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a b s t r a c t 

Brain activation mapping using functional magnetic resonance imaging (fMRI) has been extensively studied in 

brain gray matter (GM), whereas in large disregarded for probing white matter (WM). This unbalanced treatment 

has been in part due to controversies in relation to the nature of the blood oxygenation level-dependent (BOLD) 

contrast in WM and its detectability . However, an accumulating body of studies has provided solid evidence 

of the functional significance of the BOLD signal in WM and has revealed that it exhibits anisotropic spatio- 

temporal correlations and structure-specific fluctuations concomitant with those of the cortical BOLD signal. In 

this work, we present an anisotropic spatial filtering scheme for smoothing fMRI data in WM that accounts for 

known spatial constraints on the BOLD signal in WM. In particular, the spatial correlation structure of the BOLD 

signal in WM is highly anisotropic and closely linked to local axonal structure in terms of shape and orienta- 

tion, suggesting that isotropic Gaussian filters conventionally used for smoothing fMRI data are inadequate for 

denoising the BOLD signal in WM. The fundamental element in the proposed method is a graph-based descrip- 

tion of WM that encodes the underlying anisotropy observed across WM, derived from diffusion-weighted MRI 

data. Based on this representation, and leveraging graph signal processing principles, we design subject-specific 

spatial filters that adapt to a subject’s unique WM structure at each position in the WM that they are applied at. 

We use the proposed filters to spatially smooth fMRI data in WM, as an alternative to the conventional practice 

of using isotropic Gaussian filters. We test the proposed filtering approach on two sets of simulated phantoms, 

showcasing its greater sensitivity and specificity for the detection of slender anisotropic activations, compared 

to that achieved with isotropic Gaussian filters. We also present WM activation mapping results on the Human 

Connectome Project’s 100-unrelated subject dataset, across seven functional tasks, showing that the proposed 

method enables the detection of streamline-like activations within axonal bundles. 
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. Introduction 

To date, reports on task-based functional magnetic resonance imag-

ng (fMRI) activation mapping and resting-state functional connectivity

ave been overwhelmingly restricted to the gray matter (GM), whereas

hite matter (WM) functional data have been largely ignored or treated

s a nuisance regressor. Such unbalanced treatment of fMRI data within

M and WM, due in part to controversies in relation to the source of the
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OLD signal in WM, has led to a systematic underreporting of BOLD-

elated activity in WM ( Gawryluk et al., 2014; Mazerolle et al., 2019 ). 

Despite past controversies, evidence provided by an increas-

ng body of recent studies, see e.g. Grajauskas et al. (2019) and

ore et al. (2019) and references therein, has led to more widespread ac-

eptance of the detectability and functional relevance of the BOLD signal

n WM. For example, Ding et al. (2013) showed that resting-state BOLD

ignals in WM exhibit structure-specific temporal correlations along WM

racts, which coincide with fiber patterns revealed by diffusion tensor

maging (DTI), and which, under functional load, become more pro-
 (H. Behjat). 
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ounced in functionally relevant structures ( Ding et al., 2016 ). More

pecifically, Mishra et al. (2020) showed that varying experimental task

arameters results in a coupled modulation of the BOLD signal in the

isual cortex and relevant WM tracts, corroborating past findings of si-

ultaneous BOLD activations in structurally-connected regions of GM

nd WM ( Mazerolle et al., 2010 ). More recently, it has been shown that

unctional neuroplasticity, as manifested by changes in the BOLD signal,

an be detected in WM ( Frizzell et al., 2020 ). Furthermore, a growing

umber of recent studies have shown that low frequency BOLD fluctu-

tions can be used to estimate the dynamic functioning of fiber tracts

 Gore et al., 2019 ), in both health ( Huang et al., 2018b; Li et al., 2020b;

arussich et al., 2017 ) and disease ( Gao et al., 2020; Ji et al., 2019;

iang et al., 2019 ), providing a powerful means to study how infor-

ation is transferred and integrated between functionally specialized

ortices. 

Due to the significantly lower vascularization density in WM com-

ared to that in GM ( Jochimsen et al., 2010; Logothetis and Wandell,

004 ), the overall magnitude of the BOLD signal in WM is substan-

ially lower than that in GM ( Yarkoni et al., 2009 ), which has been

eported to be as low as 10% of that observed in GM and modulated

s a function of distance from the cortical layer ( Li et al., 2019b ). In

ddition to being weak, the BOLD signal in WM is affected by unique

onfounding factors, suggesting the need for WM-tailored acquisition

nd processing schemes. Broadly speaking, the BOLD contrast and its

etection in WM can potentially be enhanced in three ways: i) devel-

pment and use of MRI sequences optimal for fMRI of WM (e.g. in-

reased T2-weighting ( Gawryluk et al., 2009 ) or tailored field strengths

 Mazerolle et al., 2013 )); ii) design of temporal models that account for

he unique hemodynamic response function (HRF) in WM, which sub-

tantially differs from that in GM ( Erdo ğan et al., 2016; Fraser et al.,

012; Yarkoni et al., 2009 )); and iii) design of spatial models that ac-

ount for the unique spatial features of the BOLD contrast in WM, which

s highly anisotropic ( Ding et al., 2013; 2016 ). This paper focuses on the

hird category, presenting the case for the importance of spatial filter

esign when handling fMRI data in WM, particularly in relation to the

nherent differences between the spatial profiles of BOLD signal in WM

elative to those in GM. 

.1. Spatial smoothing tailored to fMRI data in white matter 

Typical fMRI analysis pipelines rely on the assumption that the

OLD signal exhibits isotropic spatial profiles at focal activated regions

 Carp, 2012 ). Isotropic Gaussian kernels applied to functional data,

hich is a staple of conventional fMRI analysis, is only justified under

his assumption, and generally trades spatial specificity for increased

ensitivity. In particular, by virtue of the matched filter argument, spa-

ial filters are optimal only for detecting activations that conform to the

ize and shape of the filter kernel, and can otherwise result in loss of

nformation regarding the spatial extent and shape of activation areas

 Geissler et al., 2005; Mikl et al., 2008 ), obliterating all non-smooth sin-

ularities in the data. 

In order to improve on the sensitivity-specificity trade-off afforded

y conventional isotropic spatial smoothing, multiple smoothing meth-

ds that adapt to local spatial image features have been proposed.

hese include steerable filters ( Knutsson et al., 1983 ), which en-

ble directionally-adaptive spatial smoothing ( Abramian et al., 2020b;

klund et al., 2011; Friman et al., 2003; Zhuang et al., 2017 ),

avelet transforms ( Bullmore et al., 2004; Mallat, 1989 ), which try to

trike a balance between localization in space and frequency domain

 Breakspear et al., 2006; Ruttimann et al., 1998; Van De Ville et al.,

004 ), and non-linear filters (e.g. bilateral filters) that locally adapt to

arious features of adjacent voxels ( Lohmann et al., 2018; Rydell et al.,

008; Smith and Brady, 1997 ). While such methods have been success-

ully applied to GM, their adaptive properties rely on the spatial features

anifested by the BOLD contrast. Given that this contrast is substan-
2 
ially reduced in WM, the effectiveness of these methods would likely

e reduced when applied to fMRI data in WM. 

Rather than adapting the smoothing operation to features present

n the BOLD contrast, alternative adaptive smoothing approaches can

e leveraged that incorporate information from the domain on which

he data reside, typically provided by complementary anatomical im-

ges. One common approach is cortical surface smoothing, which has

hown to provide increased sensitivity and specificity ( Coalson et al.,

018; Jo et al., 2007 ). Such methods have also been used to formu-

ate smoothing approaches that respect tissue boundaries ( Behjat et al.,

019 ), preventing artifacts resulting from the mixing of signals from

djacent but differing tissue types during filtering. In both of these sce-

arios the anatomical information is provided by T1-weighted images. 

An important distinguishing feature of the BOLD signal in WM is

hat it exhibits a spatial correlation structure grossly consistent with the

irections of water diffusion, as measured by DTI ( Ding et al., 2013 ),

hich is present during rest and becomes more pronounced under func-

ional loading ( Ding et al., 2018; Wu et al., 2017 ). The anatomical basis

or this observation can be that up to half of the blood volume in WM re-

ides in vessels that run in parallel to WM tracts ( Doucette et al., 2019 ).

s a consequence, conventional isotropic Gaussian filters may prove es-

ecially unsuited for the task of increasing the SNR of the BOLD signal

n the highly anisotropic WM domain. Filtering methods adaptive to fea-

ures of the BOLD signal may prove more effective, but the low BOLD

ontrast manifested in WM will potentially limit their usefulness. On the

ther hand, the strong anatomical dependence in the correlation struc-

ure of the BOLD signal in WM suggests that domain-informed smooth-

ng methods can be particularly beneficial. Such methods can rely on T1-

eighted images as well as diffusion-weighted MRI (DW-MRI) to adapt

he filtering to the morphology and the axonal microstructure of WM,

espectively. This paper presents the design and validation of such a

ltering scheme. 

.2. Structure-informed processing of fMRI data through GSP 

In the past five years, an increasing number of studies have show-

ased the use of principles from the recently emerged field of graph sig-

al processing (GSP) within neuroimaging, in particular, in proposing

ntuitive methodologies for structure-informed processing of fMRI data.

he fundamental idea in GSP is to analyze data recorded at a discrete set

f positions in such way that the underlying structural relationship be-

ween those positions is accounted for, wherein this underlying structure

an be represented in the form of a graph, i.e., a structure consisting of a

et of vertices and edges. We refer the reader to Shuman et al. (2013) for

n introduction to GSP and to Ortega et al. (2018) and Stankovi ć et al.,

020 for an overview of recent developments, challenges, and applica-

ions. 

An increasing number of studies have proposed the use of region of

nterest (ROI) based structural connectomes ( Sporns et al., 2005 ), de-

ived from tractography data, as underlying backbones for interpret-

ng fMRI data ( Abdelnour et al., 2018; Atasoy et al., 2016; Huang

t al., 2018 ). When structural connectomes are interpreted as graphs,

 number of their Laplacian eigenvectors manifest spatial patterns that

re reminiscent of well-established functional networks, as shown by

tasoy et al. (2016) . Under this framework, methods have been pro-

osed for spatio-temporal deconvolution of fMRI data ( Bolton et al.,

019 ), quantification of the coupling strength of resting-state fMRI data

ith underlying structure ( Medaglia et al., 2018; Preti and Van De Ville,

019 ), implementation of neural field models ( Aqil et al., 2021 ), predic-

ion of brain disorders ( Itani and Thanou, 2020 ) or behaviorally relevant

cores ( Bolton and van De Ville, 2020 ), and for characterization of func-

ional connectivity dynamics in health ( Huang et al., 2018b ), and its

hanges, for instance, due to concussion ( Sihag et al., 2020 ), and under

allucinogenic drugs ( Atasoy et al., 2017 ). 

