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ABSTRACT This paper presents numerical modeling and experimental validation of the signal path loss
at the 5.8 GHz Industrial, Scientific, and Medical (ISM) band, performed in the context of fat-intrabody
communication (fat-IBC), a novel intrabody communication platform using the body-omnipresent fat tissue
as the key wave-guiding medium. Such work extends our previous works at 2.0 and 2.4 GHz in the
characterization of its performance in other useful frequency range. In addition, this paper also includes
studies of both static and dynamic human body movements. In order to provide with a more comprehensive
characterization of the communication performance at this frequency, this work focuses on investigating
the path loss at different configurations of fat tissue thickness, antenna polarizations, and locations in the
fat channel. We bring more realism to the experimental validation by using excised tissues from porcine
cadaver as both their fat and muscle tissues have electromagnetic characteristics similar to those of human
with respect to current state-of-art artificial phantom models. Moreover, for favorable signal excitation and
reception in the fat-IBC model, we used topology optimized waveguide probes. These probes provide an
almost flat response in the frequency range from 3.2 to 7.1 GHz which is higher than previous probes
and improve the evaluation of the performance of the fat-IBC model. We also discuss various aspects of
real-world scenarios by examining different models, particularly homogeneous multilayered skin, fat, and
muscle tissue. To study the effect of dynamic body movements, we examine the impact of misalignment,
both in space and in wave polarization, between implanted nodes. We show in particular that the use of
fat-IBC techniques can be extended up in frequency to a broadband channel at 5.8 GHz.

INDEX TERMS Channel characterization, dielectric properties measurement, ex-vivo, fat tissue, fat-IBC,
intrabody microwave communication; ISM band, path loss, polarization, topology optimization.

I. INTRODUCTION
In-vivo smart implants operate in Industrial, Scientific, and
Medical (ISM) bands. According to the U.S. Food Drug
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Administration (FDA) [1], the frequency 5.8 GHz, together
with the frequencies 433MHz, 900MHz, and 2.4GHz, which
belong to the ISM band, are recognized as frequencies that
can be utilized for active implantable medical devices, such
as cardiac pacemakers, cardioverter defibrillators, and car-
diac resynchronization devices [2]. The ISM frequencies at
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2.4 GHz or 5.8 GHz are typically chosen for in-body implants
as a compromise between small antenna size (higher fre-
quencies allow smaller antennas) and acceptable penetration
through human body tissues, although at lower frequencies
the penetration is higher [3]. One main challenge for in-body
implants is the miniaturization of the antenna. Because of
the lossy nature of biological tissues, higher-frequency waves
attenuate faster than lower-frequency waves, and therefore
reduce the communication range. Numerous implantable sys-
tems are currently available in the market, including drug
delivery systems [4]–[6], cochlear implants [7], [8], pressure
monitors in the brain [9]–[11], glaucoma sensors [12], [13],
and direct control of prostheses [14]–[16]. By including the
wireless technology in their market offers, the use of such
systems is enormously extended. This trend is also widely
noticed in the literature through the increasing interest in
miniature antennas for implants [17]–[21].

In previous studies at lower microwave frequencies
(2.0 and 2.4 GHz) [22]–[24], the path loss of fat-intrabody
communication (fat-IBC) has been investigated against dif-
ferent factors that might affect the signal path loss. These
studies show that the path loss depends on several properties
of the fat tissue. When there are perturbants or muscles
that correspond to a height greater than 40% of the fat’s
thickness, the path loss increases significantly [25], while for
the physical curvature variation of fat tissue, a loss of 4 dB
is expected in extreme scenarios [26]. Blood vessels in fat
tissue cause a path loss that depends on their position and
orientation in the fat tissue; they can behave as a reflector,
a splitter, or as a splitter and re-combiner [27]. Recent studies
report on the effect of steel wires, placed in human chest in
the context of open-heart surgeries, on microwave intrabody
communication [28]. Särestöniemi et al. discuss intrabody
channel characteristics between a capsule endoscope and a
receiving directive on-body antenna at UWB frequencies for
wireless body-area networks [29]. Inspired by the insights
gained from these previous studies and the value of con-
sidering operations at higher frequencies, in this work we
investigate fat-IBC at 5.8 GHz using numerical simulations
and laboratory experiments using porcine cadaver tissues to
enhance realism.

