
J
H
E
P
0
4
(
2
0
2
1
)
0
8
8

Published for SISSA by Springer

Received: December 21, 2020
Revised: February 23, 2021

Accepted: March 9, 2021
Published: April 9, 2021

The perturbative CFT optical theorem and
high-energy string scattering in AdS at one loop

António Antunes,a Miguel S. Costa,a Tobias Hansen,b,c Aaditya Salgarkara and
Sourav Sarkara
aCentro de Física do Porto, Departamento de Física e Astronomia,
Faculdade de Ciências da Universidade do Porto,
Rua do Campo Alegre 687, 4169-007 Porto, Portugal

bMathematical Institute, University of Oxford, Andrew Wiles Building,
Radcliffe Observatory Quarter, Woodstock Road, Oxford, OX2 6GG, U.K.

cDepartment of Physics and Astronomy, Uppsala University,
Box 516, SE-751 20 Uppsala, Sweden
E-mail: alantunes@fc.up.pt, miguelc@fc.up.pt,
tobias.hansen@maths.ox.ac.uk, salgarkaraaditya@fc.up.pt,
ssarkar@fc.up.pt

Abstract: We derive an optical theorem for perturbative CFTs which computes the dou-
ble discontinuity of conformal correlators from the single discontinuities of lower order
correlators, in analogy with the optical theorem for flat space scattering amplitudes. The
theorem takes a purely multiplicative form in the CFT impact parameter representation
used to describe high-energy scattering in the dual AdS theory. We use this result to study
four-point correlation functions that are dominated in the Regge limit by the exchange of
the graviton Regge trajectory (Pomeron) in the dual theory. At one-loop the scattering is
dominated by double Pomeron exchange and receives contributions from tidal excitations
of the scattering states which are efficiently described by an AdS vertex function, in close
analogy with the known Regge limit result for one-loop string scattering in flat space at
finite string tension. We compare the flat space limit of the conformal correlator to the
flat space results and thus derive constraints on the one-loop vertex function for type IIB
strings in AdS and also on general spinning tree level type IIB amplitudes in AdS.

Keywords: Conformal Field Theory, Superstrings and Heterotic Strings, AdS-CFT Cor-
respondence, Space-Time Symmetries

ArXiv ePrint: 2012.01515

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP04(2021)088

mailto:alantunes@fc.up.pt
mailto:miguelc@fc.up.pt
mailto:tobias.hansen@maths.ox.ac.uk
mailto:salgarkaraaditya@fc.up.pt
mailto:ssarkar@fc.up.pt
https://arxiv.org/abs/2012.01515
https://doi.org/10.1007/JHEP04(2021)088


J
H
E
P
0
4
(
2
0
2
1
)
0
8
8

Contents

1 Introduction 2

2 Perturbative CFT optical theorem 6
2.1 Conformal blocks and partial waves 8
2.2 A derivation using harmonic analysis 11
2.3 Discontinuities in the large N expansion 14

3 Review of flat space amplitudes 17
3.1 Regge limit and Regge theory 17
3.2 Optical theorem and impact parameter space 19
3.3 Vertex function 20
3.4 Spinning three-point amplitudes 21

4 AdS impact parameter space 22
4.1 Regge limit 25
4.2 Impact parameter space 28
4.3 s-channel discontinuities in the Regge limit 31
4.4 Spinning particles and the vertex function 34

5 Constraints on CFT data 36
5.1 Comparison with the large ∆gap limit 36
5.2 Extracting t-channel CFT data 38

6 Flat space limit 41
6.1 Matching in impact parameter space 42
6.2 Constraining AdS quantities 45

7 Relating type IIB string theory in AdS and flat space 46
7.1 Massive tree amplitudes in flat space 48

7.1.1 Example 50
7.2 Constraints on spinning AdS amplitudes 51

8 Conclusions 53

A Additional examples of string amplitudes 55
A.1 Chiral amplitudes 55
A.2 Closed string amplitudes 56

B Tensor products for projectors 57

C Branching relations for projectors 59
C.1 All 5d closed string amplitudes 62

– 1 –



J
H
E
P
0
4
(
2
0
2
1
)
0
8
8

1 Introduction

In recent years it has been shown that powerful analytical results for scattering amplitudes
in quantum field theory, namely the Froissart-Gribov formula and dispersion relations,
have equally powerful CFT analogues in the Lorentzian inversion formula [1–5] and the
two-variable CFT dispersion relation [6, 7]. Dispersion relations reconstruct a scattering
amplitude from the discontinuity of the amplitude, while the Froissart-Gribov formula
extracts the partial wave coefficients from the discontinuity and makes their analyticity in
spin manifest. The utility of these methods as computational tools for scattering amplitudes
stems from the fact that the discontinuity of an amplitude (or that of its integrand) in
perturbation theory is determined in terms of lower-loop data by the optical theorem,
which in turn is a direct consequence of unitarity.

The CFT analogue of the discontinuities of amplitudes, which contain the dispersive
data and are of central importance in the aforementioned analytical results, is the dou-
ble discontinuity (dDisc) of CFT four-point functions. The Lorentzian inversion formula
computes OPE data (anomalous dimensions and OPE coefficients) from the dDisc of four-
point functions and establishes the analyticity in spin of OPE data. The CFT dispersion
relation, much like its QFT inspiration, directly reconstructs the full correlator from the
dDisc. There also exist simpler single-variable dispersion relations in terms of a single
discontinuity (Disc) of the correlation function that determine only the OPE coefficients
while the anomalous dimensions are required as inputs [8].

The unitarity based methods to compute amplitudes inspire the development of similar
unitarity methods for CFT, in particular, for the dDisc of four-point functions one gains a
loop or leg order for free. It was first noticed in large spin expansions [9–11] and later un-
derstood more generally in terms of the Lorentzian inversion formula that OPE data at one-
loop can be obtained from tree-level data [12, 13]. Generically, in perturbative CFT calcula-
tions the dDisc at a given order only depends on OPE data from lower order or lower-point
correlators. More recently, in the context of the AdS/CFT correspondence [14–16], these
unitarity methods for CFT have been related to cutting rules for computing the dDisc of
one-loop Witten diagrams from tree-level diagrams [17–19]. See also the earlier work of [20].

However, so far we have been missing a direct adaptation of the optical theorem to
CFT correlation functions. More concretely, we still lack the ability to express the dDisc of
a perturbative correlator, at a given order in the perturbative parameter, in terms of lower
order correlators, without the detour via the OPE data and without making explicit ref-
erence to AdS Witten diagrams. In this paper we provide a direct CFT derivation of such
unitarity relations. In particular we present an optical theorem for 1-loop four-point func-
tions wherein the dDisc is fixed in terms of single discontinuities of lower-loop correlators.

Let us briefly describe the logic that underlies the perturbative CFT optical theorem.
Throughout this paper we will consider the correlator

A(yi) = 〈O1(y1)O2(y2)O3(y3)O4(y4)〉 . (1.1)

We begin by expanding the dDisc of this correlator in t-channel conformal blocks. We may
do this by expanding in conformal partial waves and then projecting out the contribution
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of the exchange of the shadow operator Õ. The advantage of this procedure is that when
writing the partial waves as an integrated product of three-points functions, the dDisc
operation factorizes as a product of discontinuities,

dDisctA(yi) = −1
2
∑
O

∫
dydy′ Disc23〈O2O3O(y)〉〈Õ(y)Õ(y′)〉Disc14〈O1O4O(y′)〉

∣∣∣
O
,

(1.2)
where we use the shorthand notation ddy ≡ dy. Notice that the sum runs over all operators
in the theory. We give the precise definitions of the double and single discontinuities of the
correlator in section 2.

Next, let us assume that the correlator admits an expansion in a small parameter
around mean field theory (MFT). The example we have in mind is the 1/N2 expansion,

A = AMFT + 1
N2Atree + 1

N4A1-loop + · · · . (1.3)

We can then separate the sum over intermediate operators O into single-, double-, and
higher-trace operators, and rewrite the multi-trace contributions as higher-point functions
of single-trace operators. The contribution of single-trace operators to the t-channel ex-
pansion of dDisc in (1.2) is left unchanged and is still given in terms of discontinuities of
three-point functions

dDisctA(yi)
∣∣∣
s.t.

= −1
2
∑
O∈s.t.

∫
dydy′ Disc23〈O2O3O(y)〉〈Õ(y)Õ(y′)〉Disc14〈O1O4O(y′)〉

∣∣∣
O
.

(1.4)
Here no simplifications occur, however this contribution is already simple as loop corrections
come from corrections to the three-point functions of single-trace operators.

The essential simplification that we call the perturbative optical theorem arises for
the contributions of double-trace operators to (1.2), which are now expressed in terms of
discontinuities of four-point functions of single-trace operators

dDisctA1−loop(yi)
∣∣∣
d.t.

= −1
2
∑
O5,O6
∈ s.t.

∫
dy5dy6 Disc23A

3652
tree (yk) S5S6 Disc14A

1564
tree (yk)

∣∣∣
[O5O6]

.

(1.5)
Here and henceforth, we shall use the notation Aabcd(yk) = 〈OaObOcOd〉 to denote the
correlator of a set of operators other than 〈O1O2O3O4〉, which we denote simply as A(yi).
S5S6A

1564 is defined as the shadow transform of A1564 with respect to the operators O5
and O6. The operators O5 and O6 are summed over all single-trace operators for which the
tree-level correlators exist. These may have spin, in which case the indices are contracted
between the two tree-level correlators. Importantly, in this case dDisc is of order 1/N4 and
can be computed from the product of the discontinuities of tree-level four-point functions,
each of order 1/N2.

Together equations (1.4) and (1.5) compute the full double discontinuity at one-loop in
large N CFTs, since the contributions from higher traces will start at higher loops. Their
analogue is of course the optical theorem for amplitudes which computes discontinuities
of one-loop amplitudes in terms of two- and one-line cuts. Note that although we use the
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Figure 1. In the Regge limit the dDisc of the genus one closed string amplitude in AdS is given
by the perturbative CFT optical theorem in terms of genus zero amplitudes.

notation Atree and A1-loop, these refer to conformal correlation functions and in general are
not Witten diagrams. The notation with the terms “one-loop” and “tree” for the correlators
is used only because we always refer to a perturbative expansion. The result is valid for
CFTs with an expansion in a small parameter around MFT. The fact that it naturally
handles cuts of spinning particles gives an advantage over previous CFT unitarity methods
that work in terms of OPE data.

In the second part of the paper, we employ the perturbative CFT optical theorem in
the context of the AdS/CFT correspondence [14–16] to study high-energy scattering of
strings in AdS, which is governed by the CFT Regge limit [21, 22]. This is illustrated in
figure 1. High-energy string scattering in flat space has been of interest for a long time, both
in the fixed angle case [23, 24] and in the fixed momentum transfer Regge regime [25–27].
This second set of works studied the effects of the finite string size on the exponentiation
of the phase shift (eikonalization) in the Regge limit. In particular, it was shown that the
amplitudes indeed eikonalize provided we allow the phase shift to become an operator acting
on the string Hilbert space, whose matrix elements account for the possibility of the external
particles becoming intermediate excited string states, known as tidal excitations. The phase
shift δ(s, b), which depends on the Mandelstam s and on the impact parameter b, is obtained
by Fourier transforming the amplitude with respect to momentum transfer in the directions
transverse to the scattering plane. This gives a multiplicative optical theorem of the form

Im δ1-loop(s, b) = 1
2

∑
m5,ρ5,ε5
m6,ρ6,ε6

δ3652
tree (s,−b)∗ δ1564

tree (s, b) , (1.6)

where the sum is over all possible exchanged particles, characterized by their mass mi and
Little group representation ρi, and their polarization tensors εi. In [26] the one-loop ampli-
tude for four-graviton scattering in type IIB string theory was presented in a particularly
nice form, where the tidal excitations, which constitute a complicated sum in (1.6), are
packaged into a single explicit scalar function, the so-called vertex function.

To study the analogous process in AdS we derive an AdS/CFT analogue of (1.6) by
transforming the correlators in the CFT optical theorem (1.5) to AdS impact parameter
space [21, 22]. This gives the following multiplicative optical theorem for CFTs

− ReB1-loop(p, p̄)
∣∣∣
d.t.

= 1
2

∑
O5,O6∈s.t.

B3652
tree (−p̄,−p)∗ B1564

tree (p, p̄)
∣∣∣
[O5O6]

. (1.7)
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Here B denotes the impact parameter transform of A. These transforms depend on two
cross ratios S and L, respectively interpreted as the square of the energy and as the
impact parameter of the AdS scattering process, that can be expressed in terms of two
d-dimensional vectors p and p̄, as will be detailed below. When O5 or O6 have spin, B has
tensor structures that depend on p and p̄. Equations (1.7) and (1.6) are related through the
flat space limit for the impact parameter representation, where the radius of AdS is sent
to infinity and where B(p, p̄) is mapped to iδ(s, b). In this way, each of the infinite number
of tree-level correlators with spinning particles 5 and 6 that appear on the right hand side
of (1.7) is partially fixed by the corresponding flat space phase shift. Moreover, we will be
able to efficiently describe the summed result in terms of an AdS vertex function, which is
in turn constrained by the one-loop flat space vertex function, as constructed for example
for type IIB strings in [26].

For neutral scalar operators of dimension four in d = 4, the four-point function con-
sidered here is dual to the scattering of four dilatons in the bulk of AdS5. There are
two expansion parameters that we need to consider, the loop order parameter 1/N2, and
the t’Hooft coupling λ. The large λ limit is given by supergravity in AdS. In this limit
the tree-level four-point function is dominated by graviton exchange [21, 22] and beyond
tree-level one can safely resum the 1/N expansion by exponentiating the single graviton
exchange [28, 29]. For finite λ, string effects are included at tree-level via Pomeron ex-
change [30] and can be described using conformal Regge theory [31, 32]. A very non-trivial
question we address in this paper is the inclusion of string effects beyond tree-level.

To account for such effects in the Regge limit, the earlier works [31, 33, 34] conjectured
the exponentiation of the tree-level Pomeron phase shift, assuming stringy tidal excitations
to be negligible [35]. More recently [36], the loop effects of Pomeron exchange were system-
atically taken into account from the CFT side in the AdS high-energy limit S � λ � 1,
with the crucial use of CFT unitarity to obtain higher-loop amplitudes from the lower-loop
ones. This work also pointed out the suppression of tidal excitations in the supergravity
limit λ � 1, in agreement with [31, 33, 34]. In the present work, we take finite λ (or α′)
and include all tidal or stringy corrections. This is made possible because the perturbative
CFT optical theorem is able to describe cuts involving spinning operators, so we can take
into account intermediate massive string excitations that are exchanged in the t-channel.

This paper has the following structure. In section 2 we first motivate how (1.2) for
double-trace operators leads to the perturbative CFT optical theorem (1.5) using the tech-
nique of “conglomeration” [20], and then give a detailed derivation of (1.5) using tools from
harmonic analysis of the conformal group. Then in section 3 we review some important
ideas from flat space scattering, including impact parameter space, unitarity cuts and the
vertex function, both to guide the AdS version and to serve as a target for the flat space
limit. We subsequently move to the holographic case in section 4, where we transform the
correlator to CFT impact parameter space to write a multiplicative optical theorem for
phase shifts. We use conformal Regge theory in the case of arbitrary spinning operators
leading to the derivation of the AdS vertex function. In section 5 we recover the results for
the one-loop correlator in the large λ limit [36] and also derive new t-channel constraints
on CFT data at finite λ. We give the details of the flat space limit prescription in section 6,
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and consider the specific four-dilaton amplitude of type IIB strings in section 7, constrain-
ing several spinning tree-level correlators of the dual N = 4 SYM theory. We conclude
and briefly discuss some generalizations and applications of our work in section 8. Many
technical details and additional considerations about spinning amplitudes are relegated to
the appendices.

2 Perturbative CFT optical theorem

In this section we will give a derivation for the perturbative CFT optical theorem in (1.5)
using results from harmonic analysis of the conformal group following [37], but first let us
motivate (1.5) and (1.4) using the conglomeration of operators [20].

Unitarity in CFT can be formulated as completeness of the set of states corresponding
to local operators

1 =
∑
O
|O| . (2.1)

The right hand side is a sum over projectors associated to a primary operator O. Such
projectors can be formulated in terms of a conformally invariant pairing known as the
shadow integral [38, 39]

|O| =
∫
dy |O(y)〉〈S[O](y)|

∣∣∣
O
, (2.2)

which defines the projector to the conformal family with primary operator O, automati-
cally taking into account the contribution of descendants of O. Here we used the shadow
transform, defined by

S[O](y) = 1
NO

∫
dx 〈Õ(y)Õ†(x)〉O(x) , (2.3)

with an index contraction implied for spinning operators. We normalize the two-point
functions to unity and

NO = πd(∆− 1)|ρ|(d−∆− 1)|ρ|
Γ
(
∆− d

2
)
Γ
(
d
2 −∆

)
Γ(d−∆ + |ρ|)Γ(∆ + |ρ|) . (2.4)

Note that with this normalization of S[O], S2 is 1/NO times the identity map. |ρ| is the
number of indices of the operator O. The shadow transform is a map from the operator O
to Õ, where Õ is in the representation labeled by (∆̃ = d−∆, ρ). O† is an operator with
scaling dimension ∆ but transforming in the dual SO(d) representation ρ∗.

Inserting the projector (2.2) into a four-point function, one finds the contribution of
the t-channel conformal partial wave ΨO to the four-point function

〈O2O3|O|O1O4〉 ∝ Ψ3214
O . (2.5)

The conformal partial wave is a linear combination of the conformal blocks for exchange
of O and its shadow Õ. This explains the notation |O adopted in (2.2), since we need to
project onto the contribution from O and discard that of Õ.
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In the large N expansion of CFTs, there exists a complete basis of states spanned by
the multi-trace operators. In a one-loop four-point function of single trace operators, with
an expansion as shown in (1.3), only single- and double-trace operators appear

A(yi) =
∑

O∈Os.t.,Od.t.

〈O2O3|O|O1O4〉 . (2.6)

The right hand side involves three-point functions with single- and double-trace operators.
The double-trace operators are composite operators of the schematic form

[O5O6]n,` ∼ O5∂
2n∂µ1 . . . ∂µ`O6 , (2.7)

and have conformal dimensions

∆5 + ∆6 + 2n+ `+O
(
1/N2) . (2.8)

Below we often omit the n and ` labels when talking about a family of double-trace op-
erators. To obtain an optical theorem resembling the one in flat space, we would like to
project onto states created by products of single-trace operators |O5(y5)O6(y6)〉, rather
than the often infinite sum over n and ` of the double-trace operators |[O5O6]n,`(y)〉. This
can be achieved by relating these two states using the technique of conglomeration [20],
which amounts to using the formula

|[O5O6]n,`(y)〉 =
∫
dy5dy6 |O5(y5)O6(y6)〉〈S[O5](y5)S[O6](y6)[O5O6]n,`(y)〉 . (2.9)

This shows that we can define a projector onto double-trace operators in terms of a double
shadow integral

|O5O6| =
∫
dy5dy6 |O5(y5)O6(y6)〉〈S[O5](y5)S[O6](y6)|

∣∣∣
[O5O6]

, (2.10)

and thus (2.9) is just the projection

|O5O6|[O5O6]n,`〉 = |[O5O6]n,`〉 . (2.11)

The notation |[O5O6] means that we project onto the contributions from the double-traces
of the physical operators and discard contributions coming from the shadows, which, as
we will discuss below, can be generated when using this bi-local projector. Using this
projector, together with (2.2) for the single-traces, we can write the one-loop four-point
function in (2.6) as

A(yi) =
∑
O∈Os.t.

〈O2O3|O|O1O4〉+
∑

O5,O6∈Os.t.

〈O2O3|O5O6|O1O4〉 . (2.12)

The important step in (2.12) is that we replaced the sum over double-trace operators with
a double sum over the corresponding single-trace operators. This is already close to the
single- and double-line cuts that appear in the flat-space optical theorem at one-loop.

The main difference of (2.12) with the flat space optical theorem is that in flat space
one needs to sum only over cuts of internal lines, while if we express (2.12) in terms of
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Witten diagrams it would also contain contributions from external line cuts. Another
way to see this is that even the disconnected correlator for O1 = O2 and O4 = O3 has
contributions of the form

〈O2O3|O2O3|O2O3〉 , (2.13)

while internal double line cuts in a diagram can only appear starting at one-loop. This
problem is resolved by acting on (2.12) with the double discontinuity. This procedure
shifts the contributions of external double-traces to a higher order in 1

N . In the context
of (1.5) that we propose for conformal correlation functions (and not for Witten diagrams
specifically), taking the double discontinuity suppresses the contributions of the external
double-trace operators [O2O3] and [O1O4]. We will expand on this further in section 2.3.

We will make the definitions of the double discontinuity and the single discontinuities
more precise in section 2.3 but for now, let us mention that the double discontinuity can
be written in the following factorized form

dDisctA(yi) = −1
2 Disc14 Disc23A(yi) . (2.14)

The discontinuities on the right hand side are defined in terms of analytic continuations of
the distances y2

14 and y2
23 to the negative real axis,

Discjk A(yi) = A(yi)|y2
jk
→y2

jk
eπi −A(yi)|y2

jk
→y2

jk
e−πi . (2.15)

Note that each term in this discontinuity is defined through a Wick rotation of the two
coordinates yj and yk while we hold the other points Euclidean (or spacelike separated).

The result (1.4) for the exchange of single-trace operators comes from the first term
on the right hand side of (2.12) with the double discontinuity taken on both sides. This
are simply the single-trace terms in the conformal block expansion of the correlator. For
the more interesting result (1.5), let us use the explicit form of the projector (2.10) in the
second term on the right hand side of (2.12). This gives

∑
O5,O6∈Os.t.

∫
dy5dy6 〈O3O2|O5(y5)O6(y6)〉〈S[O5](y5)S[O6](y6)|O1O4〉|

∣∣∣
[O5O6]

. (2.16)

We can now take the double discontinuity on the left hand side using (2.14), while on
the right hand side we can take Disc23 on the first correlator and Disc14 on the second.
This gives the result (1.5). In the next subsections we provide a detailed proof of this
perturbative CFT optical theorem using results from harmonic analysis of the conformal
group [37].

