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In ice sheet and glacier modelling, the Finite Element Method is rapidly gaining popularity. 
However, constructing and updating meshes for ice sheets and glaciers is a non-trivial 
and computationally demanding task due to their thin, irregular, and time dependent 
geometry. In this paper we introduce a novel approach to ice dynamics computations 
based on the unfitted Finite Element Method CutFEM, which lets the domain boundary 
cut through elements. By employing CutFEM, complex meshing and remeshing is avoided 
as the glacier can be immersed in a simple background mesh without loss of accuracy. 
The ice is modelled as a non-Newtonian, shear-thinning fluid obeying the p-Stokes (full 
Stokes) equations with the ice atmosphere interface as a moving free surface. A Navier slip 
boundary condition applies at the glacier base allowing both bedrock and subglacial lakes 
to be represented. Within the CutFEM framework we develop a strategy for handling non-
linear viscosities and thin domains and show how glacier deformation can be modelled 
using a level set function. In numerical experiments we show that the expected order of 
accuracy is achieved and that the method is robust with respect to penalty parameters. As 
an application we compute the velocity field of the Swiss mountain glacier Haut Glacier 
d’Arolla in 2D with and without an underlying subglacial lake, and simulate the glacier 
deformation from year 1930 to 1932, with and without surface accumulation and basal 
melt.
© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC 

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

As the atmosphere and ocean is warming, ice sheets and glaciers melt. The meltwater causes global mean sea level to 
rise, and has the potential to alter ocean circulation [1,2]. Ice behaves as a very viscous, non-Newtonian, shear-thinning 
fluid, and in order to predict future melt rates it is crucial to be able to accurately simulate how it flows and deforms. Ice 
sheet and glacier modelling is thus a very important moving boundary, non-linear, fluid mechanics problem.

Due to the complex and changing geometries involved, the Finite Element Method (FEM) is gaining popularity in ice 
modelling since it allows for unstructured meshes [3–6]. Ice sheet and glacier models employ traditional fitted FEM, that 
is, the computational mesh is fitted to the model domain with nodes placed on the boundary. However, there is a limit to 
just how complex moving domains fitted FEM can handle. Requiring mesh nodes to align with the boundary involves non-
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trivial mesh construction, and as the domain moves either costly remeshing or problems with low quality mesh elements 
if the mesh is simply distorted. In ice modelling the initial mesh is usually constructed by creating a 2D triangulation in 
the horizontal plane and extruding it in the vertical direction into a number of layers. Because glaciers are thinner than 
they are wide, the resulting prismatic elements become very flat. At land based ice margins the thickness of elements even 
goes towards zero or some artificial minimum thickness, and when the ice/atmosphere interface moves, the mesh is usually 
distorted to fit the boundary, which can comprise element quality even more. At the coast, the extruded mesh approach 
renders ice cliffs at the coast exactly vertical, which is not always true in reality. Furthermore, when the margins of the ice 
sheet move the mesh may have to be completely reconstructed, which is a costly procedure. Ice sheet margins may move 
suddenly, e.g when ice breaks off into ice bergs, and in long simulations there can even be topological changes if the ice 
melts into separate islands.

In recent years, more robust alternatives to traditional fitted FEM has been developed; unfitted sharp interface methods 
[7,8]. Unfitted methods does not rely on placing mesh nodes on the boundary, but rather immerses the domain onto 
a background mesh, letting the boundary cut through elements. Apart from avoiding generation and repeated update of 
complex meshes, unfitted methods also allows for topological changes. In this paper we extend the unfitted FEM method 
called CutFEM [7], so that it can be used for ice modelling.

CutFEM relies on implementing boundary conditions weakly using Nitsche’s method [9]. Using only Nitsche’s method 
with an unfitted mesh would typically result in losing half an order of convergence [10]. CutFEM instead keeps accuracy 
by employing quadrature only over the physical domain, combined with extra stabilisation terms. CutFEM has successfully 
been applied to Stokes and Navier-Stokes flow [11,12], but modelling ice requires us to extend the method to the strongly 
non-linear p-Stokes (or full Stokes) equations which describes non-Newtonian flow, and to adapt the method to the thinness 
and sharp corners of ice domains. In this paper we describe how this can be done and prove the accuracy of our method 
through numerical experiments in MATLAB. We implement a level-set method for moving the ice/atmosphere interface and 
show how to represent variable sliding at the base of the ice. Nitsche’s method and the level-set method has successfully 
been applied to ice dynamics modelling in e.g. [13,14] for parts of the boundary (the calving front and grounding line), but 
outside the framework of CutFEM. The advantage of using CutFEM is that optimal accuracy is kept.

