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Abstract 
 

Heavy crushing machines under their production shifts, creates various levels 
of vibration, noise and dynamic forces which can be transferred to other parts 
of the industrial unit. Such kind of factors applies continuous forces on 
machine parts which can cause gradual fatigue, creep and eventually failure of 
machine. 

In this thesis work we are studying Jaw crusher machine from Sandvik 
company, since the company has a high focus on safety and quality, this thesis 
is aiming to estimate the dynamic foundation loads that are transmitted to 
substructure of the jaw crusher. 

The thesis is based on estimating power spectral density transmissibility 
matrix-single value decomposition (PSDTM-SVD), between jaw crusher foot 
(CRF), side wall (SW) and substructure (SS) in x, y, z positions to identify 
model parameters including damped eigenfrequencies and mode shapes. 

This research has concluded that it is possible to estimate the transmitted load 
force by finding the relation between displacement transmissibility and force 
transmissibility by employing (PSDTM-SVD) method. In fact (PSDTM-SVD) 
is a sufficient method to estimate the damped eigenfrequencies and mode 
shapes during operation.  

Nevertheless, it is majorly important to have good coherence between 
measured data, in this case data that have been conducted in Y direction had a 
good coherence of 0.9.        
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1. Introduction 

Gravel is one of the most useful components in construction, railway building, 
roads, and other industrial fields [1]. Moreover, In Europe and North America 
gravels are widely used during the winter seasons to prevent slipping on the 
highway roads, in addition to that gravels play a substantial role in reinforced 
concrete [1]. 

 

There are different types of crushers that are used in gravel production, for 
example, Jaw crusher, Gyratory crusher, cone crusher, impact crusher and 
many more [1]. In this project jaw crushers are considered. In Fig. 1 a jaw 
crusher is shown. 

 

Jaw crushers are used as a first step of material size reduction both in 
construction (producing gravel) and in mining application, when the purpose 
is to reduce size of the particles by different types of crushing down to 
millimeters and even to micrometers, so it is possible to extract metal ore from 
the resulting product) [1]. 
 

Figure 1: Jaw Crusher [14] 
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1.1 Background and problem description 

1.1.1 Literature Review 

The jaw crusher is versatile, and it can be used to crush rocks, whose 
hardness may range from medium-hard to extremely hard which mean 
that the rock could be tough and need high toad to crush or could be soft 
that need low load to crush, as well as different kinds of ore, building 
rubble. They are widely used in a variety of demolition, extraction, 
reclamation, and recycling industries, but particularly, in the mining and 
construction sectors [4]. 

Practically, an insight look into the core of the jaw crusher might be very 
helpful to gain more understanding of its crushing mechanism and how 
the rocks are crushed [5]. 

Mainly Jaw crushers consists of two hard metallic plates, the jaws, that 
have a high hardness index, which is sufficient to handle the hardness of 
the crushed materials [5]. 

The two metallic plates are mounted with an inclination towards each 
other that forms a vertical V shape where the inlet area is wider than outlet 
area. One of the jaw plates is fixed while other plate is movable, and the 
controlled motion of this plate induce the crunching of the rock [5]. 

When a Jaw crusher operates its inlet, area is fed with rock material and 
the movable plate will apply a cyclic load on the material and compress 
the material against the fixed plate, thus, causing a high compressive load. 
Under the influence of gravity, the rock pieces will pass vertically trough 
a Jaw crusher and the material will be successively crushed to become 
mall enough to pass through the narrower output of V shaped space 
between the jaws [5]. 

The jaw crusher is a portable machine, which means that it may be 
mounted on trucks or trailers to make it mobile and thus it may easily be 
moved between different projects sites. Moreover, a jaw crusher is also 
relatively easy to disassemble and to relocate to different work 
environments [6]. 

This allows a jaw crusher to be used and to operate on the surface as well 
as underground in mining projects. In fact, simplicity in structure and in 
operation as well as their reliability and ease of maintenance are some of 
the advantages of jaw crushers. One more advantage is the high capacity 
of a jaw crusher compared to the other types of crusher such as cone 
crusher, gyratory crusher and the different designs of impact crushers [7]. 
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There are two types that are mainly used in the field of crushing, single 
toggle, and double toggle jaw crusher. The last one originally was 
designed by Elo Whitney Blake in USA in 1857 [8]. 

The most interesting advantage of the double toggle is the swing jaw plate 
motion, it is being designed to apply a concentrated compressive force on 
the crushed material, this actually minimizes the wear of crushing surfaces 
of the jaws, that is also make double toggle jaw crushed the very effective 
to crush a highly abrasive and very hard materials. Indeed, even in these 
days Blakes designs of the double toggle jaw crusher is still in use in mines 
and quarries probably with some minor improvements [8]. 

1.1.2 Description of Jaw crusher installation 
 

A jaw crusher installation consists of main three parts: (i) crusher (ii) 
Attachment (iii) Substructure 

Where the crusher is responsible for crashing the stone, Attachment is the 
way of connection between crasher and substructure, while sub structure 
is the base that supports the crusher, see Fig. 2. 

 

Figure 2: An example of the crusher attachment to one of the several types of 
substructures [14] 
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1.1.3 Problem description 
 

Since the crushing process applies broad band excitation both to the crusher 
and to the substructure it is attached to, the broad band excitation can 
potentially trigger the natural mode shapes of the “crusher -substructure” 
system. It is of interest to identify the magnitude of loads transmitted by the 
crusher in operation to the substructure. This is necessary to design robust and 
reliable sub-structures.  

 

1.2 Aim and purpose 
 
The aim of this study is to find a new approach to predict foundation loads due 
to the crushing process. 
 

1.2.1 Motivation 
 

Identifying a method to estimate loads, originating from the stone crushing 
process, transmitted to the Jaw crusher substructure, will contribute to design 
of robust and reliable sub-structures for crusher installation. 
 

1.3 Hypothesis and limitations 

By using measured acceleration data, one should be able to estimate the 
excitation load applied on the crusher and on the substructure, which 
proportionally have a direct effect on the jaw crusher foundations load. 

    1.3.1 Limitations 
 

This study will be performed only on Sandvik jaw crusher model number (CJ 
412), it is worthy to mention that our measured data has been collected from 
this model. 
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1.4 Reliability, validity, and objectivity 
 

The measurements been collected in term to accomplish this research, has been 
done by SANDVIK company, an accelerometer measuring instrument been 
used to collect this data. 

Acceleration Time Series measured with sampling frequency Fs=2000 Hz, 
accelerometers been attached to three different parts of Jaw crusher, each time 
2 accelerometer are attached to 2 part of the 3 parts of the Crusher each time 
then the test take place. Which mean that each test we have 2 accelerometers 
attached to 2 parts for example  

Case 1 one accelerometer is attached to SW (Side wall of the crusher) and the 
other one is attached to SS (substructure) then in case 2 one is attached to CRF 
(Crusher foot) while the second is attached to SS (substructure) and so on. 

The data will be more accurate by measuring in this way since we collect data 
from two different instruments simultaneously. 

CRF (Crusher foot)  

SW (Side wall of the crusher) 

SS (substructure) 

 

 

1.5 Authors’ contribution 
 

Salim A. and Ibrahim. A has contributed to half basis on this research by 
combination work and literature study regarding this thesis. 
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2. Materials and Methods 

2.1 Experimental Setup 
 

Vibration experiments were carried out on a Sandvik Jaw Crusher, model 
CJ412 and this crusher consist of 3 main parts which are: -CRF (Crusher foot); 
- SW (Side wall of the crusher); - SS (substructure), see figure 3.  

 

2.1.1 Measurement Equipment and setup: 
 

In the measurements 2 triaxial accelerometers were used and four different 
measurements were carried out. In each measurement the accelerometers were 
attached to different unique positions on the jaw cruncher. For instance, in one 
measurement one accelerometer was attached on the Crusher foot (CRF) and 
the other accelerometer was attached on the one on the side wall of the crusher 
(SW), see Fig. 3. In the measurements the sampling frequency used for the 
data acquisition was Fs=2000 Hz. Each of the accelerometers measure 
vibration in three orthogonal directions: The x-direction; the acceleration in 
the crusher's longitudinal direction, the y-direction; the acceleration in the 
crusher's vertical direction and the z-direction; the acceleration in the crusher's 
transverse/lateral direction.  
  