As alternatives to macro-scale ROI-based graphs, a number of voxel-

ise brain graph designs have been proposed for analysis of fMRI data.
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raphs encoding GM morphology have been proposed for enhanced ac-

ivation mapping in GM, for both group-level ( Behjat et al., 2015 ) and

ubject-level ( Behjat et al., 2014; 2013 ) analyses, and for discrimina-

ive characterization of fMRI data across functional tasks ( Behjat and

arsson, 2020 ). A closely related work to that presented here is by

arun et al. (2020) , in which DW-MRI data were used to encode the

M fiber structure, for the task of visualizing WM fiber pathways based

n the functional activity observed at the cortical layer. 

.3. Aim and overview 

To the best of our knowledge, no method has to date been presented

o specifically account for the spatial features of the BOLD contrast in

M when it comes to spatial processing of fMRI data. The main objec-

ive of this work is to present the case for the importance of spatial filter

esign when handling fMRI data in WM, particularly, in relation to the

nherent difference between the spatial profiles of BOLD signal in WM

elative to those in GM. 

In this paper, we develop an adaptive spatial smoothing method tai-

ored to the processing of fMRI data in WM. Using diffusion orientation

istribution functions (ODF) obtained from high angular resolution dif-

usion imaging (HARDI) data, we construct subject-specific voxel-wise

M graphs. A spectral heat kernel filter is then defined on the spectrum

f the resulting graphs, and implemented in a computationally efficient

ay for the task of fMRI data filtering, using principles from GSP. When

nstantiated at any position within the WM, the proposed filters adapt to

he local axonal orientation, becoming consistent with the spatial cor-

elation structure of the BOLD signal in WM. 

The remainder of this paper is organized as follows: in Section 2 ,

e review relevant GSP principles and describe our proposed graph and

lter designs, as well as the construction of phantoms. In Section 3 ,

e examine the smoothing filters produced by the proposed design and

valuate their performance on phantoms of two types and on real task

MRI data. We conclude the paper in Section 4 with a discussion on

esign considerations, limitations and future work. 

. Materials and methods 

.1. Data and preprocessing 

Data used in the preparation of this work were obtained from the

U-Minn Human Connectome Project (HCP) ( Van Essen et al., 2013 )

atabase 1 . We use the 100 unrelated adult subject sub-group (54% fe-

ale, mean age = 29.11 ± 3.67, age range = 22–36), which we denote

s the HCP100 subject set. Five of the subjects were excluded due to

ncomplete WM coverage of the DW-MRI data, leaving a total of 95

ubjects. The HCP data acquisition study was approved by the Wash-

ngton University Institutional Review Board and informed consent was

btained from all subjects. We used the minimally preprocessed struc-

ural, task fMRI, and DW-MRI data. Task fMRI data for each subject con-

ist of 1940 time frames across seven functional tasks: Emotion, Gam-

ling, Language, Motor, Relational, Social, and Working Memory, com-

rising 23 experimental conditions in total. The method proposed in this

aper heavily relies on the accurate co-registration between the struc-

ural and functional data, as provided by the minimally processed HCP

ata. The imaging parameters and image preprocessing steps have been

horoughly described by Glasser et al. (2013) . All data processing in

his work was done using the MATLAB software and the SPM12 tool-

ox 2 . Diffusion ODFs were generated using the method presented by

eh et al. (2010) and implemented in the DSI Studio software pack-

gee 3 . 
1 https://ida.loni.usc.edu/login.jsp 
2 https://www.fil.ion.ucl.ac.uk/spm/software/spm12/ 
3 http://dsi-studio.labsolver.org 

t

𝐟

3 
The HCP preprocessed data are provided in a mixture of three spatial

esolutions within two neurological spaces (ACPC, i.e., native subject

pace, and MNI): 0 . 7 mm isotropic ACPC for the structural data, 1 . 25 mm
sotropic ACPC for the DW-MRI data, and 2 mm isotropic MNI for the

MRI data. A fundamental necessity for the proposed methodology is

o reconcile the three datasets into a single set of working parameters.

owever, the resampling process and the nonlinear conversion between

CPC and MNI spaces have the potential of negatively affecting the data

uality. The number of voxels is also a relevant parameter, as it deter-

ines to a great extent the memory usage and computation time of the

arious processing steps. Given the importance of axonal orientation

nformation to the proposed method, we prioritized minimizing the ma-

ipulations applied to the DW-MRI data. 

Based on these considerations, we chose the ACPC space at the reso-

ution of the diffusion data, i.e., 1 . 25 mm isotropic, as the working space.

s such, the HCP preprocessed fMRI volumes were warped back into

CPC space and upsampled to the voxel resolution of the diffusion data.

his mapping was done by leveraging the mni2acpc.nii displace-

ent maps provided with the HCP preprocessed data, using first order

plines as the basis for interpolation. In addition, the segmentation vol-

me aparc+aseg.nii , computed via FreeSurfer ( Fischl, 2012 ) and

rovided with the HCP data, was downsampled to the working resolu-

ion, from which voxels associated to WM were extracted. 

.2. GSP preliminaries 

The fundamental idea in GSP is the application of signal processing

rocedures to data residing on the vertices of a graph, wherein the graph

efines the underlying irregular domain of the data. Let  = (  ,  , 𝐀 )
enote an undirected, connected, weighted graph, defined by a vertex

et  of size 𝑁 𝑔 , denoting the size of the graph, an edge set  consisting

f connecting pairs ( 𝑖, 𝑗) of vertices, and a symmetric adjacency matrix

 whose nonzero elements 𝑎 𝑖,𝑗 represent the weight of edges ( 𝑖, 𝑗) ∈  .

et 𝓁 2 (  ) denote the Hilbert space of all square-integrable graph signals

 ∶  → ℝ defined on the vertex set  . A graph signal 𝐟 ∈ 𝓁 2 (  ) is in
ssence an 𝑁 𝑔 × 1 vector, whose 𝑛 -th component represents the signal

alue at the 𝑛 -th vertex of  . 
The graph spectral domain, analogous to the Euclidean Fourier do-

ain, can be defined using a graph’s Laplacian matrix. In particular,

he normalized Laplacian matrix of  is defined as 𝐋 = 𝐈 − 𝐃 

−1∕2 𝐀𝐃 

−1∕2 ,

here 𝐃 denotes the graph’s degree matrix, which is diagonal with

lements defined as 𝑑 𝑖,𝑖 = 

∑
𝑗 𝑎 𝑖,𝑗 . Given that 𝐋 is real, symmetric, di-

gonally dominant, and with non-negative diagonal entries, it is posi-

ive semi-definite; i.e., all its 𝑁 𝑔 eigenvalues are real and non-negative,

nd they are also no larger than 2 due to the normalization used in

he definition of 𝐋 . This set of eigenvalues defines the spectrum of 
 Chung, 1997 ), denoted as 𝚲 = {0 = 𝜆1 ≤ 𝜆2 … ≤ 𝜆𝑁 𝑔 

def 
= 𝜆max ≤ 2} . The

ssociated eigenvectors, denoted { 𝐮 𝑙 } 𝑙=1 , …,𝑁 𝑔 , form an orthonormal ba-

is spanning the 𝓁 2 (  ) space. 

In classical Fourier analysis, complex exponentials of varying fre-

uencies are used to obtain spectral representations of signals, with

arger frequencies corresponding to greater variability —per region or

nit of time. It can be shown that, in the graph setting, the eigenval-

es and eigenvectors of 𝐋 fulfill a corresponding role to the frequen-

ies and complex exponentials of the classical domain, respectively. In

articular, larger eigenvalues of 𝐋 are similarly associated to eigenvec-

ors with greater spatial variability; we refer the interested reader to

ppendix A for a more detailed presentation of this point. Given this

nalogy between the classical and graph settings, the eigenvectors of 𝐋
an be used to obtain spectral representations of graph signals. Specifi-

ally, a graph signal 𝐟 can be transformed into a spectral representation

hrough the use of the Laplacian eigenvectors as 

 ̂[ 𝑙] = 

𝑁 𝑔 ∑
𝑛 =1 

𝐮 𝑙 [ 𝑛 ] 𝐟 [ 𝑛 ] (1) 

https://ida.loni.usc.edu/login.jsp
https://www.fil.ion.ucl.ac.uk/spm/software/spm12/
http://dsi-studio.labsolver.org
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Fig. 1. (a) 26 voxels within the 3 × 3 × 3 neighborhood (gray) used to define 

edges to the focal voxel (red). (b) 98 voxels within the 5 × 5 × 5 neighborhood 

(gray), used to define edges to the focal voxel (red). (c) Scattered dots on the unit 

sphere specify the 98 neighborhood directions encoded by the 5 × 5 × 5 voxel 

neighborhood. Circled dots represent the subset of 26 directions encoded by the 

3 × 3 × 3 voxel neighborhood. (For interpretation of the references to colour in 

this figure legend, the reader is referred to the web version of this article.) 
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= 𝐮 𝑙 𝑇 𝐟 , 𝑙 = 1 , … , 𝑁 𝑔 . (2) 

his spectral representation possesses a perfect reconstruction, that is,

he signal can be recovered as 𝐟 = 

∑𝑁 𝑔 
𝑙=1 𝐟 [ 𝑙] 𝐮 𝑙 . 