The paper is organised as follows. In Section 2 we describe the non-linear equations governing ice flow together with 
the equation that describes the moving boundary. In Section 3 the CutFEM method is outlined, including how the non-
linear material properties, thin domains and basal sliding conditions are handled. Section 4 explains the implementation 
of the level set method and how glacier margins are handled as the ice moves. In Section 5 we perform four numerical 
experiments: one unit square test to ensure that the order of accuracy is kept and that the accuracy is robust with respect 
to penalty parameters, and six experiments modelling the Swiss mountain glacier Haut Glacier d’Arolla, which is part of the 
ice sheet modelling bench mark experiment ISMIP-HOM [15].

2. Governing equations and boundary conditions

Glacier and ice sheet flow is governed by a non-linear version of the Stokes equations called the p-Stokes equations or 
full Stokes equations,

−∇ · S(Du) + ∇p = ρg

∇ · u = 0

}
in �. (1)

Here u = (ux, u y) is the velocity field in a two dimensional Cartesian coordinate system (x, y), p is the pressure, � ∈R2 is 
an open, two-dimensional bounded domain, and ρg is the force of gravity. The stress tensor is denoted by S and depends 
on the strain rate tensor Du = (∇u + (∇u)T )/2 as

S(Du) = 2μDu. (2)

Since ice is a non-Newtonian, shear-thinning material, the viscosity μ depends on the Frobenius norm of the strain rate

μ = 1

2
A1−p(ε2

crit + 1

2
||Du||2F )

p−2
2 . (3)

The material parameter p lies in the interval (1, 2) for shear-thinning fluids, meaning the viscosity is very large where the 
strain rate is low. A small p corresponds to a strong non-linearity while p = 2 models a linear, Newtonian fluid. For ice 
p = 4/3 is the standard choice, which in glaciology terminology corresponds to the Glen parameter being nGlen = 3. The 
small regularisation parameter εcrit is included to avoid numerical problems in cases when the Frobenius norm of the strain 
rate tensor ||Du||2F approaches zero. The rate factor A = A(T ) models how ice viscosity depends on the temperature T . We 
consider isothermal condition and so that A is a constant.

The natural velocity and pressure spaces for weak solutions of the full Stokes equations are [W 1,p(�)]2 and Lp
′
(�)

respectively, where Lν denotes a Lebesgue space and W 1,ν a Sobolev space of order one. The parameter p′ relates to p as 
p′ = p/(p − 1), see e.g. [16,17]. Note that in a linear setting p = p′ = 2 and the spaces are consistent with those associated 
with the linear Stokes equations.
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Fig. 1. A cross-section of the mountain glacier Haut Glacier d’Arolla. The outwards pointing normal is denoted by n and the tangential vector by t. The base 
�b rests partly on bedrock (brown) and partly on subglacial water (blue). The surface �s evolves in time due to ice deformation and precipitation/melting.

The glacier boundary � = ∂� is divided into two parts, �s and �b , denoting the interface between the ice and the 
atmosphere (ice surface) and the interface between the ground and the ice respectively, see Fig. 1. The ice surface �s is a 
free boundary, which in glaciology is typically described by a height function z = h(x, t) indicating the elevation of �s at a 
certain horizontal position x at a time t . In this paper we will instead use a level-set formulation, which unlike the height 
function formulation does not require that there is a unique z for each x, nor excludes topological changes. The position of 
the surface is thus indicated by a level set function �(x, z, t) which is zero at the surface �s . The evolution of the surface is 
given by the evolution equation

∂�

∂t
+ u · ∇� = as, (4)

where as is an accumulation/ablation function depending on the atmospheric conditions such as e.g. snow. As customary 
in glaciology the accumulation/ablation is added only in the vertical direction (since precipitation and ablation comes from 
above), i.e. as = −a⊥

s ∇�, a⊥
s being materia added or removed in the z-coordinate direction.