Moreover, we propose a small probe optimized to operate
efficiently into the fat tissue at a frequency of 5.8 GHz.
The small size of the probe, together with the experiment
setup, makes it possible to investigate new aspects of this
intrabody communication. In particular, the small size allows
the study of intrabody communication subject to dynamic
body movements where the position of implanted nodes are
likely to be displaced. The displacement of nodes can change
the relative orientation and position between nodes as well
as their respective polarization, affecting the quality of the
channel. These investigations have the potential to provide
valuable information that can be utilized in designing reliable
communication between implants, particularly for fat-IBC.
Table 1 shows the difference in probe size between some
previous work at 2.0 GHz and 2.4 GHz and the current work.

TABLE 1. Comparison between the waveguide probe sizes at 2.0 GHz,
2.4 GHz, and 5.8 GHz (current work).

The novelty of the research is that the use of fat-IBC
techniques can be extended up in frequency to a broadband
channel at 5.8 GHz. We study the effect of dynamic body
movements by examining the impact of misalignment, both
in space and in wave polarization, between implanted nodes.
Moreover, another novel aspect of this paper is the devel-
opment of a simplified generic path loss (PL) model, which
describes the signal attenuation between a transmitter (TX)
and a receiver (RX) antenna as a function of the propaga-
tion distance at 5.8 GHz. We select the 5.8 GHz frequency
corresponding to the ISM band, as this choice is one way to
reduce the antenna size and to make the antenna feasible for
implantation. Another advantage of this choice is the wide
bandwidth offered by operating at 5.8 GHz, which enables
high data rates that could be utilized, for instance, for live
streaming of gastro-intestinal video signals.

The paper is organized as follows. Section 2 describes the
dielectric properties of the ex-vivo tissues and a proposed
phantom model used in the laboratory and compared to the
human tissue. The description of the topology optimized
probes, along with the measurement setup of the probes,
is given in Section 3. In Section 4, we describe the exper-
imental setup for a set of possible configurations for the
fat channel and different alignments between the probes.
Section 5 presents numerical and experimental results that
demonstrate the benefit of our new investigation of the fat
channel at 5.8 GHz. The conclusion is given in Section 6.

II. DIELECTRIC PROPERTIES OF THE TISSUE-EQUIVALENT
PHANTOM, EX-VIVO, AND HUMAN TISSUES
In this study, we perform experiments in two environments—
tissue-equivalent phantom and ex-vivo tissue—and com-
pare with the human tissue developed by Andreuc-
cetti et al. [30], based on the work of Gabriel et al. [31], [32].
Tissue-equivalent phantoms emulating skin and muscle were
made as agar-based compounds, while those emulating fat
were made as oil-based compounds. The phantoms used in
this work were developed in our laboratory using recipes
similarly as done in Joseph et al. [33]. For the ex-vivo tissues,
the skin, fat, and muscle were separated from the porcine
belly portion obtained from a local slaughterhouse. The fat
and muscle have been finely minced with a meat mincer to
reduce air traps between the two layers when forming the
model structure.

To establish suitable models to study fat-IBC,
the frequency-dependent, real ε′ and imaginary ε′′, parts
of the dielectric permittivity of the skin, fat, and muscle
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tissues are determined. We measure these quantities using
a Keysight N1501A open-ended dielectric slim form probe
kit. For numerical simulations, Cole-Cole models are used to
fit the measured data. Figure 1 shows a comparison between
the dielectric properties, over the frequency range 3–8 GHz,
of the three models: (i) freshly excised ex-vivo porcine belly
tissues, (ii) tissue-equivalent phantom compounds, and (iii)
human tissues. From Figure 1a we can see that the dielectric
constant ε′ of the ex-vivo skin tissue is slightly lower than
that of the human skin. However, we could consider them
to be statistically similar, as the reported uncertainty in the
Keysight N1510A dielectric probe system is about 10% [34],
mainly at lower frequencies, and as they are tissues of differ-
ent nature. Moreover, the uncertainties from the data in the
IFAC database, Andreuccetti et al. [30], could be considered
in the worst-case scenario as much as 10%, according to the
work by Gabriel and Peyman [35].

Figure 1b presents the dielectric properties of the fat tis-
sue as a function of frequency. It shows that the dielectric
properties of an ex-vivo fat tissue are similar to the human fat
tissue. The dielectric constant, ε′ of the oil-based phantom is
also similar above 5 GHz, but ε′′ is twice the value of ex-vivo
and human tissue. This is a drawback of the phantom recipe
that was employed to ensure a flexible phantom that could be
used in experimental scenarioswhere the phantom needs to be
bended. Further, this phantom is used to study the behaviour
of the fat channels possessing different electromagnetic prop-
erties. The muscle tissues of the phantom and ex-vivo have
smaller ε′′ compared with those of the human tissue, whereas
their ε′ have slightly higher values than those of the human
tissue (see Figure 1c). Therefore, these values can be used in
our experiments.