2.1 Conformal blocks and partial waves

A conformal correlator can be expanded in s-channel conformal blocks as follows,

A(yi) = T 1234(yi)A1234(z, z̄) , A1234(z, z̄) =
∑
O
c12Oc34O g

1234
O (z, z̄) , (2.17)
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with the kinematical prefactor

T 1234(yi) = 1
y∆1+∆2

12 y∆3+∆4
34

(
y2

14
y2

24

)∆21
2
(
y2

14
y2

13

)∆34
2

, (2.18)

where ∆ij = ∆i −∆j and the cross-ratios are defined as

zz̄ = y2
12y

2
34

y2
13y

2
24
, (1− z)(1− z̄) = y2

14y
2
23

y2
13y

2
24
. (2.19)

The t-channel OPE is obtained by exchanging the labels 1 and 3, thus

A(yi) = T 3214(yi)A3214(z, z̄) , A3214(z, z̄) =
∑
O
c32Oc14O g

3214
O (1− z, 1− z̄) , (2.20)

Note that although Ajklm(yi) is invariant under permutations of the jklm labels, the or-
dering of the labels is meaningful in Ajklm(z, z̄) because of the pre-factor T jklm(yi). For
the conformal blocks we will also use the notation

G1234
O (yk) = T 1234(yk) g1234

O (z, z̄) , (2.21)

and similarly for t-channel blocks.
In order to perform harmonic analysis of the conformal group, one expands the four-

point function not in conformal blocks but in conformal partial waves of principal series
representations ∆ = d

2 + iν, ν ∈ R+ [40]. A conformal correlator can be expanded in terms
of s-channel conformal partial waves as follows

A(yi) =
∑
ρ

∫ d
2 +i∞

d
2

d∆
2πi I

1234
ab (∆, ρ)Ψ1234(ab)

O (yi) + discrete, (2.22)

where the operator O is labeled by the scaling dimension ∆ and a finite dimensional
irreducible representation ρ of SO(d), which we take to be bosonic. Iab is the spectral
function carrying the OPE data, and it can be extracted from the correlator using the
Euclidean inversion formula. We will assume that there are no discrete contributions. The
conformal partial waves are defined as a pairing of three-point structures

Ψ1234(ab)
O (yi) =

∫
dy 〈O1O2O(y)〉(a)〈O3O4Õ†(y)〉(b) , (2.23)

where a and b label different tensor structures in case the external operators have spin.
The conformal partial wave Ψ1234(ab)

O is related to the conformal block G1234(ab)
O and to the

block for the exchange of the shadow by

Ψ1234(ab)
O = S(O3O4[Õ†])bcG1234(ac)

O + S(O1O2[O])acG1234(cb)
Õ

. (2.24)

The matrices S(OiOj [Ok])ab are part of the action of the shadow transform (2.3) on three-
point functions,

〈O1O2S[O3]〉(a) = S(O1O2[O3])ab
NO3

〈O1O2Õ3〉(b) , (2.25)
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with NO3 as defined in (2.4). Acting with the shadow transform on an operator within a
three-point structure also rotates into a different basis of tensor structures. The shadow
coefficients/matrices S act as a map between the two bases. Note that the inverse of
S(O1O2[O3])ab is (1/NO3)S(O1O2[Õ3])ab.

The usual conformal block expansion (2.17) can be obtained from (2.22) by insert-
ing (2.24) and using the identity [2]

Iab(∆, ρ)S(O3O4[Õ†])bc = Ibc
(
∆̃, ρ

)
S(O1O2[Õ])ba , (2.26)

to replace the contribution of the shadow block with an extension of the integration region
to d

2 − i∞,

A(yi) =
∑
ρ

∫ d
2 +i∞

d
2−i∞

d∆
2πi C

1234
ab (∆, ρ)G1234(ab)

O (yi) , (2.27)

where
C1234
ab (∆, ρ) = I1234

ac (∆, ρ)S(O3O4[Õ†])cb . (2.28)

The conformal block decays for large real ∆ > 0, so the contour can be closed to the right
and the integral is the sum of residues

− Res
∆→∆∗

C1234
ab (∆, ρ∗) =

∑
I

cI12O∗,ac
I
34O∗,b . (2.29)

The sum over I in (2.29) is over degenerate operators with the quantum numbers (∆∗, ρ∗).
Degeneracies among multi-trace operators are natural in expansions around mean field
theory.1

In section 2.2 we will use the partial wave expansion of the shadow transformed four-
point function. To obtain it let us now apply the shadow transform in (2.3) to O1 and O2
on both sides of the partial wave expansion (2.22). Using (2.23) this gives

〈S[O1]S[O2]O3O4〉 =
∑
ρ

∫ d
2 +i∞

d
2

d∆
2πi I

1234
ab (∆, ρ)

×
∫
dy 〈S[O1]S[O2]O(y)〉(a)〈O3O4Õ†(y)〉(b) .

(2.30)

From (2.25), we thus obtain the partial wave expansion of the shadow transformed corre-
lator

〈S[O1]S[O2]O3O4〉 =
∑
ρ

∫ d
2 +i∞

d
2

d∆
2πi I

S[1]S[2]34
ab (∆, ρ) Ψ1̃̃234(ab)

O (yi) , (2.31)

where
I

S[1]S[2]34
ab = I1234

mb (∆, ρ) S(O1[O2]O)mn
NO2

S([O1]Õ2O)na
NO1

,

Ψ1̃̃234(ab)
O (yi) =

∫
dy 〈Õ1Õ2O(y)〉(a)〈O3O4Õ†(y)〉(b) .

(2.32)

There are examples of the S coefficients computed in [37] which tell us that they have the
appropriate zeroes to kill the double-trace poles in I1234 and replace them with the poles
for the double-traces of the shadows, as would be appropriate for IS[1]S[2]34.

1A simple example built with spin 1 operators are the families Oµ5�nO6,µ and Oµ5 ∂µ∂ν�n−1Oν6 , which
we wrote schematically. Both these sets of operators have quantum numbers ∆ = ∆5 + ∆6 + 2n and ρ = •.
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2.2 A derivation using harmonic analysis

We are ready to begin the derivation of the perturbative CFT optical theorem (1.5).
S5S6A

1564
tree (yi) in (1.5) is the coefficient of 1/N2 in the correlator 〈S[O6]†S[O5]†O1O4〉, and

A3652
tree (yi) is the coefficient of 1/N2 in 〈O3O2O5O6〉. Consider the following conformally

invariant pairing of two four-point functions∫
dy5dy6 〈O3O2O5O6〉〈S[O6]†S[O5]†O1O4〉 = (2.33)

=
∑
ρ,ρ′

∫ d
2 +i∞

d
2

d∆
2πi

d∆′

2πi I
3256
ab (∆, ρ) IS[6]S[5]14

cd (∆′, ρ′)
∫
dy5dy6 Ψ3256(ab)

O (yi) Ψ6̃̃514(cd)
O′ (yi) .

To compute the y5 and y6 integrals, we use (2.23) and the following result for the pairing
of the three-point structures by two legs, which is known as the bubble integral,

∫
dy1dy2〈O1O2O(y)〉(a)〈Õ†1Õ

†
2Õ
′†(y′)〉(b) =

(
〈O1O2O〉(a), 〈Õ†1Õ

†
2Õ†〉(b)

)
µ(∆, ρ) 1yy′δOO′ , (2.34)

with δOO′ ≡ 2πδ(s − s′)δρρ′ . Here µ(∆, ρ) is the Plancherel measure and the brackets
denote a conformally invariant pairing of 3-point functions, given by(

〈O1O2O3〉, 〈Õ†1Õ
†
2Õ
†
3〉
)

=
∫

dy1dy2dy3
volSO(d+ 1, 1) 〈O1O2O3〉〈Õ†1Õ

†
2Õ
†
3〉 . (2.35)

Using (2.23) and the bubble integral in (2.34) we find

∫
dy5dy6Ψ3256(ab)

O (yi)Ψ6̃̃514(cd)
O′ (yi) =

(
〈O5O6Õ†〉(b), 〈Õ†6Õ

†
5O〉(c)

)
µ(∆, ρ) δOO′Ψ

3214(ad)
O (yi) .

(2.36)
We can now plug (2.36) into (2.33) which gives∫

dy5dy6〈O3O2O5O6〉〈S[O6]†S[O5]†O1O4〉 = (2.37)

=
∑
ρ

∫ d
2 +i∞

d
2

d∆
2πi I

3256
ab (∆, ρ)IS[6]S[5]14

cd (∆, ρ)

(
〈O5O6Õ†〉(b), 〈Õ†6Õ

†
5O〉(c)

)
µ(∆, ρ) Ψ3214(ad)

O (yi) .

In the next steps we will show that the factor
(
〈O5O6Õ†〉, 〈Õ†6Õ

†
5O〉

)
in (2.37) , along

with the various shadow coefficients, will cancel the contribution of the OPE coefficients
cMFT

56[56] in the spectral functions I3256 and IS[6]S[5]14. In the simple case where at least one of
the spectral functions in (2.37) belong to scalar MFT correlators (which requires pairwise
equal operators) this is particularly easy to see, since [37]

IMFT(∆, ρ) = µ(∆, ρ)(
〈O1O2Õ†〉, 〈Õ†1Õ

†
2O〉

) S([Õ1]Õ2O)S(O1[Õ2]O) , (2.38)

so that the pairing of three-point functions can be canceled directly with one of the spectral
functions. The general case is less obvious because the cancellation happens on the level
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of OPE coefficients, not spectral functions. Here we use (2.31) in (2.37), and extend the
range of the principal series integral as in (2.27) by repeated use of (2.26). This gives∫

dy5dy6〈O3O2O5O6〉〈S[O6]†S[O5]†O1O4〉 =
∑
ρ

∫ d
2 +i∞

d
2−i∞

d∆
2πi I

3256
ab I6514

md S(O1O4[Õ†])dl

× S(O6[O5]O)mn
NO5

S([O6]Õ5O)nc
NO6

(
〈O5O6Õ†〉(b), 〈Õ†6Õ

†
5O〉(c)

)
µ(∆, ρ) G

3214(al)
O (yi) . (2.39)

Using (2.28) we can express (2.39) as∫
dy5dy6〈O3O2O5O6〉〈S[O6]†S[O5]†O1O4〉 =

∑
ρ

∫ d
2 +i∞

d
2−i∞

d∆
2πi C

3256
ak C6514

md Qkm65OG
3214(ad)
O ,

(2.40)
where,

Qkm65O = S(O6[O5]O)mn
NO5

S([O6]Õ5O)nc
NO6

(
〈O5O6Õ†〉(b), 〈Õ†6Õ

†
5O〉(c)

)
µ(∆, ρ)

S(O5O6[O†])kb
NO

.

(2.41)
Next we analyze the pole structure of the spectral function in (2.40) and close the integra-
tion contour to obtain the block expansion. First let us consider the simple poles at the
dimensions of the double-trace operators O[56] in each of C3256 and C6514. We will show
that Q65O(∆, ρ) has a zero at each of these dimensions, canceling one of the two poles
from C3256 and C6514. This ensures that in the MFT limit the spectral function in (2.40)
has a simple pole for each double-trace dimension. This can be seen explicitly in specific
examples for the S coefficients computed in [37], but in general let us note the following
identity, which can be derived by applying Euclidean inversion on the expansion (2.22) for
the MFT correlator [37]

I6565,MFT
ab (∆, ρ)

µ(∆, ρ)
(
〈O†6O

†
5Õ
†〉(b), 〈Õ6Õ5O〉(c)

)
= S([Õ6]Õ5O)cl S(O6[Õ5]O)la . (2.42)

Since all operators are bosonic, (2.42) can be expressed as

(−1)2J I
6556,MFT
ab (∆, ρ)

µ(∆, ρ)
S(O6[O5]O)mn

NO5

S([O6]Õ5O)nc
NO6

(
〈O5O6Õ†〉(b), 〈Õ†6Õ

†
5O〉

(c)
)

= δma .

(2.43)
Using (2.27) and (2.41), we rephrase (2.43) as

C6556,MFT
ak (∆, ρ) Qkm65O(∆, ρ) = δma . (2.44)

Let (∆, ρ) be (∆∗, ρ∗) for the double-trace operators OI[56]∗ , where I labels degenerate oper-
ators, as discussed previously. The coefficient C6556,MFT

ak has a simple pole at this location
and therefore (2.44) implies that Qkm65O(∆, ρ) is its inverse matrix and has a corresponding
zero at this value. Evaluated at ∆ = ∆∗, (2.44) takes the form(∑

I

cMFT,I
65[56]∗,ac

MFT,I
56[56]∗,k

)
qkm = δma , (2.45)
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where cMFT,I
65[56]∗,ac

MFT,I
56[56]∗,k is the contribution to the residue of C6556,MFT

ak corresponding to
OI[56]∗ and q

km is the coefficient of the first order zero of Qkm65O at ∆∗.
Note that the matrix of OPE coefficients cMFT,I

65[56]∗,ac
MFT,I
56[56]∗,k for a specific double-trace

operator is singular. In general, (2.44) and (2.45) imply that there are sufficiently many
degenerate double-trace families so the matrix obtained by summing over all of them is not
singular. In the case where there is a unique tensor structure, such as when O5 and O6 are
scalars, the 1× 1 matrix is of course non-degenerate, so degenerate double-trace operators
need not exist. Contracting both sides of (2.45) with cMFT,J

65[56]∗,m, we obtain

cMFT,I
56[56]∗,k q

km cMFT,J
65[56]∗,m = δIJ . (2.46)

Finally, using (2.29) and (2.46) we obtain the contribution of the (∆∗, ρ∗) pole to the
spectral integral in (2.40)

− Res
∆→∆∗

C3256
ak C6514

md Qkm65OG
3214(ad)
O

∣∣
ρ→ρ∗ =

∑
I

cI32[56]∗,ac
I
14[56]∗,dG

3214(ad)
[56]∗ (yi) . (2.47)

Given that this is precisely the contribution of the double-trace operators [O5O6] to the
correlator A3214(yi), this shows that the conformally invariant pairing we started with
in (2.33) computes precisely this contribution, to leading order in 1/N2 because we used
MFT expressions along the way. Thus(

1 +O
(
1/N2))A(yk)

∣∣
[O5O6] =

∫
dy5dy6A

3652(yk) S5S6A
1564(yk)

∣∣∣
[O5O6]

. (2.48)

In the context of the projector defined in the previous section in (2.10), this result can be
phrased as ∑

n,`,I

∣∣∣[O5O6]In,`
∣∣∣ = |O5O6|+O

(
1/N2) . (2.49)

The labels n, ` sum over the double-trace operators with different dimensions and spins,
while I sums over degenerate operators. The projection |[O5O6] appears on the two sides
of (2.48) for different reasons. On the left hand side it selects one family of double-trace
operators among all the operators appearing in the OPE, while on the right hand side
it serves to discard poles from shadow operators that we would pick up when we close
the contour in (2.40). For example, it is evident from the first equation in (2.32) that
Q(∆, ρ) has poles at the double-traces OI

[̃5̃6]
composed of Õ5 and Õ6 and we pick up these

contributions too. Let us take for simplicity the case with O5 and O6 scalars and O with
integer spin ` in 4 dimensions. The corresponding three-point function has only one tensor
structure and the expressions for S(O6[O5]O) and S([O6]Õ5O) are known [37]

S(O6[O5]O) ∼
Γ
(

∆6+∆̃5−∆+`
2

)
Γ
(

∆6+∆5−∆+`
2

) , S([O6]Õ5O) ∼
Γ
(

∆̃6+∆̃5−∆+`
2

)
Γ
(

∆6+∆̃5−∆+`
2

) . (2.50)

Therefore, the product has poles at the double-traces [Õ5Õ6] (and zeroes at the double-
traces [O5O6]). To determine such contributions in the same way as above, we should
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express I3256 in terms of I32S[5]S[6] by inverting (2.31) at (2.37) in the derivation above.
We can follow the remaining steps and use an identity for the MFT spectral function similar
to (2.42) (see [37]). This gives the contribution from the double-traces of shadows OI

[̃5̃6]
to

be of the same form as in (2.47). Note that in the case of scalar MFT correlators, these
poles in Q(∆, ρ) are canceled by zeros in the MFT spectral function (2.38) and hence we
do not have these contributions from the double-traces of shadows.

2.3 Discontinuities in the large N expansion

Equation (2.48) by itself is not very useful because of the O( 1
N2 ) error term. External double

traces contribute already at O(N0) so that their contributions at O( 1
N2 ) are already not

attainable by (2.48). This problem is solved by taking the double discontinuity of (2.48),
which will ensure that both sides of the equation are valid to O( 1

N4 ) for all double traces
[O5O6], both external and internal.

The discontinuities are given by commutators in Lorentzian signature, hence we ana-
lytically continue the correlators to Lorentzian signature and take the difference of different
operator orderings. Euclidean correlators can be continued to Wightman functions using
the following prescription [41]

〈O1(t1, ~x1)O2(t2, ~x2) · · · On(tn, ~xn)〉 = lim
εi→0
〈O1(t1 − iε1, ~x1) · · · On(tn − iεn, ~xn)〉 , (2.51)

with τi = iti where τ is Euclidean and t Lorentzian time. The limits are taken assuming
ε1 > ε2 > · · · > εn.

Let us assume without loss of generality that O4 is in the future of O1, that O2 is
in the future of O3 and that all other pairs of operators are spacelike from each other.
Now we apply the epsilon prescription to 〈O1O2O3O4〉 with ε4 > ε1 and ε2 > ε3. The
relative ordering of epsilons is unimportant for the spacelike separated pairs. This gives the
Lorentzian correlator A	 = 〈O2O3O4O1〉, which is equal to the time ordered correlator for
the assumed kinematics. Similarly, we obtain A� = 〈O3O2O1O4〉 from the ordering ε4 < ε1,
ε2 < ε3. The Euclidean configurations AEuc correspond to the mixed orderings ε4 > ε1,
ε2 < ε3 and ε4 < ε1, ε2 > ε3. We can then relate the dDisct to these four configurations by

dDisctA(yi) = AEuc(yi)−
1
2
(
A	(yi) +A�(yi)

)
= −1

2〈[O2,O3] [O4,O1]〉 . (2.52)

Using (2.17) this gives the conventional definition of the double discontinuity [1]

dDisctA(yi) = T 1234(yi)
[

cos
(
π(a+ b)

)
A1234(z, z̄)

− 1
2
(
eiπ(a+b)A1234(z, z̄	) + e−iπ(a+b)A1234(z, z̄�)

) ]
,

(2.53)

where a = ∆21/2 and b = ∆34/2. z̄	 and z̄� denote that z̄ is analytically continued by a
full circle counter-clockwise and clockwise around z̄ = 1, respectively.2

2The relation between (2.52) and (2.53) can be obtained by assigning the phases y2
ij → y2

ije
±iπ to the

timelike distances y14 and y23.
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The gluing of correlators on the right hand side in (2.48), with the shadow integrals
now written explicitly, is a sum of terms of the form

1
NO5NO6

∫
dy5 dy6 dy7 dy8 〈O2O3O6O5〉 〈Õ5Õ†7〉 〈Õ6Õ†8〉 〈O7O8O1O4〉 . (2.54)

Note that O5 = O7 and O6 = O8 but we have used the different labels to denote the inser-
tion points. We can apply the same ε-prescriptions on (2.54) while we hold y5, y6, y7, y8
to be Euclidean. Taking the same combinations as in (2.52) we arrive at

1
NO5NO6

∫
dy5 dy6 dy7 dy8 〈[O2,O3]O6O5〉 〈Õ5Õ†7〉 〈Õ6Õ†8〉 〈O7O8 [O4,O1]〉 . (2.55)

The commutators in (2.55) give discontinuities in the correlator as defined in (2.15).
We will now show that taking the dDisc of (2.33) ensures that the external double-

traces [O1O4] and [O2O3] which usually appear at O(N0) are suppressed in 1/N so that
they appear at the same order as other double trace operators. To this end, let us briefly
discuss the 1/N expansion of correlators and associated CFT data. The leading contri-
bution is AMFT, which is simply the disconnected correlator if the external operators are
pairwise equal and is absent otherwise. Because of this, the only operators that appear at
O(N0) are the ones appearing in the disconnected correlator,

cij[OiOj ]n,` = cMFT
ij[OiOj ]n,` + 1

N2 c
(1)
ij[OiOj ]n,` + · · · ,

∆[OiOj ]n,` = ∆i + ∆j + 2n+ `+ 1
N2 γ[OiOj ]n,` + · · · .

(2.56)

Other double-trace operators can only appear at higher orders in the OPE, therefore

cij[OkOl]n,` = 1
N2 c

(1)
ij[OkOl]n,` + · · · , i, j 6= k, l . (2.57)

The analytic continuation of a t-channel conformal block to the Regge sheet is given by
the following simple expression

g3214
O

(
1− z, (1− z̄)eiβ

)
= eiβ

τO
2 g3214
O (1− z, 1− z̄) . (2.58)

As a result, the action of the single and double discontinuities on the t-channel block
expansion in (2.20) is given by

Disc14A
1ij4(yk) =

∑
O

2isin
(
π

2 (τO−∆1−∆4)
)
cijOc14OG

ij14
O (yk) ,

Disc23A
3ji2(yk) =

∑
O

2isin
(
π

2 (τO−∆2−∆3)
)
c32OcijOG

32ij
O (yk) , (2.59)

dDisctA(yk) =
∑
O

2sin
(
π

2 (τO−∆1−∆4)
)

sin
(
π

2 (τO−∆2−∆3)
)
c32Oc14OG

3214
O (yk) .

The sines in the expansions are responsible for suppressing the contribution of external
double-traces. Therefore, using (2.59), (2.56) and (2.57), the leading contribution to the
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discontinuity of a correlator is O(1/N2)

Disc14A(yi) = 1
N2 Disc14Atree(yi) +O(1/N4) = (2.60)

=
∑

O=[O1O4]
iπ
γO
N2 c

MFT
14O c32OG

3214
O +

∑
O6=[O1O4]

2i sin
(
π

2 (τO −∆1 −∆4)
)
c

(1)
14O
N2 c32OG

3214
O ,

and similarly the leading contribution to the double discontinuity is O(1/N4)

dDisctA(yi) = 1
N4 dDisctA1-loop(yi) +O(1/N6) . (2.61)

In particular, when acting with (2.14) on the left hand side of (2.33) we have

Disc23A
3652 =

∑
O=[O2O3]

iπ
γO
N2 c

MFT
32O c56OG

3256
O

+
∑

O6=[O2O3]
2i sin

(
π

2 (τO −∆2 −∆3)
)
c

(1)
32O
N2 c56OG

3256
O ,

Disc14A
1̃5̃64 =

∑
O=[O1O4]

iπ
γO
N2 c6̃̃5Oc

MFT
14O G6̃̃514

O

+
∑

O6=[O1O4]
2i sin

(
π

2 (τO −∆1 −∆4)
)
c6̃̃5O

c
(1)
14O
N2 G6̃̃514

O .

