 0 0 0 2 3586 0 0 0 0 0 0

877 34 3 7 0 0 0 0 1715 0 0 0 0 0

415 0 0 0 0 2 96 3 0 1049 0 0 0 0

478 0 0 2 0 0 0 0 0 0 112 0 0 0

215 0 0 0 0 0 0 0 0 0 0 133 0 0

44 0 0 0 0 0 0 0 0 0 0 0 8 0

29 0 0 0 0 0 0 0 0 0 0 0 0 1

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1252788 5778 4318 3939 4250 4240 3668 3972 2120 1467 160 160 13 1

Total Predicted

1286874

Total

Figure 70: Discrete confusion matrix for the ChebNet + DropEdge model with p = 0.10 on the whole
test set.

85

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.19 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.31 0.01 0.68 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.22 0.00 0.00 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.00 0.00 0.00 0.80 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.13 0.00 0.00 0.00 0.00 0.86 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.18 0.00 0.00 0.00 0.00 0.00 0.79 0.00 0.00 0.02 0.00 0.00 0.00 0.00

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00

0.33 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00

0.27 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.67 0.00 0.00 0.00 0.00

0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.19 0.00 0.00 0.00

0.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.00

0.85 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.15 0.00

0.97 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

Figure 71: Normalized confusion matrix for the ChebNet + DropEdge model with p = 0.10 on the whole
test set.

Table 33: The corresponding per-class performance metrics for each entity for the ChebNet + DropEdge
model with p = 0.10, calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountCurrency 0.6140 0.7609 0.5147
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.6896 0.8206 0.5946
amountRndDiff 0.0392 0.2000 0.0217
amountTot 0.7892 0.8352 0.7479
amountVat 0.7989 0.8485 0.7547
dueDate 0.7494 0.8065 0.6998
invDate 0.8258 0.8226 0.8290
invNo 0.7427 0.7853 0.7045
ocrNo 0.6332 0.6357 0.6308
orderNo 0.1818 0.5000 0.1111
referenceName 0.0000 0.0000 0.0000
type 0.8631 0.8754 0.8512
undefined 0.9919 0.9893 0.9944

Macro average 0.5789 0.6343 0.5325

86

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

89341 73 67 43 68 64 62 42 32 43 4 1 0 0

150 451 0 0 0 0 0 0 1 1 0 0 0 0

198 11 311 3 0 0 0 0 0 0 0 0 0 0

90 0 1 280 0 0 0 0 0 0 0 0 0 0

122 0 0 0 296 4 0 0 0 1 0 0 0 0

63 0 0 0 3 320 0 0 0 0 0 0 0 0

107 0 0 0 0 1 267 2 0 2 0 0 0 0

52 0 0 0 0 0 2 309 0 0 0 0 0 0

91 5 0 3 0 0 0 0 105 0 0 0 0 0

39 0 0 0 0 0 9 0 0 82 0 0 0 0

44 0 0 1 0 0 0 0 0 0 1 0 0 0

8 0 0 0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

90310 540 379 330 367 389 340 353 138 129 5 2 0 0

Total Predicted

93282

Total

Figure 72: Discrete confusion matrix for the ChebNet + DropEdge model with p = 0.10 on the unseen
templates subset.

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.25 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.38 0.02 0.59 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.24 0.00 0.00 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.00 0.00 0.00 0.70 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.16 0.00 0.00 0.00 0.01 0.83 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.28 0.00 0.00 0.00 0.00 0.00 0.70 0.01 0.00 0.01 0.00 0.00 0.00 0.00

0.14 0.00 0.00 0.00 0.00 0.00 0.01 0.85 0.00 0.00 0.00 0.00 0.00 0.00

0.45 0.02 0.00 0.01 0.00 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.00 0.00

0.30 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.63 0.00 0.00 0.00 0.00

0.96 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

0.89 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 73: Normalized confusion matrix for the ChebNet + DropEdge model with p = 0.10 on the unseen
templates subset.

87

0

0.04

0.08

0.12

0 200 400 600 800 1k

(a) Train loss

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100 200 300 400 500 600 700 800 900

(b) Validation loss

Figure 74: The train (a) and validation (b) loss curves for the ChebNet + DropEdge model with p = 0.10.
The y-axis shows the calculated loss while the x-axis shows at which epoch the loss has been calculated.