The boundary condition for the full Stokes equations at the free surface is

(−pI + 2μDu)n = 0 on �s, (5)

where n is the outwards pointing unit normal of the domain boundary and I is the identity matrix. At the base �b the ice 
can either be frozen to the ground or it can be sliding on sediments or water so that a Navier slip type condition applies

Pn(u − gd) = 0 on �b, (6)

Pt(ε(2μDun − d) + μ(u − gd)) = 0 on �b. (7)

Here the projection matrices Pn, Pt ∈ R2×2 defines the projection to the normal and tangential plane and are given as 
Pn = n ⊗ n and Pt = I − n ⊗ n, where ⊗ denotes an outer product. We set d = 0, meaning there is zero traction at the 
base, and will from now on omit d from the equations. The term gd = (0, −a⊥

b ) models melt or refreezing at the base of 
the glacier. The slip length ε determines the amount of slip in the tangential direction. For ε = 0 equations (6)-(7) reduce 
to a homogeneous Dirichlet condition, valid for the case when the ice is frozen to underlying base. When ε → ∞ a free 
slip condition is retrieved, which is valid when the ice is slipping over water. An intermediate slip length ε results in 
a mixed Robin condition, which describes situations when the ice is not frozen at the base or is resting on deformable 
debris/sediments. The Navier slip boundary conditions of equation (6)-(7) were formulated in a CutFEM framework by [18]
for the linear Stokes equations (p = 2).

3. CutFEM formulation

3.1. Computational mesh and finite element spaces

The physical domain � is immersed in a larger a rectangular domain �0, i.e. � ⊂ �0 ⊂ R2, see Fig. 2a. This larger 
domain is easy to partition into a structured so called background mesh T0,h consisting of rectangles K , where h denotes the 
cell diameter. For the Arolla glacier, the background meshes, T0,h are slightly anisotropic to accommodate the thin Arolla 
glacier, unlike the background meshes used so far in the framework of CutFEM. Elements are thus eight times longer in the 
x-direction than in the y-direction, reflecting the thinness of the glacier (see Fig. 1). The discrete solution will be sought 
3
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Fig. 2. A mesh for the Arolla glacier. The cyan part marks the physical domain �. The thin black lines marks the mesh faces for the background mesh 
constructed on �0 and the magenta and cyan together marks the active part of the mesh, Th(�). Note that the picture is stretched in the vertical direction, 
so that in reality the elements are slightly anisotropic.

only on the active part of the mesh, defined as all elements which are intersected by the domain �, i.e.

Th(�) = {K ∈ T0,h : K ∩ �(t) �= ∅}. (8)

The active mesh is marked cyan and magenta in Fig. 2a. We call the union of the elements in the active part of the mesh 
the active domain �h(t) = ∪K∈Th K . The facets of the elements in Th(�) enters in the formulation of stabilisation terms and 
we therefore introduce the some notations for these. All facets belonging to elements in Th(�) are denoted by Fh(�) and 
all interior facets, i.e facets that are shared by two elements that are both in Th(�) are denoted by Fi,h(�). The interior 
facets will be used for stabilising the pressure (i.e. for inf-sup stabilisation). The elements and facets Th(�) and Fh(�) which 
are intersected, or “cut”, by the boundary � are of extra importance, as it is on these facets that extra stabilisation terms 
are needed for the CutFEM formulation. These elements and facets are defined as

Th(�) = {K ∈ Th(�) : K ∩ � �= ∅}, (9)

Fh(�) = {F ∈ Fi,h(�) : K +
F ∩ � �= 0 or K −

F ∩ � �= 0}, (10)

where K +
F and K −

F are the two elements that share the facet F . In Fig. 2b facets belonging to Fh(�) are marked yellow.
On the background mesh �0 we introduce a finite element space of bi-linear, continuous functions

X0,h :=
{
ω ∈ C(�0); ωK ◦ F K ∈Q1(K̂ ), K ∈ T0,h

}
, (11)

where the space Q1(K̂ ) := span{x̂, ŷ, ̂xŷ, (x̂, ŷ) ∈ K̂ } is defined on the reference element K̂ := (0, 1)d . The mapping F K

maps from the reference element to an element K , and will for the numerical experiments on the Arolla glacier geometry 
represent a slight compression of the grid in the vertical direction. The finite element space on the active domain is defined 
as the restriction of X0,h onto �h

Xh = X0,h|�h . (12)

This space is used to approximate both the velocity and pressure solution

X h = [Xh]2, Qh = Xh, (13)

that is, we employ equal order bilinear elements on the active mesh.

3.2. Discrete problem

The discretized problem now reads: Find velocity and pressure (u, ph) ∈X h ×Qh so that

ah(uh,vh) + b(ph,vh) − b(qh,uh) + sp(ph,qh) (14)

+gu(uh,vh) + gp(uh,vh) = lh(uh,vh) ∀(vh,qh) ∈X h ×Qh,
4
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where ah stems from the stress tensor in (1), the two bh stems from the pressure gradient and from the divergence free 
constraint, sh is an inf-sup stabilisation needed as we employ equal order elements, gu , and gp are the extra stabilisation 
terms called ghost penalty terms needed for the CutFEM formulation, and lh represents the right hand side of (1). We will 
now describe each of these terms in detail.

