
http://www.diva-portal.org

Postprint

This is the accepted version of a paper published in IEEE Journal on Selected Areas in
Communications. This paper has been peer-reviewed but does not include the final publisher
proof-corrections or journal pagination.

Citation for the original published paper (version of record):

Champati, J P., Avula, R R., Oechtering, T J., Gross, J. (2021)
Minimum Achievable Peak Age of Information Under Service Preemptions and Request
Delay
IEEE Journal on Selected Areas in Communications, 39(5): 1365-1379
https://doi.org/10.1109/JSAC.2021.3065047

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-292984

1

Minimum Achievable Peak Age of Information
Under Service Preemptions and Request Delay

Jaya Prakash Champati, Member, IEEE, Ramana R. Avula, Student Member, IEEE,
Tobias J. Oechtering, Senior Member, IEEE and James Gross, Senior Member, IEEE

Abstract—There is a growing interest in analysing freshness of
data in networked systems. Age of Information (AoI) has emerged
as a relevant metric to quantify this freshness at a receiver,
and minimizing this metric for different system models has
received significant research attention. However, a fundamental
question remains: what is the minimum achievable AoI in any
single-server-single-source queuing system for a given service-
time distribution? We address this question for the average peak
AoI (PAoI) statistic by considering generate-at-will source model,
service preemptions, and request delays. Our main result is on the
characterization of the minimum achievable average PAoI, and
we show that it is achieved by a fixed-threshold policy among the
set of all causal policies. We use the characterization to provide
necessary and sufficient condition for preemptions to be beneficial
for a given service-time distribution. Our numerical results,
obtained using well-known distributions, demonstrate that the
heavier the tail of a distribution the higher the performance
gains of using preemptions.

I. INTRODUCTION

The notion of information/data freshness is pervasive in
networked systems. Understanding and quantifying this notion
is essential for an efficient design of the networked systems
to support the ever increasing demand for real-time status
updates by emerging applications in Cyber-Physical Systems,
Internet-of-Things, and information systems. Age of Infor-
mation (AoI), proposed in [1], has emerged as a relevant
performance metric for quantifying the freshness of status
updates from the perspective of the receiver. It is defined as the
time elapsed since the generation of freshest update available
at the receiver. Unlike system delay, AoI accounts for the
frequency of generation of updates by a source, since it linearly
increases with time until an update with latest generation time
is received. Whenever such an update is received AoI resets
to the system delay of that update and thus indicating its age.

Given the above properties and its relevance to networked
systems, minimizing AoI for a given service-time and/or inter-
arrival-time distributions has received significant attention in
the literature, e.g., see [2]–[7]. However, in the system models
considered in these works, the update arrival instants can only
be partially controlled, for example, by tuning the arrival rate.

Jaya P. Champati is with IMDEA Networks Institute, Madird, Spain.
Ramana R. Avula, Tobias J. Oechtering, and James Gross are with the School
of Electrical Engineering and Computer Science, KTH Royal Institute of
Technology, Stockholm, Sweden. E-mail: jaya.champati@imdea.org, {avula,
oech, jamesgr}@kth.se. The work was supported in part by the Strategic
Research Agenda Program, Information and Communication Technology –
The Next Generation (SRA ICT – TNG), through the Swedish Government,
and in part by the Swedish Research Council (VR) under grant 2016-04404.

In contrast, the authors in [8], [9] considered the generate-at-
will source model, where the source can generate an update
at any time instant using a scheduling policy, thus completely
controlling the time instants at which arrivals occur. Under
this model no queueing is required, because by the definition
of AoI, at any time instant, sending an old update from a
queue would be suboptimal to sending a freshly generated
update. Furthermore, for a given service-time distribution, the
minimum AoI statistics achieved under this model will be
lower than that of the system models where the arrivals instants
are only partially controlled. For a single-source-single-server
system, the authors in [8] solved for an optimal scheduling
policy that minimizes the average AoI, while the authors in [9]
solved the problem for any non-decreasing function of AoI.