ChebNet + DropEdge, p = 0.20

Table 34: The corresponding performance metrics for each entity for the ChebNet + DropEdge model
with p = 0.20, evaluated on the test set.

Entity F1 Precision Recall

amountCurrency 0.7396 0.7918 0.6939
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.7261 0.7919 0.6704
amountRndDiff 0.2181 0.7238 0.1284
amountTot 0.8047 0.8234 0.7869
amountVat 0.7930 0.8397 0.7513
dueDate 0.7955 0.8168 0.7754
invDate 0.8396 0.8354 0.8438
invNo 0.8040 0.8337 0.7763
ocrNo 0.6896 0.7227 0.6594
orderNo 0.4307 0.8347 0.2902
referenceName 0.2000 0.7500 0.1154
type 0.9030 0.8886 0.9178
undefined 0.9944 0.9932 0.9956

Macro average 0.6710 0.7604 0.6003
Validation loss 0.0350

88

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

1244536 902 852 574 741 664 504 430 468 330 26 20 2 0

1210 4593 19 2 0 0 0 0 12 1 0 0 0 0

1645 40 3462 16 0 0 0 0 0 1 0 0 0 0

998 12 35 3169 0 0 0 0 1 0 3 0 0 0

950 0 0 0 3379 28 0 0 0 1 0 0 0 0

629 0 0 0 17 3554 8 3 0 1 0 0 0 0

787 0 0 0 0 7 3023 15 0 62 0 0 0 0

321 0 0 0 0 0 1 3597 0 0 0 0 0 0

764 31 4 8 0 0 0 0 1829 0 0 0 0 0

440 0 0 0 0 1 89 3 0 1032 0 0 0 0

511 0 0 5 0 0 0 0 0 0 76 0 0 0

246 0 0 0 0 0 1 0 0 0 0 101 0 0

46 0 0 0 0 0 0 0 0 0 0 0 6 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1253113 5578 4372 3774 4137 4254 3626 4048 2310 1428 105 121 8 0

Total Predicted

1286874

Total

Figure 75: Discrete confusion matrix for the ChebNet + DropEdge model with p = 0.20 on the whole
test set.

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.21 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.32 0.01 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.24 0.00 0.01 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.22 0.00 0.00 0.00 0.78 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.15 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.00 0.00 0.00 0.00 0.00 0.78 0.00 0.00 0.02 0.00 0.00 0.00 0.00

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.69 0.00 0.00 0.00 0.00 0.00

0.28 0.00 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.66 0.00 0.00 0.00 0.00

0.86 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00

0.71 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.29 0.00 0.00

0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 76: Normalized confusion matrix for the ChebNet + DropEdge model with p = 0.20 on the whole
test set.

89

Table 35: The corresponding per-class performance metrics for each entity for the ChebNet + DropEdge
model with p = 0.20, calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.6858 0.8099 0.5946
amountRndDiff 0.0408 0.3333 0.0217
amountTot 0.7635 0.8376 0.7015
amountVat 0.7959 0.8667 0.7358
dueDate 0.7165 0.7711 0.6690
invDate 0.7979 0.8031 0.7927
invNo 0.7374 0.8082 0.6781
ocrNo 0.6748 0.7155 0.6385
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.8719 0.8625 0.8815
undefined 0.9915 0.9887 0.9944

Macro average 0.5633 0.6123 0.5215

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

89340 71 68 38 80 71 54 49 34 32 2 1 0 0

176 423 2 0 0 0 0 0 1 1 0 0 0 0

203 8 311 1 0 0 0 0 0 0 0 0 0 0

95 0 3 273 0 0 0 0 0 0 0 0 0 0

137 0 0 0 283 3 0 0 0 0 0 0 0 0

76 0 0 0 4 306 0 0 0 0 0 0 0 0

119 0 0 0 0 1 257 2 0 0 0 0 0 0

42 0 0 0 0 0 1 320 0 0 0 0 0 0

77 3 0 3 0 0 0 0 121 0 0 0 0 0

41 0 0 0 0 0 6 0 0 83 0 0 0 0

45 0 0 0 0 0 0 0 0 0 1 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

90365 505 384 315 367 381 318 371 156 116 3 1 0 0

Total Predicted

93282

Total

Figure 77: Discrete confusion matrix for the ChebNet + DropEdge model with p = 0.20 on the unseen
templates subset.

