
http://www.diva-portal.org

This is the published version of a paper presented at 2nd Workshop on Closing the Reality
Gap in Sim2Real Transfer for Robotics. RSS, 2020..

Citation for the original published paper:

Antonova, R., Rai, A., Kragic, D. (2020)
How to Sim2Real with Gaussian Processes: Prior Mean versus Kernels as Priors
In: 2nd Workshop on Closing the Reality Gap in Sim2Real Transfer for Robotics. RSS,
2020. https://sim2real.github.io

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-297261

How to Sim2Real with Gaussian Processes:
Prior Mean versus Kernels as Priors

Rika Antonova‡, Akshara Rai§, Danica Kragic‡
‡EECS, KTH, Stockholm, Sweden

§Facebook AI Research

Abstract—Gaussian Processes (GPs) have been widely used
in robotics as models, and more recently as key structures in
active learning algorithms, such as Bayesian optimization. GPs
consist of two main components: the mean function and the
kernel. Specifying a prior mean function has been a common
way to incorporate prior knowledge. When a prior mean function
could not be constructed manually, the next default has been to
incorporate prior (simulated) observations into a GP as ‘fake’
data. Then, this GP would be used to further learn from true
data on the target (real) domain. We argue that embedding prior
knowledge into GP kernels instead provides a more flexible way
to capture simulation-based information. We give examples of
recent works that demonstrate the wide applicability of such
kernel-centric treatment when using GPs as part of Bayesian
optimization. We also provide discussion that helps to build
intuition for why such ‘kernels as priors’ view is beneficial.

I. INTRODUCTION

Gaussian Processes (GPs) have been utilized in a variety
of robotics algorithms, e.g. motion planing [1], active percep-
tion [2], [3], manipulation [4], [5] and reinforcement learning
for control [6], [7], [8]. GPs have also been the top choice for
non-parametric models as part of active learning algorithms,
such as Bayesian optimization (BO). BO allows executing
a set of trials/trajectories and helps decide how to adjust
control parameters to improve performance with respect to
a given black-box cost. BO has been used for optimizing
controllers for a variety of hardware tasks, such as locomotion
for AIBO quadruped [9], snake [10], bipeds [11], as well as
manipulation tasks like grasping [12], [13], pushing [14]. BO
is particularly promising for Sim2Real, since it provides a data-
efficient way to learn from hardware trials. However, early
BO experiments on hardware mostly involved optimizing low-
dimensional controllers. To scale up, BO needs to incorporate
prior knowledge. We discuss two main paths for achieving this.
One way is to use hand-constructed prior mean functions or add
‘fake’ observations from simulation to shape the prior mean.
The other way is to build kernels from simulation that reshape
the search space of BO. In the following sections we first give
a brief explanation of the BO algorithm, then give examples
and analysis of approaches that incorporate simulation in the
mean- vs kernel-centric way. We conclude by giving intuition
as to why re-shaping the search space helps BO for Sim2Real.

II. BACKGROUND: GAUSSIAN PROCESSES IN BO
In BO, the problem of optimizing controllers is viewed as

finding controller parameters xxx∗ that optimize some objective
function f(xxx): f(xxx∗) = maxxxx f(xxx). At each optimization

trial BO optimizes an auxiliary ‘acquisition’ function to select
the next promising xxx to evaluate. f is commonly modeled
with a Gaussian process (GP): f(xxx) ∼ GP(m(xxx), k(xxxi,xxxj)).
Model prior/posterior of f with a GP gives a way to compute
posterior mean f̄(xxx) and variance/uncertainty V ar[f(xxx)] for
each candidate test point xxx. Hence, the acquisition function
can select points to balance high mean (exploitation) and high
uncertainty (exploration). The kernel function k(·, ·) encodes
similarity between inputs. If k(xxxi,xxxj) is large for inputs
xxxi,xxxj , then f(xxxi) strongly influences f(xxxj). One of the most
widely used kernel functions is the Squared Exponential (SE)
kernel: kSE(rrr ≡ |xxxi −xxxj |) = σ2

k exp
(
− 1

2rrr
T diag(`̀̀)−2rrr

)
,

where σ2
k, `̀̀ are signal variance and a vector of length

scales respectively. σ2
k, `̀̀ are called ‘hyperparameters’ and are

optimized automatically by maximizing marginal likelihood.
SE belongs to a broader class of Matérn kernels. These kernels
are stationary, since they depend on rrr≡xxxi−xxxj ∀xxxi,j , and not
on individual xxxi,xxxj . See [15] for details. Stationarity allows
avoiding commitment to domain-specific assumptions, which
helps generality, but can be detrimental do data efficiency.