The measurement equipment consisted of: 
 

 2 Accelerometers, dynamic range +-16g, frequency range 1500 Hz in 
x- and y-directions, and 550 Hz in z-direction ‘. 

 DEWESOFT data acquisition system. 
 MATLAB. 
 PC computer. 
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Figure 3: An example of the accelerometer attachment on the Jaw crusher. 

 

2.2 Structural Dynamics: 
 

2.2.1 Equation of motion for Multi-degree-of-freedom (MDOF) System 
in the Frequency Domain: 
 

For simplicity, the multiple-degrees-of-freedom system is represented in terms 
of a two-degrees-of-freedom system and in Fig. 4 a two-degrees-of-freedom 
system is illustrated. 

 

Figure 4: A two-degrees-of-freedom system [12] 
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Where m1 is the mass of mass one [kg],  m2 is the mass of mass two [kg], c1 
is the damping coefficient of damper one [N/m/s], c2 is the damping 
coefficient of damper two [N/m/s],k1 is the stiffness of spring one [N/m], k2 
is the stiffness of spring two [N/m], k3 is the stiffness of spring tree 
[N/m], 𝑓ଵ(𝑡)  input force acting on mass one (N), 𝑓ଶ(𝑡)  input force acting on 
mass two (N), 𝑋ଵ(𝑡) is the displacement output of mass one [m], 𝑋ଶ(𝑡) is the 
displacement output of mass two [m].The equations for the two-degrees-of-
freedom system may with the aid of newton’s second law be expressed as: [12] 

  

𝑚ଵ 
డ௫భ(௧)మ

డ௧మ   + (𝑐ଵ + 𝑐ଶ) 
డ௫భ(௧) 

డ௧  - 𝑐ଶ(𝑡)
డ௫మ(௧) 

డ௧   + (𝑘ଵ + 𝑘ଶ) 𝑥ଵ(𝑡) − 𝑘ଶ(𝑡)𝑥ଶ(𝑡) =

   𝑓ଵ(𝑡)                                                 (1) 

 

𝑚ଶ 
డ௫మ(௧)మ

డ௧మ   + (𝑐ଶ + 𝑐ଷ) 
డ௫మ(௧) 

డ௧  - 𝑐ଶ(𝑡)
డ௫భ(௧) 

డ௧  + (𝑘ଶ + 𝑘ଷ) 𝑥ଶ(𝑡) −

𝑘ଶ(𝑡)𝑥ଵ(𝑡) =   𝑓ଶ(𝑡)                          (2) 

 

Rewriting the equation 1 and 2 in terms of vectors and matrices results in 
[12]  

൤
𝑚1 0
0 𝑚2

൨ ቐ

𝜕𝑥1(𝑡)2

𝜕𝑡2

𝜕𝑥2(𝑡)2

𝜕𝑡2

ቑ + ቂ
𝐶1 + 𝐶2 −𝐶2

−𝐶2 𝐶2 + 𝐶3
ቃ ቐ

𝜕𝑥1(𝑡) 

𝜕𝑡 

𝜕𝑥2(𝑡) 

𝜕𝑡 

ቑ+ ቂ
𝐾1 + 𝐾2 −𝐾2

−𝐾2 𝐾2 + 𝐾3
ቃ 

൜
𝑥 (𝑡)

𝑥 (𝑡)
ൠ = ቊ

𝑓
1
(𝑡)

𝑓
2
(𝑡)

ቋ                                                                                       (3) 

 

In general form the equations of motion for the two-degrees-of-freedom 
system may be written as: 

 

[𝑀] {�̈� (𝑡)} + [𝐶] {�̇�(𝑡)} +[𝐾] {𝑥 (𝑡)} = {𝑓 (𝑡)}                        (4) 

 

Where [M] is the mass matrix (kg), [C] is the damping matrix [Ns/m], [K] is 
the stiffness matrix [N/m], {𝑥 (𝑡)} is the displacement vector [m], {𝑓 (𝑡)} is 
the force vector [N]. The equations of motion in the frequency domain for a 
two-degrees-of-freedom system may be expressed as  
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−ଶ[𝑀] {𝑋 (𝑓)} + j[𝐶] {𝑋(𝑓)} +[𝐾] {𝑋 (𝑓)} = {𝐹 (𝑓)}         (5) 

 

(−ଶ[𝑀]  + j[𝐶]  +[𝐾]) {𝑋 (𝑓)} = {𝐹 (𝑓)}                        (6) 

 

Here =2f is the angular frequency [rad/s], f is the frequency [Hz],  {𝑋 (𝑓)} 
is the Fourier transform of the displacement vector [ms] and {𝐹(𝑓)} is the 
Fourier transform of the force vector [Ns]. Thus, displacement vector in the 
frequency domain is given by 

 

{𝑋 (𝑓)} = (-ଶ[M] + j[C] +[K])ିଵ {𝐹 (𝑓)} 

   

{𝑋 (𝑓)} = [H(f)] {𝐹 (𝑓)}                                                                       (7) 

 

Where [H(f)] is the frequency response function matrix. In the case of a two-
degrees-of-freedom system, the frequency response function matrix is given 
by: 

 

[𝐻(𝑓)] = ൤
𝐻ଵଵ(𝑓) 𝐻ଵଶ(𝑓)

𝐻ଶଵ(𝑓) 𝐻ଶଶ(𝑓)
൨                                                              (8) 

Where 𝐻௠௡(𝑓) is the frequency response function between the response 
coordinate m and the force coordinate n,  𝑚, 𝑛 {1, 2}. The frequency response 
matrix may be expanded as 

[𝐻(𝑓)] = ෍

⎝

⎜
⎛ 1

𝑎௠

{}௠{}௠
்

𝑗2𝑓 − ቆ−௠௠
+ 𝑗

௠
ට1 − 

௠
ଶ

ቇ

ଶ

௠ୀଵ

+
1

𝑎௠
∗

{}௠
∗ {}௠

ு

𝑗2𝑓 − ቆ−௠௠
− 𝑗

௠
ට1 − 

௠
ଶ

ቇ
⎠

⎟
⎞

 

                                                                                                           (9) 
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Where {}௠ is the mode shape vector for mode m, ௠ is the un-damped 
angular resonance frequency for mode m, 

௠
 is the relative damping 

coefficient for mode m and 𝑎௠ is the modal A coefficient for mode m. 
Furthermore, * denotes complex conjugation and {}H is the Hermitian 
transpose of the vector.   

 

2.2.2 Transmissibility for multiple - degrees of freedom (MDOF) systems 
 

There are two 2 types of transmissibility that are taken in considiration here, 
i) Displacement transmissibility and ii) Force transmissibility. 

 

Infact the expression of force and displacement tranmissibility are idintical in 
terms vibration isolation SDOF problems, while they are not in case of 
MDOF problems [13]. 

Y.E. Lage et. al.  reports how force and displacement transmissibilities for 
MDOF systems may be related and corresponding required conditions [13]. 

In Fig. 5 a single-degree-of-freedom system is illustrated. 