3.2.1. Nitsche terms
Following [18] the form ah(uh, vh) contains the viscous term together with several extra boundary terms that are required 

for imposing the Dirichlet or Navier-slip boundary conditions (6)-(7) weakly on a boundary that cuts the mesh.

ah(uh,vh) := (2μDuh,Dvh)� − 〈2μDuhn,vh〉�b − 〈Pnuh,2μDvhn〉�b

+ 〈 2μ

γ nh�

uh · n,vh · n〉�b + 〈 ε

ε + γ th�

Pt(2μDuhn),vh〉�b + 〈 μ

ε + γ th�

uh · t,vh · t〉�b

− 〈 εγ th�

ε + γ th�

Pt(2μDuhn),2Dvhn〉�b − 〈 μγ th�

ε + γ th�

Ptuh,2Dvhn〉�b . (15)

The second term comes from the partial integration associated with writing (1) on weak form. Note that unlike for standard 
fitted FEM, this term is non-zero even for Dirichlet conditions since v is non-zero on �b . The term makes the form unsym-
metric, which with Nitsche’s method is remedied by adding extra terms to symmetrize the problem. For no-slip conditions 
(ε → 0) the third and last term together constitutes these symmetrisation terms. The fourth and sixth term are penalty 
terms that impose the Dirichlet condition, and γ t and γ n are Nitsche penalty parameters in the tangential and normal 
direction. The lower these parameters are, the more emphasis is put on imposing the boundary conditions, versus fulfilling 
the equations. For ε → ∞ we retrieve the free slip condition. In this case it is the second to last term that is the penalty 
term imposing the boundary condition. For a more detailed discussion of these terms, we refer to [18]. Note that for ice, 
the viscosity in each of these terms is variable in time and space, unlike in the formulation in [18]. The measure h� differs 
from [18] where the cellsize h is used instead. Since for anisotropic elements it matters if the boundary � cuts an element 
along the long side or short side, we define h� = hxhy/(hxt�,x + hyt�,y), where t� is the average tangential to � within an 
element. For the Arolla glacier, the boundary mostly cuts the cells along the long edge of elements, so that h� ≈ hy . This 
choice can be motivated by revising the trace and inverse inequalities involved in the CutFEM stability proofs and will be 
presented thoroughly in a separate publication.

For the pressure/divergence constraint form bh one extra boundary term enters, stemming from the partial integration

bh(ph,vh) := b(ph,vh) + 〈p,v · n〉�b . (16)

Finally, given that d is zero in (6)-(7), the right hand side form is

lh(u,v) := (f,v)� − 〈gd · n, (2μDvhn) · n〉�b + .〈 2μ

γ nh�

gd · n,vh · n〉�b (17)

− 〈gd · n,qh〉�b + 〈 μ

ε + γ th�

gd · t,vh · t〉�b − 〈 μγ th�

ε + γ th�

Ptgd,2Dvhn〉�b

Note that even though the finite element spaces are defined on the entire active domain �h , the integrations in (15)-(17)
are only over � for accuracy reasons. The contribution to the final FEM matrices of the cut elements may thus be very small 
(see Fig. 2b), which would lead to bad condition numbers of these matrices and stability issues were it not for gu , and gp .

3.2.2. Stabilisation terms
The ghost penalty stabilisation terms gu and gp that are added to handle issues related to small cut elements are defined 

as

gu(uh,vh) = βu

∑
F∈Fh(�)

hn〈�n f · ∇uh�, �nF · ∇vh�〉F , (18)

gp(ph,qh) = βp

∑
F∈Fh(�)

h3
n

μ
〈�nF · ∇ph�, �nF · ∇ph�〉F , (19)

where hn and ht is the length of the side normal and tangential to the facet F (see Fig. 3), nF is the normal vector 
to the facet, βu and βp are user defined parameters and �φ� := (φ+

F − φ−
F ) denotes the jump of a quantify (φ), where 

φ±(x, y) := limt→0+ φ((x, y) ± tnF ). The ghost penalties penalise jumps in pressure and velocity gradients across facets 
belonging to Fh(�). These stabilisation terms are an anisotropic version of the isotropic ghost penalty terms in [11], as 
we need slightly anisotropic background meshes to accommodate the thin Arolla glacier. The formulation can be found by 
following the standard CutFEM stability proof and tracking the length of the normal and tangential part in the trace and 
inverse inequalities separately.
5
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Fig. 3. The length of the sides of each cell is denoted by ht if it is parallel to the facet F , and hn if it is perpendicular.