Table 2 shows the comparison of the dielectric properties
extracted at 5.8 GHz ISM band from Figure 1. Since the
fat tissue has a lower loss tangent tan δ, and since waves in
this medium travel faster than in the muscle and skin tissues,
a wave travelling through the fat will experience a lower path
loss than in other tissues. It can be seen that the ex-vivo
porcine fat tissue has similar characteristics as the human
tissue, while the phantom has twice their loss tangent.

III. TOPOLOGY OPTIMIZED COMPACT PROBE
A. PROBE OPTIMIZATION
To investigate the fat channel communication at 5.8 GHz,
we need to efficiently launch and record electromagnetic
waves into and from the fat tissue. To achieve this goal,
we design a wideband probe by using our topology optimiza-
tion approach [36]. Figure 2 shows the configuration of the
proposed probe, consisting of a coaxial cable connected to
one side of a rectangular cavity with dimensions Wprobe =

19.05mm Tprobe = 9.525mm and Lprobe = 14.3mm. The
cavity region is filled with a substance having permittivity
properties similar to that of the fat tissue. The opposite side
of the cavity is open towards the fat tissue domain �ex and
represents a radiating aperture with a size ofWprobe × Tprobe.

FIGURE 1. A comparison between the complex dielectric properties of
the tissue-equivalent phantom, the ex-vivo tissues, and the human
tissues at room temperature.

The aperture size is similar to the dimensions of a standard
WR75 waveguide, which allows the use of WR75 waveg-
uide sections for the probe assembly. Outside the cavity,
the domain �ex has a wave impedance that depends on the
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TABLE 2. Comparison between the dielectric properties of the tissue-equivalent phantom, ex-vivo porcine tissue, and human tissue at 5.8 GHz.

FIGURE 2. Configuration of the probe and its attachment to the exterior
domain �ex. The domain � is the design domain where the conductivity
distribution is optimized to maximize signal transmission between the
probe and �ex.

complex permittivity of the medium. Here, domain �ex is
assumed to possess the complex permittivity of the fat tissue.
Note that the matching between the probe and �ex depends
on the probe’s geometrical parameters, the material property
inside the probe, and the wave impedance of the exterior
domain, as will be demonstrated next.

To design the probe, we formulate the conceptual optimiza-
tion problemmaxσ� log

(
Wout,coax|WPWy
Wout,coax|Win,coax

)
,

subject to governing equations and excitation signals,

(1)

where σ� is the conductivity distribution in the planar domain
�, located at the middle of the cavity; Wout,coax|WPWy is
the received energy in the coaxial cable when a y-polarized
plane wave propagates from �ex towards the probe; and
Wout,coax|Win,coax is the reflected energy to the coaxial cable
when the coaxial cable is the source of transmission. Prob-
lem (1) reads: find the conductivity distribution in � that
(i) maximizes the energy received by the probeWout,coax|WPWy

when the probe operates in the receiving mode and, at the
same time, (ii) minimizes the energy reflected by the probe
Wout,coax|Win,coax when the probe operates in the transmission
mode.

We solve problem (1) using gradient-based optimization.
The finite-difference time-domain (FDTD) method [37] in an
in-house developed software numerically solves Maxwell’s
equations to compute the two factors of the objective func-
tions. We use a uniform FDTD grid with a spatial step size
1 = 0.10583 mm, and a temporal step size 1t equals 0.9 of
the Courant stability limit, and 10 cells of a uniaxial perfectly
matched layer (UPML) to truncate the simulation domain in
all directions. The Coaxial cable port is simulated using the
model presented in our previous work [38]. The domain � is
pixelated into 90 × 135 Yee cells containing 24 525 edges.
The vector of design variables holds the conductivity value
at each edge in �. The gradient of the objective function
is computed by an expression involving FDTD solutions of
the governing Maxwell equations together with an adjoint
system of equations associated with the current objective
function [39]. The frequency band of interest is 3.6–7.2 GHz,
which is determined by controlling the frequency spectrum
of the excitation signals. The vector of design conductivi-
ties is updated iteratively by the globally convergent method
of moving asymptotes (GCMMA) [40]. The GCMMA is
a gradient-based optimization method particularly suitable
for large-scale topology optimization problems. More details
about the numerical treatments of problem (1) are presented
in previous work [36], [41].

Figure 3 shows the development of the objective function
and the design in � versus iteration number. The optimiza-
tion algorithm converged after 156 iterations to the design
shown in the inset of Figure 3. The black and white colors
indicates copper and dielectric, respectively. We emphasize
the large scale of the optimization problem: each pixel in the
final design is a design variable, and there are 24 525 pixels.
We present the design as an image with its axes scaled in
millimeters to facilitate design reproducibility.