90

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.29 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.39 0.02 0.59 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.26 0.00 0.01 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.32 0.00 0.00 0.00 0.67 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.20 0.00 0.00 0.00 0.01 0.79 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.31 0.00 0.00 0.00 0.00 0.00 0.68 0.01 0.00 0.00 0.00 0.00 0.00 0.00

0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0.00 0.00 0.00 0.00 0.00 0.00

0.38 0.01 0.00 0.01 0.00 0.00 0.00 0.00 0.59 0.00 0.00 0.00 0.00 0.00

0.32 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.64 0.00 0.00 0.00 0.00

0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 78: Normalized confusion matrix for the ChebNet + DropEdge model with p = 0.20 on the unseen
templates subset.

-0.04

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1k 1.2k 1.4k

(a) Train loss

-0.04

0

0.04

0.08

0.12

0 200 400 600 800 1k 1.2k 1.4k

(b) Validation loss

Figure 79: The train (a) and validation (b) loss curves for the ChebNet + DropEdge model with p = 0.20.
The y-axis shows the calculated loss while the x-axis shows at which epoch the loss has been calculated.

91

ChebNet + DropEdge, p = 0.50

Table 36: The corresponding performance metrics for each entity for the ChebNet + DropEdge model
with p = 0.50, evaluated on the test set.

Entity F1 Precision Recall

amountCurrency 0.6674 0.7850 0.5904
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.6443 0.7671 0.5554
amountRndDiff 0.0832 0.7879 0.0439
amountTot 0.7766 0.8129 0.7434
amountVat 0.7455 0.8066 0.6930
dueDate 0.7634 0.7909 0.7377
invDate 0.8004 0.7908 0.8103
invNo 0.7353 0.7759 0.6988
ocrNo 0.6275 0.6738 0.5872
orderNo 0.4381 0.7448 0.3103
referenceName 0.1818 0.4286 0.1154
type 0.8770 0.8403 0.9171
undefined 0.9932 0.9914 0.9950

Macro average 0.6253 0.7140 0.5563
Validation loss 0.0400

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

1243740 918 823 667 828 866 691 667 411 386 7 37 8 0

1471 4339 15 3 0 0 0 0 8 1 0 0 0 0

2231 35 2868 28 1 0 0 0 0 1 0 0 0 0

1247 15 33 2923 0 0 0 0 0 0 0 0 0 0

1113 0 0 0 3215 30 0 0 0 0 0 0 0 0

766 0 0 0 21 3413 7 5 0 0 0 0 0 0

1100 0 0 0 0 6 2721 10 0 57 0 0 0 0

323 0 0 0 0 0 2 3594 0 0 0 0 0 0

1072 31 0 3 0 0 0 0 1530 0 0 0 0 0

558 0 0 0 0 1 86 1 0 919 0 0 0 0

566 0 0 0 0 0 0 0 0 0 26 0 0 0

240 0 0 0 0 0 0 0 0 0 0 108 0 0

46 0 0 0 0 0 0 0 0 0 0 0 6 0

30 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1254503 5338 3739 3624 4065 4316 3507 4277 1949 1364 33 145 14 0

Total Predicted

1286874

Total

Figure 80: Discrete confusion matrix for the ChebNet + DropEdge model with p = 0.50 on the whole
test set.

92

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.25 0.74 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.43 0.01 0.56 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.30 0.00 0.01 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.26 0.00 0.00 0.00 0.74 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.18 0.00 0.00 0.00 0.00 0.81 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.28 0.00 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.08 0.00 0.00 0.00 0.00 0.00 0.00 0.92 0.00 0.00 0.00 0.00 0.00 0.00

0.41 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.58 0.00 0.00 0.00 0.00 0.00

0.36 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.59 0.00 0.00 0.00 0.00

0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00

0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.31 0.00 0.00

0.88 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.12 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 81: Normalized confusion matrix for the ChebNet + DropEdge model with p = 0.50 on the whole
test set.