The term sp(uh, vh) in (14) is a stabilisation term of Continuous Interior Penalty (CIP) type [19]

sp(ph,qh) = α
∑

F∈Fh(�)

h2
xhn

μ
〈�nF · ∇ph�, �nF · ∇ph�〉F , (20)

where α is a user defined parameter. This stabilisation is needed since the equal order spaces Xh and Qh are well-known 
to violate the inf-sup condition [20]. Also here we have modified the formulation to suit anisotropic meshes. The form of 
the stabilisation is consistent with the anisotropic stabilisation of [21]. An in depth analysis of the anisotropic stabilisation 
terms (18) and (20) will be presented in a follow up publication.

3.3. Handling of the non-linearity

To resolve the non-linearity of the full Stokes equations we use a Picard iteration, see Algorithm 1. We chose a Picard 
iteration over a Newton iteration, since the focus of this paper is not to measure efficiency. Newton iterations are used in 
ice modelling but requires some extra care due to the viscosity singularity inherent to the full Stokes equations.

In each iteration, the viscosity μ is updated in the viscous term ah , the ghost penalty and the inf-sup stabilisation term. 
Note that μ enters in all of the terms of ah . To our knowledge CutFEM has not been used for a viscosity that varies in 
space an time. We will show by numerical experiments that simply updating the viscosity in all terms where it appears 
gives an accurate solution. The resulting linear system is solved using MATLAB’s inbuilt backslash operator mldivide 
and the computed velocity is then used in order to update the free surface in the manner described in the next sec-
tion.

Algorithm 1 General solution procedure. For each time step k and non-linear iteration n a linear system is solved.

1: Set initial condition for velocity u0
0, pressure p0

0.
2: for k = 1, ...kmax do
3: n = 1
4: while change > εtol and n < 50 do
5: Compute viscosity μk

n = μ(uk
n)

6: Assemble linear system from problem (14) using μk
n

7: Solve system for velocity uk
n+1 and pressure pk

n+1.

8: calculate change = ‖uk
n+1 − uk

n‖2/‖uk
n+1‖2

9: n = n + 1
10: end while
11: Use uk

n to update the free surface �k+1
s

12: Update the active mesh Th(�)

13: k = k + 1
14: end for

4. Time evolution of the ice surface

In order to track the position of the free surface �s we use level set function � : �0 →R. It is a signed distance function, 
so that⎧⎨

⎩
� < 0 if (x, y) ∈ �+,

� = 0 if (x, y) ∈ ∂�+,

� > 0 if (x, y) ∈ � \� ,

(21)

0 +

6
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Fig. 4. The level set function � (coloured) is zero at the black line, ∂�+ . The glacier boundary consists of the parts of this black line and the mountain 
(dashed line) which lies in between their intersection.

and |∇�| = 1 at ∂�+ . The domain �+ is a domain which is larger than the glacier domain �, and whose upper boundary 
coincides with �s , see the black line in Fig. 4. As the glacier deforms, the level set function is convected by the velocity 
field according to the free surface equation (4). To account for accumulation/ablation term as , we use that as := −a⊥

s ∇�

and simply add an extra component uacc = [0, a⊥
s ]T to the velocity so that (4) can be written as

∂�

∂t
+ (u + uacc) · ∇� = 0 in �0. (22)

A new glacier boundary ∂� is then defined in the following way. The intersection is found between the line where � = 0
(the black line in Fig. 4) and the underlying mountain (the dashed line in Fig. 4). A new �s is then defined as the part 
of the line � = 0 that lies in between the intersection points. In the same way a new �b is defined as the part of the 
mountain boundary that lies in between the intersection points. In this way the margins (the front and back) of the glacier 
is free to move. The reason we use a great domain �+ instead of simply having a level set defined by only the extension 
of �s is purely technical, i.e. it is because the code is written in such a way that the line � = 0 is assumed to be a closed 
polygon. In practice the mountain boundary would be given by data but in this study we find a curve representing the 
mountain, we extrapolate �b so that it is prolonged to the sides. If the base of the ice would also be moving, e.g. due to 
subglacial channels, it is possible to represent �b with a level set function. An alternative approach is to define the whole 
glacier boundary using a level set function, by replacing �+ by � in (21), but we found doing so smoothens the sharp 
edges slightly at the front and back, leading to artificial mass loss.