B. DESIGN AND FABRICATION OF THE PROBES
A prototype of the optimized probes is designed, developed,
and fabricated. The probe consists of four elements: A rect-
angular waveguide section, a 50 � SubMiniature version
A (SMA) connector, a topology optimized planar antenna,
and a dielectric filling with a similar permittivity as the fat
tissue. Figure 4 shows the prototype of the fabricated probe
with the topology optimized planar antenna immersed inside
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FIGURE 3. The development of the objective function and the design
versus the number of iterations. The final design, shown as the inset,
is plotted as an image with its axes scaled in millimeters for
reproducibility. Black is copper and white is a dielectric.

the fat-equivalent phantommaterial. Three-dimensional (3D)
perspective view of the probe is shown in Figure 4a. The
topology optimized planar antenna (TOPA) is printed on
a single-layer printed circuit board with a size of only
14.29 mm × 9.52 mm (see Figure 4b). The copper plate
material is soldered in one side to the broad wall of the
waveguide section. The TOPA was fabricated using 0.64 mm
thick Rogers TMM6 substrate with dielectric constant ε’
of 6 ± 0.08, loss tangent tan δ of 0.0023, and 0.035 mm
copper thickness (see Figure 4c).

The performance of the optimized probe is analyzed by
our in-house finite-difference time-domain (FDTD) code and
cross-verified using the commercial CST Microwave Studio
software package. We use the transient CST solver which
employs the finite integration technique to numerically solve
the electromagnetic governing equations [42]. As discussed
in Section III-A, the performance of the probe depends on the
properties of the surrounding medium. Here, we demonstrate
this fact by comparing the performance of the probe when
it radiates into different environments. The probe’s perfor-
mance is investigated based on computing the reflection coef-
ficient when the probe is attached to the phantom-equivalent
fat tissue (the medium for which the probe is optimized)
and when it radiates into free-space (for which the probe
is not optimized). Figure 5 shows the simulated reflection
coefficient of the probe in both environments for comparison.
When the probe is attached to the fat tissue, the |S11| is lower
than –12 dB over the frequency range of 3.2–7.1 GHz, which
contains the entire F-band frequencies of 4.9–7.05 GHz.
These results show that the probe indeed has an excellent
match with the fat tissue at 5.8 GHz. However, the |S11| is
essentially above –5 dB when the probe radiates into free
space. This increase in |S11| indicates that more energy is
reflected back to the source. That is, the probe’s performance
deteriorates if it radiates into a medium different from what
it was optimized for. The wideband performance of the opti-
mized probe can be used to investigate the performance of the
fat tissue at neighboring frequencies as well. We emphasize

FIGURE 4. Probe dimensions and the topology optimized planar antenna.

FIGURE 5. Amplitude of the probe’s reflection coefficient |S11| when
attached to radiate into the fat and free-space environment.

that our probe is used only to characterize the intrabody
fat communication. For in-body or on-body communication,
antennas with other objectives and constraints are typically
needed [43], [44].
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FIGURE 6. The probe to probe measurement setups.

FIGURE 7. Scattering parameters of the probe-to-probe setup.

C. PROBE-TO-PROBE MEASUREMENTS AND RESULTS
Figure 6 shows the probe-to-probe measurement setup. The
two probes, acting as a transmitter (TX) and a receiver (RX),
are in contact with each other. The TX is connected to Port 1
and the RX to Port 2 of the microwave analyzer. The scat-
tering parameters of the probes were measured using the
Keysight Microwave FieldFox Analyzer (N9918A) [45] in
the 3–8 GHz frequency range with data acquired at 1001 fre-
quency points. Amicrowave absorber has been used to reduce
the interaction between the probes and the surrounding
environment.

Figure 7 shows the probe-to-probe simulated and mea-
sured scattering parameters. The simulated and measured
coupling coefficients |S21| of the probe-to-probe setup are
–2.0 dB and –2.2 dB, respectively, at 5.8 GHz. The probes
show a reflection coefficient |S11| below –10 dB over the
frequency range 4.4–8.0 GHz and 4.7–8.0 GHz for sim-
ulations and measurements, respectively. The small differ-
ences between the simulation andmeasurement results can be
ascribed to air gaps in the dielectric material inside the probes
as well as air gaps between the two probes. Figure 8 shows
the Voltage Standing Wave Ratio (VSWR) of the probes.
As we can see, the VSWR is below two at the frequency
range of 4.3–8.0 GHz for simulation and 4.8–8.0 GHz for the
measurement. These results confirm that the proposed probes
are matched to the fat tissue, and that they contribute insertion

FIGURE 8. Measured and simulated voltage standing wave ratios for the
probe-to-probe setup.

losses of 2.0 dB and 2.2 dB when the channel path loss is
evaluated in simulation and measurement, respectively.