Motivated by the fact that, allowing service preemptions
on top of the generate-at-will source model could further
reduce AoI, we ask the fundamental question what is the min-
imum achievable AoI in a single-source-single-server queuing
system for any given service-time distribution? Recently, the
authors in [10] studied this problem for average AoI and
numerically computed optimal policies for exponential and
shifted-exponential service-time distributions. However, for
general service-time distributions this is an open problem. In
contrast, in this work, we solve minimum achievability for
average peak-AoI (PAoI). This AoI statistic was first studied
in [11] and has received considerable attention in recent works,
e.g., see [5], [12], [13]. To solve for minimum achievable
average PAoI for general service-time distributions (possibly
with infinite mean), we consider the information retrieval
system shown in Figure 1, where the monitor strives to obtain
latest information from the information source by scheduling
requests for status updates. The request channel only allows
one request at a time and incurs a constant delay d. When the
source receives a request, it immediately generates an update
and sends it to the preemptive server with independent and
identically distributed (i.i.d.) service times1.

If preemptions are not allowed, then the no-threshold policy,
which sends a request immediately after the monitor receives
an update, minimizes the average PAoI. When preemptions
are allowed, two main challenges arise while solving for an
optimal scheduling policy. First, computing the average PAoI
under a preemptive scheduling policy is non-trivial due to
its dependencies on the sequence of preemptions. Also, the
request delay which induces idle time at the server further

1A preliminary version of this work is published in IEEE INFOCOM
2020 [14].

2

Information

Source

Preemptive

Server

(Service time X)

Update
Monitor

Request

(Delay d)

Fig. 1: A model for information retrieval with independently
evolving source.

complicates the analysis. Second, the monitor’s decision on
when to send a new request to the source, possibly preempting
an update under service, clearly depends on the service-time
distribution and could potentially depend on the past decisions.
Thus, minimizing the average PAoI under preemptions results
in an infinite-horizon average cost Markov Decision Problem
(MDP), where the state space and the action space are con-
tinuous. In general, for such a problem, it is hard to prove the
existence of an optimal stationary deterministic policy among
all randomized causal policies, which use the entire history of
available information [15].

Our key result is that, a fixed-threshold policy, that chooses
a fixed duration between requests, minimizes the average
PAoI among all causal policies2. We prove this result in
two steps. First, we formulate an MDP with appropriate cost
functions and show that the policy for choosing the sequence
of thresholds between any two AoI peaks is independent of
the initial state and is also stationary. Second, we define costs
for each decision within the two AoI peaks and show that
the sequence of decisions converge to a stationary policy and
that a fixed-threshold policy achieves the minimum cost. We
then characterize the minimum achievable average PAoI in
any single-source-single-server queuing system. Further, we
present a necessary and sufficient condition for preemptions
to be beneficial for a given service-time distribution. In our
numerical analysis, three service-time distributions, namely,
Erlang, Pareto, and log-normal are used to study how mini-
mum average PAoI varies with different thresholds. Our results
demonstrate that for smaller d values, the optimal threshold
decreases as d increases for the service-time distributions
considered. Also, we compare the performance of no-threshold
policy and median-threshold policy, which chooses median
as the fixed threshold, against the optimal fixed-threshold
policy. An interesting observation is that, the heavier the tail
of a distribution the higher the performance gains of using
preemptions.

The rest of the paper is organized as follows. The related
work is presented in Section II. In Section III, we formulate
the average PAoI minimization problem. In Section IV, we
present preliminary results that are used in Section V to obtain
the optimal fixed-threshold policy. In Section VI, we discuss
the conditions under which preemptions are beneficial. The

2In the seminal work [16] (in the field of computer science), the authors
showed that a fixed threshold is optimal for restarting a randomized algorithm
in order to minimize its expected run time, and it inspired our work.
Nevertheless, in comparison to the problem studied in [16], minimizing
expected PAoI is harder as the consecutive AoI peaks are not independent
even under a stationary policy. Furthermore, we consider general service-time
distributions and the optimality of a fixed-threshold policy is shown for the
set of randomized causal policies.

numerical results are presented in Section VI, and finally, we
conclude in Section VIII.

II. RELATED WORK

Research works in AoI literature can be broadly divided
into two categories: 1) analysis of AoI, and 2) minimization
of AoI. Analysis of AoI concerns with computation of AoI
statistics for different system settings, e.g., see [11], [17]–[23],
and [24] for a comprehensive survey. In this section, we focus
on summarizing related works on the minimization of AoI
under different system settings by further dividing them based
on non-prememptive and preemptive service considerations.