Note that as the full Stokes equations are only solved in �h , we need to extend the velocity to �0. This is done by 
solving the Laplace equation in the area outside the glacier with the computed velocity as a Dirichlet condition at ∂� and 
a homogeneous Neumann condition at ∂�0 (i.e. at the dashed line in Fig. 2). In order to set the boundary conditions, the 
CutFEM method is again used, with an active domain consisting of the cut elements together with elements completely out-
side the glacier (the grey coloured elements in Fig. 2). The computational work for solving this problem is small compared 
to solving the full Stokes equations. The complete velocity field for all of �0 is constructed by combining the two solutions. 
The extended velocity in nodes within the active glacier mesh �h(t) (i.e. in the magenta and cyan area of Fig. 2) are given 
by the full Stokes solution and the solution in the nodes outside the glacier (i.e. belonging only to the grey coloured area in 
Fig. 2) are given by the solution to the Laplace equation.

In order to retain an accurate representation of the geometry, equation (22) is solved on a mesh twice as fine as the 
mesh used to solve the full Stokes equations, employing linear interpolation to obtain the velocity uh/2 on the fine mesh. 
To discretise (22) we use Crank-Nicolson in time and stabilised linear finite elements in space. The discrete problem reads: 
Find the level-set function �h/2 ∈ X0,h/2 such that(

�n+1
h/2 − �n

h/2

�t
, ξh/2

)
+ 1

2
(ûn

h/2 · ∇(�n+1
h/2 + �n

h/2), ξh/2) (23)

+ 1

2
s�(�n+1

h/2 + �n
h/2, ξh/2) = 0 ∀ξh/2 ∈ X0,h/2,

where û = u + uacc and the stabilisation term s� is introduced to control transport instabilities

s�(�h, ξh) = β�

∑
F∈Fh(�)

h2
n〈|ûh · nF |�nF · ∇�h�, �nF · ∇ξh�〉F , (24)

where β� is a user defined parameter. This stabilisation term is the same as in [22], except for that we use the scaling hn
instead of h since this proved more stable in experiments on anisotropic meshes.

In order to identify the new �s , i.e. the line where the level set function � is zero and thus changing sign, it is important 
that |∇�| remains close to 1. Therefore the advection of � is followed by a reinitialisation step. Available reinitialisation 
7
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Table 1
Parameter values used in the numerical experiments.

Description Notation Unit square Arolla glacier

Rate factor (MPa−3 year−1) A 2
1

1−p 100
Density (MPa/(m2 year2) ρ – 9.1380 · 10−19

Gravity (m/year2) g – [0,−9.7692 · 1015]
Slip length ε 0 0,10300

Non-linear parameter p 4/3 4/3
Critical strain rate εcrit 10−7 10−7

Basal melt rate (m/year) a⊥
b 0 0, 0, 0.01

Surface accumulation (m/year) a⊥
s 0 0, 0.5, 0

Tolerance, non-linear iter. εtol 10−4 10−4

Mesh resolution [hx,hy ] [2−i ,2−i ], i = 2, . . . ,6 c 2−4[√8, 1√
8
], c = 1,0.75

Inf-sup stability parameter α 0.1 10−6

Ghost penalty, velocity βu 0.1 1.0
Ghost penalty, pressure βp 0.1 0.01
Transport stabilisation par. β� - 0.01
Tangential Nitsche penalty γt 0.05 0.005
Normal Nitsche penalty γn 0.05 0.005

techniques tend to smooth very sharp edges, but this is circumvented by introducing �+ . To ensure high accuracy we keep 
the fine mesh T0,h/2 and employ the local projection reinitialisation strategy of [23] at the elements which are cut by the 
boundary. The local projection reinitialisation is based on finding an exact linear distance function in each element. This 
procedure gives a globally discontinuous space which is then projected onto a continuous piece wise linear functions. This 
method works also for unstructured meshes. At elements that are not cut by the boundary the fast sweeping method of 
[24] is used to extend this distance function iteratively. The final new boundary is ∂� used to define a new active mesh 
Th(�) in the next time step.

5. Numerical experiments

We conduct four numerical experiments, the purpose of which is to show that CutFEM can be used to solve the full 
Stokes equations and that it is a useful method for simulations of ice dynamics.

Experiment 1a A unit square test in order to verify that the solution converges at the expected rate for the full Stokes 
equations and is robust with respect to penalty parameters.