In contrast to filters in classical signal processing, graph filters are

hift-variant , adapting their shape to the underlying graph structure

hen localized at any given vertex. Consequently, individual filters de-

ned in the spectral domain of a graph will become spatially-adaptive

y the nature of GSP. This valuable property of graph filters enables

he proposed methodology, but it also prevents the implementation of

ltering operations as straightforward convolutions. Instead, in analogy

o frequency-domain filtering in classical signal processing, graph sig-

al filtering can be conveniently defined in the graph spectral domain.

iven the spectral profile of a desired filter, 𝑘 ( 𝜆) ∶ [0 , 2] → ℝ , a graph

ignal 𝐟 can be filtered with 𝑘 ( 𝜆) as 

 ̃= 

𝑁 𝑔 ∑
𝑙=1 
𝑘 ( 𝜆𝑙 ) ̂𝐟 [ 𝑙] 𝐮 𝑙 (3) 

(2) 
= 

𝑁 𝑔 ∑
𝑙=1 
𝑘 ( 𝜆𝑙 ) 𝐮 𝑙 𝑇 𝐟 𝐮 𝑙 . (4) 

owever, implementing (4) requires the Laplacian eigenvectors, i.e.,

 full diagonalization of 𝐋 , which is impractical for large graphs,

uch as those presented in this work. An efficient alternative ap-

roach is to implement the filtering using a polynomial approxima-

ion of 𝑘 ( 𝜆) ( Hammond et al., 2011 ). We refer the interested reader to

ppendix B for details on the implementation. 

.3. WM graph design 

In order to take advantage of GSP tools, it is necessary to define

raphs that encode relevant information in their vertices, edges, and

eights. For the purpose of allowing diffusion-informed smoothing of

he BOLD signal in WM, we require graphs capable of encoding the sub-

ect’s axonal microstructure. Filters defined on the spectral domain of

uch graphs will become locally adapted to this microstructure due to

he shift-variant nature of graph filters. 

We define a WM graph as a graph whose vertex set  consists of all

M voxels, resulting in graphs with 240k ±60 k vertices on the HCP100

ubject set. The graph’s edge set  is defined on the basis of voxel ad-

acency, with pairs of vertices being connected to each other when-

ver their associated voxels are spatially neighboring. Two neighbor-

ood definitions are considered, corresponding to cubic lattices of sizes

 × 3 × 3 (henceforth 3-conn) and 5 × 5 × 5 (henceforth 5-conn), where

he focal voxel is located in the center of the lattice. The 3-conn lattice

pecifies 26 voxels in the neighborhood of the focal voxel, whereas for

he 5-conn lattice, voxels in the outer layer that fall in parallel to the

oxels within the inner layer are excluded, resulting in 98 voxels in the

eighborhood; see Fig. 1 . 

The encoding of axonal microstructure by the graph is principally

chieved through the edge-weighting scheme, inspired by the work of

turria-Medina et al. (2007) . The weights provide a discretization of the

iffusion ODF at each point, and include information on the coherence

f diffusion orientation among neighboring voxels. Let 𝑂 𝑖 ( ̂𝑟 ) denote the

DF associated to voxel 𝑣 𝑖 , with its coordinate origin at the voxel’s cen-

er, and with ̂𝑟 denoting the unit direction vector. Let ̂𝑟 𝑖,𝑗 denote the unit

ector pointing from the center of voxel 𝑣 𝑖 to the center of neighboring

oxel 𝑣 𝑗 . A discretization of the ODF along direction ̂𝑟 𝑖,𝑗 can be obtained

s 

 ( 𝑖, ̂𝑟 𝑖,𝑗 ) = ∫Ω𝑖,𝑗 𝑂 𝑖 ( ̂𝑟 ) 𝑑Ω, (5)

here Ω𝑖,𝑗 denotes the solid angle of 4 𝜋∕26 (for 3-conn) or 4 𝜋∕98 (for 5-

onn) around �̂� 𝑖,𝑗 and 𝑑Ω denotes the infinitesimal solid angle element.
4 
his measure can be approximated by taking 𝑁 𝑡 samples of the ODF

ithin the solid angle Ω𝑖,𝑗 as 

 ( 𝑖, ̂𝑟 𝑖,𝑗 ) ≈ �̃� ( 𝑖, ̂𝑟 𝑖,𝑗 ) = 

1 
𝑁 𝑡 

𝑁 𝑡 ∑
𝑘 =1 
𝑂 𝑖 ( ̂𝑟 𝑘 𝑖,𝑗 ) , (6)

here �̂� 𝑘 
𝑖,𝑗 

denotes the 𝑘 -th sampling direction within Ω𝑖,𝑗 . Details of the

ampling process are given in Appendix C . Furthermore, we normalize

his metric as 

 𝑖,𝑗 = 

�̃� ( 𝑖, ̂𝑟 𝑖,𝑗 ) 
2 max 𝑗 { ̃𝑝 ( 𝑖, ̂𝑟 𝑖,𝑗 ) | ( 𝑖, 𝑗) ∈ } , (7)

hich bounds it in the [0 , 0 . 5] range. The maximum value of 0.5 is

eached if the ODF at 𝑣 𝑖 shows its maximal diffusion along �̂� 𝑖,𝑗 , whereas

therwise 𝑞 𝑖,𝑗 < 0 . 5 . 
The measure defined in (7) constitutes a normalized discretization of

he diffusion ODF at voxel 𝑣 𝑖 . However, it does not guarantee symmetry,

.e., generally 𝑞 𝑖,𝑗 ≠ 𝑞 𝑗,𝑖 , which makes it unsuitable for the edge weights

n an undirected graph. Nevertheless, we can obtain a symmetric weight

y considering a bidirectional measure of diffusion given by 

 𝑖,𝑗 = 𝑤 𝑗,𝑖 = 𝑞 𝑖,𝑗 + 𝑞 𝑗,𝑖 , (8)

hich is constrained to the [0,1] range. Consequently, we define the

raph’s edge weights as 

 𝑖,𝑗 = 𝑎 𝑗,𝑖 = ℎ ( 𝑤 𝑖,𝑗 ) , (9)

here ℎ ( ⋅) ∶ [0 , 1] → [0 , 1] is a tunable sigmoid function ( Granlund and

nutsson, 1994 ) defined as 

 ( 𝑥 ) = 

( ( 1 − 𝛼) 𝑥 ) 𝛽

((1 − 𝛼) 𝑥 ) 𝛽 + ((1 − 𝑥 ) 𝛼) 𝛽
∈ [0 , 1] , (10)

here parameters 𝛼 ∈ (0 , 1) and 𝛽 > 0 control the threshold level and the

teepness of the transition from 0 to 1, respectively; see Fig. 2 . Given that

iffusion ODFs generally manifest non-zero magnitudes in all directions,

ith little contrast between directions of strong and weak diffusion, the

hresholding step enables associating weights only to the main direc-

ions of diffusion, without the need to use sharpened ODFs as presented

n our preliminary work ( Abramian et al., 2020a ). The choice of the

igmoid function over a Heaviside step ensures retaining a single con-

ected structure in the graph; that is, any non-zero value is mapped

o a non-zero value. In this work we use a fixed value of 𝛽 = 50 , but

tudy the effect of varying the threshold point, in particular, for values

= 0 . 85 , 0 . 9 and 0.95. 
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Fig. 2. Sigmoid function used for thresholding edge weights, for three different 

values of 𝛼 and a fixed value 𝛽 = 50 . 

Fig. 3. Spectral graph heat kernels, defined within the bounds of the spectrum 

of a normalized graph Laplacian matrix, i.e., [0,2]. 
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4 https://www.nitrc.org/projects/csaodf-hough 
The expression for the edge weight between a pair of voxels (9) in-

egrates information about the extent of diffusion along �̂� 𝑖,𝑗 from both

 𝑖 and 𝑣 𝑗 , amounting to a measure of orientational coherence of the dif-

usion ODFs at these voxels. In addition, the 𝛼 parameter of the thresh-

lding function provides added flexibility to this representation. 

.4. Spectral graph heat kernel filters 

We design spatial smoothing filters with a heat kernel profile in the

raph spectral domain, defined by 

 ( 𝜆) = 𝑒 − 𝜏𝜆, ∀𝜆 ∈ [0 , 𝜆max ] , (11)

here 𝜏 is a free parameter determining the spatial extent of the filter.

ig. 3 shows several realizations of the heat kernel over a range of 𝜏.

hen instantiated in the vertex domain, such filters are roughly similar

n shape to the Gaussian filters typically used for fMRI analysis; however,

iven the irregular domain represented by the graph, there is no direct

quivalence between the two filters. 

The filtering is implemented using the polynomial approximation

cheme described in Appendix B . The polynomial order required to ob-

ain a suitable approximation of the heat kernel varies depending on the

hoice of 𝜏. For the range of 𝜏 investigated in this study, we used polyno-

ial approximations of order 15, resulting in negligible approximation

rror in representing the filters. 

.5. Circular phantom construction 

Due to the discrete nature of graphs, the set of orientations that can

e perfectly captured by edges between voxels is limited by the neigh-

orhood definition used. To evaluate the influence of angular resolution

n denoising performance, we tested the 3-conn and 5-conn neighbor-

ood definitions on a set of simulated circular phantoms of various ori-

ntations and radii. These phantoms aim to simulate a wide range of

treamline orientations and curvatures, which could be encountered in

ractice. 

Each phantom consisted of an activation profile in the shape of a

ircular streamline, accompanied by an ODF map oriented along its

angent, representing strong diffusion along the circle. The phantoms
5 
ere constructed in 93 different orientations in 3D space, selected in a

oughly uniform way by subdividing the faces of an icosahedron three

imes, and from the resulting polyhedron, selecting its subset of ver-

ices that fall in the spherical sector of 0 ≤ 𝜃, 𝜙 ≤ 𝜋∕2 ; see Fig. 4 (a). Due

o symmetries in the phantoms and the neighborhood definitions, this

et of phantom orientations provides a relatively exhaustive sampling

f the effects of streamline orientation on smoothing performance. Ad-

itionally, to study the effects of curvature, we created the phantoms

ith three different radii for each orientation: 10, 20, and 30 voxels at

 . 25 mm isotropic resolution. 

.6. Streamline-based phantom construction 

Given that the correlation structure of the BOLD signal in WM

s highly anisotropic and resemblant of the diffusion tensor (see

ection 1.1 ), activation patterns in this tissue are likely to have elon-

ated shapes which locally follow the direction of diffusion. To validate

he performance of the proposed filtering scheme at detecting such acti-

ation patterns, we performed tests on a set of simulated semi-synthetic

hantoms that simulate streamline-shaped activations. We denote the

hantoms as semi-synthetic , as the spatial activation patterns were de-

ived from real diffusion data from the HCP100 dataset. Each phantom

onsisted of a set of non-uniformly spread activation patterns diffusing

long WM streamlines obtained through deterministic tractography of

he HCP100 subject set; see Figs. 4 (b) and (c). Details of the construction

f the phantoms are given in Appendix D . 