III. INFORMING PRIOR MEAN VS KERNELS

Informing Prior Mean: A classic book on GPs for machine
learning [16] gives advice on shaping the prior mean function
(Section 2.7). It shows that incorporating a fixed deterministic
mean function is straightforward and also gives examples of
how to express a prior mean as a linear combination of a given
set of basis functions. This approach has been used as early as
1975, e.g. with polynomial features h(xxx) = (1,xxx,xxx2, ...) [17].

Modern approaches seek more flexibility. One direction is to
initialize GPs with points from simulated trials directly. This
can be formulated as a multi-fidelity problem, with different
fidelities for simulated vs real points [18], [19]. The main
issue is that one needs to carefully weigh the contributions
from simulated vs real trials, since ‘fake’ data from inaccurate
simulations can overwhelm the effects of the real data. This can
be done if simulation fidelity is known, but is more challenging
otherwise. Another issue arises if simulation is cheap and the
number of simulated/fake points is too large to be handled by
exact GPs. Sparse GPs can be used in such cases ([20], [21]
implement several versions), however this may cause loss in
precision due to approximate inference. In [22, Section 5.3] we
illustrate the effects of simulation fidelity on such ‘cost prior’
formed by adding 35K simulated points to a Sparse GP. We
use a high-fidelity simulator of a bipedal robot as a surrogate

for reality, and show results of BO with ‘cost priors’ from
3 levels of fidelity. For high and medium simulator fidelity
we observe significant gains over BO with zero-mean prior.
However, for low fidelity the result is worse than baseline BO.
Informing Kernels: [23] proposed to combine a simple ‘cost
prior’ with a kernel-centric method. They collected best
performing points in simulation and searched among these
points using a domain-specific behavior metric. Using the
metric was akin to defining a custom function to express
similarities between controllers i.e. a kernel function supported
on a limited set of points. They showed excellent results on
BO for hexapod recovering from hardware damage, but did not
investigate the effects of simulation fidelity. We adapted [23] to
bipedal locomotion and compared results when using 3 different
simulation fidelities [22, Section 5.3] (using simulator with the
highest fidelity as as surrogate for reality). For high and medium
fidelities we saw significant gains both with the original (‘cost
prior’+kernel) method and a kernel-only variant. With low
fidelity the gains were small. Moreover, the final performance
of the kernel-only variant was similar to the original method,
i.e. no further benefit from ‘cost prior’. The kernel in [23]
is constrained by the fact that only pre-selected points are
included. We showed that it was possible to significantly
strengthen a kernel-only approach. We achieved this by letting
all simulated points influence kernel similarities instead of
selecting an ‘elite’ subset, and by learning to dynamically adjust
to simulation-hardware mismatch. Our further experiments
in [22, Section 5.3] showed large improvements for BO even
with a kernel constructed using the low-fidelity simulator. The
benefits of kernel-based approaches can be extended even
further by decoupling the effects of simulation-based and
hardware-based kernels [24]. We investigated the effects of
degrading the kernels, until the quality was bad enough to cause
negative transfer. The approach in [24] was able to recover
and significantly outperform baseline BO even in this case.
These later experiments were conduced on hardware (ABB
Yumi robot performing task-oriented grasping).

To summarize: kernel-based approaches can offer robustness
against sim2real mismatch and can provide benefits even when
low-fidelity simulators are used to construct them. Kernel-
centric view is especially relevant for cross-task transfer and
lifelong learning, since kernel-based approaches can avoid
including any task- or cost-specific information. The learning
community expressed interest in the kernel-centric view, giving
significant attention to [25], [26]. However, originally these
approaches did not include a data-efficient way to handle large
sim2real mismatch. Our later work offered one solution with
increased modularity and data efficiency [27]. We hope to
motivate further interest in this area and inspire extensions to
kernel-centric sim2real approaches in various areas of robotics.

IV. PARAMETRIC VS INTRINSIC DIMENSIONALITY

We showed experimental evidence that kernel-centric ap-
proaches can be made data-efficient and robust to sim2real
mismatch. However, it might still seem puzzling as to why
shaping the search space with kernel-based methods can

yield ultra data-efficient search even with higher-dimensional
controllers (e.g. 30D+). Such puzzlement usually does not arise
when we think of ‘cost priors’, since it is easy to imagine that
we could sample a number of successful points in simulation.
When these points are added as ‘fake’ data they very clearly
re-shape the posterior mean, so we would likely sample close
to these successful points in the first few hardware trials. But in
the kernel-centric approaches it may seem that we are starting
from scratch. Here, we aim to give intuition regarding where
the benefits of kernel-centric approaches come from.