(2.62)

Since every term is these expansions already has an explicit factor of 1/N2, the only oper-
ators that can contribute at this order are the ones with c56O = O(N0) or c6̃̃5O = O(N0),
which are the double-traces O = [O5O6] and O = [Õ5Õ6]. Applying the discontinuities to
both sides of (2.48) leaves us with one of our main results, the perturbative optical theo-
rem for the contributions of double-trace operators to the 1-loop dDisc of the correlator,
as stated in the introduction

dDisctA1−loop(yi)
∣∣∣
d.t.

= −1
2
∑
O5,O6
∈ s.t.

∫
dy5dy6 Disc23A

3652
tree (yk) S5S6 Disc14A

1564
tree (yk)

∣∣∣
[O5O6]

.

(2.63)
The integrals in this formula are over Euclidean space. It would be very interesting to
derive a fully Lorentzian generalization of this formula. In [3] it was shown that there is a
Lorentzian version of the shadow integral which computes the conformal block without the
need to project out shadow operators. A Lorentzian version of (2.63) might have this fea-
ture as well. In section 4 we will propose a Lorentzian fomula that is valid in the Regge limit.

To obtain the full double discontinuity, this generally has to be supplemented by the
contributions of single trace operators, which already had the appropriate form in terms of
three-point functions of single trace operators from the start, as shown in (1.4). The two
types of contributions are analogous to double and single line cuts of scattering amplitudes
in the S-matrix optical theorem.
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3 Review of flat space amplitudes

In this section we review the Regge limit in D-dimensional flat space. Then we review
the optical theorem in impact parameter space and explain how the notion of a one-loop
vertex function arises. Not only does this serve as a hopefully more familiar introduction
before discussing the same concepts in AdS, but it also provides the results we need later
when we take the flat space limit of our AdS results and match them to known flat space
expressions. To mimic the 1/N expansion in the CFT, it will be convenient to define an
expansion in GN for the flat space scattering amplitude

A(s, t) = 2GN
π

Atree(s, t) +
(2GN

π

)2
A1-loop(s, t) + . . . , (3.1)

and we use an identical expansion for the phase shifts δ(s, b) defined below.

3.1 Regge limit and Regge theory

We start by introducing the impact parameter representation, following [42]. Let us con-
sider a tree-level scattering process with incoming momenta k1 and k3 that have large
momenta along different lightcone directions. For simplicity we assume for now that all
external particles are massless scalars. This process is dominated by t-channel exchange
diagrams of the type

k1

k2 k3

k4
q

(3.2)

and the amplitude can be expressed in terms of the Mandelstam variables

s = −(k1 + k3)2 , t = −(k1 − k2)2 . (3.3)

The amplitude now depends only on s and the momentum exchange q in the transverse
directions, because we are considering the following configuration of null momenta, written
in light-cone coordinates p = (pu, pv, p⊥)

kµ1 =
(
ku,

q2

4ku ,
q

2

)
, kµ3 =

(
q2

4kv , k
v,−q2

)
,

kµ2 =
(
ku,

q2

4ku ,−
q

2

)
, kµ4 =

(
q2

4kv , k
v,
q

2

)
.

(3.4)

Notice that we reserve the letter q for (D − 2)-dimensional vectors in the transverse mo-
mentum space. In the Regge limit ku ∼ kv →∞ the Mandelstams are given by

s ≈ kukv , t = −q2 . (3.5)
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The tensor structures in such amplitudes are fixed in terms of the on-shell three-point ampli-
tudes. For the case with two external scalars and an intermediate particle (labeled I) with
spin J there is only one possible tensor structure for the three-point amplitudes given by

Ã12I = aJ(εI · k1)J , Ã34I = aJ(εI · k3)J , (3.6)

where we encode traceless and transverse polarization tensors in terms of vectors satisfying
ε2i = εi · ki = 0. We can then write the four-point amplitude as

A(m,J)(s, t) =
∑
εI
Ã12IÃ34I

t−m2 ≈ a2
J s

J

t−m2 , (3.7)

where we used that for large s the sum over polarizations is dominated by εIuk
u
1 ∼ ku

and εIvkv3 ∼ kv. The sJ behavior is naively problematic at high energies, especially if the
spectrum contains particles of large spin, as is the case in string theory. However, bound-
edness of the amplitude in the Regge limit means there is a delicate balance between the
infinitely many contributions in the sum over spin.3 The precise framework to describe
this phenomenon is Regge theory [43], which was reviewed for flat space in [32, 44].

In the Regge limit one has to consider the particle with the maximum spin j(m2) for
each mass. The function j(m2) is called the leading Regge trajectory and the contributions
from these particles get resummed into an effective particle with continuous spin j(t). In
this work we will focus on the leading trajectory with vacuum quantum numbers known as
the Pomeron. At tree-level the amplitude for Pomeron exchange factorizes into three-point
amplitudes involving a Pomeron and the universal Pomeron propagator β(t). For example,
in the case of 4-dilaton scattering in type IIB strings we have

Atree(s, t) = 8
α′
A12Pβ(t)A34P

(
α′s

4

)j(t)
, (3.8)

with

β(t) = 2π2 Γ(−α′

4 t)
Γ(1 + α′

4 t)
e−

iπα′
4 t . (3.9)

AijP are the three-point amplitudes between the external scalars and the Pomeron with
the s-dependence factored out and normalized such that in the case of 4-dilaton scatter-
ing AijP = 1. This is convenient since later on, when we consider more general string
states with spin, the string three-point amplitudes defined this way will contain just tensor
structures. Diagrammatically we can write (3.8) as

1

2 3

4

P
=

1

2

P
×

3

4

P
× 2GN

π

8
α′
β(t)

(
α′s

4

)j(t)
. (3.10)

3The couplings aJ are dimensionful, [aJ ] = 3−D/2− J , and accommodate for higher derivatives in the
couplings to higher spin fields. In string theory the dimensionful scale is α′ and the dimensionless couplings
are all proportional to the string coupling gs.
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Amplitudes involving a Pomeron can be computed in string theory using the Pomeron
vertex operator [30, 45, 46]. The factorization into three-point functions and a Pomeron
propagator holds for general external string states [30, 47].

3.2 Optical theorem and impact parameter space

Next we consider the expression for the two-line cut of the one-loop amplitude in the impact
parameter representation, which will be given in terms of the tree-level pieces we have
discussed so far. The two-line cut receives a contribution from two-Pomeron exchange,
which is the leading term in the Regge limit of the one-loop amplitude. Consider the
following configuration of momenta

k1

k2 k3

k4
l1

l2

k5 k6 . (3.11)

The external momenta are again in the configuration (3.4) with Mandelstams (3.5). The
optical theorem tells us to cut the internal lines of the diagram, putting the corresponding
legs on-shell. This implies the following equation for the discontinuity of the amplitude

2 ImA1-loop(s, q) =
∑

m5,ρ5,ε5
m6,ρ6,ε6

∫
dl1

(2π)D 2πiδ(k2
5 +m2

5) 2πiδ(k2
6 +m2

6)A3652
tree (s, l2)∗A1564

tree (s, l1) ,

(3.12)
where one sums over all possible particles 5 and 6 with masses m, in Little group repre-
sentations ρ and with polarization tensors ε. The sums over polarizations can be evaluated
using completeness relations. In order to remove the delta functions we express k5 and
k6 in terms of l1 and the external momenta (3.4). Then we write the loop momentum
as lµ1 = (lu, lv, q1) and use the delta-functions to fix the forward components of the loop
momentum lu and lv to

lu = m2
6 + q2

1 + q · q1
kv

, lv = −m
2
5 + q2

1 − q · q1
ku

, (3.13)

leaving only the transverse integration over q1. We arrive at the equation

ImA1-loop(s, q) =
∑

m5,ρ5,ε5
m6,ρ6,ε6

∫
dq1dq2

(2π)D−2
δ(q − q1 − q2)

4s A3652
tree (s, q2)∗A1564

tree (s, q1) , (3.14)

where we introduced the transverse momentum q2 = q − q1 to write the expression in a
more symmetrical way. Using that the tree-level amplitudes are given in the Regge limit
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1

2 3

4

P1

P2
∼

∑
m5,ρ5,ε5
m6,ρ6,ε6

∫

1

5 6

4

P1
×

5

2 3

6

P2

Figure 2. Optical theorem in the Regge limit in terms of Feynman diagrams. The tree-level
correlators are dominated by s-channel Pomeron exchange. The ellipses on the l.h.s. indicate that
all string excitations are taken into account.

by Pomeron exchange, we can write (3.14) diagrammatically as in figure 2. The optical
theorem can be simplified even further by transforming it to impact parameter space. To
this end the amplitude is expressed in terms of the impact parameter b, which is a vector
in the transverse impact parameter space RD−2, using the following transformation

δ(s, b) = 1
2s

∫
dq

(2π)D−2 e
iq·bA(s, t) . (3.15)

We can use this definition together with (3.14) to compute

Im δ1-loop(s, b) = 1
2

∑
m5,ρ5,ε5
m6,ρ6,ε6

δ3652
tree (s,−b)∗ δ1564

tree (s, b) . (3.16)

We conclude that the impact parameter representation absorbs the remaining phase space
integrals in the optical theorem, resulting in a purely multiplicative formula. In fact, in the
case where the particles on the left and right of the diagram do not change (i.e. 1,5,2 and
3,6,4 are identical particles), such a statement holds to all-loops, leading to exponentiation
of the tree-level phase shift, which is the basis for the famous eikonal approximation.

3.3 Vertex function

Another notion we will use is that of the vertex function, which arises when combining
the optical theorem (3.14) with the factorization of the tree-level amplitudes (3.8) into
three-point amplitudes. By combining the two results one sees that the sums over particles
and their polarizations factorize into separate sums for particles 5 and 6, which we call the
vertex function V

V (q1, q2) ≡
∑

m5,ρ5,ε5

A15P1(q1)A25P2(q2) . (3.17)

Moreover, such a sum over representations and polarizations for each mass is given by
tree-level unitarity as the residue of the four-point amplitudes with two external Pomerons

Res
k2

5=−m2
5

A12P1P2(k5, q1, q2) =
∑
ρ5,ε5

A15P1(q1)A25P2(q2) . (3.18)
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In terms of diagrams this reads

V (q1, q2) ≡
∑

m5,ρ5,ε5

5

1 P1

×

5

2 P2

=
∑
m5

Res
k2

5=−m2
5

1

2 P2

P1

5 .

(3.19)
The vertex function combines all information about the exchanges of possibly spinning
particles 5 and 6 into a single scalar function. In terms of the vertex function the optical
theorem (3.14) in the Regge limit becomes

ImA1-loop(s, q) = − 1
4s

∫
dq1dq2

(2π)D−2 δ(q − q1 − q2) (3.20)

×
( 8
α′

)2
β(t1)∗β(t2)V (q1, q2)2

(
α′s

4

)j(t1)+j(t2)
,

where ti = −q2
i .

3.4 Spinning three-point amplitudes

Since it will be important later to compare tensor structures in AdS and flat space, we
will provide here some more details on the tensor structures of the three-point amplitudes
that appear in the unitarity cut of the four-point amplitude A12P1P2 discussed above. The
external momentum k1 and the exchanged momentum l1, with light-cone components given
in the Regge limit by (3.13), fix the momentum k5 = k1 − l1 as shown in the figure below.
We may, however, change frame such that k5 has no transverse momentum [47]. Such
change of frame does not alter the fact that the light-cone components of l1 are subleading.
The same applies to l2. Thus in the Regge limit we can safely write

k1

k2 l2

l1

k5

k5 ≈
(
ku5 ,

m2
5

ku5
, 0
)
,

l2 ≈ (0, 0, q2) , k2 = k5 − l2 ,
l1 ≈ (0, 0, q1) , k1 = k5 + l1 .

(3.21)

We focus on the three-point amplitude A15P1(q1), which is related to the four-point am-
plitude via the tree-level unitarity (3.18). In this relation we have a sum over a basis
of possible polarizations ε5, which can be evaluated using completeness relations, e.g. for
massive bosons [48]∑

ε5

ε
µ1...µ|ρ|
5 ε

ν1...ν|ρ|
5 = Pµ1

5γ1 . . . P
µρ
5γρπ

γ1...γ|ρ|;σ1...σ|ρ|
ρ P ν1

5σ1 . . . P
νρ
5σρ , (3.22)

where πρ is the projector to the irreducible SO(D − 1) representation ρ and

Pµ5ν = δµν −
kµ5 k5ν
k2

5
, (3.23)
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is a projector to the space transverse to k5. We will always absorb the projectors Pµ5ν
into the three-point amplitudes, i.e. consider amplitudes in a transverse configuration.
That means that the indices corresponding to particle 5 have to be constructed from the
projected momenta of the other particles, which are identical

Pµ5ν l1µ = Pµ5νk1µ . (3.24)

Apart from that, massive particles can also have a longitudinal polarization v which satisfies

v · k5 = 0 , v2 = 1 , (3.25)

and is given in this frame explicitly by

vµ = 1
m5

(
ku5 ,−

m2
5

ku5
, 0
)
. (3.26)

For the case that particle 1 is a scalar, we can then construct A15P in terms of the following
manifestly transverse tensor structures

A15P
m5,ρ5,µ =

|ρ5|∑
k=0

akm5,ρ5(t1) i|ρ5|
√
α′
|ρ5|−k

vµ1 . . . vµkq1µk+1 . . . q1µ|ρ5| , (3.27)

where we introduced boldface indices µ as multi-indices that stand for the |ρ| indices for
the irrep ρ. By abuse of language we defined the vector q1 ≡ (0, 0, q1), since q1 is transverse.
If particle 1 carries spin as well, as will be the case for the gravitons considered later on,
we construct the polarization tensors out of the vector ξ1 = (ξu1 , ξv1 , ε1). In this case, again
defining ε1 ≡ (0, 0, ε1), the amplitudes take the following form in the Regge limit

A15P
m5,ρ5,µ =

`1∑
n=0

|ρ5|−n∑
k=0

ak,nm5,ρ5(t1) i|ρ5|
√
α′
|ρ5|+`1−2n−k

(ε1 · q1)`1−n

× ε1µ1 . . . ε1µnvµn+1 . . . vµn+kq1µn+k+1 . . . q1µ|ρ5| ,

(3.28)

as can be checked by comparing with the explicit amplitudes computed in [47]. These
choices for the tensor structures are particularly convenient since q1 · v = ε1 · v = 0.
Contact with the momentum frame used in the previous subsections is made by identifying
the Lorentz invariant A12P1P2 .

4 AdS impact parameter space

Our goal in this section is to compute the Regge limit of a scalar four-point function in a
perturbative large N CFT at one-loop and finite ∆gap. At finite ∆gap we have to consider
the t-channel exchange of all possible double-trace operators and also single-trace operators,
which are respectively dual to tidal excitations of the external scattering states and to
long-string creation in the string theory context. It was shown in [36] that the exchange
of single-trace operators dual to the long-string creation effects is subleading in the Regge
limit. Therefore we only need to consider the exchange of double-trace operators. This is
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y1

y4

y3

y2

y+y−

Figure 3. Kinematics in the central Poincaré patch with coordinates yi. Time is on the vertical
axis, transverse directions are suppressed.

where the new perturbative CFT optical theorem (1.5) takes a central role, as it allows us
to compute the contributions of double-trace operators to the correlator starting from the
corresponding tree-level correlators. The contribution of the leading Regge trajectory to
the scalar tree-level correlators is known to leading order in the Regge limit [31, 32].

In this section we will therefore study (1.5) in the Regge limit, and this time we expand
the tree-level correlators in the s-channel. In the Regge limit the four external points are in
Lorentzian kinematics as depicted in figure 3. In this configuration all distances between
points are spacelike except for y2

14, y
2
23 < 0. The Regge limit is reached by sending the

four-points to infinity along the light cones

y+
1 → −∞, y+

2 → +∞, y−3 → −∞, y−4 → +∞ . (4.1)

The Regge limit can be directly applied to the left hand side of (1.5). The terms on
the Regge sheets A	(yi) and A�(yi) are dominant over the Euclidean terms in this limit.
However, we cannot apply the Regge limit directly to the right hand side of (1.5) as the
shadow integrals range over Euclidean configurations. Hence we will apply Wick rotations
on the points y5, y6, y7, y8 to obtain a gluing of the discontinuities of Lorentzian correlators.
We will assume that in the Regge limit the dominant contribution to the gluing formula
comes from the domain where the individual tree-level correlators are in the Regge limit
themselves. We do not provide a proof of this assumption but we justify it in section 4.1.

When each four-point function in (2.54) is in the Regge limit, the points y5, y6, y7, y8
are placed in the same positions as y1, y4, y2, y3 in figure 3, respectively. Thus y7 is in the
future of y8 and this pair is spacelike from y1, y4, y5, y6. Similarly, y6 is in the future of
y5 and is spacelike from y2, y3, y7, y8. For the chosen kinematics we put the pair y5, y6 in
anti-time order using the epsilon prescription of (2.51) with ε5 > ε6, and the pair y7, y8 in
time order using ε7 > ε8. Applying this on (2.63) gives the following formula for the Regge
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limit of the double discontinuity

dDisctA1-loop(yk)
∣∣∣
d.t.

= −1
2
∑
O5,O6

1
NO5NO6

∫
dy5dy6dy7dy8 〈[O2,O3]O5O6〉tree〈Õ5Õ†7〉

× 〈Õ6Õ†8〉〈O7O8[O4,O1]〉tree
∣∣∣
[O5O6]

. (4.2)

The relative ordering between ε5, ε7 and ε6, ε8 is irrelevant as the pairs, appearing in the
two-point functions on the right hand side of (4.2), are spacelike separated in the Regge
configuration.

In this section we define the discontinuities as the commutators inserted into the fully
Lorentzian correlators

Disc14A
1874(yi) := 〈O7O8[O4,O1]〉 = A1874	(yi)−A1874

Euc (yi) ,
Disc23A

3652(yi) := 〈[O2,O3]O5O6〉 = A3652
Euc (yi)−A3652�(yi) .

(4.3)

This definition differs slightly from the one in (2.15). Stripping out the appropriate pre-
factors from (4.3), one can check that these single discontinuities can be equivalently defined
as

Disc14A1234(z, z̄) := eiπ(a+b)A1234(z, z̄	)− e−iπ(a+b)A1234(z, z̄) ,
Disc23A1234(z, z̄) := A1234(z, z̄)−A1234(z, z̄�) ,

Disc23A3412(z, z̄) = e−iπ(a+b)A3412(z, z̄)− eiπ(a+b)A3412(z, z̄�) .
(4.4)

Starting from the discontinuity defined in (2.15), these expressions result from continuing
another half circle in z̄, so that the different terms are either evaluated at the original
position or continued a full circle around 1. The extra phase comes from the additional
Wick rotations. The final result matches the definition of the discontinuity in [44]. Note
that z̄ is continued an extra half circle in opposite directions for the first two lines in (4.4),
so that with these definitions the relation to the dDisc in (2.14) remains valid.4 Therefore
the optical theorem in the Regge limit can still be expressed as

dDisctA1−loop(yi)
∣∣∣
d.t.

= −1
2
∑
O5,O6
∈ s.t.

∫
dy5dy6 Disc23A

3652
tree (yk) S5S6 Disc14A

1564
tree (yk)

∣∣∣
[O5O6]

,

(4.5)
with the discontinuities as defined in the first and third lines of (4.4), and the gluing
and shadow integrals now ranging over Minkowski space. This formula is also depicted in
figure 4 in terms of Witten diagrams.

We should also note that for real z, z̄, Disc23 in the third line of (4.4) is related to
Disc14 in the first line by

Disc23A3412(z, z̄) = −
(
Disc14A1234(z, z̄)

)∗∣∣∣
(a,b)→(−b,−a)

, 0 < z, z̄ < 1 . (4.6)

Applied to the correlators appearing in (4.5) this reads

Disc23A3652(z, z̄) = −
(
Disc14A1564(z, z̄)

)∗∣∣∣
1564→3652

. (4.7)

4For t-channel blocks, the new definitions for the discontinuities in (4.4) are related to the old definition
in (2.15) by a phase, for example, for Disc14 the relative phase is eiπτO/2.
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dDisct

1

2

4

3

P2

P1

∼
∑
O5,O6

∫
Disc23

5

2

6

3

P2

Disc14

1

5̃

4

6̃

P1

Figure 4. Optical theorem in the Regge limit in terms of Witten diagrams. The tree-level cor-
relators are dominated by s-channel Pomeron exchange. The external operators are scalars, while
O5 and O6 are summed over all states that couple to the external scalars and the Pomeron (tidal
excitations). The ellipses on the l.h.s. indicate that all string excitations are taken into account.

To benefit from this useful relation, we will always strip out a pre-factor such that we obtain
the correlator A3652(z, z̄) on the right hand side of (4.5). Otherwise we would have to use
the second line of (4.4) for Disc23. Finally, in the Regge limit the analytically continued
correlators are dominant over the Euclidean contributions so that we have

Disc14A1234(z, z̄) ≈ eiπ(a+b)A1234(z, z̄	) ,

Disc23A3412(z, z̄) ≈ −eiπ(a+b)A3412(z, z̄�) ,

dDisctA1234(z, z̄) ≈ −1
2
(
eiπ(a+b)A1234(z, z̄	) + e−iπ(a+b)A1234(z, z̄�)

)
,

(4.8)

where the ≈ sign means we took the Regge limit. In order to account for the tidal excita-
tions, the operators O5 and O6 can carry spin, in which case their indices are contracted
with the ones of Õ5 and Õ6 and sums over tensor structures are implied. In subsec-
tions 4.1, 4.2 and 4.3 below we will mostly suppress the aspect of spinning correlators. We
will come back to this issue in subsection 4.4.