Time-series versions of the streamline-based phantoms were also

enerated in order to evaluate the performance of the proposed method

n the context of a typical fMRI general linear model (GLM) analysis.

hese were created by using each streamline-based phantom as the un-

erlying ground-truth activity in a 100-volume fMRI time series, with a

lock design alternating 20 volume stretches of rest and activity in an

ff-on-off-on-off paradigm. 

. Results 

We validated the performance of the proposed diffusion-informed

patial smoothing (DSS) method relative to isotropic Gaussian spa-

ial smoothing (GSS) through a series of tests on synthetic phan-

oms —circular and streamline-based —and produced proof-of-concept

esults on real data from the HCP100 subject set. 

.1. Diffusion-informed filters 

4 The adaptive properties of DSS filters are illustrated in Fig. 5 . The

hree filters shown were generated using identical parameters ( 𝛼 = 0 . 9 ,
= 7 ), and differ only in the location within the WM where they were

nstantiated. The filters closely follow the local diffusion orientation in

M described by the diffusion ODFs. For highly anisotropic WM re-

ions this results in slender and strongly oriented filters —see first two

olumns, whereas for regions of low anisotropy it results in filters that

re more isotropic in shape. Particularly, at crossing fiber regions, DSS

lters are not constrained to follow any single axonal pathway, and in-

tead spatially extend along all directions of high diffusion —see third

olumn. This avoids the uncertainty inherent in resolving the orienta-

ion of individual crossing fibers, while still resulting in more spatially-

onstrained filters than would be achieved with isotropic Gaussian fil-

ering 

The shape of DSS filters can be controlled by setting the 𝜏 parame-

er of the graph spectral filter kernel (see (11) ) and the 𝛼 parameter of

he weight thresholding function (see (10) ). While the former controls

he spatial extent of the filter in a manner akin to the full width at half

aximum (FWHM) of isotropic Gaussian filters, the latter controls the

https://www.nitrc.org/projects/csaodf-hough
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Fig. 4. Phantom construction. (a) Circular 

phantom construction. Left: A subset of vertices 

of a 3-level subdivided icosahedron, 93 out of 

642, were selected. Vectors pointing from the 

center of the sphere to these vertices consti- 

tute the normal vectors of the planes within 

which circular phantoms were realized. Right: 

Five representative unit circles with orienta- 

tions corresponding to the vertices on the left of 

matching color. For example, the red circle falls 

within a plane that passes through the center 

of the sphere and has its normal vector point- 

ing from the center of the sphere to the red 

point shown on the left. (b) Streamline-based 

phantom construction. A WM streamline con- 

structed using tractography (shown in yellow) 

is randomly selected, a focal point along the 

streamline is randomly selected, and a diffused 

non-binary activation pattern is created around 

the focal point (shown in red). (c) Axial, coronal, and sagittal view of a representative streamline-based phantom with 100 streamline activations, overlaid on subject’s 

T1-weighted image. 
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inimum edge weights retained by the graph, which in turn, constrains

lters to follow main directions of diffusion. Fig. 6 presents a range of

ifferent filter shapes that can be achieved by varying these two param-

ters. High values of 𝛼 result in very narrow, streamline-like filters that

re highly constrained relative to the underlying diffusion map, whereas

ower values result in less constrained filters. In particular, low enough

alues of 𝛼 negate the diffusion-adaptive properties of DSS, with the re-

ulting filters adapting solely to the morphology of the WM domain (see

upplementary Figure S1). 

The choice of neighborhood definition plays a significant role in the

hape of the resulting filters. In combination with the 5-conn neighbor-

ood definition, higher 𝛼 values can result in non-local averaging filters

hen the ODFs are oriented along a neighborhood direction in the outer

hell of the neighborhood (see Fig. 5 middle left, Fig. 6 bottom row).

his effect is not present in filters created using the 3-conn neighbor-

ood definition (see Figure S2), which additionally show a more limited

apacity to represent orientation due to the reduced angular resolution

f the neighborhood definition. More exhaustive results for both 5-conn

nd 3-conn filters are presented in Supplementary Figures S1-S6. 

.2. Validations on circular phantoms 

Circular phantoms of 93 different orientations and 3 different radii

ere created as described in Section 2.5 . Each phantom was corrupted

ith 10 realizations of additive white Gaussian noise of standard devia-

ion 1, and subsequently denoised by spatial filtering with GSS and DSS

ver a range of parameters. The FWHM of GSS and the 𝜏 parameter of

SS were varied over a range from 1 to 8 in unit steps. Both the 3-conn

nd 5-conn neighborhood definitions were tested for DSS, which we will

efer to as DSS3 and DSS5, respectively. The 𝛼 parameter of DSS was set

o 0.9 throughout. 

To assess the denoising performance of GSS, DSS3 and DSS5, we

erformed receiver operating characteristic (ROC) analyses. The filtered

hantom volumes were each thresholded at 300 uniformly-spaced con-

ecutive levels spanning the minimum and maximum value in each fil-

ered volume. The resulting detections for each threshold level were

ompared with the ground truth of the phantom, yielding true positive

ates (TPR) and false positive rates (FPR) that were collected in ROC

urves. The area under the curve (AUC) of the ROC curves was then

omputed, resulting in an overall measure of performance. 

Figs. 7 (a) and (b) show the overall performance of DSS3, DSS5 and

SS as characterized by the AUCs. Due to the lack of equivalence be-

ween DSS and GSS filters, there is no direct correspondence between

ndividual values of FWHM and 𝜏. However, it can be noted that the

erformance of GSS peaks at 2 mm FWHM, and diminishes for larger
6 
lter sizes. On the other hand, both DSS3 and DSS5 achieve substan-

ially higher maximum performances, which are not negatively affected

y increased filter size in the range of 𝜏 tested. 

The median AUC of DSS5 consistently falls above that of DSS3 for

≥ 2 and all three phantom radii. The performance gap between DSS5

nd DSS3 increases for larger 𝜏, and slightly increases on circular phan-

oms with larger radii, i.e., smaller curvatures. These results corroborate

he improvements in detection performance thanks to the increased an-

ular resolution of the 5-conn neighborhood definition. This is further

llustrated by Fig. 7 (c), which shows the performance improvement of

SS5 over DSS3 for individual phantoms orientations. The wide range

f performance gains is representative of the varying difficulty of rep-

esenting specific spatial orientations in the discrete domain of graphs,

ighlighting the importance of angular resolution for the proposed fil-

ers. 

Given the overall superior performance of DSS5 over DSS3, in the

ollowing, DSS results are only presented for graphs using the 5-conn

eighborhood definition. 

.3. Validations on streamline-based phantoms 

A similar analysis was performed on streamline-based phantoms. A

ingle phantom with 𝑁 𝑠 = 50 , 100 and 200 streamline activations was

reated for each of the 95 subjects as described in Section 2.6 . As in the

nalysis on circular phantoms, each phantom was corrupted with 10

ealizations of additive white Gaussian noise of standard deviation 1,

nd denoised by spatial filtering with GSS and DSS over the same range

f parameters. The 𝛼 parameter of DSS was set to 0.9, whereas values

f 0.85 and 0.95 were also tested on the 100-streamline phantoms. The

enoising performance of both methods was assessed by applying the

ame ROC/AUC analysis described in Section 3.2 . 

Figs. 8 (a) and (b) show AUC results on all three types of phantoms

or DSS and GSS, respectively. Due to the substantial amount of noise

resent in the phantoms, spatial smoothing using either GSS or DSS gen-

rally leads to better performance compared to no smoothing. DSS out-

erforms GSS across the range of 𝜏 and FWHM values tested, and across

he different settings. As with the circular phantoms, the performance

f GSS peaks at 2 mm FWHM, with increased size negatively affect-

ng performance beyond that value. DSS shows a similar pattern, with

eak performance achieved for 𝜏 of 3 and 4 for 𝛼 = 0 . 9 . Both GSS and

SS show better performance on phantoms with a greater number of

treamlines. Additional results show that DSS outperforms GSS in both

ensitivity and specificity (see Supplementary Figure S7(a)), and across

 range of SNR values (see Supplementary Figure S7(b)). 
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Fig. 5. Generation of diffusion-informed smoothing filters. Diffusion ODFs (bottom row) serve as the basis for the creation of a WM graph (middle row). Every WM 

voxel corresponds to a vertex in the graph, with weighted connections to neighboring voxels (middle left). The edge weights are determined on the basis of coherence 

between the directions of diffusion and the orientation of the graph edges (bottom left). Using this WM graph definition, graph filters from a single spectral profile 

become adaptive to the local axonal microstructure when instantiated in different WM regions (top row). Note that both the edges connecting voxels and the graph 

filters extend in three dimensions, whereas their 2D axial intersection centered at the focal voxel are shown. Graph parameters: 5-conn neighborhood, 𝛼 = 0 . 9 , 𝛽 = 50 ; 
filter parameters: 𝜏 = 7 . Filters are shown normalized to the [0,1] range. ODF interpolation and visualization were performed using the public CSA-ODF package 4 . 

Fig. 6. Effects of parameters 𝜏 and 𝛼 on the shape of 

DSS filters located at red ROI shown in Fig. 5 . Graph 

parameters: 5-conn neighborhood, 𝛽 = 50 . Filters are 

shown normalized to the [0,1] range. (For interpreta- 

tion of the references to colour in this figure legend, 

the reader is referred to the web version of this arti- 

cle.) 
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To assess the performance of DSS and GSS in combination with tem-

oral modeling, i.e., as used within fMRI activation mapping studies,

ime-series version of the streamline-based phantoms were generated

s described in Section 2.6 . The phantoms were corrupted with ad-

itive white Gaussian noise of standard deviation 1 and subsequently
7 
patially filtered with GSS and DSS with the same range of parameters

sed previously. The smoothed phantoms were subjected to a standard

ingle-subject analysis in SPM, and the resulting t-maps were used in the

OC/AUC analysis. 
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Fig. 7. Validation of spatial smoothing on circular phantoms. (a)-(b) AUC of 

ROC curves obtained from volumes spatially smoothed with DSS and GSS, re- 

spectively. The markers show the median AUC over 930 ROCs (93 orientations 

× 10 realizations), whereas the whiskers represent 5 − 95% percentiles. (c) Dif- 

ference between AUC values for DSS5 and DSS3 for phantoms with 25 mm ra- 

dius. The black curve shows the difference between the median performances 

shown in (a), whereas the remaining curves show the difference between the 10- 

realization medians for each of the 93 phantom orientations. The five colored 

curves correspond to the phantom orientations shown in Fig. 4 (a). 
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Figs. 8 (c) and (d) show AUC results from the time-series phantoms.

ue to the increased detection power afforded by temporal modeling,

UCs are higher for all scenarios in the time-series analysis compared

o those in the single-volume analysis. Similarly to the single-volume
8 
hantom results, GSS achieves its best performance for 2 mm filters, and

onsiderably deteriorates beyond that size. Notably, GSS only provides

 distinct improvement over no smoothing for 2 mm filters. DSS results

lso show a negative correlation between filter size and performance for

> 2 , but the overall performance is superior to GSS and provides a ben-

fit over no smoothing in most tested cases, with best results achieved

or 𝜏 between 2 and 4. After subjecting the t-maps to activation mapping

ith false discovery rate (FDR) correction at 5% ( Genovese et al., 2002 ),

he detection maps resulting from DSS showed substantially higher sen-

itivity and specificity than those from GSS (see Supplementary Fig-

res S8-S10). These results also illustrate that the diminished perfor-

ance of both methods on phantoms with a greater number of stream-

ine activations is a consequence of increased FPR when using large fil-

ers. 