IV. CHARACTERIZATION OF THE FAT-IBC AT 5.8 GHz
A. EXPERIMENTAL SETUP
A comprehensive setup has been modeled, designed, and
developed to characterize the fat-IBC at 5.8 GHz ISM band.
In this section, four different configurations, Type A, Type B,
Type C, and Type D of the three-layered tissue model struc-
ture, are proposed and discussed. All measurements are con-
ducted in two different environments, tissue-equivalent phan-
tom, and ex-vivo porcine tissue. In addition, we use the CST
software to simulate these environments. The illustration of
each type is shown in Figure 9. The thickness of skin and
muscle tissue are fixed in all cases to 2 mm and 30 mm,
respectively.

The thicknesses were chosen based on our previous work
and they also present the average thickness of these tissue
layers [22], [23], [46], [47]. The fat in this context is the tissue
that is utilized for the fat-IBC characterization and is varied
in two parameters, the thickness and the width. The thickness
is changed from T fat = 9.93 mm to T fat_extend = 25 mm,
and the width is changed from W = 19.10 mm to W extend
= 50 mm. The channel length, L is varied from 20 mm to
100 mm in 20 mm steps.

In Type A, the channel is characterized by having the same
L,W , and T fat according to the dimension of the probes (see
Figure 9a). In Type B, the width of the channel is extended
by W extend = 50 mm, while the other parameters remain the
same as in Type A (see Figure 9b). Instead of having extra
width, the fat thickness is extended in Type C, while the
fat width remains the same as Type A (see Figure 9c). In
Type D, we extend both the thickness and width of the fat
channel (see Figure 9d). Figure 10 shows the setup for the
Type D model when one of the probes is rotated by 90◦ in
the fat tissue with a 100 mm channel length. The purpose
of the latter setup is to observe the signal transmission and
analyze the impact of changing the wave polarization on fat-
IBC. Overall, the primary purpose of these experiments is to
obtain a generic insight on how the path loss characteristics
change under different conditions, as well as to understand
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FIGURE 9. Four configurations of three-layered tissue model structure to characterize fat-IBC performance both numerically and
experimentally.

FIGURE 10. The model shows 90◦ rotated probe in the fat tissue. The
setup is taken from Type D to characterize the impact of wave
polarization fat-IBC.

the influence of the misalignment, in space or polarization,
between the transmitting and receiving probes (nodes).

The experimental setups of the tissue-equivalent phantom
and the ex-vivo tissue environment are shown in Figure 11.
The phantom and ex-vivo tissues were kept at room temper-
ature in the laboratory at 22 ◦C (71.6 ◦F) for at least 30 min-
utes to equalize their temperature to the room temperature.
The experiments are done in room temperature in order to
obtain reliable data and to ensure repeatability. The reference
cadaver tissue data has been collected at room temperature
and our experimental setup complies with the reported values
in [48]. Even though the phantom and ex-vivo tissues were
stabilized to room temperature, they may still differ in tem-
perature with respect to the human data reported in [48] since
the data obtained at temperature as low as 20 ◦C.
As shown in Figure 11a, the setup consists of a pair

of rectangular probes, a Keysight Microwave FieldFox

analyzer (N9918A), a coaxial cable connector, and a three-
layered skin, fat, and muscle of ex-vivo porcine tissue (see
Figure 11b) or phantom (see Figure 11c). The probes and
ex-vivo tissue are supported by a 3D printed holder molded
from polylactic acid (PLA) plastic material, which has the
dielectric properties of 2.6 ± 0.2 in order to provide a stable
fixture during the experiment. The frequency range of the
measurements is 3–8 GHz. For each reading, we record
the scattering parameters based on the average of five
measurements.

B. NUMERICAL MODELING SETUP
We study numerically the effect on fat-IBC of misalignment
between the probes (nodes) and the change in the wave polar-
ization. We use the CST transient solver to simulate these
environments. The simulation models are assigned with the
respective dielectric properties of the constituent materials
measured during the experiments. A fourth-order polynomial
is used to fit the dielectric properties of the measured material
data to the simulation model in CST. In our numerical model,
we assume a free space medium above the skin layer, and
we use a radiation boundary condition to surround the model
in all sides to avoid reflections from the boundaries. First,
to study the impact on the signal coupling with respect to the
alignment, we change the positions of the transmitting and
receiving probes vertically as well as horizontally inside the
fat channel.Wemark the center of the channel as the reference
position.