4.1 Regge limit

To obtain the impact parameter representation, we first change the coordinate system
placing each point on a different Poincaré patch as shown in figure 5. We use the following
coordinate transformations

xi =
(
x+
i , x

−
i , xi⊥

)
= − 1

y+
i

(
1, y2

i , yi⊥
)
, i = 1, 2, 5, 7 ,

xi =
(
x+
i , x

−
i , xi⊥

)
= − 1

y−i

(
1, y2

i , yi⊥
)
, i = 3, 4, 6, 8 .

(4.9)

In the new xi coordinates, the Regge limit corresponds to placing the four external points
at the origin of their respective Poincaré patches,

x1, x2, x3, x4 → 0 . (4.10)

However, x5 to x8 are integrated over in the CFT optical theorem.
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x1

x4

x3

x2

P4

P1 P3

P2

Figure 5. The external operators at coordinates xi in their respective Poincaré patches Pi. The
black dotted lines are identified when the Poincaré patches are wrapped on the boundary of the
global AdS cylinder.

Conformal correlators transform covariantly under the transformation (4.9). In the
scalar case we have

A (yi) = (−y+
1 )−∆1(y+

2 )−∆2(−y−3 )−∆3(y−4 )−∆4A (xi) . (4.11)

In the spinning case, one must additionally account for the Jacobian matrix ∂ya/∂xm.5

Next we use conformal symmetry to express the correlator in terms of two vectors.
This is similar to expressing the correlator in terms of two scalar cross-ratios, with the
difference that here we fix two, instead of the customary three, positions using translations
and special conformal transformations to express the correlator in terms of the remaining
two position vectors. We can follow [35] and use a translation to send x1 to 0 which,
due to the different transformations in (4.9) (see also [49]), will act as a special conformal
transformation on the Poincaré patches for x3 and x4,

x1 → 0 , x2 → x2 − x1 , x3,4 →
x3,4 − x2

3,4x1

1− 2x3,4 · x1 + x2
3,4x

2
1
. (4.12)

Next we implement a translation on the x3 and x4 patches (acting as special conformal
transformation on x1,2) to also map x4 to 0 in its own patch and find that the correlator
as a function of the Poincaré patch coordinates A(xi), as defined in (4.11), can always be
expressed as

A(x1, x2, x3, x4) ≈ A(0,−x, x̄/x̄2, 0) ≡ A(x, x̄) , (4.13)

with
x ≈ x1 − x2 , x̄ ≈ x3 − x4 , (4.14)

in the Regge limit (4.10).
5For external spinning operators, the conformal transformations have a non-trivial rotation matrix

∂ya/∂xm. Conformal covariance of the correlators gives, in the representative example of two vectors
and two scalars [35], Aab (yi) =

(
−y+

1 y
+
2
)−1−∆V

(
−y−3 y

−
4
)−∆S ∂ya

1
∂xm

1

∂yb
2

∂xn
2
Amn (xi). These matrices ensure

that the inversion tensors are correctly mapped from yi to xi variables, preserving their form.
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It is further convenient to implement the coordinate change using embedding space
coordinates PM ∈ R2,d

PM =
(
P+, P−, Pm

)
, P · P = −P+P− + ηmnP

mPn . (4.15)

These are related to the coordinates ym ∈ R1,d−1 of physical Minkowski space by [35]

PM =
(
y+, y−, 1, y2, y⊥

)
⇒ Pij ≡ −2Pi · Pj = (yi − yj)2 , (4.16)

and to the coordinates xi by

PM1 = −y+
1

(
−1,−x2

1, x
m
1

)
, PM2 = y+

2

(
−1,−x2

2, x
m
2

)
,

PM3 = −y−3
(
−x2

3,−1, xm3
)
, PM4 = y−4

(
−x2

4,−1, xm4
)
.

(4.17)

One can easily show that the cross-ratios (2.19) are given in terms of x and x̄ as

zz̄ = x2x̄2 , (1− z)(1− z̄) = 1 + x2x̄2 + 2x · x̄ , (4.18)

and the kinematic prefactor (2.18) becomes

T 1234 = (−y+
1 )−∆1(y+

2 )−∆2(−y−3 )−∆3(y−4 )−∆4

x∆1+∆2 x̄∆3+∆4
. (4.19)

When combining (2.17) and (4.11), the numerator of the last expression cancels the Jaco-
bian prefactor in (4.11) to give,

A (xi) = A1234(z, z̄)
x∆1+∆2 x̄∆3+∆4

. (4.20)

If we now study the correlator A3652(xi), a priori we have to take into account that only
x2 and x3 are affected by the Regge limit. However, we will assume that the integration
will be dominated by the region where the integration points are also boosted. Using the
embedding space coordinates

PM5 = −y+
5

(
−1,−x2

5, x
m
5

)
, PM6 = y−6

(
−x2

6,−1, xm6
)
, (4.21)

we find
x′ ≈ x5 − x2 , x̄′ ≈ x3 − x6 . (4.22)

Where the primed variables are meant to emphasize that the points 1, 4 are replaced by
5, 6 in this correlator as compared to (4.13). Performing these steps for all the correlators
in (4.5) we find,

dDisctA1-loop(x12, x34) = −1
2
∑
O5,O6

∫
dx5dx6 Disc23A

3652
tree (x36, x52)

× S5S6 Disc14A
1564
tree (x15, x64)

∣∣∣
[O5O6]

,

(4.23)

where we stop explicitly mentioning that we are dealing with only the contribution of
double-trace operators as single-trace contributions are subleading in the limit considered.
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Let us stress that in order to write the correlators on the right hand side in terms of
two differences, we assumed that each of the individual tree-level correlators are in the
Regge limit themselves. The easiest way to justify this is in Fourier space using the impact
parameter transform defined below. Each tree-level position space correlator is dominated
by a power σ1−j(ν) in the Regge limit, which maps to a power of the AdS center of mass
energy Sj(ν)−1 in impact parameter space. Since the optical theorem is multiplicative
in impact parameter space, subleading Regge trajectories or kinematical corrections from
the conformal block at finite boost get mapped to smaller powers of S, and therefore
do not contribute to the leading behavior. The eikonal approximation in AdS [28] gives
additional intuition for this, since it means that even in AdS, the particles remain essentially
undeflected, scattering forward each time they exchange a Pomeron. Furthermore, we will
show in section 5 that this configuration reproduces the behavior at one-loop derived in [36].

4.2 Impact parameter space

Let us now consider the two-point functions 〈Õ5Õ7〉 and 〈Õ8Õ6〉 for the shadow transforms
in (4.23). In the Regge configuration, x5 is the patch of x1, x6 is the patch of x4, x7 is
the patch of x2 and x8 is the patch of x3. As explained in [3, 28], the two-point function
between two coordinates on adjacent Poincaré patches has an additional phase factor eiπ∆

and this phase can be accounted for by switching from the iε prescription of a Feynman
propagator to that of a Wightman propagator (see [28]). The normalization of the shadow
transform in (2.3) and (2.4) is obtained from the Fourier transform of a two-point function
as the shadow transform acts multiplicatively in Fourier space (see section 3.2 of [37]).
The normalization in (2.4) is obtained from the Fourier transform of a Euclidean two-
point function, which matches the one of a Lorentzian two-point function with Feynman iε
prescription. The Wightman propagator in momentum space however has support only on
the future lightcone and the coefficient of the Fourier transform is different (see appendix
B of [28] and section 2.1 of [50])

∫
dx

e−2iq·x

[−(x0 − iε)2 + ~x2]∆
=MO Θ(q0) Θ(−q2)

(
−q2

)∆− d2 , (4.24)

with

MO = 2π
d
2 +1

Γ(∆)Γ
(
∆− d

2 + 1
) . (4.25)

Consequently we change the normalization NO of the shadow transform in (2.3) to (for
scalar operators)

NO =MOMÕ . (4.26)
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Next we define, following [31], the impact parameter representation as the Fourier
transform of the discontinuity of the correlator in the two remaining vectors6

Disc14A
1jk4(x1j , xk4) =

∫
dp dp̄ e−2ip·x1j−2ip̄·xk4B1jk4(p, p̄) , (4.27)

where the function B(p, p̄) has support only on the future Milne wedge of p and p̄. Us-
ing (4.7) on (4.27) we get the Fourier transform of Disc23.

Disc23A
3kj2(x3k, xj2) = −

∫
dp dp̄ e−2ip·x3k−2ip̄·xj2B3kj2(−p,−p̄)∗ . (4.28)

The causal relations and thus the iε prescription in (4.28) are opposite to those in (4.27)
and the complex conjugation prescribed in (4.7) compensates for that. Inserting (4.27)
into (4.23) and using that A15̃6̃4

tree is a double shadow transform of A1784
tree we obtain, upon

using (4.7) for the Disc23,

dDisctA1-loop(x12, x34) = 1
2
∑
O5,O6

∫
dx5 dx6 dx7 dx8

∫
dp dp̄ dp′ dp̄′

× e−2i(p′·x36+p̄′·x52+p·x17+p̄·x84)B3652
tree (−p′,−p̄′)∗B1564

tree (p, p̄)

× T (ρ5)(x75)
NO5

[
−(x0

75 − iε)2 + ~x2
75
]d−∆5

T (ρ6)(x68)
NO6

[
−(x0

68 − iε)2 + ~x2
68
]d−∆6

∣∣∣∣∣
[O5O6]

.

(4.29)

T (ρ)(xij) is the tensor structure for the two-point function of an operator with SO(d)
quantum number ρ. For example it is the familiar inversion tensor ηµν − 2xµxν

x2 for spin 1
operators. Note that we have B1564

tree instead of B1784
tree , as the superscripts now only indicate

the dimensions of the corresponding operators and ∆5 = ∆7, ∆6 = ∆8.
We can now express the two-point functions from the shadow transforms in Fourier

space by inverting (4.24)

T (ρ)(x)
[−(x0 − iε)2 + ~x2]d−∆ =

MÕ
πd

∫
M

dq e−2iq·x T̂ (ρ)(q) (−q2)
d
2−∆ . (4.30)

The Fourier space integral is over the future Milne wedge M as the Fourier transform has
support only on this domain. T̂ (ρ)(q) is the tensor structure of the two-point function in
Fourier space, which has been discussed for example in [50]. It is a tensor composed of qµ

and ηµν that can be factorized into a product of new tensors t(ρ)(q) as follows

T̂ (ρ)(q)µ1...µ|ρ|
ν1...ν|ρ| = t(ρ)(q)µ1...µ|ρ|

σ1...σ|ρ| t
(ρ)(q)σ1...σ|ρ|

ν1...ν|ρ| . (4.31)

Using (4.30) in (4.29) we end up with four position integrals over x5, x6, x7, x8 and six
integrals over q, q̄ (from the four-point functions) and p, p̄, p′, p̄′. The four position integrals

6The AdS impact parameter representation was previously defined in [22, 31, 33] as the Fourier transform
of the correlator on the second sheet A(z, z̄	). Since this contribution dominates in the Regge limit, it is
indistinguishable from the discontinuity of the correlator in this limit. However, in the t-channel the two
notions are clearly different and it was necessary to take the discontinuity to derive (1.5). In the next
section we will see that the discontinuity is the better choice also in the s-channel.
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give four Dirac delta functions with which we can eliminate the q, q̄, p′, p̄′ integrals to obtain

dDisctA1-loop(x12, x34) = π2d

2
∑
O5,O6

1
MO5MO6

∫
dp dp̄ e−2i(p·x12+p̄·x34)

× B3652
tree (−p̄,−p)∗ T̂ (ρ5)(p) T̂ (ρ6)(p̄) B1564

tree (p, p̄)
(−p2)∆5− d2 (−p̄2)∆6− d2

∣∣∣∣∣
[O5O6]

,

(4.32)

with an implicit index contraction between B1564
tree and B3652

tree and the tensor structures T̂ (ρ).
At this point we use (4.31) and absorb the t(ρ)(q) tensors into the definition of the phase
shifts Btree. This means that one needs to take it into account if one wants to relate tensor
structures of CFT correlators and phase shifts, but we will not need to do such a basis
change explicitly in this work. Using (4.8) we see that the double discontinuity corresponds
to the quantity −ReB(p, p̄) in impact parameter space. Thus we find the following gluing
formula for the impact parameter representation, which is purely multiplicative,

− ReB1-loop(p, p̄) = π2d

2
∑
O5,O6

1
MO5MO6

B3652
tree (−p̄,−p)∗B1564

tree (p, p̄)
(−p2)∆5− d2 (−p̄2)∆6− d2

∣∣∣
[O5O6]

. (4.33)

Let us consider the case when O5 = O1 and O6 = O3. In this case, it is useful to strip out
a scale factor similar to that in (4.20) from the impact parameter representation

Bjjkk(p, p̄) =
MOjMOk Bjjkk(p, p̄)

(−p2)
d
2−∆j (−p̄2)

d
2−∆k

. (4.34)

Using (4.24) one sees that with this choice of normalization the impact parameter repre-
sentation of the MFT correlator is BjjkkMFT = 1, which is necessary for the eikonalization of
the phase shift in AdS gravity. Inspired by this fact we choose the normalization

Bijkl(p, p̄) =

√
MOiMOjMOkMOl Bijkl(p, p̄)

(−p2)
d−∆i−∆j

2 (−p̄2)
d−∆k−∆l

2

, (4.35)

for the general case. This gives the following compact form for the optical theorem in
impact parameter space

− ReB1-loop(p, p̄) = 1
2
∑
O5,O6

B3652
tree (−p̄,−p)∗ B1564

tree (p, p̄)
∣∣∣∣∣
[O5O6]

. (4.36)

In [36], the Regge limit of a one-loop four-point function of scalars was studied in the
large λ regime with S � λ � 1. The contribution of tidal excitations to the correlator is
suppressed in this regime. It corresponds to just one term in the sum on the right hand
side of (4.36) i.e. with O5 = O1 and O6 = O3. We show in section 5.1 that this term
from our formula (4.36) reproduces the result from [36] in the large λ or equivalently the
large ∆2

gap limit. We do not need to discard any shadow double-trace contributions for this
match. This motivates us to assume that the only non-zero contributions to the gluing of
tree-level correlators in the Regge limit is from the physical double-traces [O5O6], and we
will drop the explicit projections henceforth. This is compatible with the intuition that
there is no need to project out shadow operators in a Lorentzian CFT optical theorem.
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4.3 s-channel discontinuities in the Regge limit

Next we have to analyze the discontinuities on the right hand side of the optical theo-
rem (4.5). The discontinuity of the scalar s-channel block was recently computed in general
without taking the Regge limit in [44] and we will review it here. The generalization to
external spinning operators is done in section 4.4, after taking the Regge limit. Let us take
the conformal partial wave expansion (2.22) in the s channel and use the symmetry of the
integrand to extend the integration region at the cost of a factor 1/2

A1234(z, z̄) = 1
2
∑
J

∫ d
2 +i∞

d
2−i∞

d∆
2πi I

1234(∆, J)ψ1234
good,O(z, z̄) . (4.37)

Let ψ1234(z, z̄) be the partial wave Ψ1234(yi) with the prefactor T 1234 stripped off.
ψ1234

good,O(z, z̄) is the conformal partial wave with an additional term that vanishes for integer
spin but ensures favorable properties for non-integer spin [44]. The new partial wave is
given by

ψ1234
good,O(z, z̄) = ψ1234

O (z, z̄) + 2π S(O3O4[Õ†])KJ+d−1,1−∆ ξ
(a,b)
∆,J g1234

J+d−1,1−∆(z, z̄) , (4.38)

where g1234
∆,J (z, z̄) is the usual conformal block, the constants a, b are defined below (2.53)

and
ξ

(a,b)
∆,J =

(
s

(a,b)
∆+J − s

(a,b)
∆+2−d−J

) Γ
(
− J − d−2

2
)

Γ(−J) ,

s
(a,b)
β =

sin
(
π(a+ β/2)

)
sin
(
π(b+ β/2)

)
sin(πβ) ,

K∆,J = Γ(∆− 1)
Γ
(
∆− d

2
) κ(a,b)

∆+J ,

κ
(a,b)
β =

Γ
(β

2 − a
)
Γ
(β

2 + a
)
Γ
(β

2 − b
)
Γ
(β

2 + b
)

2π2Γ(β − 1)Γ(β) .

(4.39)

With this conformal partial wave it is possible to compute the discontinuity exactly [44]

Disc14 ψ
1234
good,O(z, z̄)

S(O3O4[Õ†])
= R1234

O (z, z̄)
πiκ

(a,b)
∆,J

. (4.40)

Here R is the so-called Regge block

R1234
O (z, z̄) = g1234

1−J,1−∆ − κ
′(a,b)
∆+J g

1234
∆,J −

Γ(d−∆− 1)Γ
(
∆− d

2
)

Γ(∆− 1)Γ
(
d
2 −∆

) κ
′(a,b)
d−∆+J g

1234
d−∆,J+

+
Γ(J + d− 2)Γ

(
− J − d−2

2
)

Γ
(
J + d−2

2
)
Γ(−J)

κ
′(a,b)
∆+J κ

′(a,b)
d−∆+J g

1234
J+d−1,1−∆ ,

(4.41)

with κ′(a,b)β defined as

κ
′(a,b)
β =

r
(a,b)
β

r
(a,b)
2−β

, r
(a,b)
β =

Γ(β2 + a)Γ(β2 + b)
Γ(β) . (4.42)
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Disc23 in the 3412 OPE channel can be obtained by using (4.6) on (4.40)

Disc23 ψ
3412
good,O(z, z̄)

S(O1O2[Õ†])
= R3412

O (z, z̄)
πiκ

(−b,−a)
∆,J

, (4.43)

which was the reason to consider this channel for the correlators on the right hand side
of (4.5). The Regge block is dominated in the Regge limit by [1, 31, 44]

g1234
1−J,1−∆(z, z̄) =

4π
d
2 Γ(∆− d

2)
Γ(∆− 1) σ1−J

(
Ω∆− d2

(ρ) +O(σ)
)
. (4.44)

The σ, ρ cross-ratios introduced here are defined as

σ =
√
zz̄ =

√
x2x̄2 , cosh(ρ) = z + z̄

2
√
zz̄

= − x · x̄√
x2x̄2

. (4.45)

Ωiν(ρ) is the harmonic function on d− 1 dimensional hyperbolic space Hd−1 transverse to
the scattering plane in AdSd+1 [21]

Ωiν(ρ) = − iν sin(πiν)Γ(h− 1 + iν)Γ(h− 1− iν)
22h−1πh+ 1

2 Γ
(
h− 1

2
)

× 2F1

(
h− 1 + iν, h− 1− iν, h− 1

2 ,
1− cosh(ρ)

2

)
.

(4.46)

Inserting everything into (4.37), we find the following expression for the discontinuity of
the correlator in the Regge limit

Disc14A
1234(z, z̄) = 2πi

∑
J

∞∫
−∞

dν α(ν, J)σ1−JΩiν(ρ) , (4.47)

with

α(ν, J) = −
π
d
2−2 S

(
O3O4

[(
− iν − d

2
)†])Γ(iν)

2πκ(a,b)
iν+ d

2 ,J
Γ
(
iν + d

2 − 1
) I1234

(
iν + d

2 , J
)
. (4.48)

As in flat space the sum in (4.47) is dominated by the large J contributions in the
Regge limit and only finite due to a conspiration of the coefficients to ensure Regge bound-
edness. The next step is therefore to perform a Sommerfeld-Watson resummation over J to
evaluate (4.47). Also, note that the spectral function, as given by the Lorentzian inversion
formula [1], is of the form

I1234(ν) = I1234,t(ν) + (−1)JI1234,u(ν) . (4.49)

Let us first consider the case of a correlator with pairwise equal external operators i.e.
a = b = 0, I1234,t = I1234,u, where only even spins are exchanged. Now for the resummation
we replace the sum by an integral,

2
∑
J even

→
∫
C
dJ

eiπJ

1− eiπJ . (4.50)
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The contour C encloses all poles on the positive real axis (at even integers) in a clockwise
direction. The leading Regge trajectory is given by the operators with the lowest dimension
∆(J) for every even spin J and α(ν, J) has poles at iν = ±(∆(J) − d/2). Defining the
inverse function j = j(ν) of the spectral function ∆(J) by

ν2 +
(

∆(j(ν))− d

2

)2
= 0 , (4.51)

we see that the poles in ν translate into a single pole at J = j(ν). By deforming the J
contour to the left one sees that the J integral is given by the residue at J = j(ν), i.e.