Figs. 8 (a) and (c) also illustrate the effects of varying the 𝛼 parame-

er of DSS in single-volume and time-series phantoms, respectively. For

oth types of phantoms higher values of 𝛼 generally resulted in better

erformance. In the case of single-volume phantoms, filters with 𝛼 = 0 . 9
utperformed the others for small filter sizes, while 𝛼 = 0 . 95 is superior

or larger filter sizes and across all sizes for time-series phantoms. In ad-

ition, filters with 𝛼 = 0 . 95 show minimal decay in performance as filter

ize increases for both versions of the phantoms. Filters with 𝛼 = 0 . 85
onsistently performed worse than the others. 

.4. Single-subject task fMRI results 

In order to explore the effects of the proposed smoothing method

n real task fMRI data, we used SPM12 to perform activation mapping

n the HCP100 task fMRI data, comprising 23 experimental conditions

cross 7 tasks. Each GLM analysis included 12 motion regressors (raw

nd temporal derivative) in addition to regressors for 2 to 8 experimen-

al conditions associated with each task. The canonical HRF model, cor-

esponding to a double gamma, was used —although such a temporal

odel is not tailored to the WM BOLD signal, it affects GSS and DSS

qually, and should have no discernible influence on spatial filtering

omparisons. Temporal noise modeling was done using a global AR(1)

odel. The fMRI data were smoothed using GSS and DSS with the same

arameters used previously. For GSS, each fMRI volume was first mul-

iplied with the WM mask, to avoid introducing signal from GM. This

tep is not required for DSS, as the method by its nature functions only

n WM. The resulting t-maps were then thresholded to determine sig-

ificant active voxels after FDR correction at 5% . Our choice of FDR

s the correction method was due to it only assuming the 𝑝 -values to

e uniformly distributed under the null hypothesis. Correction methods
Fig. 8. Validation of spatial smoothing on 

streamline-based phantoms. (a)-(b) AUC of 

ROC curves obtained from volumes spatially 

smoothed with DSS and GSS, respectively. (c)- 

(d) AUC of ROC curves obtained from activa- 

tion mapping t-maps of time-series streamline- 

based phantoms smoothed with DSS and GSS, 

respectively. The markers show the median 

AUC over 950 ROCs (95 subjects × 10 realiza- 

tions), whereas the whiskers represent 5 − 95% 

percentiles. 



D. Abramian, M. Larsson, A. Eklund et al. NeuroImage 237 (2021) 118095 

Fig. 9. Comparison of representative single- 

subject activation mapping results generated 

with GSS and DSS, with t-maps shown in 

grayscale and detections overlaid in red (FDR- 

corrected at 5% ). Full-brain activation maps are 

also shown for reference, overlaid on the sub- 

ject’s T1w image. 
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ased on assumptions about the smoothness of the data, such as those

ased on Gaussian random field theory, would be difficult to justify for

n adaptive smoothing approach. 

The sheer number of detection maps generated by this anal-

sis —37,145 maps (95 subjects × 23 conditions × 17 filter set-

ings) —renders exhaustive visual examination of them impracticable.

herefore, in our presentation, we focus on representative results that

ighlight the differences in maps generated by GSS and DSS. The full

et of unthresholded t-maps is made available at NeuroVault 5 . 

Fig. 9 shows representative t-maps and detections from two subjects

enerated by DSS and GSS, with unmasked (i.e., full brain) GSS results

ncluded for reference. 6 Visual inspection of the t-maps reveals that GSS

esults in generally round features with little oriented structure, with

ery little visible structure remaining for larger Gaussian filters. In con-

rast, t-maps obtained using DSS present notable spatial detail, with lin-

ar features in the shape of streamlines discernible across filter sizes.
5 https://identifiers.org/neurovault.collection:9494 
6 In our default analysis setting, regions outside the WM are masked out of 

MRI volumes prior to GSS smoothing. This prevents the introduction of spurious 

ignal, particularly from gray matter, while ensuring an unbiased comparison 

ith DSS. Such considerations are not adhered to when implementing full brain 

SS, and these results are therefore provided only for reference. Furthermore, 

ue to the differences in FDR thresholding, there is no expectation of WM de- 

ections of either GSS method being a subset of those of the other. 

t  
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i  

s  
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t  

9 
hese differences are also present in the detection maps from both meth-

ds. While GSS detections are generally large and rounded —with very

ew detections present for smaller filters —DSS manifests detection maps

ith pronounced subtle spatial details —with considerable detections

ven for small filter sizes. The detections presented in Fig. 9 (a) highlight

he capability of DSS in identifying separate streamline-shaped activa-

ions in two contiguous parallel axonal bundles (orange arrow), which

emain distinct across the tested filter sizes. On the other hand, with GSS,

hese activations are combined into a single active region when large fil-

ers are used, and are not present when small filters are used. Notably,

he case of FWHM = 3 mm shows activation foci being combined across

ather than along axonal bundles, suggesting that these activations may

ot be separable with GSS. In Fig. 9 (b), DSS activation maps manifest

n elongated, clearly resolved streamline-shaped activation that spans

he corpus callosum (orange arrow), which is mostly undetected in GSS

ctivation maps. In addition, the activations seen around the edges of

he WM mask deserve notice. Although these activations may be at-

ributed to interpolation artifacts or partial volume effect, due to them

onsistently being found in positions adjacent to active GM regions, it

s important to note that both GSS and DSS produce these activations

olely on the basis of signal from WM. DSS generally manifests more

uch activations, especially for small filter sizes. Additional activation

apping results are presented in Supplementary Figures S11 and S12. 

In order to quantitatively investigate the degree to which spa-

ial structure is present in t-maps obtained using the two smooth-

https://identifiers.org/neurovault.collection:9494
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Fig. 10. Structural analysis of task fMRI t-maps, obtained using local structure 

tensor analysis ( Knutsson, 1989 ) where the eigenvalues of the structure ten- 

sor denote the amount of spatial structure. (a) Quantification of the amount of 

anisotropic structure observed in t-maps, specified by the mean structure map 

value, averaged across the task’s experimental conditions. (b) Correlation be- 

tween subjects’ QA maps and structure maps, averaged across each task’s exper- 

imental conditions. Markers shows the median value across the 95 subjects. 
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ng methods, we analyzed the t-maps using structure tensor methods

 Knutsson, 1989 ). While a thorough introduction to such methods falls

utside the scope of this work, it is sufficient for our purposes to point

ut that the eigenvalues and eigenvectors of the structure tensor provide

nformation on the presence and orientation of spatial structure, in the

orm of lines and edges, at a given point in an image or volume. 

For each t-map, we constructed a quantitative structure map by com-

uting the sum of the structure tensor eigenvalues at every voxel (a mea-

ure of the amount of spatial structure in each voxel). The mean value of

ach structure map provides a global measure of the presence of spatial

tructure in the corresponding t-map. Fig. 10 (a) shows a comparison of

his global structure measure for DSS and GSS. For both methods the

mount of structure present in the t-maps diminishes as the filter size

ncreases, which is consistent with the loss of spatial detail resulting

rom smoothing the data. This effect is very pronounced for GSS, while

-maps generated using DSS exhibit a more consistent amount of spatial

tructure across the tested filter sizes. 

To determine the extent to which the structure present in the t-maps

s influenced by the diffusion information introduced by DSS, we com-

uted Pearson’s correlation coefficient between the quantitative struc-

ure maps and the quantitative anisotropy (QA) map ( Yeh et al., 2013 )

f the associated subject; see Fig. 10 (b). For DSS, this correlation is close

o zero at 𝜏 = 1 , and steadily increases for increased filter sizes. In con-

rast, the structure manifested in t-maps obtained through GSS shows a

lightly negative correlation with QA, which stays nearly constant across

ll filter sizes. These results suggest that DSS is successful at informing

he smoothing process with the local diffusion properties of the underly-

ng WM, with larger values of 𝜏 resulting in stronger diffusion encoding.

Fig. 11 compares the number of detections obtained from DSS and

SS. To prevent bias due to differences in brain size, we present the

raction of each subject’s WM mask being declared as active. Overall,

he detection rates for both methods increase as a function of filter size,

ith DSS exhibiting a more linear increase than GSS. While the number

f detections on t-maps obtained from volumes smoothed with DSS and

SS is comparable for large filters, DSS generally produces substantially

ore detections with smaller filter sizes, as manifested by comparing the

edian detection numbers of corresponding tasks. 

In the absence of ground truth, it is not possible to make definitive

tatements on the relationship between differences in the number of

oxels deemed active by each method and potential differences in their

ensitivity and specificity. However, it can be insightful to quantify the

ifference between the detection maps generated with DSS and GSS. To

uantify the similarity between a pair of detection maps we computed
10 
he Dice coefficient between them, defined as 

 𝜏, fwhm 

= 

2 |𝑀 𝜏 ∩𝑀 fwhm 

|
|𝑀 𝜏 | + |𝑀 fwhm 

| , (12)

here 𝑀 𝜏 denotes the set of detected voxels using DSS with a given 𝜏,

 fwhm 

denotes the set of detected voxels using GSS with a given FWHM,

nd | ⋅ | denotes set cardinality. The Dice coefficient is constrained to

he [0,1] range, where a value of 1 signifies perfect overlap between

he detection maps and a value of 0 represents no overlap. 