Table 37: The corresponding per-class performance metrics for each entity for the ChebNet + DropEdge
model with p = 0.50, calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountCurrency 0.6048 0.7769 0.4951
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.6141 0.8185 0.4914
amountRndDiff 0.0000 0.0000 0.0000
amountTot 0.7373 0.8488 0.6517
amountVat 0.7615 0.8454 0.6927
dueDate 0.6978 0.7730 0.6359
invDate 0.7713 0.7923 0.7513
invNo 0.6777 0.7847 0.5963
ocrNo 0.5680 0.5917 0.5462
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.8765 0.8636 0.8898
undefined 0.9906 0.9866 0.9947

Macro average 0.5252 0.5773 0.4818

93

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

89361 60 52 42 73 74 50 50 28 47 0 3 0 0

205 393 3 0 0 0 0 0 1 1 0 0 0 0

254 7 257 5 0 0 0 0 0 0 0 0 0 0

111 1 2 257 0 0 0 0 0 0 0 0 0 0

152 0 0 0 269 2 0 0 0 0 0 0 0 0

90 0 0 0 6 290 0 0 0 0 0 0 0 0

151 0 0 0 0 0 226 1 0 1 0 0 0 0

38 0 0 0 0 0 2 323 0 0 0 0 0 0

101 2 0 0 0 0 0 0 101 0 0 0 0 0

49 0 0 0 0 0 10 0 0 71 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

90572 463 314 304 348 366 288 374 130 120 0 3 0 0

Total Predicted

93282

Total

Figure 82: Discrete confusion matrix for the ChebNet + DropEdge model with p = 0.50 on the unseen
templates subset.

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

0.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.34 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.49 0.01 0.49 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.30 0.00 0.01 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.36 0.00 0.00 0.00 0.64 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.23 0.00 0.00 0.00 0.02 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.40 0.00 0.00 0.00 0.00 0.00 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.10 0.00 0.00 0.00 0.00 0.00 0.01 0.89 0.00 0.00 0.00 0.00 0.00 0.00

0.50 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.00 0.00 0.00 0.00

0.38 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00 0.55 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 83: Normalized confusion matrix for the ChebNet + DropEdge model with p = 0.50 on the unseen
templates subset.

94

0

0.04

0.08

0.12

0 100 200 300 400 500 600 700 800 900

(a) Train loss

0

0.02

0.04

0.06

0.08

0.1

0.12

0 100 200 300 400 500 600 700 800 900

(b) Validation loss

Figure 84: The train (a) and validation (b) loss curves for the ChebNet + DropEdge model with p = 0.50.
The y-axis shows the calculated loss while the x-axis shows at which epoch the loss has been calculated.

ChebNet + DropEdge, p = 0.80

Table 38: The corresponding performance metrics for each entity for the ChebNet + DropEdge model
with p = 0.80, evaluated on the test set.

Entity F1 Precision Recall

amountCurrency 0.5603 0.7677 0.4412
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.4308 0.6595 0.3199
amountRndDiff 0.0361 0.6111 0.0186
amountTot 0.6781 0.7805 0.5995
amountVat 0.5730 0.7345 0.4697
dueDate 0.6050 0.7740 0.4966
invDate 0.6920 0.7314 0.6567
invNo 0.5763 0.6924 0.4936
ocrNo 0.3343 0.6561 0.2243
orderNo 0.0057 1.0000 0.0029
referenceName 0.0000 0.0000 0.0000
type 0.8312 0.7982 0.8671
undefined 0.9907 0.9862 0.9953