Figure 12 shows amodel consisting of two probes acting as
transmitter (TX) and receiver (RX) that have been implanted
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FIGURE 11. The measurement setup for tissue-equivalent phantom and ex-vivo porcine tissue.

in the fat tissue of the three-layered homogeneous tissue
structure. The transmitter probe is aligned at four orienta-
tions: Up, Down, Left, and Right (see Figure 12a). Figure 12b
shows one example where the transmitter is placed on top of
the muscle tissue, and the receiver is situated at the center of
the fat tissue. Second, we study the impact using a horizontal
polarized electric field inside the fat channel. Compared to
our previous probes [22], [23], the compact size of the new
probes makes it feasible to investigate the use of a horizon-
tally polarized electric field inside the fat channel. To do so,
we rotate both the transmitting probe and the receiving probe
by 90 degrees inside the fat channel.

The width and the length of the entire tissue are
80 mm × 180 mm, and the distance between the probes is

fixed at 100 mm. The thicknesses of the skin, fat, and muscle
are 2 mm, 25 mm, and 30 mm, respectively. The aim of the
study is to observe the impact on the signal coupling with
respect to the misalignment of the probes in the fat tissue,
which helps to investigate the influence of misalignment
between implant devices.

V. RESULTS AND DISCUSSION
A. CHANNEL PATH LOSS AT 5.8 GHz
Following the procedure in Section IV-A, we measured
and computed the transmission coefficient |S21| as indi-
cated in Figures 13–16, where the results of the ex-vivo
porcine tissue environment and the tissue-equivalent phan-
tom environment are presented in the left and right graphs,
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FIGURE 12. (a) Illustration of different alignment scenarios of the probes, where the transmitting (TX) probe is placed below the skin (Up), on top
of the muscle tissue (Down), 15 mm to the left-side (Left), 15 mm to the right-side of the channel (Right), and at the center of the fat tissue
(Center). (b) One example showing the TX probe placed on top of the muscle, while the RX probe remains at the center of the fat tissue.

FIGURE 13. Type A: Transmission coefficient, |S21| dB.

FIGURE 14. Type B: Transmission coefficient, |S21| dB.

respectively. The solid curves indicate the average of the
|S21| measurements, while the dashed-dotted curves show
the simulation results. We change the channel length from
20 mm to 100 mm for each case. Note that the loss tangent of

the fat-equivalent phantom is almost twice the corresponding
values of the human and ex-vivo fat tissues. Nevertheless, this
fat-equivalent phantom can be used to facilitate the investiga-
tions of worst-case scenarios of the channel path loss.
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FIGURE 15. Type C: Transmission coefficient, |S21| dB.

FIGURE 16. Type D: Transmission coefficient, |S21| dB.

FIGURE 17. Path loss trend for the ex-vivo porcine tissue at 5.8 GHz.

Figure 13 shows the |S21| of Type A simulated and mea-
sured results for the ex-vivo and the phantom for different

channel lengths. Figure 13a shows an excellent match
between the simulated and measured |S21| results. Using
the change in the |S21| values for different channel lengths,
we estimate an average path loss of 6 dB/20 mm at 5.8 GHz.
Since the loss tangent of the fat-equivalent phantom is twice
that of the ex-vivo tissue, it was estimated that the average
path loss is 12 dB/20 mm (see Figure 13b). In our measure-
ments, we use aN9918AFieldFoxHandheldAnalyzer, which
has a maximum dynamic range of –45 dBm across the fre-
quency band of interest. In all figures, we plot the dash-dotted
red line at –45 dB to mark the accuracy limit of the analyzer.
As can be seen in Figures 13b–16b, the measurement data
for 80 mm and 100 mm is almost flat over the entire band
of interest. We therefore consider measurement results below
–45 dB as faulty measurements and rely on the simulated
results to draw our conclusions. Figure 14 shows the |S21|
simulated and measured results for the ex-vivo and the phan-
tom in the case of additional width in the fat transmission
channel (Type B). Similar to Type A, the simulation and
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TABLE 3. Simulated and measured transmission coefficient, |S21| for the different configuration types with respect to the channel length for ex-vivo
porcine tissue at 5.8 GHz.

TABLE 4. Simulated and measured transmission coefficient, |S21| for the different configuration types with respect to the channel length for
tissue-equivalent phantom at 5.8 GHz.

measurement results indicate an average channel path loss of
almost 6 dB/20 mm, and the fat-equivalent phantom indicates
12 dB/20 mm.