Experiment 2a A steady simulation of the Arolla glacier, with no slip conditions at the base.
Experiment 2b A steady simulation of the Arolla glacier with partial slip conditions at the ice bed, representing a subglacial 

lake found under the glacier.
Experiment 2c A time dependent simulation of Arolla glacier, simulating the free surface evolving between year 1930 and 

1932.

The values of all numerical and physical parameters used in these experiments are given in Table 1.

5.1. Experiment 1 - convergence and robustness on a unit square

We follow Example 2 in section 4.8 in [25]. The domain is a unit square � := (−0.5, 0.5) × (−0.5, 0.5) and the analytical 
solution is given by

ux = (x2 + y2)
a−1

2 y, (25)

u y = − (x2 + y2)
a−1

2 x, (26)

p = (x2 + y2)
b
2 xy − C . (27)

The right hand side of equation (1) is f = ∇ · S(Du) + ∇p instead of ρg and Dirichlet conditions uD = u|∂� are prescribed 
on the entire boundary ∂�, i.e. ε = 0 in (7). To obtain a unique pressure we also enforce the condition 

∫
�

p d� = 0, 
implying that C = ∫

�
(x2 + y2)

b
2 xy d� in (25). The rate factor A is set so that 1

2 A1−p = 1 in order to be consistent with 
[25]. The constants a, b ∈ R determine the regularity of the solution. The solution should be regular enough to satisfy 
F(Du) := (ε + |Du|) p−2

2 Du ∈ W 1,2(�)2×2 and p ∈ W 1,p′
, which corresponds to a > 1 and b > −2/p′ − 1 [16,17,25]. In order 

to test the method under as difficult conditions as possible we chose a = 1.01 and b = −2/p′ − 0.99, as in [25]. Given these 
regularity assumptions, optimal convergence estimates
8
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Fig. 5. Results of Experiment 1 - the unit square test.

||u − uh||1,p ≤ cuh, ||p − ph||p′ ≤ cph2/p′
, (28)

has been established in the case of p ∈ (1, 2) and inf-sup stable elements or first order equal elements stabilised with the 
local projection stabilisation, for some constants cu and cp [16,17,25]. In this experiment we test numerically if the CutFEM 
solution appear to fulfil similar convergence estimates and how sensitive it is to the choice of the penalty parameters γD , 
βu , and βp .

To ensure that cells are cut, the background mesh is rotated with respect to the square with an angle of 
√

2π/4 radians. 
For the convergence experiment we then run simulations on a series with meshes with a cellsize hx = hy = 2−i, i =
2, 3, 4, 5, 6. The result is shown in Fig. 5b. The velocity converges as expected and the pressure converges faster than the 
expected rate of h0.5.

For the sensitivity study we set hx = hy = 2−3 and run three sets of experiments. In the first we keep βu and βp as in 
Table 1 and let γD take the values 10−1, 1, 10, 102, 103, and 104. In the second we keep γD and βu as in Table 1 and let 
βp take the values 10−6, 10−3, 10−1, 102, 106,and 108 and in the third we keep γD and βp as in Table 1 and let βu take 
the values 10−10, 10−6, 10−1, 102, 1010, 1011, 5 · 1010,and 1012. The results are shown in Fig. 5c. The accuracy is not very 
sensitive to choice of penalty parameters.

5.2. Experiment 2a - the Arolla glacier with no slip conditions

In this experiment we compute the velocity and pressure along a 5 km long central flow line of the Haut Glacier d’Arolla, 
as it was measured during the Little Ice Age in 1930 (see Fig. 1). The surface and bedrock topography is available on the 
ISMIP-HOM website [26] with a resolution of 100 m. The physical parameters ρ , g and A are set according to the ISMIP-
HOM benchmark, see Table 1. The background mesh consists of rectangles of width hx = 2−4

√
8 and height hy = 2−4 1√

8
, 

and we scale the problem so that the length unit is km instead of m, in order to ensure that hx < 1.
The computed velocity components and pressure are seen in Fig. 6. The results are in agreement with other full Stokes 

models in the ISMIP-HOM benchmark, see [15].
9
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Fig. 6. Results of Experiment 2a - Arolla with no slip conditions.