For every subject and experimental condition we calculated Dice co-

fficients between detection maps obtained with GSS and DSS of all filter

izes, and arranged them into 8 × 8 Dice matrices. Additionally, we cal-

ulated the maximum Dice coefficient between each DSS filter size and

very GSS filter size for each subject and condition. Fig. 12 shows Dice

esults for several representative experimental conditions. The overall

imilarity between the detection maps obtained with DSS and GSS is

elatively low. The highest ensemble Dice is achieved for 𝜏 = 7 and

WHM = 8 mm , where it reaches a value of 0.65, with other combina-

ions achieving values close to this one (see ensemble Dice matrix). The

elationship between the 𝜏 and FWHM values that result in the highest

imilarity in the detection maps is also shown to be nonlinear, tracing a

articular curve across the Dice matrices that is generally similar across

xperimental conditions. The similarity between the detection maps also

hows considerable variation across tasks and individual experimental

onditions (see results for all experimental conditions in Supplementary

igure S13), with below-average similarity in the Language and Motor

asks and above-average in the Gambling and Relational tasks. 

In order to determine whether the detections generated by either

ethod are a subset of the detections from the other, we examined the

umber of common and unique detections produced by DSS and GSS.

or all subjects and experimental conditions, the detection maps pro-

uced by DSS were compared with the most similar maps produced by

SS. Fig. 12 , bottom right, shows the average number of voxel detec-

ions common to both methods, as well as those unique to each method,

or the tested values of 𝜏. These results show that, across filter sizes,

oth DSS and GSS produce a considerable number of detections that

re not produced by the other method. This observation, together with

he generally low Dice similarities, suggests the presence of substantial

ifferences in the localization and spatial extent of activations detected

sing DSS and GSS. 

.5. Group task fMRI results 

We performed random-effects group analysis based on the single-

ubject results for each of the 23 experimental conditions across the

even tasks. The estimated regressor weights of each experimental con-

ition were taken to MNI space using the displacement maps provided

ith the HCP data —the inverse of those used to map the preprocessed

MRI data to ACPC space —and a GLM was fitted to them to create group

-maps. These group maps were then thresholded to determine signifi-

ant active voxels after Bonferroni correction at 5%. 

Fig. 13 shows representative results for one condition of the Gam-

ling task. Overall, spatial patterns in the t-maps are more clearly visible

han in the single-subject analysis, remaining more defined in the DSS

esults than in those of GSS. Interestingly, both methods show large WM

egions in the shape of axonal bundles that are strongly anticorrelated

ith the experimental conditions. 

The activation maps in Fig. 13 show similar patterns to the single-

ubject activation maps. While DSS is capable of producing elongated,

treamline-like detections, those of GSS are generally round. In addi-

ion, DSS reveals considerable detections for small filter sizes. Addi-

ional group activation mapping results are shown in Supplementary

igures S14-S16. 

In order to study the consistency of the results obtained by each

ethod, we investigated the test-retest reliability of GSS and DSS

hrough a Monte Carlo experiment. The 95 subjects were repeatedly
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Fig. 11. Fraction of voxels within WM mask 

detected as being significant using DSS (top 

left) and GSS (bottom left) across 7 functional 

tasks, over 95 subjects. Significant voxels were 

determined after FDR correction at 5%. In the 

plots on the left, each dot corresponds to one 

subject, whereas ■ shows the median value 

across the 95 subjects. The plots on the right 

show the trend of the average value as a func- 

tion of filter parameters 𝜏 and FWHM for GSS 

and DSS respectively. 

Fig. 12. Dice similarity between detection 

maps generated with DSS and GSS. For each 

subject and condition, an 8 × 8 Dice matrix was 

computed, where each element represented 

𝑑 𝜏, fwhm , see (12) . For a given subject, if neither 

DSS nor GSS led to any detections for a given 

combination of 𝜏 and FWHM, the correspond- 

ing element was excluded from further analy- 

sis. The schematic on top explains how the re- 

sults were ensembled across subjects, resulting 

in two plots for each experimental condition; in 

the plots on the right, the mean of the scattered 

values is indicated by ■. Results are presented 

for a representative experimental condition in 

each task —see results across the 23 conditions 

in Supplementary Figure S13, as well as ensem- 

bled across 23 conditions; the ensemble plot on 

the left shows the average across conditions, 

whereas the one on the right shows the me- 

dian and range of the mean maximum Dice val- 

ues across conditions. The plot on the bottom 

right shows the average number of common 

and unique detections generated by DSS and 

GSS across all subjects and conditions, wherein 

every value of 𝜏 was compared with the FWHM 

that resulted in the maximum Dice coefficient. 

Fig. 13. Comparison of representative group 

activation mapping results generated with GSS 

and DSS, with t-maps shown in grayscale 

and detections overlaid in red (Bonferroni- 

corrected at 5% ). Full-brain activation maps 

are also shown for reference, overlaid on the 

MNI152 T1w template image. 
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Fig. 14. Results of Monte Carlo test-retest analysis for one representative ex- 

perimental condition from each task. Subjects were repeatedly divided into two 

groups and subjected to group analysis, and the resulting statistical maps were 

compared. (a) Correlation between t-maps of both groups. (b) Dice similarity 

between activation maps of both groups. The markers show the median value 

across 30 experiments, whereas the whiskers represent 5 − 95% percentiles. 
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plit into two groups, after which a random-effects model was fitted

o each group, and the resulting t-maps and detection maps were com-

ared. This process was repeated 30 times, and the similarities of the

esulting t-maps and detection maps were quantified using Pearson cor-

elation and Dice similarity, respectively. Fig. 14 shows results of this

nalysis for a representative subset of experimental conditions. Correla-

ion and Dice scores show an increasing trend with respect to the filter

ize, for both GSS and DSS. The values produced by both methods are

oughly comparable, being slightly higher overall for DSS, particularly

or small filter sizes. Full comparisons for all experimental conditions

re presented in Supplemetary Figure S17. 

.6. Processing time 

Although the proposed methodology requires additional MRI scan-

ing time for the acquisition of DW-MRI data, it does not impose a dra-

atic increase in processing time over conventional approaches. Using

 workstation with an Intel Core i7-7700K processor and 64 GB of RAM,

he generation of diffusion ODFs from DW-MRI data required approx-

mately 90 seconds. The graph and its Laplacian matrix could then be

alculated from the ODFs in under 15 seconds. Both of these operations

eed only be performed once per subject. 

In our implementation, the average filtering time of a single volume

ith GSS was 10.3 ms using the imgaussfilt3 MATLAB function

the same operation required about 450 ms when using the smoothing

mplemented in SPM). On the other hand, DSS filtering scales efficiently

ith the number of filter kernels used. Average single-volume DSS fil-

ering times for a single kernel were 115 ms for the 5-conn neighbor-

ood and 56 ms for 3-conn, and became reduced to 17.7 ms and 11.0

s, respectively, when using 8 filter kernels at once. With worst case

erformance, the proposed method gave filtering times of around 45

econds for a 405-volume series (the longest of those available in HCP

ata, corresponding to the Working Memory task). 

. Discussion 

.1. Interpretation of results from simulated data 

Previous implementations of voxel-wise graphs on GM ( Behjat and

arsson, 2020; Behjat et al., 2015; Maghsadhagh et al., 2019 ) have used

he 3-conn neighborhood in defining graph edges. However, given the

ifferent nature of the proposed encoding for WM graphs —representing

xonal orientations rather than GM morphology, we considered the po-

ential advantages of using a larger neighborhood definition. To this
12 
nd, we compared the denoising performance obtained with graphs us-

ng the 3-conn and 5-conn neighborhood definitions on circular phan-

oms of multiple orientations and radii. Such phantoms were used be-

ause, barring discretization artifacts, they offer an exhaustive sampling

f all possible orientations in which data can appear in three dimensions.

he results show a clear improvement from using the larger neighbor-

ood definition (see Figs. 7 (a) and (c)), which can be attributed to its

uperior angular resolution of 98 neighborhood directions, against the

6 of the 3-conn definition. Furthermore, comparing performances ob-

ained on phantoms of different radii shows that the larger neighbor-

ood definition provides more stable performance across spatial curva-

ures than the smaller neighborhood, which performs worse for smaller

urvatures, particularly for larger filters. Compared to isotropic Gaus-

ian smoothing (see Fig. 7 (b)), both the 3-conn and 5-conn neighbor-

ood definitions used in DSS showed enhanced denoising performance

n circular phantoms. In particular, while the performance of GSS dete-

iorates for larger filter sizes, the performance of DSS reaches a plateau

nstead, suggesting that the diffusion-informed nature of DSS filters is

apable of minimizing the introduction of spurious signal even for larger

lter sizes. 

To better mimic spatial activation patterns manifested as BOLD con-

rast in WM, we designed and studied semi-synthetic streamline-based

hantoms, whose diffuse activation patterns are representative of WM

ber structures, along which correlated BOLD activity is expected ( Ding

t al., 2013; 2016 ). The phantoms were studied in two settings. In the

rst setting, the denoising performance was studied in the absence of

emporal modeling, wherein both methods provided an improvement

ver no smoothing, but DSS outperformed GSS for all tested filter sizes

 Fig. 8 (a)). In the second setting, the phantoms were studied within

he context of GLM activation mapping, i.e. with temporal modeling,

herein GSS provided only minimal improvements over no smoothing,

hereas DSS provided a notable improvement ( Fig. 8 (b)). In addition,

hen the time-series phantoms were subjected to activation mapping

ith FDR correction, activation maps from GSS showed reduced sensi-

ivity and specificity when compared to those of DSS (see Supplementary

igures S8-S10). The phantoms were also used to study the influence of

he 𝛼 parameter of DSS, which sets a lower bound on the weight of

onnections allowed in the WM graph. Due to the narrower and more

irectional filters resulting from higher 𝛼 values ( Fig. 5 , Supplemen-

ary Figures S1-S6), the increased performance on the streamline-based

hantoms would be expected ( Figs. 8 (a) and (c)). However, this result

ay not be readily extensible to real fMRI data, as the spread of real

ctivation patterns is not known. 

.2. Interpretation of results from real data 

We compared single-subject activation mapping results from DSS

nd GSS on task fMRI data from the HCP100 subject set. Structure ten-

or analysis of the resulting t-maps revealed that the overall amount of

tructure present diminished for larger filter sizes, an effect that is more

ronounced for GSS ( Fig. 10 (a)). Such results reflect the loss of spatial

etails that happens as a result of lowpass filtering. However, due to the

ighly anisotropic shapes that DSS filters take within the WM ( Fig. 5 ),

eatures in the shape of lines and edges can be present in t-maps even

or larger filter sizes ( Fig. 9 ). In addition, the spatial structure present

n the t-maps obtained with DSS is correlated with regions of high diffu-

ion anisotropy ( Fig. 10 (b)), indicating that DSS successfully adapts its

moothing to the underlying WM microstructure. 