Disc14A
1234(z, z̄) = 2πi

∞∫
−∞

dν α(ν)σ1−j(ν)Ωiν(ρ) , (4.52)

where

α(ν) = − Res
J=j(ν)

i
eiπJ

1− e−iπJ
π
d
2−2 S

(
O3O4

[(
− iν − d

2
)†])Γ(iν)

κ
(a,b)
iν+ d

2 ,J
Γ
(
iν + d

2 − 1
) I1234,t

(
iν + d

2 , J
)
. (4.53)

When the operators are not pairwise equal, the even and odd spin operators organize into
two analytic families as evident from the Lorentzian inversion formula [1]. To obtain the
contribution of the leading Regge trajectory we still sum over the even spin exchanges.
The result is of the same form as in (4.52) with I1234,t replaced by 1

2I
1234 in α(ν). For the

other correlator we can use (4.6) to see that we get an analogous result with the complex
conjugate spectral function

Disc23A
3412(z, z̄) = 2πi

∞∫
−∞

dν α(ν)∗ σ1−j(ν)Ωiν(ρ) . (4.54)

One can show that the corresponding impact parameter representation is given in general
by the same spectral function times a multiplicative factor which cancels poles for the
external double-trace operators [22]

B(p, p̄) = 2πi
∞∫
−∞

dν β(ν)Sj(ν)−1Ωiν(L) , (4.55)

where
β(ν) = 4π2−d(

√
MO1MO2MO3MO4)−1 α(ν)
χj(ν)(ν)χj(ν)(−ν) , (4.56)

with the definition

χj(ν)(ν) = Γ
(∆1 + ∆2 + j(ν)− d/2 + iν

2

)
Γ
(∆3 + ∆4 + j(ν)− d/2 + iν

2

)
. (4.57)

The impact parameter space cross-ratios, analogous to (4.45), are

S =
√
p2p̄2, coshL = − p · p̄√

p2p̄2 . (4.58)

In the dual AdS scattering process these cross ratios are interpreted as the squared of the en-
ergy with respect to global time and as the impact parameter in the transverse space Hd−1.
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4.4 Spinning particles and the vertex function

In this section we will introduce concrete expressions for the tree amplitudes with spin-
ning external legs and show that the contributions of the contracted spinning legs can
be expressed in terms of a scalar function of three spectral parameters which we call the
vertex function, analogous to (3.17) in flat space. We construct tensor structures in terms
of differential operators, which are a Regge limit version of weight-shifting operators that
generate spinning conformal blocks from the scalar ones [51, 52]. It is convenient to work
with tensor structures which are homogeneous in p and p̄, i.e. independent of the cross-ratio
S in (4.58), such that all tensor structures have the same large S behavior in the Regge
limit. These differential operators can be constructed from the covariant derivative on the
hyperboloid Hd−1 and from p̂ = p/|p|, ̂̄p = p̄/|p̄| [35, 53]. The possible differential operators
that generate spin for a single particle are

Dρ,km (p) = p̂m1 . . . p̂mk∇pmk+1
. . .∇pm|ρ| , k = 0, . . . , |ρ| . (4.59)

Tree diagrams for exchange of the Pomeron then have the form

B(∆5,ρ5),(∆6,ρ6)
mn (p, p̄) = 2πi

∞∫
−∞

dν Sj(ν)−1D
(∆5,ρ5),(∆6,ρ6)
mn (ν) Ωiν(L) . (4.60)

Here B(∆5,ρ5),(∆6,ρ6)
mn (p, p̄) is defined just as in (4.27) and (4.35), but with tensor structures

constructed from p̂ and ̂̄p. In (4.60) we introduced the following definition for the combi-
nation of spectral functions β(ν) and differential operators that generate different tensor
structures

D
(∆5,ρ5),(∆6,ρ6)
mn (ν) =

|ρ5|∑
k5=0

|ρ6|∑
k6=0

βk5,k6
(∆5,ρ5),(∆6,ρ6)(ν)Dρ5,k5

m (p)Dρ6,k6
n (p̄) . (4.61)

Notice that, in contrast to flat space, we do not impose a full factorization into three-
point structures but rather allow for a separate spectral function for each combination of
three-point structures.

The next step is to derive the general functional form of (4.36) after the contractions
and sums have been done. We begin by inserting (4.60) into (4.36),

−ReB1-loop(p, p̄) = 2π2 ∑
∆5,∆6,ρ5,ρ6

∞∫
−∞

dν1dν2 S
j(ν1)+j(ν2)−2 (4.62)

×D
(∆5,ρ5),(∆6,ρ6)
mn (ν1)∗Ωiν1(L)πm;p

ρ5 πn;q
ρ6 D

(∆5,ρ5),(∆6,ρ6)
pq (ν2) Ωiν2(L) .

Here πρ is the projector to the irreducible representation ρ of SO(d), which is necessary
because the operators (4.59) do not ensure the properties of irreducible representations
such as tracelessness and Young symmetrization. Next we will show how one can replace
the contractions and derivatives in the previous equation by spectral parameters. Note first
that due to p · ∇p = 0, all contractions involving p̂ or ̂̄p give factors of their norm −1. The
remaining contractions involve only covariant derivatives. These contracted derivatives can
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all be replaced by functions of the spectral parameters by using the Laplace equation for
the harmonic function (

∇2
Hd−1 + ν2 + (d/2− 1)2

)
Ωiν(L) = 0 . (4.63)

Using this equation, factors of ∇2
p can directly be replaced. To evaluate contractions

between derivatives acting on different harmonic functions we expand the product of two
scalar harmonic functions as follows,

Ωiν1(L)Ωiν2(L) =
∞∫
−∞

dν Φ(ν1, ν2, ν)Ωiν(L) , (4.64)

where Φ(ν1, ν2, ν) was computed (for the similar case of harmonic functions on AdSd+1) in
appendix D of [54].7 By acting repeatedly with (4.63) on this equation, one can determine
the function Wk that appears in

∇pm1
. . .∇pmkΩiν1(L)∇m1

p . . .∇mkp Ωiν2(L) =
∞∫
−∞

dν Wk

(
ν2

1 , ν
2
2 , ν

2)Φ(ν1, ν2, ν) Ωiν(L) .

(4.65)
Wk is a fixed kinematical polynomial of maximal degree k in its arguments. For example,
the first non-trivial case is
∞∫
−∞

dνΦ(ν1,ν2,ν)ν2Ωiν(L)=
(
ν2

1 +ν2
2 +
(
d

2−1
)2)

Ωiν1(L)Ωiν2(L)−2∇µΩiν1(L)∇µΩiν2(L),

(4.66)
from which one can read off W0 and W1 to be

W0
(
ν2

1 , ν
2
2 , ν

2) = 1 , W1
(
ν2

1 , ν
2
2 , ν

2) = 1
2
(
ν2

1 + ν2
2 − ν2 + (d/2− 1)2

)
. (4.67)

More generally, by acting with the Laplacian on both sides of (4.65) one can derive a
recursion relation of the form∫

dν Wk+1(νi) Φ(νi) Ωiν(L) =
∫
dν Wk(νi)W1(νi) Φ(νi) Ωiν(L)

+ 1
2
(
[∇2,∇m1 . . .∇mk ]Ωiν1(L)∇m1 . . .∇mkΩiν2(L) + (ν1 ↔ ν2)

)
.

(4.68)

The terms with commutators, which will vanish in the flat space limit, can be evaluated
using the fact that the commutators of covariant derivatives can be replaced by Riemann
tensors, which for the hyperboloid can be written in terms of the metric. This means that
these terms have two derivatives less than the other terms, and will therefore produce less
than maximal powers of νi. This shows that the maximal power of νi in Wk is just given
by repeatedly multiplying W1. Therefore we have

Wk

(
ν2

1 , ν
2
2 , ν

2) =
(
ν2

1 + ν2
2 − ν2

2

)k
+O

(
ν

2(k−1)
i

)
. (4.69)

7Note that ΦhereΩiν(0) = Φthere.
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Having shown that all derivatives can be replaced by polynomials of the spectral parame-
ters, we can define

D
(∆5,ρ5),(∆6,ρ6)
mn (ν1)∗Ωiν1(L)πm;p

ρ5 πn;q
ρ6 D

(∆5,ρ5),(∆6,ρ6)
pq (ν2) Ωiν2(L)

=
∞∫
−∞

dν W(∆5,ρ5),(∆6,ρ6)
(
ν2

1 , ν
2
2 , ν

2)Φ(ν1, ν2, ν) Ωiν(L) .
(4.70)

This gives the contribution of a given pair of intermediate states labeled by (∆5, ρ5) and
(∆6, ρ6) to −ReB1-loop(p, p̄). Now we can define the vertex function V (ν1, ν2, ν), which
is even in all its arguments, in analogy to (3.17) as the sum over all such contributions
in (4.62) ∑

∆5,∆6,ρ5,ρ6,

W(∆5,ρ5),(∆6,ρ6)
(
ν2

1 , ν
2
2 , ν

2) = β(ν1)∗β(ν2)V (ν1, ν2, ν)2 , (4.71)

and reach the following representation for the 1-loop amplitude

−ReB1-loop(p, p̄) = 2π2
∞∫
−∞

dνdν1dν2 β(ν1)∗β(ν2)V (ν1, ν2, ν)2

× Sj(ν1)+j(ν2)−2Φ(ν1, ν2, ν) Ωiν(L) .

(4.72)

All the information about the spinning tree-level correlators and their contractions is en-
coded in the vertex function V (ν1, ν2, ν) which mirrors the role of its flat space analogue.

However, in order to compute the full impact parameter representation rather than
just its real part, we have to go through a detour via the Lorentzian inversion formula, as
described in [36]. We first Fourier transform back to dDisctA1-loop from which we obtain
the s-channel OPE coefficients. Then we can compute Disc14A1-loop which we can finally
Fourier transform to obtain B1-loop(p, p̄). Since in the Regge limit the difference between
dDisctA1-loop and Disc14A1-loop is just a phase factor (see [36]), the same happens for the
impact parameter representation

B1-loop(p, p̄) = −4π2
∞∫
−∞

dνdν1dν2
1 + e−iπ(j(ν1)+j(ν2)−1)

1− e−2πi(j(ν1)+j(ν2)−1) β(ν1)∗β(ν2)V (ν1, ν2, ν)2

× Sj(ν1)+j(ν2)−2 Φ(ν1, ν2, ν) Ωiν(L) . (4.73)

It is important to emphasize that this provides a finite ∆gap description for the one-loop
correlator in the Regge limit up to the knowledge of the vertex function V (ν1, ν2, ν)2. For
CFTs that admit a flat space limit, we will see in sections 6 and 7 how one can fix part of
this vertex function from the knowledge of its flat space analogue. In section 5 below, we
make a comparison with the large ∆gap limit studied in reference [36], and also describe
the implications of (4.72) for t-channel CFT data.

5 Constraints on CFT data

5.1 Comparison with the large ∆gap limit

In [36] the Regge limit of the four-point correlator of pairwise identical scalars was studied
in an expansion in 1/N in the limit of large ∆gap. The specific limit considered was
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S � ∆2
gap � 1, so the result is sensitive to all the higher spin interactions in the leading

Regge trajectory, but tidal excitations are ignored. Since we have kept ∆gap finite, we
should be able to obtain a match between the result for the one-loop correlator in [36] with
our result (4.36) after dropping the tidal excitations O5 6= O1 and O6 6= O3.

We pick the term ∆5 = ∆1 and ∆6 = ∆3 that is the sole contribution to (4.36) in the
large ∆gap limit, and use (4.55) to obtain

− ReB1-loop(S,L) = 2π2
∫
dν1dν2dν β

∗(ν1)β(ν2) Φ(ν1, ν2, ν)Sj(ν1)+j(ν2)−2Ωiν(L)
∣∣∣∣∣
[O5O6]

.

(5.1)
Now let us extract the corresponding result from [36]. Equation (3.15) of [36] gives the
double discontinuity of the one-loop correlator G(2) as follows (with ∆φ = ∆1 and ∆ψ = ∆3)

dDisct[G(2)(z, z̄)] = π4

8

∫
dν1dν2dν χj(ν1)+j(ν2)−1(ν)χj(ν1)+j(ν2)−1(−ν)N

× γ̂(1)(ν1)γ̂(1)(ν2) Φ(ν1, ν2, ν)(zz̄)
2−j(ν1)−j(ν2)

2 Ωiν

(1
2 log(z/z̄)

)
,

(5.2)

where χj(ν1)+j(ν2)−1(ν) is defined in (4.57) but with j(ν) replaced by j(ν1) + j(ν2) − 1,
and with ∆2 = ∆1 and ∆4 = ∆3. It accounts for the double-trace exchanges [O1O1] and
[O3O3] analytically continued to spin j(ν1) + j(ν2)− 1. The operators contributing to the
t-channel expansion in the large ∆gap limit are the double-traces [O1O3]n,` with dimensions
and OPE coefficients given by

∆h,h̄ = ∆(0)
h,h̄

+ 1
N2 γ

(1)
h,h̄

+ 1
N4 γ

(2)
h,h̄

+ · · · , ∆(0)
h,h̄

= ∆1 + ∆3 + 2n+ ` ,

Ph,h̄ = PMFT
h,h̄

(
1 + 1

N2 δP
(1)
h,h̄

+ 1
N4 δP

(2)
h,h̄

+ · · ·
)
,

(5.3)

where h, h̄ = ∆∓ `. The tree-level anomalous dimensions γ(1)
h,h̄

and tree-level corrections to

OPE coefficients δP (1)
h,h̄

can be extracted respectively from γ̂(1)(ν) and δ̂P
(1)

(ν) by

γ
(1)
h,h̄
≈

∞∫
−∞

dν γ̂(1)(ν) (hh̄)j(ν)−1 Ωiν
(

log(h/h̄)
)
,

δP
(1)
h,h̄
≈

∞∫
−∞

dν δ̂P
(1)

(ν) (hh̄)j(ν)−1 Ωiν
(

log(h/h̄)
)
.

(5.4)

γ̂(1)(ν) and δ̂P
(1)

(ν) can be obtained respectively from the real and imaginary parts of the
phase shift, and are related to β by8

γ̂(1)(ν) = 2Reβ(ν) ,

δ̂P
(1)

(ν) = −2π Imβ(ν) .
(5.5)

8Note that due to difference in conventions, Nβ for us is equal to β, as defined in [36].

– 37 –



J
H
E
P
0
4
(
2
0
2
1
)
0
8
8

Taking the Fourier transform to impact parameter space on (5.2) and then using (5.5)
gives9

− ReB1-loop(S,L) = 2π2
∫
dν1dν2dν Reβ(ν1)Reβ(ν2) Φ(ν1, ν2, ν)Sj(ν1)+j(ν2)−2 Ωiν(L) .

(5.6)
We need to compare (5.1) with (5.6). The only difference are the real parts in (5.6),
however Imβ in (5.1) is related to tree-level corrections to the OPE coefficients and these
are suppressed at large ∆gap [36]. This can be seen for example from (5.5) and using in it
the explicit expression for α(ν) from [36]. The result is

δ̂P
(1)

(ν) =
−π Im

(
ieiπj(ν)

1−eiπj(ν)

)
Re
(

ieiπj(ν)

1−eiπj(ν)

) γ̂(1)(ν) = −π tan
(
π

2 j(ν)
)
γ̂(1)(ν) . (5.7)

The suppression is due to the tan factor, since for large N theories it is known that [30–32]

j(ν) = 2− 2 ν
2 + (d/2)2

∆2
gap

+O
(
∆−4

gap
)
. (5.8)

The anomalous dimensions γ(1)
h,h̄

are order 1, while the corrections to the OPE coefficients

δP
(1)
h,h̄

are at order ∆−2
gap.

Thus we have matched our result for the Regge limit of the dDisc of a one-loop correla-
tor at large ∆gap to that of [36]. Note that we managed to reproduce the result without the
need for any projections to the physical double-traces. Therefore it is reasonable to assume
that the gluing of tree-level correlators in the Regge limit does not receive contributions
from the double-traces of shadows and we can use the optical theorem (4.36) without the
projections onto [O5O6].

5.2 Extracting t-channel CFT data

Next we shall see how we can extract the CFT data for the double-trace operators ex-
changed in the t-channel to order 1/N4 from the vertex function V (ν2

1 , ν
2
2 , ν

2). To this
end we follow section 3.2 of [36] and extend the results therein by including tidal exci-
tations, which make our statements valid at finite ∆gap. As discussed in the previous
section, the only operators contributing to the t-channel expansion in the large ∆gap limit
are the double-traces [O1O3] [55]. The three-point function of these double-traces with
their constituent operators O1 and O3 has the large N behavior

〈O1O3[O1O3]〉 ∼ 1 . (5.9)

By including tidal excitations we have to include also double-traces [O5O6] corresponding
to additional double-traces coupling to O1 and O3. These satisfy

〈O1O3[O5O6]〉 ∼ 1
N2 , [O5O6] 6= [O1O3] , (5.10)

9In our conventions the Fourier transform takes dDisct[G(2)(z, z̄)] to −N ReB upto scaling factors.
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so that only their classical dimension and leading OPE coefficient squared10

∆h′,h̄′ = ∆O5 + ∆O6 + 2n+ ` , Ph′,h̄′ = 1
N4P

MFT
h′,h̄′ δP

(56)
h′,h̄′

+ . . . , (5.11)

appear in the one-loop correlator. This is compatible with the large N behavior for single-
trace exchange in the direct channel,

〈O1O5O∆(J)〉 ∼
1
N
, 〈O∆(J)O6O3〉 ∼

1
N
, (5.12)

which justifies that the OPE coefficients cO1O3[O5O6] start at order 1/N2. As explained
in [36], the cross channel expansion of the correlator is then dominated by the terms

A	
1-loop(z, z̄)
(zz̄)∆φ

≈
∑
h,h̄

PMFT
h,h̄

[
iπγ

(2)
h,h̄

+ δP
(2)
h,h̄

+ iπγ
(1)
h,h̄

δP
(1)
h,h̄
− π2

2
(
γ

(1)
h,h̄

)2
]
gh,h̄(1− z, 1− z̄)

+
∑
h′,h̄′

PMFT
h′,h̄′ δP

(56)
h′,h̄′

gh′,h̄′(1− z, 1− z̄) . (5.13)

We shall now compare with our result for the one-loop correlator in the Regge limit
and use it in the light of (5.13) to extract CFT data. We start with the dDisc of the
correlator in the impact parameter representation as in (4.72). Doing an inverse Fourier
transform on this and taking out the appropriate scale factors gives us the dDisc of the
one-loop correlator in the Regge limit

dDisctA1-loop(z, z̄) = π4N
4

∞∫
−∞

dνdν1dν2
(
β∗(ν1)β(ν2) + β(ν1)β∗(ν2)

)
V (ν1, ν2, ν)2

×Φ(ν1, ν2, ν)χj(ν1)+j(ν2)−1(ν)χj(ν1)+j(ν2)−1(−ν)σ2−j(ν1)−j(ν2) Ωiν(ρ) ,

(5.14)

where we symmetrized the product of β’s by using the symmetry of the expression under
ν1 ↔ ν2. We can now use the Lorentzian inversion formula [1] on (5.14), as shown in [36],
to obtain the one-loop correlator in the Regge limit, and then use (5.5) to express it as

A	
1-loop(z, z̄) ≈ −π

4N
4

∞∫
−∞

dν1dν2dν
1 + e−iπ(j(ν1)+j(ν2)−1)

1− e−2πi(j(ν1)+j(ν2)−1) V (ν1, ν2, ν)2 (5.15)

× Φ(ν1, ν2, ν)χj(ν1)+j(ν2)−1(ν)χj(ν1)+j(ν2)−1(−ν)σ2−j(ν1)−j(ν2) Ωiν(ρ)

×
[
γ̂(1)(ν1) γ̂(1)(ν2) + 1

π2 δ̂P
(1)

(ν1) δ̂P
(1)

(ν2)
]
.

We now take the t-channel expansion (5.13), and use in it (5.4), (4.64), and the following
ansatz,

γ
(2)
h,h̄
≈

∞∫
−∞

dν1dν2dν γ̂
(2)(ν1, ν2, ν) (hh̄)j(ν1)+j(ν2)−2 Ωiν

(
log(h/h̄)

)
,

δP
(2)/(56)
h,h̄

≈
∞∫
−∞

dν1dν2dν δ̂P
(2)/(56)

(ν1, ν2, ν) (hh̄)j(ν1)+j(ν2)−2 Ωiν
(

log(h/h̄)
)
,

(5.16)

10We are free to insert PMFT here, defining δP accordingly. This will be useful below in (5.18).
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to obtain

(zz̄)−∆φA	
1-loop(z, z̄) ≈

∞∫
−∞

dν1dν2dν

[∑
h,h̄

(hh̄)j(ν1)+j(ν2)−2 Ωiν(log h/h̄)PMFT
h,h̄

(5.17)

×
[
iπγ̂(2)(ν1, ν2, ν) + iπ

2

(
γ̂(1)(ν1) δ̂P

(1)
(ν2) + γ̂(1)(ν2) δ̂P

(1)
(ν1)

)
Φ(ν1, ν2, ν)

− π2

2 γ̂(1)(ν1) γ̂(1)(ν2)Φ(ν1, ν2, ν) + δ̂P
(2)

(ν1, ν2, ν)
]
gh,h̄(1− z, 1− z̄)

+
∑
h′,h̄′

PMFT
h′,h̄′ δ̂P

(56)
(ν1, ν2, ν)(h′h̄′)j(ν1)+j(ν2)−2) Ωiν(log h′/h̄′) gh′,h̄′(1− z, 1− z̄)

]
.

We can approximate the h, h̄ and h′, h̄′ sums with integrals,
∑
h,h̄ →

1
2
∫∞

0 dh dh̄, and
evaluate them using Bessel function integrals (see section 2.2 of [36]) to arrive at the result

A	
1-loop(z,z̄)≈ π

2N
4

∞∫
−∞

dν1dν2dνχj(ν1)+j(ν2)−1(ν)χj(ν1)+j(ν2)−1(−ν)σ2−j(ν1)−j(ν2)Ωiν(ρ)

×
[
iπγ̂(2)(ν1,ν2,ν)−π

2

2 γ̂(1)(ν1)γ̂(1)(ν2)Φ(ν1,ν2,ν)+δ̂P
(2)

(ν1,ν2,ν) (5.18)

+ iπ

2

(
γ̂(1)(ν1)δ̂P

(1)
(ν2)+γ̂(1)(ν2)δ̂P

(1)
(ν1)

)
Φ(ν1,ν2,ν)+δ̂P

(56)
(ν1,ν2,ν)

]
.

Comparing the real parts of the coefficient of χ(ν)χ(−ν)σ2−j(ν1)−j(ν2)Ωiν(ρ) in the inte-
grands of (5.15) and (5.18), and using

1 + e−iπ(j(ν1)+j(ν2)−1)

1− e−2πi(j(ν1)+j(ν2)−1) = 1
2 + i

2 tan
(
π

2
(
j(ν1) + j(ν2)

))
, (5.19)

we conclude that

δ̂P
(2)

(ν1, ν2; ν) + δ̂P
(56)

(ν1, ν2; ν) = −1
2

[
π2
(
V (ν1, ν2, ν)2 − 1

)
γ̂(1)(ν1) γ̂(1)(ν2) (5.20)

+ V (ν1, ν2, ν)2 δ̂P
(1)

(ν1) δ̂P
(1)

(ν2)
]
Φ(ν1, ν2, ν) .