Macro average 0.4963 0.6565 0.3989
Validation loss 0.0550

95

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

1244124 868 759 624 615 934 763 845 347 163 7 0 0 0

2310 3499 11 12 0 0 0 0 5 0 0 0 0 0

3377 56 1652 78 0 0 0 0 0 1 0 0 0 0

2121 33 83 1981 0 0 0 0 0 0 0 0 0 0

2124 0 0 0 2164 70 0 0 0 0 0 0 0 0

1422 0 0 0 17 2766 4 3 0 0 0 0 0 0

1931 0 0 0 0 11 1922 10 0 20 0 0 0 0

519 0 0 0 0 0 2 3398 0 0 0 0 0 0

1446 27 0 0 0 0 0 0 1163 0 0 0 0 0

1127 0 0 0 0 1 85 1 0 351 0 0 0 0

580 0 0 1 0 0 0 0 0 0 11 0 0 0

347 0 0 0 0 0 0 0 0 0 0 1 0 0

52 0 0 0 0 0 0 0 0 0 0 0 0 0

29 0 0 1 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

1250049

5837

5164

4218

4358

4212

3894

3919

2636

1565

592

348

52

30

Total True

1261509 4483 2505 2697 2796 3782 2776 4257 1515 535 18 1 0 0

Total Predicted

1286874

Total

Figure 85: Discrete confusion matrix for the ChebNet + DropEdge model with p = 0.80 on the whole
test set.

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.40 0.60 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.65 0.01 0.32 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.50 0.01 0.02 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.49 0.00 0.00 0.00 0.50 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.34 0.00 0.00 0.00 0.00 0.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.50 0.00 0.00 0.00 0.00 0.00 0.49 0.00 0.00 0.01 0.00 0.00 0.00 0.00

0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.87 0.00 0.00 0.00 0.00 0.00 0.00

0.55 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.44 0.00 0.00 0.00 0.00 0.00

0.72 0.00 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.22 0.00 0.00 0.00 0.00

0.98 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.97 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 86: Normalized confusion matrix for the ChebNet + DropEdge model with p = 0.80 on the whole
test set.

96

Table 39: The corresponding per-class performance metrics for each entity for the ChebNet + DropEdge
model with p = 0.80, calculated on invoices with unseen templates.

Entity F1 Precision Recall

amountCurrency 0.4916 0.7849 0.3578
amountFreightPack 0.0000 0.0000 0.0000
amountNet 0.4206 0.7243 0.2964
amountRndDiff 0.0000 0.0000 0.0000
amountTot 0.6385 0.8128 0.5257
amountVat 0.6014 0.8294 0.4717
dueDate 0.5281 0.7373 0.4113
invDate 0.7106 0.7551 0.6710
invNo 0.4871 0.6961 0.3747
ocrNo 0.4103 0.6154 0.3077
orderNo 0.0000 0.0000 0.0000
referenceName 0.0000 0.0000 0.0000
type 0.8610 0.8518 0.8705
undefined 0.9882 0.9810 0.9954

Macro average 0.4496 0.5563 0.3773

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted Label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 L
ab

el

89426 52 48 30 58 77 50 54 20 24 1 0 0 0

284 317 2 0 0 0 0 0 0 0 0 0 0 0

353 9 155 6 0 0 0 0 0 0 0 0 0 0

178 9 9 175 0 0 0 0 0 0 0 0 0 0

243 0 0 0 174 6 0 0 0 0 0 0 0 0

122 0 0 0 4 259 1 0 0 0 0 0 0 0

234 0 0 0 0 1 142 1 0 1 0 0 0 0

45 0 0 0 0 0 2 316 0 0 0 0 0 0

128 3 0 0 0 0 0 0 73 0 0 0 0 0

81 0 0 0 0 0 9 0 0 40 0 0 0 0

46 0 0 0 0 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0 0 0 0 0 0 0

Confusion Matrix - Discrete

89840

603

523

371

423

386

379

363

204

130

46

9

1

4

Total True

91154 390 214 211 236 343 204 371 93 65 1 0 0 0

Total Predicted

93282

Total

Figure 87: Discrete confusion matrix for the ChebNet + DropEdge model with p = 0.80 on the unseen
templates subset.