Due to the differences in their definitions, as well as the adaptive

ature of DSS, there is no direct correspondence between GSS and DSS

lters. This is corroborated by the relatively low Dice coefficients be-

ween detection maps resulting from both methods (see Dice matrices

n Fig. 12 ). The overall number of detections is comparable for GSS and

SS, with a considerable and roughly equal number of activations be-

ng unique to each method (see bar chart in Fig. 12 , bottom right). On

he other hand, example detection maps corroborate that DSS is capable
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f resolving subtle, slender activation patterns along axonal pathways

cross multiple filter sizes by leveraging information about the spatial

orrelation structure of the BOLD signal in WM. Fig. 9 (a) exemplifies

he increased resolution from DSS, presenting a case where it is capable

f resolving two parallel streamline-like activations that GSS is inca-

able of identifying as separate. Fig. 9 (b) illustrates a similar case, with

SS detecting a highly resolved streamline-like activation through the

orpus callosum that is left largely undetected by GSS. Supplementary

igures S11 and S12 present additional detection map comparisons high-

ighting the increased sensitivity and specificity of the proposed method-

logy over conventional GSS. 

We also compared group activation mapping results from DSS and

SS. Similarly to the single-subject results, group t-maps obtained with

SS manifested intricate spatial structures across filter sizes, while t-

aps generated with GSS presented mostly smooth, round features

 Fig. 13 ). The same patterns extended to the activation maps produced

y both methods, where DSS has shown greater specificity and an in-

reased number of detections in multiple instances (Supplementary Fig-

res S14-S16). Although group WM activations obtained with GSS and

SS are often contained within those obtained with full brain GSS, it is

mportant to note that while the latter rely mostly on signal from the

M, the former rely solely on signal from the WM, and result in much

reater specificity in the detected activations. 

In order to evaluate the consistency of the statistical maps generated

y both methods, we performed a test-retest analysis of group activation

apping. While the performances of DSS and GSS were comparable for

he upper range of filter sizes tested, DSS showed a marked improvement

or small filter sizes ( Fig. 14 ), altogether suggesting that DSS is capable

f yielding equally or more consistent results than GSS is. 

.3. Limitations 

We used a sigmoid function, see (10) , as a means of boosting orienta-

ion encoding, allowing diffusion only along main directions of diffusion

oherence. We studied three threshold values, 𝛼 = 0 . 85 , 0 . 9 and 0.95, all

f which yielded better performance than GSS on phantom data, with

oticeable variations in performance among the three values. However,

he general choice of the thresholding function and its associated pa-

ameters is rather ad-hoc, which is a complication of similar nature as

hat encountered in connectomic studies ( Rubinov and Sporns, 2010 ).

uture work should consider a more rigorous validation of the threshold-

ng scheme for obtaining optimal performance, especially on real fMRI

ata. 

Accurate co-registration of functional, structural, and diffusion MRI

ata is a cornerstone of the proposed methodology. Within this study,

e used preprocessed HCP data, which have been diligently motion-

orrected, distortion-corrected, and co-registered ( Glasser et al., 2013 ).

owever, conducting solid preprocessing steps may not be possible in

ome datasets, and if so, results obtained using the proposed method on

uch datasets should be interpreted with care. 

A number of recent studies have highlighted substantial differences

etween the HRF in WM and that in GM ( Choi et al., 2020; Li et al.,

019b; Wang et al., 2020b ), which corroborate similar sporadic obser-

ations from earlier studies that showed evidence for delayed and sub-

ued hemodynamic responses compared to that in GM ( Fraser et al.,

012; Yarkoni et al., 2009 ), and in particular, in the corpus callosum

 Courtemanche et al., 2018; Tae et al., 2014 ). The recent evidence for

he unique features of HRF in WM is indeed insightful, but given the on-

oing nature of this research, we decided to use the standard HRF model

hat is conventionally used in fMRI activation mapping in the present

ork. Given that our work is comparative, the choice of the HRF model

ffects both DSS and GSS equally, and as such, we do not believe that our

onclusions would be substantially affected by the use of a more precise

odel. Nevertheless, future work aimed at investigating the BOLD sig-

al in WM can most likely benefit from combining a more appropriate

RF model with adaptive smoothing of the BOLD signal by DSS. 
13 
.4. Outlook; potential extensions and other applications 

Due to the limited degree to which diffusion ODFs can differenti-

te fiber orientation ( Jones et al., 2013 ), we boost orientation encod-

ng by means of a weight thresholding scheme. Alternatively, the pro-

osed design can be extended to leverage standard fiber orientation

istribution (FOD) functions estimated from either the diffusion ODFs

 Descoteaux et al., 2008 ) or the raw diffusion data ( Tournier et al.,

007 ), or asymmetric FODs ( Bastiani et al., 2017 ), to obviate the need

or thresholding. In the absence of HARDI data but presence of DTI data,

he proposed method can be readily extended to leverage diffusion ten-

ors instead of diffusion ODFs, e.g. as in Tarun et al. (2019) , which can

e of particular interest for reanalyzing the vast extent of currently avail-

ble fMRI datasets that are accompanied by DTI data. It is also worth

oting that DSS can be extended to work on a graph that represents a dis-

retized version of a tractogram, enabling spatial filtering in a manner

hat would resemble leveraging principles from super-resolution track-

eighted imaging ( Calamante et al., 2012 ). 

In the absence of any DW-MRI data, it would be possible to

dapt the proposed method to use a structure tensor representation

 Knutsson, 1989 ) derived from T1-weighted MRI images as the com-

lementary contrast ( Abramian et al., 2020b ), wherein the proposed

ltering scheme could be extended to function across the entire brain

ask. The resulting morphology-based spatial smoothing could then be

een as a GSP-based alternative to non-linear filtering algorithms which

nable spatial smoothing within similar anatomical compartments ( Ding

t al., 2005; Lohmann et al., 2018; Rydell et al., 2008; Smith and Brady,

997; Weickert and Scharr, 2002 ), but will not provide adaptation to

M fiber orientations. 

In addition to performing denoising through heat kernel smooth-

ng (i.e., lowpass filtering), the proposed WM graphs can be used to

mplement graph-wavelet denoising, similar to that implemented by

ehjat et al. (2015) for GM graphs, using novel data-driven GSP de-

oising schemes ( de Loynes et al., 2021 ) in combination with computa-

ionally efficient multi-scale spectral graph decomposition methods ( Li

t al., 2019c; Shuman, 2020 ) that can be tractably implemented on large

raphs. 

In the present study, we only explored spatial smoothing of task-

ased fMRI data within the context of activation mapping, whereas DSS

an be readily applied to WM resting-state fMRI data, where recent

tudies have used Gaussian smoothing of the data as a pre-processing

tep. Such research appears particularly promising in light of stud-

es reporting the existence of BOLD-like response in resting-state data

 Karahano ğlu and Van De Ville, 2015; Li et al., 2021; Liu and Duyn,

013; Petridou et al., 2013 ), and the current growing interest in explor-

ng functional dynamics of WM at rest ( Ding et al., 2018; Li et al., 2020a;

019a; Peer et al., 2017; Wang et al., 2020a ). 

It is worth noting that DSS may prove beneficial for enhancing

he detection of functional pathways through the use of functional-

orrelational tensors (FCT) ( Ding et al., 2013 ) or high angular resolution

unctional imaging (HARFI) ( Schilling et al., 2019 ). FCT and HARFI pro-

ide the means to derive functional WM pathways by characterizing the

patial anisotropy observed in the temporal correlation in the BOLD sig-

al at adjacent WM voxels. Given the lack of spatial adaptiveness of GSS,

ts use is likely to distort the spatial anisotropy in the signal, on which

hese methods rely. On the other hand, filtering the fMRI data with DSS

ay help boost this spatial anisotropy, thus enhancing the detection of

patiotemporal correlation in the local BOLD signal. Furthermore, FCTs

ave been leveraged for improving inter-subject registration of resting-

tate data based on functional features ( Zhou et al., 2018 ), which might

lso be enhanced if the data are initially filtered with DSS. 

DSS may also be used as a method to filter tractography streamlines

n a manner similar to SIFT ( Smith et al., 2013 ). In particular, by apply-

ng DSS to voxelized representations of streamlines, the resulting filtered

aps can be quantified to obtain a validity score for tracts —tracts that
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re closely aligned with the underlying diffusion map should be mini-

ally deteriorated by DSS. 

Another research avenue that can benefit from the proposed WM

raph design is structural studies. The eigenvalues of cortical surface

raphs as well as their eigenmodes have been leveraged in multiple ap-

lications, namely, quantifying cortical folding patterns ( Dubois et al.,

019; Germanaud et al., 2012; Rabiei et al., 2016 ), age prediction

 Masoumi et al., 2019; Wachinger et al., 2015 ), and analysis of brain

symmetry in health ( Maghsadhagh et al., 2019; Wachinger et al., 2015 )

nd in disease ( Masoumi et al., 2019; Wachinger et al., 2016a; 2016b ).

uch analyses can be extended to leverage the spectra of WM graphs.

nalysis on similarly designed graphs using DW-MRI data —covering the

ntire brain rather than just the WM —has shown that an initial subset of

he graph eigenmodes provides informative features to distinguish be-

ween subjects ( Tarun et al., 2019 ). Lastly, ODF-based WM graphs may

e found beneficial in deriving structural connectivity measures that ac-

ount for direct as well as indirect pathways, for example, similar in na-

ure to those derived from a recently proposed DTI-based conductance

odel ( Frau-Pascual et al., 2020; 2019 ). 