This is the general result for fixed ∆gap that extracts OPE data from the AdS vertex
function. Let us now take the large ∆gap limit to make contact with [36]. In this limit,
V (ν1, ν2, ν)2 = 1 and δ̂P

(1)
, δ̂P

(56)
are suppressed with respect to γ̂(1). Therefore δP (2)

h,h̄
= 0,

as was obtained in [36].
Similarly, comparing the imaginary parts we have

γ̂(2)(ν1,ν2;ν) =−1
2

[(
γ̂(1)(ν1)δ̂P

(1)
(ν2)+ δ̂P

(1)
(ν1)γ̂(1)(ν2)

)
+π tan

(
π

2 (j(ν1)+j(ν2))
)

×V (ν1,ν2,ν)2
(
γ̂(1)(ν1)γ̂(1)(ν2)+ 1

π2 δ̂P
(1)

(ν1)δ̂P
(1)

(ν2)
)]

Φ(ν1,ν2,ν) . (5.21)
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The term δ̂P
(1)

(ν1) δ̂P
(1)

(ν2) is suppressed by ∆−4
gap with respect to the other terms. At

leading order in ∆gap, we can discard this term and set V (ν1, ν2, ν)2 = 1. We can then
use (5.7) to simplify the expression to,

γ̂(2)(ν1, ν2; ν) = −1
2π tan

(1
2πj(ν1)

)
tan

(1
2πj(ν2)

)
tan

(1
2π(j(ν1) + j(ν2))

)
× γ̂(1)(ν1)γ̂(1)(ν2)Φ(ν1, ν2, ν) .

(5.22)

This is the same result as obtained in [36] for γ̂(2)(ν1, ν2; ν). More generally, knowledge of
the vertex function V (ν1, ν2, ν)2 and of the 〈O1O3[O5O6]〉 OPE coefficients gives additional
information about the one-loop CFT data of the [O1O3] double-trace operators. It would
be interesting to analyze these equations order by order in the 1/∆2

gap expansion.

6 Flat space limit

Having fixed the general form of the impact parameter representation of the one-loop
correlator from first principles in section 4, we now want to fix part of the dynamical data
by taking the flat space limit, which relates it to the known flat space amplitudes. The
prescription to achieve this was discovered in [31], where it was applied to scalar tree-level
amplitudes. This limit is taken by sending the AdS radius R to infinity while scaling the
relevant quantities in order to match them to flat space quantities in a sensible way. The
dimensionless quantities S and L are sent to dimensionless combinations of R with the flat
space center of mass energy s and impact parameter b as

S = R2s

4 , L = b

R
. (6.1)

Note that L is the AdS impact parameter, as it describes the geodesic distance on Hd−1
between the impact points in transverse space. If we impose the identification of Casimir
eigenvalues

∆(∆− d) = R2m2 , (6.2)

for the states on the leading Regge trajectory and take this equation off-shell, it becomes

ν2 +
(
d

2

)2
= R2q2 , (6.3)

so for large R we further impose
ν2 = R2q2 . (6.4)

Our expressions in AdS are integrals in ν, while in flat space we have vector integrals in
q, where we recall that q is a vector in the transverse space RD−2. In order to compare
the expressions, it is instructive to do the flat space angular integrals and keep only the
integral over the modulus |q|. In this way, the exponential is replaced by the harmonic
function ωq(b) according to

∫
RD−2

dq

(2π)D−2 e
ib·q = 2

∞∫
0

d|q|ωq(b) , (6.5)
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so that [56]

ωq(b) = q

∫
RD−2

dp

(2π)D−2 e
ib·p δ(p2 − q2) = 1

2(2π)
D−2

2

|q|
D−2

2

|b|
D−4

2
JD−4

2
(|q||b|) , (6.6)

where J denotes the Bessel J-function and we recall that ωq(b) only depends on the modulus
of the vectors q and b. One can check that the flat space limit of the Hd−1 harmonic
function (4.46) yields the flat space harmonic function

R3−DΩiν(L)→ ωq(b) , ν ≥ 0 . (6.7)

For even d this can be checked directly, while for general d it is convenient to use an
integral representation for the hypergeometric function which under the limit is related to
an integral representation for the Bessel function [57]. For even d the relation is also valid
for ν < 0.

In the context of string theory we further have the dimensionless coupling λ which is
expressed in terms of α′ and R as

√
λ = R2

α′
, (6.8)

meaning we can also express S as

S =
√
λα′s

4 . (6.9)

To summarize, the flat space limit is taken by sending the AdS radius R to infinity while
replacing

S =
√
λα′s

4 , L = b

R
, ν2 = R2q2, ν2

1 = R2q2
1, ν2

2 = R2q2
2,
√
λ = R2

α′
, (6.10)

and impact parameter representations can be compared by using (6.7). We can also use
these relations to relate ∆gap to λ taking as reference a string state of mass m2 = 4/α′,
therefore

∆2
gap = 4R2

α′
= 4
√
λ . (6.11)

6.1 Matching in impact parameter space

Let us now see what we can learn when we apply the flat space limit to the impact parameter
representations studied in section 4. We begin with the tree-level correlator of four scalars
for which the limit was originally imposed in [31]. The flat space limit of the AdS result
B in (4.55) should match the flat space impact parameter representation iδ from (3.15) of
the amplitude (3.8)11

Btree(p, p̄) = 4πi
∞∫
0

dν β(ν)Sj(ν)−1 Ωiν(L) → iδtree(s, b) = 2i
∞∫
0

d|q|β(t)
(
α′s

4

)j(t)−1
ωq(b) .

(6.12)
11The relative factor i in B → iδ can be determined by matching the exponents in the eikonal approxi-

mation for λ→∞.
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Here and below we do not always write the overall factors of R as in (6.7), but they do
work out correctly when including the expansion parameters from (1.3) and (3.1) and using
the relation

1
N2 = 1

RD−2
2GN
π

. (6.13)

From (6.7) and (6.9) we see that this does indeed match, provided the flat space limit of
the AdS Regge trajectory and spectral function are sent to the flat space Regge trajectory
and Pomeron propagator12

j(ν) → j(t) , λ
j(ν)−1

2 β(ν) → 1
2π β(t) . (6.14)

The power of λ in the relation of β’s is necessary to cancel the powers of λ in the relation
between S and α′s. It is compatible with the expectation that each derivative in the
couplings of the spin J operators forming the Pomeron comes at least with a power of λ−

1
4 .

Next we consider the optical theorem in AdS (4.36) and flat space (3.16)

− ReB1-loop = 1
2
∑

∆5,ρ5
∆6,ρ6

B3652 ∗
tree B1564

tree → Im δ1-loop(b) = 1
2

∑
m5,ρ5,ε5
m6,ρ6,ε6

δ3652 ∗
tree δ1564

tree . (6.15)

The similarity is striking, however we have to make sure the sums and summands are in
fact related by the flat space limit. The additional sums over polarizations can be evaluated
using completeness relations such as (3.22), which evaluate to contractions just as in the
AdS equation. We also have to make sure that the labels ρ on both sides are irreducible
representations of the same group SO(d). This is indeed the case for massive particles if
we consider the flat space limit AdSd+1 → R1,d, which has the massive Little group SO(d).

The next step is to match the tree-level correlators (4.60) and amplitudes (3.8) that
involve spinning particles 5 and 6. In this case the flat space limit gives

B(∆5,ρ5),(∆6,ρ6)
mn (p, p̄) = 4πi

∞∫
0

dν Sj(ν)−1D
(∆5,ρ5),(∆6,ρ6)
mn (ν)Ωiν(L) → (6.16)

→ iδ
(m5,ρ5),(m6,ρ6)
mn (s,b) = i

∫
RD−2

dq

(2π)D−2

(
α′s

4

)j(t)−1
A12P
m5,ρ5,m(q,v)β(t)A34P

m6,ρ6,n(q,v)eiq·b

= 2i
∞∫
0

d|q|
(
α′s

4

)j(t)−1
A12P
m5,ρ5,m(−i∂b,v)β(t)A34P

m6,ρ6,n(−i∂b,v)ωq(b) ,

where the derivative ∂b is with respect to the components of the transverse vector b. The
difference compared to (6.12) is that in AdS we have differential operators that generate
tensor structures, while in flat space the tensor structures are the ones of the on-shell three-
point amplitudes. As discussed in section 3.4, these three-point amplitudes are given in
terms of the Pomeron momentum q and, for massive particles, the longitudinal polarization
vector v, which is transverse to q. We will now study the relation of these two kinds of
tensor structures to the flat space limit.

12j(ν), j(t) and β(ν), β(t) are different functions and not the same function with different arguments.
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We begin with the covariant derivatives and will argue that they become derivatives
in impact parameter in flat space, i.e.

∇mp Ωiν(L) → R∂mb e
ib·q = Riqmeib·q . (6.17)

In order to show this, we will act with two contracted covariant derivatives either on a
single harmonic function or on two different ones, covering all situations that can occur.
Acting on a single harmonic function we obtain, from (4.63) and (6.10),

1√
λ
∇2
p Ωiν1,2(L) → −α′q2

1,2 ωiν1,2(b) . (6.18)

The action of contracted covariant derivatives on two different harmonic functions is cap-
tured by the functions Wk in (4.65), which is given in the flat space limit by the leading
term (4.69)

Wk

(
ν2

1 , ν
2
2 , ν

2)(√
λ
)k →

(
ν2

1 + ν2
2 − ν2

2
√
λ

)k
→

(
α′
q2

1 + q2
2 − q2

2

)k
= (α′)k(−q1 · q2)k , (6.19)

where we used that q = q1 + q2. This implies that the flat space limit of (4.65) is

1(√
λ
)k∇pm1

. . .∇pmkΩiν1(L)∇m1
p . . .∇mkp Ωiν2(L) → (6.20)

→ (−α′)kq1m1 . . . q1mke
ib·q1qm1

2 . . . qmk2 eib·q2 . (6.21)

We conclude that both (6.18) and (6.21) are compatible with (6.17). Apart from the
covariant derivative, tensor structures depend also on the direction p̂, which is normal to
the transverse space Hd−1 and satisfies p̂2 = −1. In flat space the only possible direction
for polarizations that is normal to the transverse space is the unit vector v, hence we have
to require that in the flat space limit

p̂m → ivm . (6.22)

With the identifications (6.17) and (6.22), the matching in (6.16) works provided that
the spectral functions βk5,k6

(∆5,ρ5),(∆6,ρ6)(ν) in (4.61) are such that

λ
j(ν)−1

2 D
(∆5,ρ5),(∆6,ρ6)
mn (ν) Ωiν(L) → 1

2πA
12P
m5,ρ5,m(−i∂b, v)β(t)A34P

m6,ρ6,n(−i∂b, v)ωq(b) .
(6.23)

Using the explicit tensor structures for three-point amplitudes in (3.27), the matching (6.23)
can also be expressed for the spectral function for any given tensor structure

λ
j(ν)−1

2 λ
|ρ5|−k5

4 λ
|ρ6|−k6

4 βk5,k6
(∆5,ρ5),(∆6,ρ6)(ν) → 1

2π a
k5
m5,ρ5(t) ak6

m6,ρ6(t)β(t) . (6.24)

The powers of λ are again compatible with a factor of λ−
1
4 in βk5,k6

(∆5,ρ5),(∆6,ρ6)(ν) for each
derivative in the coupling. Such a scaling is expected from the general arguments of [53, 58].
We have now shown that all tree-level phase shifts appearing in the AdS and flat space
optical theorems can be related by the flat space limit.
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Let us also compare the vertex functions that appear in both AdS and flat space impact
parameter representations of the one-loop amplitudes. The flat space limit of (4.72) is given
by the impact parameter transform of (3.20), i.e.

− ReB1-loop(p, p̄) → Im δ1-loop(s, b) , (6.25)

becomes

2π2
∞∫
−∞

dνdν1dν2 β(ν1)∗β(ν2)V (ν1, ν2, ν)2Sj(ν1)+j(ν2)−2Φ(ν1, ν2, ν) Ωiν(L) →

→ 1
2

∫
RD−2

dqdq1dq2
(2π)2(D−2) β(t1)∗β(t2)V (q1, q2)2

(
α′s

4

)j(t1)+j(t2)−2
δ(q − q1 − q2) eiq·b .

(6.26)

In this case we can use the delta function to write all the other scalar functions in terms
of q2

1, q2
2 and q2, however we need to do the angular integral over the delta function itself.

To this end we can define∫
RD−2

dq1dq2
(2π)D−2 δ(q − q1 − q2) = 4

∞∫
0

d|q1|d|q2|φ(q1, q2, q) . (6.27)

Using this and (6.5), we can compute the angular integrals in∫
RD−2

dq1dq2
(2π)2(D−2) e

ib·(q1+q2) =
∫

RD−2

dq1dq2dq

(2π)2(D−2) δ(q − q1 − q2) eib·q , (6.28)

to find the flat space version of (4.64)

ωq1(b)ωq2(b) = 2
∞∫
0

d|q|φ(q1, q2, q)ωq(b) . (6.29)

Using the explicit expressions for Φ and φ (which can be found for instance in appendix E
of [54]), one can further check that under the flat space limit

R4−DΦ(ν1, ν2, ν) → φ(q1, q2, q) . (6.30)

With this relation is clear that the expressions in (6.26) are indeed related by the flat space
limit provided that the vertex functions are related by

V (ν1, ν2, ν) → V (q1, q2) = V (t1, t2, t) . (6.31)

6.2 Constraining AdS quantities

We saw above that all elements of the impact parameter optical theorems in AdS and flat
space are related by the flat space limit provided that j(ν), β(ν), βk5,k6

(∆5,ρ5),(∆6,ρ6)(ν) and
V
(
ν2

1 , ν
2
2 , ν

2) are given by their flat space counterparts in the limit. In this subsection, we
briefly review how the limit actually constrains these functions. All of these objects depend
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on two dimensionless quantities, the spectral parameters ν and the t’Hooft coupling λ. Let
us discuss this for a generic function f(ν) that is required to satisfy the flat space limit

f(ν, λ) → f(t) . (6.32)

Existence of the gravity limit requires the function to have an expansion in negative powers
of
√
λ of the form

f(ν, λ) =
∞∑
n=0

fn(ν)
λn/2

. (6.33)

In order for the flat space limit (6.10) of the function to be finite, the functions fn(ν) must
have an expansion in large ν with leading power not larger than 2n,

fn(ν) = an,nν
2n + an,n−1ν

2(n−1) + an,n−2ν
2(n−2) + . . . , (6.34)

which ensures finiteness of the limit order by order in the large λ expansion. The flat space
limit of f(ν, λ) is then

f(ν, λ) →
∞∑
n=0

an,n

(
ν2
√
λ

)n
→

∞∑
n=0

an,n(α′q2)n . (6.35)

At every order in 1/
√
λ the leading power of ν survives and is fixed by the flat space limit,

while all the other powers are subleading, and cannot be determined from this condition.
These considerations hold for j(ν), β(ν), βk5,k6

(∆5,ρ5),(∆6,ρ6)(ν) and V (ν1, ν2, ν), fixing part of
these functions. These facts have been explored in detail for the functions j(ν) and β(ν)
in [32, 33].

7 Relating type IIB string theory in AdS and flat space

Let us now apply our general ideas to a concrete example, the scattering of four dilatons in
type IIB superstring theory on AdS5×S5. In the flat space limit this is related to type IIB
superstring theory on 10-dimensional flat space where the kinematics is restricted to the
five dimensions arising from AdS. This happens since both the dilatons and the Pomerons
are R-symmetry singlets, meaning the tidal excitations they couple to also have to be
singlets. As a consequence, the Regge limit does not probe the 10 dimensional nature of
the string scattering process, as we consider only states with the vacuum quantum numbers
associated to the compact manifold S5. For this case the discontinuity of the (finite α′) one-
loop amplitude in the Regge limit was computed in [26] and is precisely of the form (3.20)
with D = 5. The regime of validity of this description was discussed in detail in [26]. All we
need to specify are the four dynamic quantities that we already discussed in the previous
section. For the Regge trajectory and Pomeron propagator we have

j(t) = 2 + α′

2 t , β(t) = 2π2 Γ
(
− α′

4 t
)

Γ
(
1 + α′

4 t
) e− iπα′4 t . (7.1)

– 46 –



J
H
E
P
0
4
(
2
0
2
1
)
0
8
8

As discussed in section 3.3 the vertex function can be obtained from the scattering am-
plitude of two dilatons and two Pomerons. This amplitude was computed in [26] and
reads

A12P1P2(k, q1, q2) = −
Γ(1 + α′q12/2) Γ

(
− α′ k2

4 − α
′q12/2

)
Γ
(
α′ k

2

4
)

2Γ(−α′q12/2) Γ
(
1 + α′q12/2 + α′ k

2

4
)

Γ
(
1− α′ k2

4
) , (7.2)

where q12 = q1 · q2. This amplitude has poles at the masses (m2 = 4n/α′) of the string
states with residues

Res
k2=−4n/α′

A12P1P2(k, q1, q2) =
((−α′q12/2)n

n!

)2
, n = 0, 1, 2, . . . , (7.3)

and the resulting vertex function is given by (3.19)

V (q1, q2) =
∞∑
n=0

((−α′q12/2)n
n!

)2
=

Γ
(
1 + α′ t1+t2−t

2
)

Γ
(
1 + α′ t1+t2−t

4
)2 . (7.4)

Using the reasoning of section 6.2, this immediately fixes the leading terms in ν, νi of the
AdS vertex function at every order in λ

V (ν1, ν2, ν) =
Γ
(
1− ν2

1+ν2
2−ν

2

2
√
λ

)
Γ
(
1− ν2

1+ν2
2−ν2

4
√
λ

)2 + vanishing in flat space limit . (7.5)

Thus, the first two corrections from expanding (7.5) at large λ are

V (ν1, ν2, ν) = 1 +
(
0 ·
(
ν2

1 + ν2
2 − ν2)+ c1,0

) 1√
λ

(7.6)

+
(
π2

96
(
ν2

1 + ν2
2 − ν2

)2
+ c2,1

(
ν2

1 + ν2
2
)

+ c′2,1ν
2 + c2,0

)
1
λ

+ . . . ,

where we also included the constants that are not fixed by the flat space limit. We note
that the constants multiplying the leading power of ν at order

(√
λ
)−n have a uniform

transcendentality of weight n, which can be seen by explicitly expanding (7.5). It would
be interesting to understand the relation of this property with features of maximal tran-
scendentality in N = 4 SYM [59, 60].

Finally, all the spectral functions βk5,k6
(∆5,ρ5),(∆6,ρ6)(ν) of tree-level correlators that con-

tribute to the optical theorem are constrained by the flat space limit. Their flat space
limit (6.24) is parameterized by on-shell three-point amplitudes in flat space. These am-
plitudes are in principle encoded in the result (7.3), which separates the contributions of
particles with different masses, but not the ones of particles in different representations ρ.
The attempt to expand (7.3) into products of three-point amplitudes for different ρ and
tensor structures k using (3.18) shows that this does not fully fix the akm5,ρ5(t) in (3.27)
because the equations are quadratic. However the three-point amplitudes can of course be
computed in string theory, which is what the next subsection is about. We will start with
the 10D open superstring amplitudes of a massless vector, a Pomeron and an open string
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state up to mass level 2 which were computed in [47] by studying string-brane scattering.
These amplitudes have to be squared to obtain closed string amplitudes. Then the irre-
ducible representations of the 10D massive Little group SO(9) have to be branched into
irreducible representations of SO(4) to match with the CFT irreps and account for the fact
that we have five non-compact dimensions.

7.1 Massive tree amplitudes in flat space

Now we will discuss the flat space three-point amplitudes that take part in the process and
that will fix part of the tree-level correlators with external spinning legs in AdS via the flat
space limit. The goal is to derive the three-point amplitudes that appear in the unitarity
cut (7.3) of the four-point amplitude of two dilatons and two Pomerons (7.2). It will be
convenient to consider the more general case of two gravitons instead of dilatons, with
polarizations εµνi = εµi ε

ν
i , and obtain the dilaton amplitudes in the very end by replacing

εµνi with ηµν . By using explicitly transverse three-point amplitudes and the completeness
relation (3.22), we can write tree-level unitarity (3.18) in the form

Res
k2=−4n/α′

A12P1P2(k, q12) =
((−α′q12/2)n

n!

)2
(ε1 · ε2)2 =

∑
ρ,i

A15P1
n,ρ,i,mπ

m,n
ρ A52P2

n,ρ,i,n , (7.7)

where for the massive levels, on which we will mostly focus, ρ is summed over irreducible
representations of SO(4) and i is summed over degenerate states in the same representation.

Our starting point will be the open string three-point amplitudes of a massless vector,
a Pomeron and an arbitrary massive state up to mass level 2 (we give some simpler explicit
examples in appendix A). These amplitudes were computed in [47] by studying string-brane
scattering. Since in flat space there is no interaction between the left- and right-moving
string modes, the closed string amplitudes factorize into products of open string amplitudes.
We can indeed check that the square root of the residues (7.7) matches the expansion in
terms of the open string three-point amplitudes of [47]√

Res
k2=−4n/α′

A12P1P2(k, q12) = (−α′q12/2)n
n! (ε1 · ε2) =

∑
ρL

A15P1
n,ρL,α

πα,γρL
A52P2
n,ρL,γ

. (7.8)

We did this consistency check for the first three mass levels, for which ρL is summed over
the bosonic part (NS sector) of the chiral superstring spectrum in 10 dimensions, given
by [61]

n = 0 : 8 ,

n = 1 : 9 ⊕
9

,

n = 2 : 9 ⊕
9

⊕
9
⊕

9
⊕ 9 .

(7.9)

In order to obtain three-point amplitudes for closed strings in 10D, we need to square (7.8)
and expand again in irreducible representations. The first step is trivial

Res
k2=−4n/α′

A12P1P2(k, q12) =
∑
ρL,ρR

A15P1
n,ρL,α

A15P1
n,ρR,β

πα,γρL
πβ,δρR A52P2

n,ρL,γ
A52P2
n,ρR,δ

, (7.10)
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however expanding this into irreducible representations requires some more work. On an
abstract level this is easily done in terms of the tensor product

ρL ⊗ ρR =
⊕
ρC

ρC , (7.11)

which can be computed explicitly in terms of characters using e.g. the WeylCharacterRing
implementation in SageMath [62]. For example, the closed string spectrum for the first
two mass levels is

n = 0 : 8 ⊗ 8 = 8 ⊕
8
⊕ • , (7.12)

n = 1 :


9 ⊕

9

2

=
9

⊕

9

⊕ 2
9

⊕ 3

9

⊕ 9

⊕
9
⊕ 2

9
⊕

9

⊕

9

⊕ 2
9
⊕ 3

9

⊕ 2 9 ⊕ 2
9
⊕ 2 • .