 

 

 

Figure 5: A single-degree-of-freedom system 

 

Based on the SDOF system in Fig. 5 the transmissibility concept will be 
introduced. The displacement transmissibility Td(f) between the response of 
the mass x(f) and the motion of the base xb(f) is defined as [13]: 
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𝑇ௗ(𝑓) =
௑(௙)

௑್(௙)
                                    (10)                        

                                                                        

Where X(f) is the Fourier transform of the response of the mass and Xb(f) is 
the Fourier transform of the base motion. In the case of displacement 
transmissibility, it is assumed that there is no external force acting on the mass 
m, f(t)=0, The equation of motion for the case of base motion is given by: 

𝑚
ௗమ௫(௧)

ௗ௧మ = −𝑐
ௗ௫(௧)

ௗ௧
+ 𝑐

ௗ௫್(௧)

ௗ௧
 –  kx(t) +   k𝑥௕(𝑡)   

 

𝑚
ௗమ௫(௧)

ௗ௧మ
+ 𝑐

ௗ௫(௧)

ௗ௧
+ kx(t) = 𝑐

ௗ௫್(௧)

ௗ௧
+ k𝑥௕(𝑡)                                           (11) 

 

    

The Fourier transform of this expression yields: 

 

(−ଶ𝑚 + 𝑗𝑐 + k)X(f) = (𝑗 + k)𝑋௕(𝑓) 

 

                              𝑇ௗ(𝑓) =
𝑋(𝑓)

𝑋௕(𝑓)
=

(𝑗 + k)

(−ଶ𝑚 + 𝑗𝑐 + k)
                    (12) 

 

No we concider the case of force transmissibility Tf(f) between the force acing 
on the base fb(t) and the force acting on the mass f(t), is defined as [13]  

                                            𝑇௙(𝑓) =
𝐹௕(𝑓)

𝐹(𝑓)
                                            (13) 

Where F(f) is the Fourier transform of the force acing the mass and Fb(f) is the 
Fourier transform of the force acing on the base.  For the case of force 
transmissibility it is assumed a rigide base (xb(t)=0).  The equations of motion 
may now be written as: 

ቐ
𝑚

ௗమ௫(௧)

ௗ௧మ + 𝑐
ௗ௫(௧)

ௗ௧
+ kx(t) = 𝑓(𝑡)

𝑐
ௗ௫(௧)

ௗ௧
+ k𝑥(𝑡) = 𝑓௕(𝑡)

                                                                (14) 

The Fourier transform of these equations  yields: 
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൜
(−ଶ𝑚 + 𝑗𝑐 + k)X(f) = 𝐹(𝑓)

(𝑗 + k)𝑋(𝑓) = 𝐹௕(𝐹)
 

 

                               𝑇௙(𝑓) =
𝐹௕(𝑓)

𝐹(𝑓)
=

(𝑗 + k)

(−ଶ𝑚 + 𝑗𝑐 + k)
                (15) 

Thus, if the force transmissibility for a SDOF system is Known then the 
displacement transmissibility for the SDOF is also known and vice versa is 
also true [A.Brandt].  Now the discussion is extended to the case of multiple-
degrees-of-freedom (MDOF) system. To address displacement 
transmissibility and force transmissibility for MDOF systems two sets of 
coordinates are defined, the K set and the U set, see Fig. 6. In Fig. 6 a) the 
elastic body with two rigid supports is illustrated and b) the corresponding free 
elastic body is illustrated.  

    

a)                                  b) 

Figure 6: a) elastic body with two rigid supports and b) the corresponding 
free elastic body. Here two sets of coordinates are defined; the K set and the 
U set [13]. 

In the K set we may have external forces acting on the body and their Fourier 
transforms constitute the components of the force vector {Fk(f)} and the Fourier 
transforms of the displacement responses constitute the components of the 
displacement vector {Xk(f)}. Furthermore, in the U set we may have both 
external forces and reaction forces acting on the body and their Fourier 
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transforms constitute the components of the force vector {Fu(f)} and the Fourier 
transforms of the displacement responses constitute the components of 
the displacement vector {𝑋𝑢(𝑓)}.  The displacement responses of the elastic 
body is related to the forces acting on it as: 

൜
{𝑋௞(𝑓)}

{𝑋௨(𝑓)}
ൠ = ൤

[𝐻௞௞(𝑓)] [𝐻௞௨(𝑓)]

[𝐻௨௞(𝑓)] [𝐻௨௨(𝑓)]
൨ ൜

{𝐹௞(𝑓)}

{𝐹௨(𝑓)}
ൠ                         (16) 

 

Where [Hkk(f)] is the frequency response function matrix between the forces 
and responses at the coordinates in the K set and [Hku(f)] is the frequency 
response function matrix between the forces at the coordinates in the U set and 
responses at the coordinates in the K set. Furthermore, [Huk(f)] is the frequency 
response function matrix between the forces at the coordinates in the K set and 
responses at the coordinates in the U set and [Huu(f)] is the frequency response 
function matrix between the forces and responses at the coordinates in the U 
set. Now it is assumed that the only forces acting on the elastic body in the U 
set are the reaction forces imposed by the supports. It is also assumed that the 
totally supports constraint the displacement responses at the coordinates the 
body is supported, rigid supports. This yields that [13]:  

 

{𝑋௨(𝑓)} = [𝐻௨௞(𝑓)]{𝐹௞(𝑓)} + [𝐻௨௨(𝑓)]{𝐹௨(𝑓)} = 0 

 

                          {𝐹௨(𝑓)} = − [𝐻௨௨(𝑓)]ିଵ[𝐻௨௞(𝑓)]{𝐹௞(𝑓)}                 (17) 

Thus, the force transmissibility between coordinates in the U set and the K set 
is given by [13]: 

                           ൣ𝑇௨௞
௙

(𝑓)൧ = − [𝐻௨௨(𝑓)]ିଵ[𝐻௨௞(𝑓)]                            (18) 

Furthermore, the force at the coordinates in the K set and in the U set are 
related as [13] 

                              {𝐹௞(𝑓)} = [𝑇௨௞
௙

(𝑓)]ା{𝐹௨(𝑓)}                                (19) 

Where  []ା is the pseudo-inverse of a matrix [] and the pseudo-inverse of  
[𝑇௨௞

௙
(𝑓)] it is given by: 

               [𝑇௨௞
௙

(𝑓)]ା = −[𝐻௨௞(𝑓)]ା [𝐻௨௨(𝑓)]               (20) 

Here the number of coordinates in U  the number of coordinates in K.  Now 
displacement transmissibility is considered, and it is assumed that the only 
forces acting on the elastic body are in the U set. It is also assumed that the 
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totally supports constraint the displacement responses at the coordinates the 
body is supported, rigid supports. This yields that [13]:  

                              {𝑋௨(𝑓)} = [𝐻௨௨(𝑓)]{𝐹௨(𝑓)}                              (21)    

and 

                              {𝑋௞(𝑓)} = [𝐻௞௨(𝑓)]{𝐹௨(𝑓)}                           (22)    

With the aid of these expressions, a relation between the displacement 
responses of the coordinates in the K set and the coordinates in the U set may 
be written as: 

 

                {𝑋௨(𝑓)} = [𝐻௨௨(𝑓)][𝐻௞௨(𝑓)]ା{𝑋௞(𝑓)}                 (23) 

Thus, the displacement transmissibility matrix in this case may be written as: 

  
                             ൣ𝑇௨௞

ௗ (𝑓)൧ = [𝐻௨௨(𝑓)][𝐻௞௨(𝑓)]ା                  (24) 

 

Furthermore, the pseudo inverse of this expression is given by  

                       ൣ𝑇௨௞
ௗ (𝑓)൧

ା
= [𝐻௞௨(𝑓)][𝐻௨௨(𝑓)]ିଵ                      (25) 

 

Now it may be observed that:  

                     − ቀൣ𝑇௨௞
ௗ (𝑓)൧

ା
ቁ

்

= −[𝐻௨௨(𝑓)]ିଵ[𝐻௨௞(𝑓)]          (26) 

 

Hence, a relation between force transmissibility and the displacement 
transmissibility for the coordinates in the K set and the coordinates in the U if 
the number of coordinates in U  the number of coordinates in K is given by 
[13]: 

                    ൣ𝑇௨௞
௙

(𝑓)൧ = − ቀൣ𝑇௨௞
ௗ (𝑓)൧

ା
ቁ

்

                           (27) 

If the number of coordinates in K  the number of coordinates in U the 
displacement transmissibility for the coordinates in the K set and the 
coordinates in the U in terms of force transmissibility may be expressed as 
[13]: 

                  ൣ𝑇௨௞
ௗ (𝑓)൧ = − ቀൣ𝑇௨௞

௙ (𝑓)൧
்

ቁ
ା

                                 (28) 
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2.3 Spectral Density 
 

In reality, measured vibration signals usually display random properties and to 
produce transmissibility functions for a structure based on such signals it 
suggests a statistical approach. A suitable approach may e.g., be obtained with 
the aid of the statistical concepts power spectral density and cross-power 
spectral density [16]. 
 