. Conclusion 

The development of methods geared specifically towards WM can

rove substantially helpful in investigating the functional significance

f the BOLD signal in WM. Notwithstanding the repository of sophisti-

ated smoothing techniques found in the literature, to date, studies on

MRI data in WM have mainly resorted to isotropic Gaussian smoothing.

n apparent reason is the ease in implementing Gaussian smoothing and

ts availability in widely used open-access software packages, which fa-

ilitate its routine application. The proposed diffusion-informed spatial

ltering method, in conjunction with the use of WM-specific HRF mod-

ls and MR sequences, holds promise to aid better understanding of the

unctional role of WM. 

ode and data availability 

An implementation of the methods proposed in this work will be

ade available as a MATLAB package on GitHub at https://github.

om/DavidAbramian/DSS . The simulated circular and streamline-based

hantoms used in this work will be made available on GitHub at https:

/github.com/DavidAbramian/StreamlinePhantoms ; the ODF maps as-

ociated to the phantoms will be shared on request as they could not

e uploaded due to their large size. Single-subject and group activation

apping t-maps will be made available on the NeuroVault platform at

ttps://neurovault.org/collections/9494/ . 
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ppendix A. Frequency interpretation of graph Laplacian 

igenvalues 

In classical signal processing, in particular in the case of 1D discrete

emporal signals, a set of complex exponentials 𝑒 𝑗𝜔𝑥 of varying frequen-

ies 𝜔 defines a basis that can be used to transform a given signal to a

ourier (spectral) representation. Importantly, these complex exponen-

ials are the eigenfunctions of the one-dimensional Laplacian operator,

.e., 𝑑 
2 

𝑑𝑥 2 
𝑒 𝑗𝜔𝑥 = − 𝜔 2 𝑒 𝑗𝜔𝑥 . Given that a graph structure can be interpreted

s a generalization of the 1D regular grid, the eigenvalues 𝜆𝑙 and eigen-

ectors 𝐮 𝑙 of the graph Laplacian 𝐋 can be seen as analogous to the

requencies and complex exponentials of classical signal processing, re-

pectively. With this interpretation, given two eigenvalues of 𝐋 such that

𝑛 < 𝜆𝑚 , it can be stated that the eigenvector associated with 𝜆𝑚 entails

 notion of higher frequency —i.e., higher spatial variability —than the

igenvector associated to 𝜆𝑛 . In the following we will illustrate this point

n two ways. 

Given a graph signal 𝐟 ∈ 𝓁 2 (  ) , the extent of variation of 𝐟 on  can be

uantified by introducing a measure denoted as graph signal variation

GSV), defined as 

𝑆𝑉 ( 𝐟 ) = 𝐟 𝑇 𝐋𝐟 = 

∑
( 𝑖,𝑗)∈ 

𝑎 𝑖,𝑗 ( 𝐟 𝑖 − 𝐟 𝑗 ) 2 , (A.1)

here larger values of 𝐺𝑆𝑉 ( 𝐟 ) represent greater variability of 𝐟 on  . The

igenvectors of 𝐋 can be equivalently seen as graph signals, and thus be

uantified in relation to their extent of variation on  . By noting that i)

he eigenvectors of 𝐋 are orthonormal, i.e., 𝐮 𝑇 
𝑙 
𝐮 𝑙 = 1 and ii) 𝐋𝐮 𝑙 = 𝜆𝑙 𝐮 𝑙 ,

t follows that 

𝑆𝑉 ( 𝐮 𝑙 ) = 𝐮 𝑇 
𝑙 
𝐋𝐮 𝑙 = 𝜆𝑙 , (A.2)

howing that the eigenvalue 𝜆𝑙 associated to each eigenvector 𝐮 𝑙 is a

uantification of the extent of variability of 𝐮 𝑙 . 
The variability of eigenvectors can also be measured by examining

heir zero crossings —i.e., changes in their sign at adjacent graph ver-

ices —using a weighted zero crossing measure (WZC) defined as 

 𝑍𝐶( 𝐮 𝑙 ) = 

1 
2 

∑
( 𝑖,𝑗)∈ 

𝑎 𝑖,𝑗 𝐻(− 𝐮 𝑙 [ 𝑖 ] 𝐮 𝑙 [ 𝑗]) , (A.3)

here 𝐻( ⋅) denotes the Heaviside step function. To show the link be-

ween 𝑊 𝑍𝐶( 𝐮 𝑙 ) and 𝜆𝑙 , we calculated the WZC of an even sampling of

1 eigenvectors of 𝐋 for fifty subjects —computing the full eigendecom-

osition of 𝐋 is impractical due to its size. Fig. A.1 shows the relation

etween 𝜆𝑙 and the 𝑊 𝑍𝐶( 𝐮 𝑙 ) , illustrating that larger eigenvalues entail

 greater extent of spatial variability in their associated eigenvectors,

s measured by the WZC. It should be noted that the monotonically in-

reasing behavior of 𝑊 𝑍𝐶( 𝐮 𝑙 ) relative to 𝜆𝑙 , which holds up to the very

pper parts of the spectrum, stops at the higher end eigenvalues. This is a

https://github.com/DavidAbramian/DSS
https://github.com/DavidAbramian/StreamlinePhantoms
https://neurovault.org/collections/9494/
https://doi.org/10.13039/100000002
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Fig. A.1. WZC of a subset of eigenvectors of the WM graph Laplacian of 50 

subjects. 
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Fig. C.1. Uniform sampling within solid angles along different orientations. (a) 

An icosahedron with five levels of subdivision, wherein the subset of its ver- 

tices that fall within the solid angle 4 𝜋∕98 around the z-axis direction, marked 

with black dots, are treated as a template sampling pattern. (b) The template 

sampling pattern (black) is then rotated towards other neighborhood directions; 

two directions shown here, in red and blue. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this 

article.) 
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onsequence the decrease in delocalization manifested by eigenvectors

f 𝐋 at the upper part of the spectrum —unlike the complex exponen-

ials of classical signal processing, which are delocalized, eigenvectors

f 𝐋 can present localized patterns of spatial variability. Nevertheless,

iven the lowpass profile of the spectral kernels used in this work, the

oss of delocalization associated to the upper end of the spectrum is

f no concern for the application at hand. For a more comprehensive

verview of the link between classical signal processing and GSP, the in-

erested reader is referred to Huang et al. (2018a) ; Ortega et al. (2018) ;

tankovic et al. (2019) . 

ppendix B. Spectral graph filtering through polynomial 

pproximation 

Spectral graph filtering can be efficiently implemented using polyno-

ial approximation schemes ( Hammond et al., 2011; Shuman, 2020 ),

itigating the need to diagonalize large 𝐋 matrices as those used in the

resent work. Using this approach, a spectral kernel 𝑘 ( 𝜆) is first approx-

mated using a polynomial of suitable order, denoted 𝑝 ( 𝜆) ∶ [0 , 2] → ℝ ,

nd filtering of signal 𝐟 is then implemented as 

 ̃

(3) 
= 

𝑁 𝑔 ∑
𝑙=1 
𝑝 ( 𝜆𝑙 ) ̂𝐟 [ 𝑙] 𝐮 𝑙 , (B.1) 

here the vectorized form of (3) is invoked. Noting that 𝐋𝐮 𝑙 = 𝜆𝑙 𝐮 𝑙 ⇒
 ( 𝐋 ) 𝐮 𝑙 = 𝑝 ( 𝜆𝑙 ) 𝐮 𝑙 , (B.1) can be simplified as 

 ̃= 𝑝 ( 𝐋 ) 
𝑁 𝑔 ∑
𝑙=1 

𝐟 [ 𝑙] 𝐮 𝑙 = 𝑝 ( 𝐋 ) 𝐟 , (B.2) 

here in the last equality we used 𝐟 = 

∑𝑁 𝑔 
𝑙=1 𝐟 [ 𝑙] 𝐮 𝑙 . Using this scheme, fil-

ering is performed through a series of polynomial matrix operations on

 , without the need to access the Laplacian eigenvalues. In this work, we

everaged truncated Chebyshev polynomial approximations of spectral

ernels as presented by Hammond et al. (2011) , which have the benefit

f approximating a minimax polynomial, minimizing an upper bound

n the approximation error. 

ppendix C. Uniform sampling of ODFs 

We defined a spherical sampling grid using the vertices of an icosahe-

ron with five levels of subdivision, which resulted in a total of 10,242

ertices on the unit sphere. Due to non-uniformity in the spatial spread

f the vertices, the number and distribution of vertices that fall within

he solid angles Ω𝑖,𝑗 subtended along the 26/98 different �̂� 𝑖,𝑗 neighbor-

ood directions vary. To overcome this bias, we treated the vertices

hat fall within Ω𝑖,𝑗 around the z-axis as a sampling template, result-

ng in 𝑁 𝑡 = 389 and 105 template directions for the 3-conn and 5-conn

eighborhood definitions, respectively. The sampling template was then

otated and centered around each neighborhood direction �̂� 𝑖,𝑗 , resulting

n a set of sampling directions { ̂𝑟 𝑘 
𝑖,𝑗 
| 𝑘 = 1 , … , 𝑁 𝑡 } (see Fig. C.1 ). 
15 
ppendix D. Streamline-based phantom construction 

For each subject, 10 thousand streamlines, denoted { 𝑠 𝑖 ( 𝑥 ) ∈
 

3 } 𝑖 =1…10000 , were generated through deterministic tractography using

he method presented by Yeh et al. (2013) , as implemented in DSI Stu-

io. A subset of 𝑆 streamlines from a single subject was randomly se-

ected and used as the basis to produce a phantom. Each streamline 𝑠 𝑖 ( 𝑥 )
as first voxelized, resulting in a vector 𝐬 𝑖 containing the indices of the

oxels through which it passes. A random source point for the activa-

ion was then selected, represented by an indicator vector 𝐝 𝑖 of the same

ength as 𝐬 𝑖 , wherein a single element of the vector was set to 1 and the

emaining elements were set to 0. An adjacency matrix 𝐀 𝑖 was then

efined, specifying that every voxel in 𝐬 𝑖 is connected to itself and its

eighbors within a 3 × 3 × 3 neighborhood, with equal weights adding

p to 1. The diffuse activation pattern, denoted 𝐩 𝑖 , was then synthesized

s 

 𝑖 = 

𝐀 

𝑛 
𝑖 
𝐝 𝑖 

max 𝐀 

𝑛 
𝑖 
𝐝 𝑖 
, (D.1)

here the exponent 𝑛 is a parameter that controls the extent of spatial

pread of the activation. This parameter was arbitrarily set to 250 in

he design of all the phantoms used in this work, with the goal of ob-

aining long and smoothly-decaying spatial activation patterns. Finally,

he phantom was constructed by merging the various activation patterns

 𝐩 𝑖 } 𝑖 =1…𝑆 into a single volume. 

upplementary material 

Supplementary material associated with this article can be found, in

he online version, at 10.1016/j.neuroimage.2021.118095 
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