To use the tensor product in explicit calculations requires considerably more work and
can be done by formulating (7.11) as an equation in terms of projectors to irreducible
representations

πα;γ
ρL

πβ;δ
ρR

=
∑

ρC⊂ρL⊗ρR
pαβρL⊗ρR→ρC ,µπ

µ;ν
ρC
pγδρL⊗ρR→ρC ,ν . (7.13)

The tensors pρL⊗ρR→ρC are constructed from Kronecker deltas and are uniquely determined
by this equation. By inserting (7.13) into (7.10) we find the expansion of the residue

Res
k2=−4n/α′

A12P1P2(k, q12) =
∑

ρL,ρR,ρC

A15P1
n,ρL⊗ρR→ρC ,µπ

µ,ν
ρC
A52P2
n,ρL⊗ρR→ρC ,ν , (7.14)

in terms of the closed string amplitudes

A15P1
n,ρL⊗ρR→ρC ,µ = A15P1

n,ρL,α
A15P1
n,ρR,β

pαβρL⊗ρR→ρC ,µ . (7.15)

The final step is to restrict the indices of the amplitudes to five dimensions and expand
once again into irreducible representations, this times for the massive Little group SO(4).
In terms of representation theory, this is done by using branching rules to expand the SO(9)
representations in terms of irreps of the product SO(4)× SO(5),

ρC =
⊕

(ρ,σ)⊂ρC

(ρ, σ) , (7.16)

where, for massive levels, ρ is an irreducible representation of SO(4) and σ of SO(5). Since
we consider Pomeron exchange, which caries the vacuum quantum numbers, we project
onto the singlets of SO(5)

ρC |•5 =
⊕

(ρ,•)⊂ρC

(ρ, •) . (7.17)
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This step is also abstractly implemented in SageMath. For example, we have

9 =
(

4, •5
)
⊕
(

4, 5

)
⊕
(
•4, 5

)
⊕
(
•4, •5

)
. (7.18)

and after projection to SO(5) singlets

9

∣∣∣
•5

= 4 ⊕ •4 . (7.19)

In this way we find the SO(5) singlets for the closed string spectrum in terms of SO(3) or
SO(4) irreps for the first two levels

n = 0 : 3 ⊕ 3 ⊕ 2 • ,

n = 1 : 4 ⊕
4
⊕ 2

4
⊕ 2 4 ⊕ 4

4
⊕ 8 4

⊕ 5
4
⊕ 10 4 ⊕ 9 • 4 . (7.20)

As for the tensor product, we can rephrase (7.17) as an equation in terms of projectors.
In this case we get an equation for the SO(9) projector with indices restricted to the SO(4)
directions a = 1, . . . , 4

πa;b
ρC

=
∑

ρ⊂ρC |•5

ba
ρC→ρ,m πm;n

ρ bb
ρC→ρ,n , (7.21)

where the tensors bρC→ρ are uniquely determined by this equation and can be expressed in
terms of Kronecker deltas and the SO(4) Levi-Civita symbol. Since we are assuming the
flat space limit kinematics to be restricted to five dimensions, we can simply insert this
into (7.14) and obtain the residue in the anticipated form (7.7)

Res
k2=−4n/α′

A12P1P2(k, q12) =
∑

ρL,ρR,ρC ,ρ

A15P1
n,ρL⊗ρR→ρC→ρ,mπ

m,n
ρ A52P2

n,ρL⊗ρR→ρC→ρ,n , (7.22)

with the 5D closed string amplitudes given by

A15P1
n,ρL⊗ρR→ρC→ρ,m = A15P1

n,ρL⊗ρR→ρC ,ab
a
ρC→ρ,m . (7.23)

7.1.1 Example

Let us now give a specific example of the procedure outlined above. We will consider the
following chain of expansions at mass level 1, starting from the product of two open string
massive spin 2 fields that give rise to a 5D scalar

9 ⊗ 9 → 9 → •4 . (7.24)

In this example we discard the 5D massive spin 2 field that also appears in the projec-
tion (7.19). We alert the reader that whenever we write explicit amplitudes they are neither
appropriately symmetrized nor traceless in order to write them more compactly. All ex-
plicit amplitudes should be understood as objects to be contracted with the projector for
the associated representation.
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We start with the open string amplitude for the state (1, 9) from [47]

A15P1
1,[2]9,α1α2

= −

√
α′

2

(
ε1α1q1α2 + 1

2(q1 · ε1) vα1vα2

)
. (7.25)

Squaring this amplitude produces the following closed string states

9 ⊗ 9 = 9 ⊕
9
⊕

9
⊕

9
⊕ 9 ⊕ • 9 . (7.26)

To construct the relation (7.13) we need the projectors for all the representations in this
list. They can be found in [63, 64], however here we just remind the reader of two of the
most familiar ones

πµ1µ2,ν1ν2
[2]d = 1

2
(
ηµ1ν1ηµ2ν2 + ηµ1ν2ηµ2ν1

)
− 1
d
ηµ1µ2ην1ν2 , π• = 1 , (7.27)

and state that the closed string state 9 comes in (7.13) with the tensor

pα1α2β1β2
[2]9⊗[2]9→[2]9,µ1µ2

=
√

36
91 π

α1α2;γ1γ2
[2]9 πβ1β2;δ1δ2

[2]9 ηγ2δ1ηγ1µ1ηδ1µ2 , (7.28)

where we introduced additional projectors contracted with metrics in order to have the
correct index properties. This determines the following closed string amplitude via (7.15)

A15P1
1,[2]9⊗[2]9→[2]9,µ1µ2

= α′

4
√

91

[(
q1,µ1(ε1,µ2q1 · ε1 + 3q1,µ2)

+ ε1,µ1(q1,µ2q1 · ε1 − 3t1ε1,µ2) + vµ1vµ2(q1 · ε1)2)] . (7.29)

The branching rule for 9 was already considered in (7.19). Using the projectors (7.27)
it is easy to see that we can write explicitly

πa1a2,b1b2
[2]9 = δa1

m1δ
a2
m2π

m1m2,n1n2
[2]4 δb1n1δ

b2
n2 + 5

36 δ
a1a2π•δ

b1b2 , (7.30)

from which we read off

ba1a2
[2]9→[2]4,m1m2

= δa1
m1δ

a2
m2 , ba1a2

[2]9→•4 =
√

5
36 δ

a1a2 . (7.31)

Finally, inserting (7.29) and (7.31) into (7.23) we compute the 5D closed string amplitude

A15P1
1,[2]9⊗[2]9→[2]9→•4 = 1

8

√
5
91α

′
(
(q1 · ε1)2 − 2t1

)
(7.32)

We derive the complete list of such level 1 three-point amplitudes in appendices B and C.

7.2 Constraints on spinning AdS amplitudes

In this section we use the flat-space string amplitudes to constrain the high-energy, tree-
level AdS5 amplitudes with two dilatons and two spinning operators 〈φφO5O6〉. Since the
operators in question are of stringy nature (i.e. the bulk fields have m2 ∼ 4n/α′ for a
very large AdS radius), their dimensions grow with the ’t Hooft coupling (∆ ∼ λ1/4) and
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transform in the SO(4) representations discussed above in the flat space case. This means
that generically O5 and O6 are in bosonic mixed-symmetry representations.

As discussed in section 6.1, the spectral functions that determine the spinning AdS
correlators (4.60) via (4.61) are determined in the flat space limit by the three-point am-
plitudes (3.27)

λ
j(ν)−1

2 λ
|ρ5|−k5

4 λ
|ρ6|−k6

4 βk5,k6
(∆5,ρ5),(∆6,ρ6)(ν) → 1

2π a
k5
m5,ρ5(t) ak6

m6,ρ6(t)β(t) . (7.33)

In other words, the leading term in ν at each order in λ is fixed by the flat space expression
(see section 6.2)

λ
j(ν)−1

2 λ
|ρ5|−k5

4 λ
|ρ6|−k6

4 βk5,k6
(∆5,ρ5),(∆6,ρ6)(ν) = 1

2πa
k5
m5,ρ5(t) ak6

m6,ρ6(t)β(t)
∣∣∣
α′t=− ν2

√
λ

+ . . . , (7.34)

where . . . are terms that vanish in the flat space limit. Let us now use this to study
some specific examples. We begin with the example of section 7.1.1 where we computed an
amplitude involving a graviton, a Pomeron and a particular scalar at mass level 1 in (7.32).
In this result ε1,µ is such that εµν = ε1,µε1,ν parametrizes a general graviton polarization
which must be replaced by the metric εµν → ηµν to obtain the dilaton amplitude

AD5P1
1,[2]9⊗[2]9→[2]9→•4 = a0

4/α′,[2]9⊗[2]9→[2]9→•4(t) = −3
8

√
5
91 α

′t , (7.35)

where we used that (q1 · ε1)2 = −t1 for the dilaton case. Thus, for the AdS correlator of
this particular scalar and three dilatons we have

β0,0
(2λ

1
4 +...,•),(4,•)

(ν) = 3
8

√
5
91

ν2
√
λ
β(ν) + vanishing in the flat space limit . (7.36)

Note that with respect to the case of four dilaton scattering we have an extra power of 1/
√
λ,

so the term of order λ0 is absent, confirming that tidal excitations are suppressed at large λ,
which in turn agrees with the considerations of [36] (we verified this fact for all amplitudes
at level 1). In particular, this is consistent with the large λ suppression of cφ1φ2j(ν) for
non-identical scalars, since our stringy mode is certainly different from the dilaton. Such
a suppression is not a priori obvious from writing a bulk interaction between two different
scalars and a spin J field (to be Sommerfeld-Watson transformed into a Pomeron), which
makes this a non-trivial realization of the bounds derived in [53, 58]. This example is
particularly simple, since there is a unique three-point structure in the case of the scalar.

More generally, we can consider amplitudes with several tensor structures constructed
from va’s and qa’s (equivalently, p̂ and ∇p in AdS). Let us take as a representative example,
the case of the spin 4 operator at level 1. This operator is typically used to define ∆gap and
sits in the leading Regge trajectory. The corresponding graviton-Pomeron-spin 4 amplitude
was worked out in appendices B and C, and reads

Aa1a2a3a4
[2]9⊗[2]9→[4]9→[4]4(ε1) = 1

8α
′(2ε1,a1q1,a2 + va1va2q1 · ε1

)(
2ε1,a3q1,a4 + va3va4q1 · ε1

)
. (7.37)
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We again emphasize that it is understood that the amplitude should be contracted with
πα;β

[4]4 . Furthermore, we are using the simplifying transverse kinematics discussed above.
This means that upon doing the dilaton replacement, we have

Aa1a2a3a4
[2]9⊗[2]9→[4]9→[4]4 = α′

8
(
− t1va1va2va3va4 + 4va1va2q1,a3q1,a4

)
, (7.38)

where we used the symmetry of the indices and note that transverse kinematics ensures that
the term proportional to ε1,a1ε1,a2 gets mapped to a transverse metric which is annihilated
by the projector to [4]4. In this case we can directly use (6.23) to match both tensor
structures at once

D(2λ
1
4 +...,[4]4),(4,•)

a1a2a3a4 (ν) = β(ν)
8
√
λ

(
ν2p̂a1 p̂a2 p̂a3 p̂a4 + 4p̂a1 p̂a2∇p a3∇p a4

)
+ vanishing in flat space limit .

(7.39)

We again note that these corrections are suppressed at large λ.

8 Conclusions

In this work, we derived a perturbative CFT optical theorem which computes the dDisc of a
correlator in the 1/N expansion in terms of single discontinuities of lower order correlators.
Notably, this allows the determination of double-trace contributions to a given one-loop
holographic correlator, even when the intermediate fields have spin, which makes them
much harder to handle using unitarity formulas in terms of the CFT data. This also
clarifies the underlying CFT principles behind cutting formulas for AdS Witten diagrams,
which so far used bulk quantities [18, 19].

Using the perturbative CFT optical theorem we fixed the form of the AdS one-loop
four-point scattering amplitude in the high-energy limit, accounting for the physical effect
of tidal excitations. This corresponds to box Witten diagrams with two-Pomeron exchange
and general string fields as intermediate states. To do this, we transformed the optical
theorem to CFT impact parameter space, in which the loop level phase shift is obtained as
a contraction of tree-level phase shifts. Using the general structure of spinning correlators
in the s-channel Regge limit, we rewrote all the tidal excitations in terms of a single scalar
function, the AdS vertex function.

For the case of N = 4 SYM, dual to type IIB strings, we fixed part of the answer by
relating our expression to the flat space results of [25–27] for high energy string scattering,
requiring consistency with the flat space limit in impact parameter space. This procedure
fixes part of the AdS vertex function and therefore also part of the CFT correlation function
at one-loop in the Regge limit. Additionally, interpreting the previous result in terms of
unitarity, we used the flat-space behavior to constrain the spectral function for certain
spinning CFT correlators at tree level in the Regge limit.

There are several open directions and applications of this work. First, we emphasize
that the CFT optical theorem is quite general and does not rely on AdS ingredients.
Moreover, it works directly at the level of correlators instead of having to extract the CFT
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data, which is very difficult to resum into correlators. It would be interesting to test and use
this formula for more general holographic correlators and, since the expansion parameter
does not necessarily need to be 1/N , in weakly coupled CFTs such as φ4 theory at the
Wilson-Fisher fixed point in 4− ε dimensions.

Another playground to apply our gluing formula is N = 4 SYM at weak t’Hooft
coupling in the Regge limit. One could try to derive the order 1/N4 correlator explicitly
at leading order in λ, using the techniques introduced in [33]. The corresponding double
discontinuity should be the square of order 1/N2 correlators with impact factors that
include the intermediate states.

In the Regge limit there are kinematical conditions in the CFT optical theorem that
simplified the integrations over Lorentzian configurations. An interesting generalization
would be to systematically study kinematic corrections to the Regge limit. In fact, in the
recent work [44] the authors derived a Regge expansion for the correlator valid for any
boost. It would be interesting to see how to incorporate this into our analysis, both in
a general structural way, but also potentially to impose specific constraints from the flat
space limit in a more general kinematic setup. More generally, it would be interesting
to understand the Regge limit integrations in terms of light-ray operators [3], and to use
the more general Lorentzian machinery of [2, 3] to write an intrinsically Lorentzian gluing
formula in general kinematics.

A possible extension of this work is to consider a higher number of bulk loops. This
was analyzed in the large ∆gap limit in [36]. Let us give a few concrete ideas for the stringy
generalization of that analysis. The leading contribution in the Regge limit at k−1 loops is
expected to be k-Pomeron exchange, related to a k-fold product of tree-level phase shifts.
By repeatedly using (4.64) one can define a generalization of the function Φ for such a
product, so we expect that the contribution of intermediate states can again be expressed
by a vertex function13

−ReBk−1(S,L) =
∞∫
−∞

dν

(
k∏

n=1
dνn β

(∗)(νn)
)
V (ν1, . . . , νk, ν)2 S

∑
m
j(νm)−k

× Φ(ν1, . . . , νk, ν) Ωiν(L) ,

(8.1)

where the product of β(νn) must be real, which means that the answer is slightly different
depending on whether the number of loops is even or odd [36]. In order to find the flat
space limit of this (k − 1)-loop vertex function we would need to consider the flat space
result for higher loops, which is known at least in integral form [25–27]

Vk(q1, . . . , qk) =
∫ k∏

i=1

dσi
2π

∏
1≤j<l≤k

|eiσj − eiσl |α′ql·qj . (8.2)

Note that the symmetry of the integrand is such that only k − 1 integrals are non-trivial.

13This corresponds to eikonalization in the operator sense of [26] where the phase shift is an operator in
the string Hilbert space, with matrix elements between all possible string states.
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For example, the one-loop case just gives

V2(q1, q2) =
∫
dσ1dσ2
(2π)2 |e

iσ1 − eiσ2 |α′q12 =
∫
dσ

2π |1− e
iσ |α′q12 =

Γ
(
1 + α′ t1+t2−t

2
)

Γ
(
1 + α′ t1+t2−t

4
)2 , (8.3)

recovering (7.4).
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A Additional examples of string amplitudes

In this appendix we provide some additional examples and comments on the chiral and
closed string amplitudes.

A.1 Chiral amplitudes

In the chiral case it is trivial to reproduce level 0. Here we have only the massless particles
with residue√

Res
k2=0

A12P1P2(k, q12) = εµ1A
15P1
µα πα;β

[1]8A
52P2
βν εν2 = εµ1ηµαη

αβηβνε
ν
2 = ε1 · ε2 , (A.1)

where we have used A15P1
µα = ηµα and πα;β

[1]8 = ηαβ . At higher levels we will have non-trivial
three-point functions. It will be convenient to absorb the external polarization into the
amplitude

εµ1A
15P1
n, µ,ρ5,ν ≡ A

15P1
n,ρ5,ν , (A.2)

to be more compact in writing the amplitudes (we are using the integer n to label the mass
level of the state).

From the spectrum described above, we will have two amplitudes at level 1 which are
A15P1

1,[1,1,1]9,α and A15P1
1,[2]9,α.

Here we will keep in mind the Young diagrams explained above, along with the index
symmetrization that comes with them, packaged in our boldface multi-index notation.
The explicit level 1 three point amplitudes in the IIB superstring are

A15P1
1,[1,1,1]9,α =

√
6

m1
ε1α1q1α2vα3 , A

15P1
1,[2]9,α = −

√
α′

2

(
ε1α1q1α2 + 1

2(q1 · ε1)vα1vα2

)
, (A.3)
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with m1 = 2/
√
α′ being the mass at level 1, and q1 is the transverse momentum carried

by the Pomeron P1 (similarly for q2 and the Pomeron P2). All the relative factors between
the different tensor structures and the overall normalization are fixed by computing the
three-point amplitudes with the correctly normalized vertex operators for the excited NS
states in IIB super string theory [47]. We can now contract the three-point amplitudes on
each side using the projector for the appropriate representation and check the residue√

Res
k2=−4/α′

A12P1P2(k, q12) = A15P1
1,α πα;β

[1,1,1]9A
52P1
1,β +A15P2

1,α πα;β
[2]9A

52P2
1,β

= α′

2 (−q1 · q2)(ε1 · ε2),
(A.4)

where we refrained from writing the representation labels in the amplitudes since they are
contracted with a projector with the appropriate label. This matches what we extracted
from Aα1α2(q12), or equivalently from the vertex function. We can continue this procedure
to the second level, where mixed symmetry tensors appear for the first time. For example,
the [2, 1, 1]9 tensor has the amplitude

A15P1
2,[2,1,1]9,α =

√
3
8

√
α′

2

( 4
m2

q1α2 + 2vα2

)
ε1α1q1α3vα4 , (A.5)

where m2 =
√

8/α′ is the mass at level 2. It is important to emphasize that the level 2
amplitude contains a term with more powers of α′ than any of the level 1 amplitudes. This
would lead to further suppression in 1/

√
λ in the AdS theory.14

The remaining amplitudes can be found in section 5 of [47]. For our purposes it is just
important to know that the amplitudes satisfy

√
Res

k2=−8/α′
A12P1P2(k, q12) =

∑
ρ∈S

A15P1
2,ρ,απ

α;β
ρ A52P2

2,ρ,β =
(−α′

2 q1 · q2)2

2! (ε1 · ε2) ,

S = {[3]9 , [2, 1, 1]9 , [2, 1]9 , [1, 1]9 , [1]9} ,

(A.6)

which we explicitly checked. More generally, we can conclude that the square root of the
residue at mass level n of A12P1P2(k, q12) can be recovered by unitarity if we account for
all the covariant SO(9) representations corresponding to the massive NS states. This gives
a microscopic interpretation for the vertex function at a given mass level. As already
mentioned, summing over all these mass levels reconstructs the full vertex function.

A.2 Closed string amplitudes

Here we consider the simple but instructive level 0 case for the closed string amplitudes,
where the little group is SO(8). The square of the residue reads

A15P1
L1,αA

15P1
R1,β

(
πα;γ

[1]8π
β;δ
[1]8

)
A52P2
L1,γA

52P2
R1δ (A.7)

=
∑

ρC=[2]8,[1,1]8,•8

A15P1
L1,αA

15P1
R1,β(pαβ[1]8⊗[1]8→ρC ,µ1µ2

πµ1µ2;ν1ν2
ρC

pγδ[1]8⊗[1]8→ρC ,ν1ν2
)A52P2

L1,γA
52P2
R1δ = (ε1 ·ε2)2 ,

14Clearly, states with higher spin, which can only appear at higher levels, can have higher powers of α′

leading to a spin-dependent suppression of couplings, as is expected from the general arguments of [53, 58].
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where we used the group theoretical tensor product identity for projectors

πα;γ
[1]8π

β;δ
[1]8 =

∑
ρC=[2]8,[1,1]8,•8

pαβ[1]8⊗[1]8→ρC ,µ1µ2
πµ1µ2;ν1ν2
ρC

pγδ[1]8⊗[1]8→ρC ,ν1ν2
. (A.8)

We can solve this equation for the tensors p by contracting with polarization vectors for
the left and right modes on both sides of the projector (zL, zR and z̄L, z̄R) and equating
the polynomials in scalar products of z’s. In practice we will always use this procedure, or
a similar one where we contract with amplitudes to fix coefficients. In this case it is trivial
to directly check that

πα;γ
[1]8π

β;δ
[1]8 = ηαγηβδ ≡ παβ;γδ

[2]8 + παβ;γδ
[1,1]8 + 1

8η
αβηγδ (A.9)

=
(1

2(ηαγηβδ + ηαδηβγ)− 1
8η

αβηγδ
)

+ 1
2(ηαγηβδ − ηαδηβγ) + 1

8(ηαβηγδ) ,

where, obviously pαβ[1]8⊗[1]8→[2]8,µ1µ2
= δαµ1δ

β
µ2 , pαβ[1]8⊗[1]8→[1,1]8,µ1µ2

= δαµ1δ
β
µ2 and

pαβ[1]8⊗[1]8→•8 =
√

1
8η

αβ extracts traces, thereby projecting to a singlet state.