Figure 15 shows the transmission coefficient of the Type C
model, which has a thicker fat tissue. As can be seen
in Figure 15a, at 100 mm distance, the signal coupling
increased bymore than 10 dB compared to Figures 13 and 14.
Similarly, by comparing Type C results at 60 mm channel
length, we note that there is an increase in the values of |S21|
by 2.5 dB and 4.6 dB compared to Type A and Type B,
respectively (see Figure 15b). Figure 16 shows the |S21|when
the fat tissue is extended around the probes for both environ-
ments, ex-vivo porcine tissue and tissue-equivalent phantom.
Type D, where the fat tissue surrounds the implant, is the
case that mimics real-life scenarios most accurately. With the
small probe size, we can easily implant the probe inside the fat
tissue. Overall, we observed that Type C and D do not differ
much in their signal transmission. This finding emphasizes
that fat thickness has a significant influence on signal trans-
mission. Figure 16a shows that the ex-vivo simulated and
measured |S21| at 100 mm channel length is –25.6 dB and
–25 dB, respectively. The simulated and measured |S21| for
the phantom at 60 mm channel length is –45 dB and –44. dB,
respectively (see Figure 16b).

Table 3 and 4 show a summary of the simulated and mea-
sured transmission coefficient |S21| for the different config-
uration types with respect to the channel length for ex-vivo
porcine tissue and tissue-equivalent phantom at 5.8 GHz,
respectively. Accordingly, we plot the values of the aver-
age path loss (excluding the probe-to-probe insertion loss
of 2.2 dB), as shown in Figure 17. Figure 17 shows that the
different environments have different path loss profiles.

Overall, our experiments show that Type C and D show
lower signal path loss compared to Type A and B. The
increase of the fat thickness in Type C and D explains the
difference with respect to the other two types. The increase
in the fat thickness decreases the path loss. We also observed
that all measurement results are in good match with the

simulation results. By considering the average for all dis-
tances, an estimated path loss per centimeter for the ex-vivo
porcine tissue and tissue-equivalent phantom environments
are shown as below. The bracketed values are the simulated
results, and non-bracketed values are the measured results.

• Type A:
–3.3 dB/cm (–3.2 dB/cm) for ex-vivo;
–6.7 dB/cm (–6.8 dB/cm) for phantom.

• Type B:
–4.0 dB/cm (–3.8 dB/cm) for ex-vivo;
–7.1 dB/cm (–7.2 dB/cm) for phantom.

• Type C:
–3.4 dB/cm (–3.1 dB/cm) for ex-vivo;
–7.0 dB/cm (–6.7 dB/cm) for phantom.

• Type D:
–3.8 dB/cm (–3.6 dB/cm) for ex-vivo;
–7.5 dB/cm (–7.3 dB/cm) for phantom.

B. IMPACT OF NODE DISPLACEMENT
Figure 18 and 19 show the ex-vivo simulated results of the
reflection coefficient |S11| and the transmission coefficient
|S21| when the position of the transmitting probe is varied in
the fat tissue as shown in Figure 12a. We note that the entire
probe is surrounded by the fat tissue. The TX probe location
is varied to study the impact on the signal coupling when
nodes are misaligned/displaced in the fat channel medium.
As a baseline for our experiments, we use the setup where
the two probes are located in the center of the fat tissue.

Figure 18 summarizes the impact of the probes’ vertical
displacement on the signal coupling through the fat chan-
nel. Figure 18a shows that the displacement of the trans-
mitting probe towards the skin (Up) or towards the muscle
tissue (Down) has only a small impact on the probe’s reflec-
tion coefficient |S11|. Figure 18b shows that the displacement
of the transmitting probe down towards the muscle leads to
more loss compared to the displacement up towards the skin.
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FIGURE 18. Simulated results of |S11| and |S21| when the TX probe is placed in the center, below the skin, and on top of the muscle. The RX
probe is placed in the center of the fat tissue.

FIGURE 19. Simulated results of |S11| and |S21| when TX probe is placed in the center, left side, and on the right side. The RX is placed in the
center of the fat tissue.

Excluding the results of the 20 mm channel, we conclude that
the vertical displacement of the probe increases the channel
insertion loss by about 3 dB and 1 dB when the probe (node)
is displaced down towards the muscle and up towards the skin
tissues, respectively. The increase of the channel insertion
loss as the probe is displaced down is attributed to the high
losses caused by the muscle tissues near the probe channel
interface.

Figure 19 summarizes the impact of the probe’s horizontal
displacement on the signal coupling through the fat chan-
nel. Figure 19a shows that the horizontal displacement has
essentially no impact on the probe’s reflection coefficient
(excluding the minor changes for the 20 mm channel length).
Moreover, the results of the transmission coefficient show
that even at 15 mm horizontal displacement the insertion loss
is increased by at most 2 dB compared to the baseline case.
Note that the fat channel is horizontally symmetric, which is
why the results of the right and left displacements in Figure 19
coincide.