2.3.1 Power Spectral Density (PSD): 
 

For random signals x(t) that at least may be considered as weakly stationary 
the power spectral density is defined as the Fourier transform of the signals 
auto-correlation function rxx() which is defined as[16]: 

                   𝑟௫௫(𝜏) = 𝐸[𝑥(𝑡)𝑥(𝑡 − 𝜏)]                             (29) 

Where E [] denotes the expectation. Thus, the power spectral density for the 
random signals x(t) is given by [16]: 

                           𝑃௫௫
௉ௌ஽(𝑓) = න 𝑟௫௫(𝜏)𝑒ି௝ ଶ గ ௙ఛ𝑑𝜏

ஶ

ିஶ

     (30) 

Here, f is frequency in Hz. The power spectral density provides the continuous 
power distribution in the frequency domain for a random signal that at least 
may be considered as weakly stationary [17]. For measured vibration, such 
signals are generally analysed in the digital domain based on a sampled version 
of the vibration signal x(n), n is discrete time. To estimate power spectral 
density based on a sampled signal the Welch power spectral density estimator 
may be used and it is given by [17]: 

𝑃෠௫௫
௉ௌ஽  (𝑓௞) =  

ଵ

ிೞ௅ ∑ (௪(௡))మಿషభ
೙సబ

 ∑ ฬ∑ 𝑥௟(𝑛)𝑤(𝑛)𝑒ି௝ଶగ௡
ೖ

ಿேିଵ
௡ୀ଴ ฬ

ଶ

,௅
௟ୀଵ     (31) 

 

0 ≤ k ≤ N/2-1,  𝑓௞ =
௞

ே
𝐹௦    

 

Where N is the length of the periodogram, L is the number of periodograms, 
𝐹௦ is the sampling frequency. 
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2.3.2 Cross Power Spectral Density (CPSD): 
 

The cross-power spectral density (CPSD) between any two weakly stationary 
signals x (t) and y (t), is given by  

𝑃௬௫
௉ௌ஽(𝑓) = ∫ 𝑟௬௫(𝜏)𝑒ି௝ ଶ గ ௙ఛ𝑑𝜏

ஶ

ିஶ
    (32) 

 Where ryx()  is the cross-correlation function between the signals x (t) and y 
(t) . The cross-power spectral density may also be estimated for sampled signals 
x(n) and y(n) with the aid of the Welch power spectral density estimator, according 
to [16,17]: 

 

𝑃෠௬௫
௉ௌ஽  (𝑓௞)

=  
1

𝐹௦𝐿 ∑ (𝑤(𝑛))ଶேିଵ
௡ୀ଴

 ෍ ൭෍ 𝑦௟(𝑛)𝑤(𝑛)𝑒ି௝ଶగ௡
௞
ே

ேିଵ

௡ୀ଴

൱ ൭෍ 𝑥௟(𝑛)𝑤(𝑛)𝑒ି௝ଶగ௡
௞
ே

ேିଵ

௡ୀ଴

൱

∗௅

௟ୀଵ

   

(33) 

Where ()* denotes complex conjugation. 

 

2.4 Frequency response function (FRF) and Coherence: 
 

2.4.1 Frequency Response Function (FRF): 
 

For a single-input-single-output system (SISO system) with one input signal x 
(t) and one output signal y(t) e.g., a single-degrees-of freedom (SDOF) system 
its frequency response function may be estimated as [16]  
 

𝐻෡௬௫(𝑓௞) =
𝑃෠௬௫

௉ௌ஽ (𝑓௞)

𝑃෠௫௫
௉ௌ஽ (𝑓௞)

                    (34) 
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2.4.2 Coherence: 
 

The coherence function between the input and the output signals of an e.g., a 
SDOF system is given by the equation [16]: 

 

ଶ෡
௬௫

(𝑓௞) =
ห𝑃෠௬௫

௉ௌ஽ (𝑓௞)ห
ଶ

𝑃෠௫௫
௉ௌ஽  (𝑓௞)𝑃෠௬௬

௉ௌ஽  (𝑓௞)
                 (35) 

 

Where ଶ෡
௬௫

(𝑓௞) is an estimate of the Coherence function between input and 

output signal x(t) respective y(t) and 𝑃෠௬௬
௉ௌ஽  (𝑓௞) is an estimate of the 

powerspectral density for the output signal y(t). 

 

The coherence function between two weakly stationary random signals 
provides a measure on the linear dependence between the signals as a function 
of frequency and it assumes values between 0 and 1, i.e. [16]: 

 

  

 𝐶መ௬௫(𝑓௞)=1  we do 
not have any external noise and the measured output y (n) may 
be explained linearly from the measured input x (n). 

 0<𝐶መ௬௫(𝑓௞)<1  noise may affect the measurements and/or 
the measured output, y (n), may not be explained linearly 
from the measured input x(n). 

 𝐶መ௬௫(𝑓௞) = 0  x(n) and y(t) are completely uncorrelated 

 
In table 1 the parameters used for the spectrum estimation are given. 

Parameter Value 
Block Length 4096 

Window Hanning 
Overlapping 50% 

Number of averages 80 
Table 1: Parameters used for the spectrum estimation. 
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2.5 Power Spectral Density Transmissibility (PSDT): 
 

To address power spectral density transmissibility a three-degrees-of-freedom 
(three DOF) system is considered.  In the frequency domain the 3x1 
displacement vector {𝑋 (𝑓)} is related to the 3x1 force vector {𝐹(𝑓)} via the 
3x3 frequency response function matrix [H(f)] as: 

{𝑋 (𝑓)} = [H(f)] {𝐹 (𝑓)}                                   (36) 

In the case of a three-degrees-of-freedom system, the frequency response 
function matrix is given by: 

 

[𝐻(𝑓)] = ቎

𝐻ଵଵ(𝑓) 𝐻ଵଶ(𝑓) 𝐻ଵଷ(𝑓)

𝐻ଶଵ(𝑓) 𝐻ଶଶ(𝑓) 𝐻ଶଷ(𝑓)

𝐻ଷଵ(𝑓) 𝐻ଷଶ(𝑓) 𝐻ଷଷ(𝑓)
቏                                  (37) 

 

Where 𝐻௠௡(𝑓) is the frequency response function between the response 
coordinate m and the force coordinate n,  𝑚, 𝑛 {1, 2,3}. The frequency 
response matrix may be expanded as 

[𝐻(𝑓)] = ∑ ቌ
ଵ

௔೘

{}೘{}೘
೅

௝ଶ௙ିቆି೘೘ା௝೘ටଵି೘
మ ቇ

+ଷ
௠ୀଵ

ଵ

௔೘
∗

{}೘
∗ {}೘

ಹ

௝ଶ௙ିቆି೘೘ି௝೘ටଵି೘
మ ቇ

ቍ                                                  (38) 

 

Where ௠is the un-damped angular resonance frequency for mode m, 
௠

 is 
the relative damping coefficient for mode m, 𝑎௠ is the modal A coefficient 
for mode m and {}௠ is the mode shape vector for mode m, defined as 

 

{}௠ = ൝

ଵ௠

ଶ௠

ଷ௠

ൡ (39) 

 

Here ௝௠ , 𝑗{1, 2, 3} are the mode shape coefficients for mode m. In terms 
of unit modal A scaling the frequency response matrix may be expanded as 
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[𝐻(𝑓)] = ∑ ቌ
{థ}೘{థ}೘

೅

௝ଶ௙ିቆି೘೘ା௝೘ටଵି೘
మ ቇ

+
{థ}೘

∗ {థ}೘
ಹ

௝ଶ௙ିቆି೘೘ି௝೘ටଵି೘
మ ቇ

ቍଷ
௠ୀଵ (40) 

Where {}௠ is the normal mode shape vector for mode m, given by: 

 

{}௠ = ቐ


ଵ௠


ଶ௠


ଷ௠

ቑ (41) 

Here 
௝௠

, 𝑗{1, 2, 3} are the mode shape coefficients for normal mode m. 