B Tensor products for projectors

In this appendix we explain how to realize the tensor product of open string states into
closed string states in terms of the corresponding projectors/tensors. We will consider mass
level n = 1. The chiral spectrum at this level is

n = 1 : 9 ⊕
9

. (B.1)

We square the irreps using the tensor product as in the main text and analyze the de-
composition term by term. For example, taking ρL = ρR = [2]9 corresponds to the tensor
product

9 ⊗ 9 = 9 ⊕
9
⊕

9
⊕ 9 ⊕

9
⊕ • 9 , (B.2)

which we want to write in terms of SO(9) tensors as

πα;γ
[2]9 π

β;δ
[2]9 =

∑
ρC∈S

pαβ[2]9⊗[2]9→ρC ,µπ
µ;ν
ρC
pγδ[2]9⊗[2]9→ρC ,ν ,

S = {[4]9 , [3, 1]9 , [2, 2]9 , [2]9 , [1, 1]9 , •9} .
(B.3)

It will be useful to manifestly symmetrize the α and β indices of the tensors p, in order to
write down these tensors more compactly. Therefore, we will use

pαβρL⊗ρR→ρC ,µ ≡ π
α
ρL;α′π

β
ρR;β′ p̃

α′β′

ρL⊗ρR→ρC ,µ, (B.4)
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and we will present the simpler trial tensors p̃ for each case. In this case ρL = ρR = [2]9
and we used the trial tensors15

p̃α1α2β1β2
[2]9⊗[2]9→[4]9,µ1µ2µ3µ4

= δα1
µ1 δ

α2
µ2 δ

β1
µ3δ

β2
µ4 ≡ δ

αβ
µ , p̃αβ[2]9⊗[2]9→[3,1]9,µ = δαβµ , (B.5)

p̃αβ[2]9⊗[2]9→[2,2]9,µ =
√

3δαβµ , p̃α1α2β1β2
[2]9⊗[2]9→[2]9,µ1µ2

=
√

36
91δ

α1
µ1 δ

β2
µ2η

α2β1 ,

p̃α1α2β1β2
[2]9⊗[2]9→[1,1]9,µ1µ2

=
√

4
11δ

α1
µ1 δ

β2
µ2η

α2β1 , p̃α1α2β1β2
[2]9⊗[2]9→•9 =

√
1
44η

α1β1ηα2β2 .

The remaining tensor products have some additional subtleties. Taking the cross term in
the tensor product

9 ⊗
9

=
9

⊕
9
⊕

9

⊕
9

, (B.6)

we note that there is a 4 row tensor appearing. When contracted with the amplitudes, this
contribution will vanish, because we have only 3 independent vectors. However, from the
point of view of the projector equation, we must still have

πα;γ
[2]9 π

β;δ
[1,1,1]9 =

∑
ρC∈S′

pαβ[2]9⊗[1,1,1]9→ρC ,µπ
µ;ν
ρC
pγδ[2]9⊗[1,1,1]9→ρC ,ν ,

S′ = {[3, 1, 1]9 , [1, 1, 1]9 , [2, 1]9 , [2, 1, 1, 1]9} .
(B.7)

with a non-vanishing pαβ[2]9⊗[1,1,1]9→[2,1,1,1]9,µ. However, by contracting directly with the
amplitudes Aα[2]9A

β
[1,1,1]9A

γ
[2]9A

δ
[1,1,1]9 we automatically eliminate the contribution of this

tensor (this also avoids the computation of a complicated 4 row projector). With this in
mind, we use again (B.4), with the trial projectors

p̃αβ[2]9⊗[1,1,1]9→[3,1,1],µ =
√

5
4δ

α1
µ1 δ

α2
µ2 δ

β1
µ3δ

β2
µ4δ

β3
µ5 ≡

√
5
4δ
αβ
µ ,

p̃αβ[2]9⊗[1,1,1]9→[1,1,1],µ =
√

585
352η

α2β1δα1
µ1 δ

β2
µ2δ

β3
µ3 , p̃

αβ
[2]9⊗[1,1,1]9→[2,1],µ = ηα2β1δα1

µ1 δ
β2
µ2δ

β3
µ3 .

(B.8)

With these tensors and setting pαβ[2]9⊗[1,1,1]9=[2,1,1,1]9,µ → 0, which suffices for our purposes,
we have that the identity (B.7) holds, but only when inserted between the amplitudes.

The remaining tensor product

9

⊗
9

=

9

⊕

9

⊕

9

⊕
9

⊕
9

⊕
9
⊕

9

⊕ 9 ⊕
9
⊕ • 9 ,

(B.9)

15For irreps with the same number of indices as the tensor product we will always take p̃αβ
µ ∝ δαβ

µ .
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can be dealt with similarly, by contracting with only 3 independent polarizations instead of
six, eliminating the contributions of the complicated 4 row tensors. The only non-vanishing
contributions to projectors turn out to be

πα;γ
[1,1,1]9π

β;δ
[1,1,1]9 =

∑
ρC∈S′′

pαβ[1,1,1]9⊗[1,1,1]9→ρC ,µπ
µ;ν
ρC
pγδ[1,1,1]9⊗[1,1,1]9→ρC ,ν ,

S′′ = {[2, 2, 2]9 , [2, 2]9 , [2]9 , •9} .
(B.10)

where we used (B.4) and the trial projectors

p̃αβ[1,1,1]9⊗[1,1,1]9→[2,2,2]9,µ =
√

8δα1
µ1 δ

α2
µ2 δ

α3
µ3 δ

β1
µ4δ

β2
µ5δ

β3
µ6 ≡

√
8δαβµ ,

p̃αβ[1,1,1]9⊗[1,1,1]9→[2,2]9,µ =
√

12
5 η

α1β1δα2
µ1 δ

β3
µ2δ

α3
µ3 δ

β2
µ4 ,

p̃αβ[1,1,1]9⊗[1,1,1]9→[2]9,µ =
√

3
7η

α1β1ηα2β3δα3
µ1 δ

β2
µ2 ,

p̃αβ[1,1,1]9⊗[1,1,1]9→•9 =
√

1
84η

α1β1ηα2β2ηα3β3 ,

(B.11)

where the unusual index ordering is to ensure that the resulting tensor doesn’t vanish when
we act with π[1,1,1]9 on the trial projectors p̃. This turns (B.10) into an identity which holds
for two identical [1, 1, 1]9 tensors, as will be the case for our amplitudes.

C Branching relations for projectors

In this appendix we provide a detailed account of all the branching relations for closed
string state projectors utilized in section 7.1. Let us start by recalling the SO(9) closed
string states at level 1


9 ⊕

9

2

=
9

⊕

9

⊕ 2
9

⊕ 3

9

⊕ 9 ⊕
9

⊕ 2
9
⊕

9

⊕

9

⊕ 2
9
⊕ 3

9

⊕ 2 9 ⊕ 2
9
⊕ 2 • . (C.1)

We recall that states with more than 3 columns will not contribute as we only have 3
different vectors to anti-symmetrize. We are going to perform the branching

SO(9) → SO(4)× SO(5)|• , (C.2)

where we denote the projection to singlets of SO(5) by |•. Note that certain representations
can naturally be restricted to SO(4) by simply taking the 5d subset of 10d indices. It is
obvious that

9
→

4
, • 9 → • 4 . (C.3)
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Additionally, the projector for these representations is identical for SO(9) and SO(4) (up
to restriction of the indices α→ a , β → b , µ→ m, . . . )

πa1a2;b1b2
[1,1]9 = πa1a2;b1b2

[1,1]4 = 1
2
(
ηa1b1ηa2b2 − ηa1b2ηa2b1

)
. (C.4)

Other representations admit a direct restriction, but can also give additional irreps, by
the creation of SO(5) singlets, through the contraction of indices with legs on the compact
manifold. For example the spin 2 states branch as

9 → 4 ⊕ • 4 . (C.5)

The spin 2 on the r.h.s. is interpreted as the restriction of indices to the SO(4) and the
singlet as a trace over the compact space indices. In terms of projectors the statement is
simply

πa1a2;b1b2
[2]9 = πa1a2;b1b2

[2]4 + 5
36η

a1a2ηb1b2 . (C.6)

Similarly, for the spin 4 case

9 → 4 ⊕ 4 ⊕ • 4, (C.7)

and the projector equation is

πa;b
[4]9 =

∑
ρ=[4]4,[2]4,•4

ba
[4]9→ρ,m πm;n

ρ bb
[4]9→ρ,n . (C.8)

It will be again convenient to manifestly symmetrize the tensors, in order to present them
more compactly. We define

ba
ρC→ρ,m ≡ π

a
ρC ,a′ b̃

a′
ρC→ρ,m , (C.9)

and then present a list of the simpler b̃. In this case we have

b̃a1a2a3a4
[4]9→[4]4,m1m2m3m4

= δa1
m1δ

a2
m2δ

a3
m3δ

a4
m4 ≡ δ

a
m

b̃a1a2a3a4
[4]9→[2]4,m1m2

=
√

39
20δ

a1
m1δ

a2
m2η

a3a4 , b̃a1a2a3a4
[4]9→•4 =

√
143
280η

a1a2ηa3a4 .
(C.10)

The fact that the direct restriction of the irrep [4]9 → [4]4 comes with coefficient 1 is a
non-trivial consistency check of the previous procedure.

There are other irreps that don’t admit a direct restriction, because they have more
than two columns (SO(4) Young tableaux have at most two columns, and traces can vanish
by antisymmetry). For this we need to use the SO(4) Levi-Civita tensor. We will simply
write it as εa1a2a3a4 . The simplest case is the 3-form

9

→ 4 , (C.11)

and the corresponding projector equation is

πa;b
[1,1,1]9 = 1

6ε
a1a2a3

mπ
m;n
[1]4 ε

b1b2b3
n = 4πam;bn

[1,1,1,1]4 π[1]4,m;n , (C.12)
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From the first equation we can read off

ba1a2a3
[1,1,1]9→[1]4,m =

√
1
6ε

a1a2a3
m . (C.13)

For the second equality in (C.12) we used the standard identity

εa1a2a3a4εb1b2b3b4 = 4!πa;b
[1,1,1,1]4 . (C.14)

This is convenient to square the three-point amplitudes when computing the residue of the
four-point function A12P1P2 . Using trace subtractions and products of epsilon tensors we
can now derive branching identities for all the relevant irreps. Let us list the remaining
identities, where we write the trace subtractions and the Levi-Civita tensors using the trial
projectors b̃, but then appropriately symmetrize them through (C.9)

9

→ 4 ⊕
4
,

b̃a1a2a3a4
[2,1,1]9→[2]4,m1m2

=
√

6
4!ε

a1a3a4
m1δ

a2
m2 , b̃

a1a2a3a4
[2,1,1]9→[1,1]4,m1m2

=
√

42
4!5ε

a1a3a4
m1δ

a2
m2 ,

9
→

4
⊕ 4 , (C.15)

b̃a
[2,1]9→[2,1]4,m = δa

m , b̃a1a2a3
[2,1]9→[1]4,m =

√
16
5 δ

a1
m1η

a2a3 ,

9

→ 4 ⊕
4
⊕ 4 ,

b̃a
[3,1,1]9→[3]4,m =

√
36
4!5ε

a1a4a5
m1δ

a2
m2δ

a3
m3 , b̃

a
[3,1,1]9→[2,1]4,m =

√
1152
4!25 ε

a1a4a5
m1δ

a2
m2δ

a3
m3 ,

b̃a1a2a3a4a5
[3,1,1]9→[1]4,m =

√
22
4!5ε

a1a4a5
mη

a2a3 ,

9
→

4
⊕

4
⊕ 4 , (C.16)

b̃a
[3,1]9→[3,1]4,m = δa

m, b̃
a
[3,1]9→[1,1]4,m =

√
11
10δ

a1
m1η

a2a3δa4
m2 , b̃

a
[3,1]9→[2]4,m =

√
27
10δ

a1
m1η

a2a4δa3
m2 ,

9
→

4
⊕ 4 ⊕ •4 ,

b̃a
[2,2]9→[2,2]4,m = δa

m , b̃a
[2,2]9→[2]4,m =

√
42
5 δ

a1
m1η

a2a3δa4
m2 , b̃

a
[2,2]9→•4 =

√
7
5η

a1a4ηa2a3 ,

9

→ 4 ⊕ •4 ,

b̃a
[2,2,2]9→[2]4,m1m2

=
√

48
4! εa1a5a3

m1ε
a4a2a6

m2 , b̃
a
[2,2,2]9→•4 =

√
28

4! εa1a5a3
mε

a4a2a6m .

Note that for the last diagram, which has more than 2 boxes in both columns, we are forced
to use two pairs of epsilon tensors. Tensors with more than three rows aren’t allowed by
the 10d kinematics, but even if they were, their branchings do not contain singlets of SO(5)
so we can simply discard them.
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C.1 All 5d closed string amplitudes

Let us first write down in generality the 5d amplitudes using the relations derived in the
main text. We have

A15P1
n,ρL⊗ρR→ρC→ρ,m = A15P1

ρL,α
A15P1
ρR,β

pαβρL⊗ρR→ρC ,ab
a
ρC→ρ,m . (C.17)

With all the group theory identities established, we can enumerate all the amplitudes used
in the main text to reproduce the residue at the cut with mass level 1. However, we again
emphasize that we have not explicitly symmetrized the amplitudes by contracting with the
respective projector, in order to maintain some compactness of the tables below. Namely,
all amplitudes are to be contracted with the projector to the SO(4) irrep, and furthermore,
amplitudes where rank(ρ) = rank(ρL) + rank(ρR) are also not explicitly symmetrized with
respect to ρL and ρR as in equation (B.4). Additionally, for amplitudes where the b tensors
contain a Levi-Civita symbol, we write the square of the amplitude(

AρL⊗ρR→ρC→ρm
)2 ≡ AρL⊗ρR→ρC→ρm πm;n

ρ AρL⊗ρR→ρC→ρn , (C.18)

since the amplitude itself cannot be written nicely in terms of vα, qα, εα. With these
caveats in mind, we list the amplitudes starting by the ones with the most indices

4

A[2]9⊗[2]9→[4]9→[4]4
m1m2m3m4 = 1

8α
′ (2ε1,m1q1,m2 +vm1vm2q1 ·ε1)

×(2ε1,m3q1,m4 +vm3vm4q1 ·ε1) ,

2
4

A[2]9⊗[2]9→[2,2]9→[2,2]4
m1m2m3m4 = 1

8α
′ (2ε1,m1q1,m2 +vm1vm2q1 ·ε1)

×(2ε1,m3q1,m4 +vm3vm4q1 ·ε1) ,

A[1,1,1]9⊗[1,1,1]9→[2,2]9→[2,2]4
m1m2m3m4 = α′

4
√

15
[(vm1ε1,m3−vm3ε1,m1)(q1 ·ε1 (vm2q1,m4−vm4q1,m2)

+ t1 (vm2ε1,m4−vm4ε1,m2))
+q1,m1 (ε1,m3 (ε1,m2q1,m4−ε1,m4q1,m2)
+ vm3 (vm4 (ε1,m2q1 ·ε1−q1,m2)+vm2 (q1,m4−ε1,m4q1 ·ε1)))
+q1,m3 (ε1,m1 (ε1,m4q1,m2−ε1,m2q1,m4)
+ vm1 (vm4 (q1,m2−ε1,m2q1 ·ε1)+vm2 (ε1,m4q1 ·ε1−q1,m4)))] ,

4 (C.19)(
A

[2]9⊗[111]9→[311]9→[3]4
m

)2
=−(α′)2

1152
(
48(q1 ·ε2)2

(
3(q2 ·ε1)2 + t2

)
+48t1

(
(q2 ·ε1)2 + t2 (ε1 ·ε2)2

)
+48(q1 ·q2)2

(
1−3(ε1 ·ε2)2

)
+115(q1 ·q2)(ε1 ·ε2)(q1 ·ε1)(q2 ·ε2)

−115(q1 ·ε1)(q1 ·ε2)(q2 ·ε1)(q2 ·ε2)
)
,
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2 4(
A

[2]9⊗[111]9→[311]9→[1]4
m

)2
=−625(α′)2

12672 (q1 ·ε1)(q2 ·ε2)

×((q1 ·ε2)(q2 ·ε1)−(q1 ·q2)(ε1 ·ε2)) ,(
A

[2]9⊗[111]9→[111]9→[1]4
m

)2
= 65(α′)2

1408 (q1 ·ε1)(q2 ·ε2)

×((q1 ·q2)(ε1 ·ε2)−(q1 ·ε2)(q2 ·ε1)) .

And

2
4

A[2]9⊗[111]9→[21]9→[21]4
m1m2m3 = α′

12
√

6
[(q1,m1 (vm3 (2ε1,m2q1 · ε1 − 3q1,m2)

+ vm2 (3q1,m3 − 2ε1,m3q1 · ε1))
+ 2q1 · ε1 (q1,m3 (vm2ε1,m1 − vm1ε1,m2)
+ q1,m2 (vm1ε1,m3 − vm3ε1,m1)) (C.20)
+ 3t1ε1,m1 (vm2ε1,m3 − vm3ε1,α2))] ,(

A
[2]9⊗[111]9→[311]9→[21]4
m

)2
= 5 (α′)2

1152
(
6t2 (q1 · ε2) 2 + 6t1

(
(q2 · ε1) 2 + t2 (ε1 · ε2) 2

)
+ (q1 · q2)(ε1 · ε2)(q1 · ε1)(q2 · ε2)

− (q1 · ε1)(q1 · ε2)(q2 · ε1)(q2 · ε2) + 6 (q1 · q2) 2
)
,

We also have the sixfold degenerate spin 2 states

6 4

A[2]9⊗[2]9→[4]9→[2]4
m1m2 = α′

16

√
5
39
[
q1,m1 (5ε1,m2(q1 · ε1) + 2q1,m2)

+ ε1,m1 (5q1,m2(q1 · ε1)− 2t1ε1,m2)

+ 5vm1vm2 (q1 · ε1) 2
]
,

A[2]9⊗[2]9→[2,2]9→[2]4
m1m2 = α′

4

√
5
42
[
− q1,m1 (q1,m2 − 2ε1,m2(q1 · ε1))

+ ε1,m1 (2q1,m2(q1 · ε1) + t1ε1,m2) (C.21)

+ 2vm1vm2 (q1 · ε1) 2
]
,

A[2]9⊗[2]9→[2]9→[2]4
m1m2 = α′

4
√

91

[(
q1,m1 (ε1,m2(q1 · ε1) + 3q1,m2)

+ ε1,m1 (q1,m2(q1 · ε1)− 3t1ε1,m2)

+ vm1vm2 (q1 · ε1) 2
)]
,
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A[1,1,1]9⊗[1,1,1]9→[2,2]9→[2]4
m1m2 = α′

2
√

14

[(
q1,m1 (q1,m2 − ε1,m2(q1 · ε1))

+ ε1,m1 (−q1,m2 (q1 · ε1)− t1ε1,m2)

+ vm1vm2

(
− (q1 · ε1) 2 − t1

) )]
,

A[1,1,1]9⊗[1,1,1]9→[2]9→[2]4
m1m2 = α′

4
√

21

[(
q1,m1 (ε1,m2(q1 · ε1)− q1,m2)

+ ε1,m1 (q1,m2(q1 · ε1) + t1ε1,m2)

+ vm1vm2

(
(q1 · ε1) 2 + t1

) )]
, (C.22)(

A
[1,1,1]9⊗[1,1,1]9→[2,2,2]9→[2]4
m

)2
= (α′)2

1920
(
37t1 (q2 · ε1) 2 − 74t1(ε1 · ε2)(q2 · ε1)(q2 · ε2)

+17 (q1 · ε1) 2
(
(q2 · ε2) 2 + t2

)
+ 17t1

(
(q2 · ε2) 2 + t2

)
+ (q1 · ε2) 2

(
117 (q2 · ε1) 2 + 37t2

)
− 74(q1 · ε1)(q1 · ε2) ((q2 · ε1)(q2 · ε2) + t2(ε1 · ε2))

+ (q1 · q2) 2
(
117 (ε1 · ε2) 2 − 37

)
+q1 · q2 (2q1 · ε2 (37q2 · ε2 − 117ε1 · ε2q2 · ε1)

+74q1 · ε1 (q2 · ε1 − ε1 · ε2q2 · ε2))− 37t1t2 (ε1 · ε2) 2
)
,

and 8-fold degenerate spin 0 states

8•4

A[2]9⊗[2]9→[4]9→•4 = 1
48

√
35
286α

′
(
4t1−15(q1 ·ε1)2

)
,

A[2]9⊗[2]9→[2,2]9→•4 = 1
24

√
5
7α
′
(
3(q1 ·ε1)2+t1

)
,

A[2]9⊗[2]9→[2]9→•4 = 1
8

√
5
91α

′
(
(q1 ·ε1)2−2t1

)
, (C.23)

A[2]9⊗[2]9→•9→•4 = α′

8
√

11

(
(q1 ·ε1)2−t1

)
,

A[1,1,1]9⊗[1,1,1]9→[2,2]9→•4 = 1
8

√
3
7α
′
(
−(q1 ·ε1)2−t1

)
,

A[1,1,1]9⊗[1,1,1]9→[2]9→•4 = 1
8

√
5
21α

′
(
(q1 ·ε1)2+t1

)
,

A[1,1,1]9⊗[1,1,1]9→•9→•4 = α′

8
√

21

(
(q1 ·ε1)2+t1

)
,

(
A[1,1,1]9⊗[1,1,1]9→[2,2,2]9→•4

)2
= (α′)2

4480
(
−49t1(q2 ·ε1)2+98t1(ε1 ·ε2)(q2 ·ε1)(q2 ·ε2)

−49(q1 ·ε2)2
(
(q2 ·ε1)2+t2

)
−29(q1 ·ε1)2

(
(q2 ·ε2)2+t2

)
−29t1

(
(q2 ·ε2)2+t2

)
−49(q1 ·q2)2

(
(ε1 ·ε2)2−1

)
+98(q1 ·ε1)(q1 ·ε2)((q2 ·ε1)(q2 ·ε2)+t2(ε1 ·ε2)) (C.24)
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−98q1 ·q2(q1 ·ε2(q2 ·ε2−(ε1 ·ε2)(q2 ·ε1))

+q1 ·ε1(q2 ·ε1−(ε1 ·ε2)(q2 ·ε2)))+49t1t2(ε1 ·ε2)2
)
.

Upon contracting each of these amplitudes (with a Pomeron P1) with the appropriate pro-
jector and another three-point amplitude (with a Pomeron P2), we recover, upon summing
over all 22 states, the level 1 residue of the four-point amplitude, as described in the main
text.
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