One easy case is a kernel that projects inputs xxx∈RN to a
low-dimensional space e.g. k(φ(xxx), φ(xxx′)), φ(xxx)∈Rn, n�N .
But what if we do not restrict dimensionality? To build intuition,
let’s look at a basic case without simulation or advanced
kernels. Consider objective/reward functions that come from
an arbitrary distribution (we maximize rewards instead of
minimizing costs). For BO in 30D we expect to need at least 60
trials to start seeing benefits. However, our reward landscapes
are not arbitrary: they come from real-world problems. While
robotics problems have a clear parametric dimensionality, their
intrinsic dimensionality is usually unknown and could be
much lower. The vision community has a similar concept:
‘a lower-dimensional manifold of real-world images’. Intrinsic
dimensionality of vision problems could be orders of magnitude
lower than parametric dimensionality expressed in pixel space.

Fig. 1: BO in 30D when
only 3 dimensions con-
tribute significantly.

Consider a 30D quadratic: f(xxx) =∑
i(xi+1)2, xxx∈R30, xi∈ [0, 1]. Even

on this simple f BO with SE kernel
gives only modest gains for the first
60 trials. Now consider fsm(·) such
that a large number of dimensions do
not contribute significantly: fsm(xxx)=∑3

i=1(xi+1)2 +0.001
∑30

i=4 xi. Fig. 1
shows that BO needs<15 trials.

Now consider a class of simulation-
informed kernels k(φsim(xxx), φsim(xxx′)), φsim(xxx)∈Rd, d≈N
or even d>N . With this, kernel similarities will be computed
in the space that only retains aspects relevant to simulation.
The aspects of behavior caused by controller xxx that do not
significantly influence φsim are discarded. We obtain a kind
of ‘compression’ that discards information not relevant to
simulation. Moreover, strong regularities might arise due to
simplifications imposed by simulation modeling limitations. To
view this as re-shaping of the search space: ‘discarding’ can
be seen as shrinking of parts of the search space. Instead of
using a small coefficient for irrelevant dimensions (e.g. as in
fsm), we take the perspective of shrinking irrelevant regions.

Overall, such cases can be viewed as potentially reducing
intrinsic dimensionality or complexity without reducing explicit
parametric dimensionality. This could also explain why we can
obtain significant benefits from highly imprecise simulations.
Imprecise simulations can point us in the right direction and
reduce the number of samples needed to discover potentially
good regions quickly. If care is taken to pay attention to
sim2real mismatch: we can exploit this initial boost, then
proceed further and rely more on the hardware data.

REFERENCES

[1] M. Mukadam, X. Yan, and B. Boots, “Gaussian process motion planning,”
in 2016 IEEE international conference on robotics and automation
(ICRA). IEEE, 2016, pp. 9–15.

[2] N. Jamali, C. Ciliberto, L. Rosasco, and L. Natale, “Active perception:
Building objects’ models using tactile exploration,” in 2016 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids). IEEE,
2016, pp. 179–185.

[3] S. Caccamo, Y. Bekiroglu, C. H. Ek, and D. Kragic, “Active exploration
using gaussian random fields and gaussian process implicit surfaces,”
in 2016 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS). IEEE, 2016, pp. 582–589.

[4] S. Dragiev, M. Toussaint, and M. Gienger, “Gaussian process implicit
surfaces for shape estimation and grasping,” in 2011 IEEE International
Conference on Robotics and Automation. IEEE, 2011, pp. 2845–2850.

[5] Z. Hu, P. Sun, and J. Pan, “Three-dimensional deformable object
manipulation using fast online gaussian process regression,” IEEE
Robotics and Automation Letters, vol. 3, no. 2, pp. 979–986, 2018.

[6] M. P. Deisenroth, D. Fox, and C. E. Rasmussen, “Gaussian processes
for data-efficient learning in robotics and control,” IEEE transactions on
pattern analysis and machine intelligence, vol. 37, no. 2, pp. 408–423,
2013.

[7] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in robotics:
A survey,” The International Journal of Robotics Research, vol. 32, no. 11,
pp. 1238–1274, 2013.

[8] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforce-
ment learning: Applications on robotics,” Journal of Intelligent & Robotic
Systems, vol. 86, no. 2, pp. 153–173, 2017.