97

un
de

fin
ed

am
ou

ntT
ot

am
ou

ntN
et

am
ou

ntV
at

du
eD

ate

inv
Date

inv
No

typ
e

am
ou

ntC
urr

en
cy

ocr
No

am
ou

ntR
nd

Diff

ord
erN

o

ref
ere

nce
Nam

e

am
ou

ntF
rei

gh
tPa

ck

Predicted label

undefined

amountTot

amountNet

amountVat

dueDate

invDate

invNo

type

amountCurrency

ocrNo

amountRndDiff

orderNo

referenceName

amountFreightPack

Tr
ue

 la
be

l

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.47 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.67 0.02 0.30 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.48 0.02 0.02 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.57 0.00 0.00 0.00 0.41 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.32 0.00 0.00 0.00 0.01 0.67 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.62 0.00 0.00 0.00 0.00 0.00 0.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00

0.12 0.00 0.00 0.00 0.00 0.00 0.01 0.87 0.00 0.00 0.00 0.00 0.00 0.00

0.63 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.36 0.00 0.00 0.00 0.00 0.00

0.62 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.31 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Confusion matrix - Normalized

0.0

0.2

0.4

0.6

0.8

1.0

Figure 88: Normalized confusion matrix for the ChebNet + DropEdge model with p = 0.80 on the unseen
templates subset.

0

0.04

0.08

0.12

0.16

0.2

0 200 400 600 800 1k 1.2k

(a) Train loss

0

0.04

0.08

0.12

0.16

0 200 400 600 800 1k 1.2k

(b) Validation loss

Figure 89: The train (a) and validation (b) loss curves for the ChebNet + DropEdge model with p = 0.80.
The y-axis shows the calculated loss while the x-axis shows at which epoch the loss has been calculated.

98

Appendix B
Logit analysis

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

20

40

60

80

100

120

De
ns

ity

True label - undefined
Predicted Label

undefined
dueDate
ocrNo
amountCurrency
amountVat
amountTot
invNo
type
amountNet
invDate
amountRndDiff
orderNo
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

2

4

6

8

De
ns

ity

True label - type
Predicted Label

type
undefined

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - invNo
Predicted Label

invNo
undefined
ocrNo
type
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

1

2

3

4

5

6

De
ns

ity

True label - invDate
Predicted Label

invDate
undefined
dueDate
type
invNo
ocrNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - dueDate
Predicted Label

dueDate
undefined
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountNet
Predicted Label

amountNet
undefined
amountTot
amountVat
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountVat
Predicted Label

amountVat
undefined
amountTot
amountNet
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

True label - amountRndDiff
Predicted Label

amountRndDiff
undefined
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - amountTot
Predicted Label

amountTot
undefined
amountNet
amountCurrency
ocrNo
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

True label - ocrNo
Predicted Label

ocrNo
undefined
invNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountCurrency
Predicted Label

amountCurrency
undefined
amountVat
amountNet
amountTot

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - orderNo
Predicted Label

undefined
orderNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

True label - referenceName
Predicted Label

undefined
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountFreightPack
Predicted Label

undefined

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

20

40

60

80

100

120

De
ns

ity

True label - undefined
Predicted Label

undefined
dueDate
ocrNo
amountCurrency
amountVat
amountTot
invNo
type
amountNet
invDate
amountRndDiff
orderNo
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

2

4

6

8

De
ns

ity

True label - type
Predicted Label

type
undefined

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - invNo
Predicted Label

invNo
undefined
ocrNo
type
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0

1

2

3

4

5

6

De
ns

ity

True label - invDate
Predicted Label

invDate
undefined
dueDate
type
invNo
ocrNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - dueDate
Predicted Label

dueDate
undefined
invDate

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountNet
Predicted Label

amountNet
undefined
amountTot
amountVat
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountVat
Predicted Label

amountVat
undefined
amountTot
amountNet
amountCurrency

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

De
ns

ity

True label - amountRndDiff
Predicted Label

amountRndDiff
undefined
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

De
ns

ity

True label - amountTot
Predicted Label

amountTot
undefined
amountNet
amountCurrency
ocrNo
amountVat

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

De
ns

ity

True label - ocrNo
Predicted Label

ocrNo
undefined
invNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - amountCurrency
Predicted Label

amountCurrency
undefined
amountVat
amountNet
amountTot

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

De
ns

ity

True label - orderNo
Predicted Label

undefined
orderNo

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

De
ns

ity

True label - referenceName
Predicted Label

undefined
referenceName

0.0 0.2 0.4 0.6 0.8 1.0
Logit

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

De
ns

ity

True label - amountFreightPack
Predicted Label

undefined

Figure 90: Kernel Density Estimation plots of predicted label logits, given a true label using the ChebNet
model on the test set.

99