FIGURE 20. TX probe is 90◦ rotated for Type D: Transmission coefficient,
|S21| dB for ex-vivo tissue.

C. WAVE POLARIZATION IMPACT
Figure 20 shows the impact on the signal coupling when
the TX probe is rotated by 90◦ in ex-vivo porcine tissue. It
can be seen that the |S21| drops by 35 dB and 38.4 dB with
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FIGURE 21. Simulated results of |S11| and |S21| when TX and RX probes are at normal position (imposing vertical electric field) and 90◦ rotated
(imposing horizontal electric field) in the channel.

FIGURE 22. The electric field distribution through the cross-section of the channel at 4.8 GHz, 5.8 GHz, and 6.8 GHz when TX and RX probes are at
normal position (imposing vertical electric field) (a), (c), (e) Side-view; (b), (d), (f) Top-view, with scalar color map.

respect to the reference (Type D model) for the simulation
and measurement, respectively, at 100 mm channel length.

To study the impact of imposing a horizontally polar-
ized electric field into the fat channel, the two probes are
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FIGURE 23. The electric field distribution through the cross-section of the channel at 4.8 GHz, 5.8 GHz, and 6.8 GHz when TX and RX probes are
90◦ rotated (imposing horizontal electric field) (a), (c), (e) Side-view; (b), (d), (f) Top-view, with scalar color map.

rotated. The analogy between the fat channel and parallel
plate transmission line suggests that this horizontal electric
field polarization is likely to excite the TE modes inside the
fat channel [49]. Figure 21 shows a comparison between the
performance of the fat channel for the two cases.

Similar to the case when the probe imposes a vertical
polarized electric field, Figure 21a shows that the probe has
a good matching to the fat channel. The |S11| is below –
15 dB at 5.8 GHz. Figure 21b shows the results of |S21|
when the distance between the TX and the RX varies from
20 mm to 100 mm. We note that the |S21| at 5.8 GHz do
not vary much when the probes are rotated 90 degrees. In
addition, we notice that the |S21| curve is essentially flat as the
frequency increases. However towards higher frequencies,
the case when both probes are rotated by 90◦ (horizontal elec-
tric field), the |S21| shows 5 dB better coupling compared to
the normal position (vertical electric field). This observation
suggests that fat-IBC can be further extended towards higher
frequencies.

To investigate the near-field performance of the probe,
we plot the electric field distribution when the probes are
used to impose a vertical and a horizontal electric field into
the fat channel, as shown in Figures 22 and 23, respectively.
The figures demonstrate the performance of the probe around
the 5.8 GHz and two additional plots for the 4.8 GHz and
6.8 GHz which reside at the edge of the F-band frequencies
(4.9 GHz–7.05 GHz). Comparing the plots in both figures,
we observe a higher signal amplitude for the 90◦ rotated case,
both in the side-view and top-view for all frequencies, close
to the receiver (RX) side. In addition, the comparison of the
side-view in both figures shows that there is less leakage close
to the transmitting (TX) probe for the case when the probes
are 90◦ rotated.

VI. CONCLUSION
In this paper, we have investigated the fat-intrabody prop-
agation channel at 5.8 GHz in the ISM band. The signal
propagation setups were numerically modeled and developed
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for six different types, including the effects of probe (node)
displacement and a 90◦ rotation of the transmitter. The
laboratory experiments were conducted in ex-vivo porcine
and tissue-equivalent phantom environments. The scattering
parameters were determined, and the path loss was estimated
from the conducted measurements. The measurement results
can be summarized as follows. Firstly, the path loss is depen-
dent on the surrounding fat environment. In ex-vivo model,
the increase in the fat thickness causes lower path loss in
the channel transmission. Secondly, the change in the wave
polarization between the transmitting and receiving nodes can
have a severe negative impact on the signal coupling. In the
extreme case when one of the node misaligned by 90◦, this
can reduce the received signal by around –38.4 dB (measure-
ment) and –35 dB (simulation). Thirdly, the misalignment
between two nodes inside the fat channel does not strongly
affect the signal coupling, which is as low as 1 dB and 2 dB for
both cases. The flat response of the transmission coefficient
over a wide bandwidth suggests further investigations of
the fat-IBC at even higher frequencies. Future research will
include analytical channel modeling, studying the data-rate
relation to the low and high frequencies, investigating real-
istic implant antennas, and more measurements for path loss
analysis.
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