[9] D. J. Lizotte, T. Wang, M. H. Bowling, and D. Schuurmans, “Automatic
Gait Optimization with Gaussian Process Regression.” in International
Joint Conference on Artificial Intelligence (IJCAI), vol. 7, 2007, pp.
944–949.

[10] M. Tesch, J. Schneider, and H. Choset, “Using response surfaces and
expected improvement to optimize snake robot gait parameters,” in
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 2011, pp. 1069–1074.

[11] R. Calandra, “Bayesian Modeling for Optimization and Control in
Robotics,” Ph.D. dissertation, Darmstadt University of Technology,
Germany, 2017.

[12] O. Kroemer, R. Detry, J. Piater, and J. Peters, “Combining active learning
and reactive control for robot grasping,” Robotics and Autonomous
systems, vol. 58, no. 9, pp. 1105–1116, 2010.

[13] L. Montesano and M. Lopes, “Active learning of visual descriptors for
grasping using non-parametric smoothed beta distributions,” Robotics
and Autonomous Systems, vol. 60, no. 3, pp. 452–462, 2012.

[14] I. Arnekvist, D. Kragic, and J. A. Stork, “VPE: Variational Policy
Embedding for Transfer Reinforcement Learning,” in 2019 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2019.

[15] B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. de Freitas,
“Taking the Human Out of the Loop: A Review of Bayesian Optimization,”
Proceedings of the IEEE, vol. 104, no. 1, pp. 148–175, 2016.

[16] C. E. Rasmussen and C. K. I. Williams, Gaussian Processes for Machine
Learning (Adaptive Computation and Machine Learning). The MIT
Press, 2005.

[17] B. Blight and L. Ott, “A bayesian approach to model inadequacy for
polynomial regression,” Biometrika, vol. 62, no. 1, pp. 79–88, 1975.

[18] K. Kandasamy, G. Dasarathy, J. Schneider, and B. Póczos, “Multi-
fidelity Bayesian Optimisation with Continuous Approximations,” in
International Conference on Machine Learning (ICML), 2017, pp. 1799–
1808.

[19] A. Marco, F. Berkenkamp, P. Hennig, A. P. Schoellig, A. Krause,
S. Schaal, and S. Trimpe, “Virtual vs. real: Trading off simulations
and physical experiments in reinforcement learning with Bayesian
optimization,” in IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 1557–1563.

[20] C. E. Rasmussen and H. Nickisch, “Gaussian processes for
machine learning (gpml) toolbox,” J. Mach. Learn. Res.,
vol. 11, pp. 3011–3015, Dec. 2010. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1756006.1953029

[21] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson,
“Gpytorch: Blackbox matrix-matrix gaussian process inference with gpu

acceleration,” in Advances in Neural Information Processing Systems,
2018.

[22] A. Rai, R. Antonova, F. Meier, and C. G. Atkeson, “Using simulation to
improve sample-efficiency of bayesian optimization for bipedal robots.”
Journal of Machine Learning Research (JMLR), vol. 20, no. 49, pp. 1–24,
2019.

[23] A. Cully, J. Clune, D. Tarapore, and J.-B. Mouret, “Robots that can
adapt like animals,” Nature, vol. 521, no. 7553, pp. 503–507, 2015.

[24] R. Antonova, M. Kokic, J. A. Stork, and D. Kragic, “Global Search
with Bernoulli Alternation Kernel for Task-oriented Grasping Informed
by Simulation,” in Conference on Robot Learning (CoRL), 2018,
vol. 87. PMLR, 2018 pp. 641–650. Experiments on recovery from
negative transfer are described in the last part of CoRL18 talk:
video.ethz.ch/events/2018/corl/cc7acaa8-0a91-40ce-a837-e75bbec4848b.html

[25] A. G. Wilson, Z. Hu, R. Salakhutdinov, and E. P. Xing, “Deep kernel
learning,” in Artificial Intelligence and Statistics, 2016, pp. 370–378.

[26] R. Calandra, J. Peters, C. E. Rasmussen, and M. P. Deisenroth, “Manifold
gaussian processes for regression,” in 2016 International Joint Conference
on Neural Networks (IJCNN). IEEE, 2016, pp. 3338–3345.

[27] R. Antonova, A. Rai, T. Li, and D. Kragic, “Bayesian optimization in
variational latent spaces with dynamic compression,” in Proceedings of
the Conference on Robot Learning (CoRL), 2019, vol. 100. PMLR,
2020, pp. 456–465.