For an at least weakly stationary random process the Power Spectral Density 
Transmissibility (PSDT) between response coordinates i and j,  𝑖, 𝑗{1, 2, 3}, 
of the three-degrees-of-freedom system with reference to the response 
coordinate q, 𝑞{1, 2, 3}, is given by [15]:  

 

𝑇௫೔ ௫ೕ

௤ (𝑓) =
௉ೣ

೔ ೣ೜(௙)

௉ೣ
ೕ ೣ೜(௙)

                                                      (42) 

Where 𝑃௫೔ ௫೜
(f) is the cross-power spectral density between the response 

coordinates i and q,  𝑃௫ೕ ௫೜
(f)   is the cross-power spectral density between the 

response coordinates j and q [15]. The cross-power spectral density between 
the response coordinate i and q may be expanded in terms of frequency 
response functions between response and the forces exciting the three-degrees-
of-freedom system and also the cross-power spectral density between the 
excitation forces  fn(t) 𝑛{1, 2, 3}, according to[15]: 

 

  𝑃௫೔ ௫೜
(f) = ∑ ∑ 𝐻௜௦

 (𝑓)𝐻௤௥
∗ே

௦ୀଵ
ே
௥ୀଵ (𝑓)𝑃 ௙ೞ ௙ೝ 

  (𝑓)     (43) 

 

Where 𝑃 ௙ೞ ௙ೝ 
  (𝑓)  is the cross-power spectral density between excitation forces 

fs(t) and fr(t), 𝐻௜௦
 (𝑓) is the frequency response function between the response 

coordinate i and the force coordinate s and  𝐻௤௥
∗ (𝑓)   is the frequency response 

function between the response coordinate q and the force coordinate r and * 
denotes complex conjugation. The frequency response function between the 
response coordinate i and the force coordinate s may be expanded according 
to the modal model as: 
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𝐻௜௦(𝑓) = ∑ ቌ
థ೔೘థೞ೘

௝ଶ௙ିቆି೘೘ା௝೘ටଵି೘
మ ቇ

+
థ೔೘

∗ థೞ೘
∗

௝ଶ௙ିቆି೘೘ି௝೘ටଵି೘
మ ቇ

ቍଷ
௠ୀଵ (44)

  

 If it is assumed, the eigen modes of the three-degrees-of-freedom system are 
well separated and that they have low relative damping the frequency 
response function 𝐻௜௦

 (𝑓), at any of the three damped eigenfrequencies 
𝑓஽௠ , 𝑚{1, 2, 3}, may be approximated as: 
 

𝐻௜௦(𝑓஽௠) ≈
థ೔೘థೞ೘

ଶగ௙೘೘

 (45) 

 

Where 𝑓௠, 𝑚{1, 2, 3} is one of the three DOF systems eigenfrequencies. 
Thus, the cross-power spectral density 𝑃௫೔ ௫೜

(f) between the response 

coordinates i and q at any of the three damped eigenfrequencies 
𝑓஽௠ , 𝑚{1, 2, 3}, may be approximated as: 

  

𝑃௫೔ ௫೜
(𝑓஽௠)∑ ∑

థ೔೘థೞ೘

ଶగ௙೘೘

థ೜೘
∗ థೝ೘

∗

ଶగ ೘೘

ே
௦ୀଵ

ே
௥ୀଵ 𝑃 ௙ೞ ௙ೝ 

 (𝑓஽௠) =

𝜙௜௠ ∑ ∑
థೞ೘

ଶగ௙೘೘

థ೜೘
∗ థೝ೘

∗

ଶగ௙೘೘

ே
௦ୀଵ

ே
௥ୀଵ 𝑃 ௙ೞ ௙ೝ 

 (𝑓஽௠) (46) 

 

Furthermore, the cross-power spectral density 𝑃௫ೕ ௫೜
(f) between the response 

coordinates j and q at any of the three damped eigenfrequencies 
𝑓஽௠ , 𝑚{1, 2, 3}, may be approximated as: 

𝑃௫ೕ ௫೜
(𝑓஽௠)∑ ∑

థೕ೘థೞ೘

ଶగ௙೘೘

థ೜೘
∗ థೝ೘

∗

ଶగ௙೘೘

ே
௦ୀଵ

ே
௥ୀଵ 𝑃 ௙ೞ ௙ೝ 

 (𝑓஽௠) =

𝜙௝௠ ∑ ∑
థೞ೘

ଶగ௙೘೘

థ೜೘
∗ థೝ೘

∗

ଶగ௙೘೘

ே
௦ୀଵ

ே
௥ୀଵ 𝑃 ௙ೞ ௙ೝ 

 (𝑓஽௠) (47) 

 

Hence, the Power Spectral Density Transmissibility (PSDT) between response 
coordinates i and j,  𝑖, 𝑗{1, 2, 3}, of the three-degrees-of-freedom system with 
reference to the response coordinate q, 𝑞{1, 2, 3}, at any of the three damped 
eigenfrequencies 𝑓஽௠, 𝑚{1, 2, 3}, is approx. given by [15]:  

 

𝑇௫೔ ௫ೕ

௤ (𝑓஽௠) =
௉ೣ

೔ ೣ೜(௙ವ೘)

௉ೣ
ೕ ೣ೜(௙ವ೘)

≈
థ೔೘ ∑ ∑

ഝೞ೘
మഏ೑೘೘

ഝ೜೘
∗ ഝೝ೘

∗

మഏ೑೘೘

ಿ
ೞసభ

ಿ
ೝసభ ௉ ೑ೞ ೑ೝ 

 (௙ವ೘)

థೕ೘ ∑ ∑
ഝೞ೘

మഏ೑೘೘

ഝ೜೘
∗ ഝೝ೘

∗

మഏ ೘೘

ಿ
ೞసభ

ಿ
ೝసభ ௉ ೑ೞ ೑ೝ 

 (௙ವ೘)
=

థ೔೘

థೕ೘
   (48) 
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Thus, at any of the damped eigenfrequencies the Power Spectral Density 
Transmissibility between response coordinates of the system will result in a 
quotient between the mode shape coefficients for normal mode corresponding 
to the damped eigenfrequency and that particular response coordinates [15]. 

 

2.6 Identification of Modal Parameters using Power Spectral 
Density Transmissibility 
 

A 3x3 power spectral density transmissibility matrix may be assembled for 
the three DOF system according to 

ቂ𝑇௫భషయ ௫ೕ

ଵିଷ (𝑓)ቃ = ൦

𝑇௫భ ௫ೕ

ଵ (𝑓) 𝑇௫భ ௫ೕ

ଶ (𝑓) 𝑇௫భ ௫ೕ

ଷ (𝑓)

𝑇௫మ ௫ೕ

ଵ (𝑓) 𝑇௫మ ௫ೕ

ଶ (𝑓) 𝑇௫మ ௫ೕ

ଷ (𝑓)

𝑇௫య ௫ೕ

ଵ (𝑓) 𝑇௫య ௫ೕ

ଶ (𝑓) 𝑇௫య ௫ೕ

ଷ (𝑓)

൪ (49) 

Where 𝑗{1, 2, 3}. At any of the three damped eigenfrequencies 
𝑓஽௠ , 𝑚{1, 2, 3}, power spectral density transmissibility matrix is approx. 
given by [15]:  