5.3. Experiment 2b - the Arolla glacier with partial slip conditions

In this experiment, we change the basal boundary conditions so that{
ε = 10300 if 2200 m ≤ x ≤ 2500 m
ε = 0 elsewhere

(29)

These boundary conditions represents subglacial water found under the Arolla glacier as described in the ISMIP-HOM bench-
mark. The lake is marked blue in Fig. 1. The number 10300 is chosen high enough to effectively model ε → ∞, so that there 
is free slip between the ice and the underlying water. The boundary conditions tests the implementation of the Navier 
slip conditions and are challenging as they are discontinuous. In order to have more than one mesh node residing in the 
narrow region of free slip we here refine the mesh slightly in comparison to Experiment 2a, so that hx = 0.75 · 2−4

√
8 and 

hy = 0.75 · 2−4 1√
8

.

The results shown in Fig. 7 are in agreement with other full Stokes models in the ISMIP-HOM benchmark, see [15] and 
[27], given the relatively coarse resolution here. The coarse resolution used in this paper was chosen to demonstrate the 
ability to represent geometry without a fine mesh. In practice one can refine the background mesh in selected areas.

5.4. Experiment 2c - time evolution of the Arolla glacier

In the final experiment we let the ice surface evolve from year 1930 to year 1932. This experiment is not part of the 
ISMIP-HOM benchmark, and we instead compare to the results in [28]. We apply no slip conditions at the base as this is 
the case in [28]. The time step is 0.2 years. The surface after two years (in 1932) is presented in Fig. 8 together with the 
initial geometry at 1930. The ice thickness decreases in the upper part of the glacier and the ice accumulates in the lower 
part, i.e. the glacier is moving down the mountain. The results are in agreement with the results of [28].

In climate related applications, it is important for models to preserve mass. We therefore measure the area changes 
throughout the simulation, see Fig. 8b. Some area is artificially lost (22.3 m2), corresponding to about 2 mm artificial 
surface melt per year, or an relative area change |A(t = 2) − A(t = 0)|/A(t = 0) on the order of 10−5. Given the fairly high 
10



J. Ahlkrona and D. Elfverson Journal of Computational Physics: X 11 (2021) 100090
Fig. 7. Results of Experiment 2b - the Arolla glacier with partial slip conditions.

non-linear tolerance εtol , coarse mesh and the stabilised equal order linear elements, this is within the expected range. It 
can be compared to a relative volume change of 10−6 for the ice sheet model Elmer/Ice, for an experiment with an ice with 
constant viscosity is flowing over an artificial sinusoidal bedrock until steady state is reached [29].

Finally, to demonstrate that is possible to model accumulation as at the ice surface, as well as basal melt a⊥
b at the base, 

we run two more simulations and measure area change. In the first simulation, we model half a meter of accumulation per 
year over the entire surface by setting a⊥

s = 0.5. Since the length of the glacier changes throughout the simulations slightly 
(as the front and back moves) it is difficult to calculate exactly how large the area change should be. On average the glacier 
length is however about 4890.1 m long, meaning that the glacier should in two years gain 4890.1 m ·0.5 m/year ·2 years 
= 4890.1 m2. This agrees with the measured area gain of 4877.6 m2, considering that the numerical error is about 20 m2

(see Fig. 8b). It should be noted that in reality the accumulation on the Arolla glacier is about −2 m [30]. In the second 
simulation, we set a basal melt a⊥

b = 0.01 m/year, i.e. we set gd = (0, −0.01). This should result in a area loss of 4890.1 m 
·0.01 m/year ·2 years = 97.8 m2, which also agrees well with the measured area loss of 120.2 m2, again considering the 
numerical error.

6. Summary and conclusion

The unfitted sharp interface finite element method CutFEM has been applied to simulate glaciers in two dimensions. 
A strategy for handling non-linear viscosities, thin domains, variable slip conditions and an evolving domain with sharp 
edges has been developed. The order of convergence is at least as high as expected from finite element theory for non-
Newtonian fluids. The method produces accurate velocity and pressure profiles for the Swiss glacier Haut Glacier d’Arolla, 
for fully frozen basal conditions as well as for an underlying subglacial lake. The deformation of the glacier from year 1930 
to 1932 has been simulated with and without basal melt and surface accumulation, showing that the movement of the 
glacier surface is well modelled despite not being represented by mesh nodes.

The CutFEM method appears to be a viable option for ice dynamics simulations which avoids issues with meshing 
and remeshing. The CutFEM method has been implemented in three dimensions in mature softwares such as deal.II and 
FEniCS [31,32] so that en extension to large scale three dimensional ice sheet simulations is possible by following the same 
11
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Fig. 8. Results of Experiment 2c - transient simulations of the Arolla glacier.

procedure as in this paper. Other interesting extensions of this study are marine terminating glaciers, configurations with 
topological changes, as well as performance comparisons to classical fitted FEM on large scale problems.
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