ቂ𝑇௫భషయ ௫ೕ

ଵିଷ (𝑓஽௠)ቃ

⎣
⎢
⎢
⎢
⎢
⎡

థభ೘

థೕ೘

థభ೘

థೕ೘

థభ೘

థೕ೘

థమ೘

థೕ೘

థమ೘

థೕ೘

థమ೘

థೕ೘

థయ೘

థೕ೘

థయ೘

థೕ೘

థయ೘

థೕ೘⎦
⎥
⎥
⎥
⎥
⎤

   (50) 

This transmissibility matrix has identical columns, the columns are linearly 
dependent, and thus the matrix has a rank equal to one. Hence, with the aid of 

the three-power spectral density transmissibility matrices ቂ𝑇௫భషయ ௫ೕ

ଵିଷ (𝑓஽௠)ቃ,  

𝑗{1, 2, 3}, in combination with singular value decomposition (SVD) the three 
damped eigenfrequencies 𝑓஽௠, 𝑚{1, 2, 3}, of the three DOF system may be 

estimated [15]. The power spectral density transmissibility matrix  ቂ𝑇௫భషయ ௫ೕ

ଵିଷ (𝑓஽௠)ቃ 

may be decomposed with the aid of the SVD according to [15]:  

 

ቂ𝑇௫భషయ ௫ೕ

ଵିଷ (𝑓)ቃ = ൣ𝑈௝(𝑓)൧ൣΣ௝(𝑓)൧ൣ𝑉௝(𝑓)൧
ு

                    (51) 
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Where []ு denotes Hermitian transpose,  ൣ𝑈௝(𝑓)൧ is a 3x3 matrix and 

ൣ𝑉௝(𝑓)൧ is a 3x3 matrix. Both and are unitary 
 

matrices, i.e.  ൣ𝑈௝(𝑓)൧ൣ𝑈௝(𝑓)൧
ு

= [𝐼], ൣ𝑉௝(𝑓)൧ൣ𝑉௝(𝑓)൧
ு

= [𝐼], (Columns and 

rows are orthonormal). Furthermore, ൣΣ௝(𝑓)൧ is a diagonal matrix according 
to: 

ൣΣ௝(𝑓)൧ = ቎

𝜎ଵ௝(𝑓) 0 0

0 𝜎ଶ௝(𝑓) 0

0 0 𝜎ଷ௝(𝑓)

቏              (52) 

 Where 𝜎ଵ௝(𝑓)  ≥ 𝜎ଶ௝(𝑓) ≥  𝜎ଷ௝(𝑓) are the singular values of the power 

spectral density transmissibility matrix  ቂ𝑇௫భషయ ௫ೕ

ଵିଷ (𝑓஽௠)ቃ and they are real and 

positive numbers [15]. Since the power spectral density transmissibility matrix has 
a rank equal to one at any of the three damped eigenfrequencies 
𝑓஽௠ , 𝑚{1, 2, 3}, it yields that  

𝜎ଶ௝(𝑓஽௠) =  𝜎ଷ௝(𝑓஽௠) = 0, 𝑗{1, 2, 3}       

 

The damped eigenfrequencies and the mode shapes of an operating structure 
may be estimated with the aid of the singular value decomposition of the power 
spectral density transmissibility matrices with different references, the so-
called PSDTM-SVD method [15]. Basically, if the response of an operating 
structure has been measured at M spatial position of the structure the power 

spectral density transmissibility matrices  ቂ𝑇௫భషಾ ௫ೕ

ଵିெ (𝑓)ቃ , 𝑗{1, 2, … , M},  are 

estimated. Subsequently the singular values, 𝜎ଵ௝(𝑓), 𝜎ଶ௝(𝑓), … , 𝜎ெ௝(𝑓), for 
these matrices are calculated. Based on these singular-values the invers of each 
of the singular-values except for  𝜎ଵ௝(𝑓) are assembled in vectors according 
to: 

௝
ିଵ(𝑓) = ൜

ଵ

ఙమೕ(௙)
  

ଵ

ఙయೕ(௙)
 ⋯ 

ଵ

ఙಾೕ(௙)
 ൠ                           (53) 

Based on these vectors their arithmetic mean value is calculated as 

Σ෠ିଵ(𝑓) =
ଵ

ெ
∑ ൜

ଵ

ఙమೕ(௙)
  

ଵ

ఙయೕ(௙)
 ⋯ 

ଵ

ఙಾೕ(௙)
 ൠ =  ቄ

ଵ

ఙෝమ(௙)
  

ଵ

ఙෝయ(௙)
 ⋯ 

ଵ

ఙෝಾ(௙)
 ቅெ

௝ୀଵ (54) 

In the so-called PSDTM-SVD method a function for the estimation of the 
damped eigenfrequencies 𝑓஽௠ of an operating structure is defined as [15]: 
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 (𝑓) =  ∏
ଵ

ఙෝ೘(௙)
ெ
௠ୀଶ              (55) 

The frequency values of the peaks in the spectrum of the function (f) provides 
the estimates of the damped eigenfrequencies 𝑓஽௠ [15]. Based on the estimates 
of the damped eigenfrequencies 𝑓஽௠ the corresponding mode shapes may be 
estimated as [15]: 

൛𝑈෡(𝑓)ൟ
ଵ

=
ଵ

ெ
∑ ൛𝑈௝(𝑓)ൟ

ଵ

ெ
௝ୀଵ (56) 

 

Where ൛𝑈௝(𝑓)ൟ
ଵ
 is the first singular column vector in the left singular vector 

matrix [15]: 

൛𝑈෡(𝑓஽௠)ൟ
ଵ

=
ଵ

ெ
∑ ൛𝑈௝(𝑓஽௠)ൟ

ଵ

ெ
௝ୀଵ                        (57) 

 

Where ൛𝑈௝(𝑓஽௠)ൟ
ଵ
 is the first column vector in the left orthonormal matrix of 

the SVD of the power spectral density transmissibility matrix  ቂ𝑇௫భషయ ௫ೕ

ଵିଷ (𝑓஽௠)ቃ 

at the damped eigenfrequencies 𝑓஽௠ and the left orthonormal matrix is given 
by [15]: 

  ൣ𝑈௝(𝑓஽௠)൧ = ቂ൛𝑈௝(𝑓஽௠)ൟ
ଵ

 ൛𝑈௝(𝑓஽௠)ൟ
ଶ

 ⋯ ൛𝑈௝(𝑓஽௠)ൟ
ெ

 ቃ  (58) 
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3. Result: 

3.1 Time records of jaw crusher acceleration responses 
 

Four different measurements of the acceleration response of a jaw crusher have 
been carried out. In each measurement, the two triaxial accelerometers were 
attached to two of three predefined positions on the jaw crusher. The three 
predefined positions on the jaw crusher are crusher foot (CRF), sidewall of the 
crusher (SW) and substructure (SS). Moreover, each of the accelerometers 
measure vibration in three orthogonal directions; the x-direction, the 
acceleration in the crusher's longitudinal direction, the y-direction, the 
acceleration in the crusher's vertical direction, and the z-direction, the 
acceleration in the crusher's transverse/lateral direction. In Fig. 9 the 
acceleration response at the crusher foot (CRF) position in the x, y and z 
directions are shown. 
 

 
Figure 7: Acceleration response at the crusher foot (CRF) position in the x and 
z directions.  

The acceleration responses at the sidewall (SW) position in the x and z 
directions are shown in Fig. 8.  
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Figure 8: Acceleration response at the sidewall (SW) position in the x and z 
directions.  

Correspondingly, in Fig. 9 the acceleration response at the substructure (SS) 
position in the x and z directions are shown. 
 

 

Figure 9: Acceleration response at the substructure (SS) position in the x and 
z directions.  
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3.1.1 Modified Time records of jaw crusher acceleration responses. 
 

The measurement of the acceleration responses of the jaw crusher were carried 
out over time intervals that include both stone crushing and idling without any 
stone crushing. To only consider acceleration data excited by stone crushing; 
the time segments of the acceleration records corresponding to idling operation 
of the jaw cruncher were removed from the acceleration records. Vibration 
excreted by the periodic motion of the jaws, etc. was also removed in the time 
records with the aid of a 4 Hz notch filter. In this way, modified time records 
of jaw crusher acceleration responses were produced.  

 

 

Figure 10: Acceleration response at the crusher foot (CRF) position in the x 
and z directions without idling.  

 

The acceleration responses at the sidewall (SW) position in the x and z 
directions without idling are shown in Fig. 11.  
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Figure 11: Acceleration response at the sidewall (SW) position in the x and z 
directions without idling. 

Correspondingly, in Fig. 12 the acceleration response at the substructure (SS) 
position in the x and z directions without idling are shown. 
 

 

Figure 12: Acceleration response at the substructure (SS) position in the x and 
z directions without idling.  



 

34 (49) 

3.2 Transmissibility and coherence function estimates 
 

Transmissibility functions were estimate for each of the x-, y- and z-directions 
as well as between the x-, y- and z-directions for the measured acceleration 
responses of the jaw crusher at the crusher foot (CRF), sidewall (SW) and 
substructure (SS). Both transmissibility estimates and corresponding 
coherence functions were estimated using the modified time records of jaw 
crusher acceleration responses. In the modified time records of jaw crusher 
acceleration, the time segments of the acceleration records corresponding to 
idling operation of the jaw crusher were removed from the acceleration 
records. In fig. 13 the transmissibility function estimate between the 
acceleration of the crusher foot and the crusher sidewall in the x-direction is 
shown. The corresponding coherence function estimate between the 
acceleration of the crusher foot and the crusher sidewall in the x-direction is 
shown in Fig. 14. 

 

 
Figure 13: Transmissibility function estimate between the acceleration of the 
crusher foot and the crusher sidewall in the x-direction without idling. 
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Figure 14: Coherence function estimate between the acceleration of the 
crusher foot and the crusher sidewall in the x-direction without idling. 

 

In fig. 15 the transmissibility function estimate between the acceleration of the 
crusher foot and the crusher sidewall in the y-direction is shown. The 
corresponding coherence function estimate between the acceleration of the 
crusher foot and the crusher sidewall in the y-direction is shown in Fig. 16. 

 

Figure 15: Transmissibility function estimate between the acceleration of the 
crusher foot and the crusher sidewall in the y-direction without idling. 
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Figure 16: Coherence function estimate between the acceleration of the 
crusher foot and the crusher sidewall in the y-direction without idling. 

 

 

In fig. 17 the transmissibility function estimate between the acceleration of the 
crusher foot and the crusher substructure in the y-direction is shown. The 
corresponding coherence function estimate between the acceleration of the 
crusher foot and the crusher substructure in the y-direction is shown in Fig. 18. 

 

Figure 17: Transmissibility function estimate between the acceleration of the 
crusher foot and the crusher substructure in the y-direction without idling. 
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Figure 18: Coherence function estimate between the acceleration of the 
crusher foot and the crusher substructure in the y-direction without idling. 

 

In fig. 19 the transmissibility function estimate between the acceleration of the 
crusher sidewall and the crusher substructure in the y-direction is shown. The 
corresponding coherence function estimate between the acceleration of the 
crusher sidewall and the crusher substructure in the y-direction is shown in 
Fig. 20. 

 

 

Figure 19: Transmissibility function estimate between the acceleration of the 
crusher sidewall and the crusher substructure in the y-direction without idling. 
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Figure 20: Coherence function estimate between the acceleration of the 
crusher sidewall and the crusher substructure in the y-direction without 
idling. 

 

3.3 Estimation of damped natural frequencies of the jaw 
cruncher. 
 

To estimate damped eigenfrequencies of the jaw crusher during operation the 
the so-called PSDTM-SVD method [15] was utilized. Based on the modified 
time records of jaw crusher acceleration responses a number of (f) functions 
were estimated.  

 In fig. 21 the PSDTM-SVD methods (f) function for the measured 
acceleration responses of the jaw crusher in the x-direction is shown 
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Figure 21: The PSDTM-SVD methods (f) function for the measured 
acceleration responses of the jaw crusher in the x-direction. 4 HZ notch filter. 

Fig. 22 shows the PSDTM-SVD methods (f) function for the measured 
acceleration responses of the jaw crusher in the y-direction. 

 

 

Figure 22: The PSDTM-SVD methods (f) function for the measured 
acceleration responses of the jaw crusher in the y-direction. 4 HZ notch filter. 
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For the z-direction the PSDTM-SVD methods (f) function for the measured 
acceleration responses of the jaw crusher is shown in Fig. 23. 

 

 

Figure 23: The PSDTM-SVD methods (f) function for the measured 
acceleration responses of the jaw crusher in the z-direction. 4 HZ notch filter. 

 

Finally, in Fig. 24 the PSDTM-SVD methods (f) function for the measured 
acceleration responses of the jaw crusher in the x-, y- and z-directions is 
shown. 
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Figure 24: The PSDTM-SVD methods (f) function for the measured 
acceleration responses of the jaw crusher in the x-, y- and z-directions. 4 HZ 
notch filter. 

 

The frequency values of the peaks in the spectrum of the functions (f) in Figs. 
21 - 24 provides estimates of the damped eigenfrequencies 𝑓஽௠ of the jaw 
crusher. In table 2 the frequencies of pronounced peaks in the spectrum of the 
functions (f) in Figs. 21 – 24 are given. 

 

X-direction [Hz] Y-direction [Hz] Z-direction [Hz] X-,Y- and Z-
directions [Hz] 

3.9 3.9 2.9 3.9 
4.8 8.3 8.3 8.3 
12.7 12.7 15.3 15.6 
21 16.1 19.3 20.5 
25.4 25.39 25.8 25.4 

Table 2: Frequency values of pronounced peaks in the spectrum of the 
functions (f) in Figs. 21 – 24. 

Observe that the notch filter is cantered at 4 Hz and there is peaks at 2.9 Hz, 
at 3.9 Hz and at 4.8 Hz in the (f) functions.  
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4. Summery and Conclusion 
 

To further, improve the design of sub-structures for jaw crusher installations 
it is imperative to further increase the knowledge concerning the loads applied 
by the jaw crusher to the substructure during operation. Such knowledge may 
be acquired with the aid of estimates of acceleration transmissibility functions 
between the sub-structure and the jaw crusher in a jaw crusher installation 
during operation. Displacement transmissibility and force transmissibility for 
MDOF systems have been addressed in section 2.2.2.  Based on equations in 
this section force transmissibility may be derived based on acceleration 
transmissibility for e.g., MDOF systems. Thus, by assuming certain force 
lodes on the jaw crusher structure the force load on its sub-structure may be 
estimated. Transmissibility functions were estimate for each of the x-, y- and 
z-directions as well as between the x-, y- and z-directions for the measured 
acceleration responses of the jaw crusher at the crusher foot (CRF), sidewall 
(SW) and substructure (SS). However, only for the y-direction, in the 
frequency range up to approx. 100 Hz, a coherence of approx. 0.9 and higher 
were obtained (see Figs. 16-20). 

To estimate damped eigenfrequencies of the jaw crusher during operation the 
so-called PSDTM-SVD method [15] was utilized. Based on the modified time 
records of jaw crusher acceleration responses a number of (f) functions were 
estimated. The jaw crusher acceleration responses in the modified time records 
are attenuated at 4 Hz. Thus, peaks in the (f) function in the range of 4 Hz are 
not likely to be reliable as estimates of the damped eigenfrequencies jaw 
crusher. Table 2 suggests that 8, 13, 16, 20 and 25 Hz may be considered as 
estimates of damped eigenfrequencies of the operating jaw crusher. 
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6. Appendix 
 

6.1 MATLAB Code: 
 

% Sandvik Data: 
 
Clc ; 
 
close all; 
 
% Each data is consisting of 3 acceleration measurements at 3 position on the 
% jaw crusher which are: -CRF (Crusher foot); - SW (Side wall of the 
% crusher); - SS (substructure), moreover; Each one of this position has 
% acceleration data in 3 direction X(Longitudinal), Y(Vertical), Z 
% (Transverse/lateral). 
  
load ('Acc_test_session1_test1.mat', 'data_acc')      
  
SW_1 =data_acc(1,1); 
CRF_1=data_acc(2,1); 
SS_1=data_acc(3,1); 
  
%for CRF (Crusher Foot): 
 
% data in x direction 
 
 CRF_x= CRF_1.x([135000:141000 512000:546000 653000:664000 
993000:1008000 1031000:1041000 1090000:1098000 1120000:1166000 
1262000:1284000 1557000:1574000 1646000:1656000 1876000:1976000 
2094000:2105000 2121000:2129000 2137000:2148000 2210000:2222000]);  
 
% data in y direction 
 
 CRF_y= CRF_1.y([135000:141000 512000:546000 653000:664000 
993000:1008000 1031000:1041000 1090000:1098000 1120000:1166000 
1262000:1284000 1557000:1574000 1646000:1656000 1876000:1976000 
2094000:2105000 2121000:2129000 2137000:2148000 2210000:2222000]);   
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% data in z direction 
 
 CRF_z= CRF_1.z([135000:141000 512000:546000 653000:664000 
993000:1008000 1031000:1041000 1090000:1098000 1120000:1166000 
1262000:1284000 1557000:1574000 1646000:1656000 1876000:1976000 
2094000:2105000 2121000:2129000 2137000:2148000 2210000:2222000]);   
   
 %for SW (Side wall of the Crusher): 
 
% data in x direction 
 
  SW_x= SW_1.x([135000:141000 512000:546000 653000:664000 
993000:1008000 1031000:1041000 1090000:1098000 1120000:1166000 
1262000:1284000 1557000:1574000 1646000:1656000 1876000:1976000 
2094000:2105000 2121000:2129000 2137000:2148000 2210000:2222000]);  
 
% data in y direction 
 
  SW_y= SW_1.y([135000:141000 512000:546000 653000:664000 
993000:1008000 1031000:1041000 1090000:1098000 1120000:1166000 
1262000:1284000 1557000:1574000 1646000:1656000 1876000:1976000 
2094000:2105000 2121000:2129000 2137000:2148000 2210000:2222000]);  
 
% data in z direction 
  
  SW_z= SW_1.z([135000:141000 512000:546000 653000:664000 
993000:1008000 1031000:1041000 1090000:1098000 1120000:1166000 
1262000:1284000 1557000:1574000 1646000:1656000 1876000:1976000 
2094000:2105000 2121000:2129000 2137000:2148000 2210000:2222000]);   
   
%for SS (Substructure): 
 
% data in x direction 
 
 SS_x= SS_1.x([135000:141000 512000:546000 653000:664000 
993000:1008000 1031000:1041000 1090000:1098000 1120000:1166000 
1262000:1284000 1557000:1574000 1646000:1656000 1876000:1976000 
2094000:2105000 2121000:2129000 2137000:2148000 2210000:2222000]);  
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% data in y direction 
 
SS_y= SS_1.y([135000:141000 512000:546000 653000:664000 
993000:1008000 1031000:1041000 1090000:1098000 1120000:1166000 
1262000:1284000 1557000:1574000 1646000:1656000 1876000:1976000 
2094000:2105000 2121000:2129000 2137000:2148000 2210000:2222000]);   
 
% data in z direction 
 
 SS_z= SS_1.z([135000:141000 512000:546000 653000:664000 
993000:1008000 1031000:1041000 1090000:1098000 1120000:1166000 
1262000:1284000 1557000:1574000 1646000:1656000 1876000:1976000 
2094000:2105000 2121000:2129000 2137000:2148000 2210000:2222000]);   
   
  
  % Given: 
   N =length (SS_x); % length of the signal 
   fs =2000;    % sample frequency 
   Ts =1/fs;    % sample time  
   T =0: Ts:Ts*(N-1);  %Time of signal 
  
  
      
  
  
%test 3x3 Matrix data: 
  
% remove the mean value from the data 
  
x_1(:,1)=CRF_y; 
x_1(:,2)=SW_y; 
x_1(:,3)=SS_y; 
 
X_mean1 =mean(x_1(:,1)); 
X_mean2 =mean(x_1(:,2)); 
X_mean3 =mean(x_1(:,3)); 
  
x_2(:,1)=x_1(:,1)-X_mean1; 
x_2(:,2)=x_1(:,2)-X_mean2; 
x_2(:,3)=x_1(:,3)-X_mean3; 
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%filtering data: 
  
w0= 4/(2000/2); 
   BW = w0/1; 
   [b,a] = iirnotch(w0,BW); 
    
   y_1 = filter(b,a,x_2(:,1)); 
   y_2 = filter(b,a,x_2(:,2)) ; 
   y_3 = filter(b,a,x_2(:,3)); 
    
 
   % result data 
x_3(:,1)=y_1; 
x_3(:,2)=y_2; 
x_3(:,3)=y_3; 
  
f=(0:2048)'*fs/4096; 
  
  
   % PSDT and SVD matrix (Power Spectral Density Transmissibility Matrix 
) and (Singular Value Decompostion): 
 
for in=1:3 
    for out =1:3  
        
Gxx(:,out,in)=squeeze(cpsd(x_3(:,in),x_3(:,out),hanning(4096),0,4096,fs))/fs
*2 ; 
    end 
end 
  
  
sv=zeros(2049,3,3); 
for si=1:2049 
    [U,S,V] = svd(squeeze(Gxx(si,:,:))); 
sv(si,:,:)=S; 
end 
figure 
hold 
for n=1:3 
    plot(f,10*log10(sv(:,n,n))) 
end 
xlim([0 150]) 
grid on 
title('Cpsd vs Frequency') 
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xlabel('Frequency (Hz)') 
ylabel('Cross Power spectral density (SVD)') 
  
%%%%%%%%%%%%%%%%%% 
  
for j=1:3 
T3tot(:,1,:)=[squeeze(Gxx(:,1,1))./squeeze(Gxx(:,j,1)) 
squeeze(Gxx(:,2,1))./squeeze(Gxx(:,j,1)) 
squeeze(Gxx(:,3,1))./squeeze(Gxx(:,j,1)) ]; 
T3tot(:,2,:)=[squeeze(Gxx(:,1,2))./squeeze(Gxx(:,j,2)) 
squeeze(Gxx(:,2,2))./squeeze(Gxx(:,j,2)) 
squeeze(Gxx(:,3,2))./squeeze(Gxx(:,j,2)) ]; 
T3tot(:,3,:)=[squeeze(Gxx(:,1,3))./squeeze(Gxx(:,j,3)) 
squeeze(Gxx(:,2,3))./squeeze(Gxx(:,j,3)) 
squeeze(Gxx(:,3,3))./squeeze(Gxx(:,j,3)) ]; 
  
sv3tot=zeros(1000,3,3); 
sumsing=zeros(1000,3); 
remove=zeros(1000,3); 
invsvav=zeros(1000,3); 
pinvsvav=zeros(1000,3); 
for si3tot=1:1000 
    [U3tot,S3tot,V3tot] = svd(squeeze(T3tot(si3tot,:,:))); 
sv3tot(si3tot,:,:)=S3tot; 
end 
for l=1:3 
sumsing(:,l)=sumsing(:,l)+1./sv3tot(:,l,l); 
  
if j==1 
    remove(:,l)=1./sv3tot(:,l,l); 
end 
end 
end 
invsvav=1/5*(sumsing-remove); 
pinvsvav=prod(invsvav,[2]); 
figure;plot(f(1:1000),10*log10(pinvsvav)) 
xlim([0 150]) 
grid on 
 title('SVD vs Frequency') 
 xlabel('Frequency (Hz)') 
 ylabel('SVD inverse S(2,2)') 
   legend('inverse S(2,2)') 
 

 