A. Non-preemptive Service

In contrast to latency, AoI has interesting property that it
increases at both low and high sampling rate for queueing
systems using First-Come-First-Serve (FCFS) policy [2]. This
property led to initial works focusing on quantifying and
minimizing the average AoI for the M/M/1, M/D/1 and D/M/1
queues in [2], and for an M/M/1 queue with multi-sources
in [3]. Minimizing average PAoI was considered in [5] for
a multi-class M/G/1 system, and AoI violation probability
minimization for the D/G/1 system was studied in [25], under
FCFS policy. In contrast, the authors in [17], [19] studied Last-
Come-First-Serve (LCFS) policy as it reduces AoI compared
to FCFS policy. One may further reduce AoI compared to
LCFS policy by considering packet discarding. Intuitively,
even if an infinite capacity queue is available, when the server
is busy, discarding the arriving packets except for the most
recent packet would result in a lower AoI when compared
with storing and transmitting any older packets. This motivated
research efforts toward studying systems with no queue or a
single capacity queue storing the latest packet [11], [21], [26],
[27].

Some research works also considered multi-hop settings.
The authors in [28], [29] studied average AoI and average
PAoI minimization in a multi-hop wireless network with in-
terference constraints and with packet flows between multiple
source-destination pairs assuming that transmission time of a
packet equals a unit time slot. Optimizing AoI was also exten-
sively studied for the systems with energy-harvesting source,
e.g., see [4], [30]. In contrast to above works, the generate-at-
will source model was studied in [8], [9] where generation of a
status update can be completely controlled. While the authors
in [8] solved for optimal-waiting times between generation
times to minimize the average AoI, the authors in [9] solved
the problem for any non-decreasing function of AoI. When the
request delay d = 0, the system we study is equivalent to the
generate-at-will source model. Furthermore, in contrast to [8],
[9], we consider service preemptions and address the minimum
achievabile PAoI problem. Next, we summarize works that
consider service preemptions.

B. Preemptive Service

Most of the works that considered service preemptions
focused on analysing the average AoI and average PAoI for

3

different queueing systems, e.g., see [17]–[20], [26], [31]–
[33]. Minimizing average AoI for a single-server-single-source
system under service preemptions was studied in [22], [34]–
[36]. The authors in [34] studied the problem of whether to
preempt or not preempt the current update in service in an
M/GI/1/1 system, while the authors in [22] showed that the
deterministic arrivals are optimal for a given arrival rate for
the G/M/1/1 system. In [35], optimal policies for Bernoulli
arrivals were studied, and optimal blocklength for packets
was computed for Poisson arrivals in [36]. AoI minimization
under service preemptions was also considered in multi-source
and/or muti-server systems, e.g., see [7], [37]. In contrast
to our problem, among other differences, the generate-at-will
model was not considered in the above works.

The work by the authors in [10] is contemporary to ours.
The authors studied a system equivalent to the generate-
at-will source model [8], [9], and considered the problem
of minimizing the average AoI in the system under service
preemptions. Considering a fixed-threshold policy for doing
preemptions, the authors first solve for an optimal waiting
time3. Stating that it is hard to obtain a closed-form expression
for the average AoI in terms of the fixed threshold and its
corresponding optimal waiting time, the authors compute,
numerically, the optimal fixed threshold for two service-time
distributions, namely, exponential and shifted exponential.
However, it is not shown if the proposed method results in an
optimal policy for general service-time distributions. In this
work, we consider the average PAoI minimization problem
and provide a fixed-threshold policy that is optimal in the set
of randomized causal policies4. Furthermore, we characterize
the minimum achievable average PAoI.

III. SYSTEM MODEL AND PROBLEM STATEMENT

We study an information retrieval system shown in Figure 1,
where a monitor (e.g., a mobile application) strives to obtain
latest information (e.g., newsfeeds) from a source which
evolves independently. When the source receives a request
from the monitor, it instantaneously generates an information
update (or simply update) and sends it to the preemptive server.
The request is sent on a dedicated channel that serves one
request at a time and induces a constant delay d per request.
This delay d may model the transmission delay at the monitor.
On the other hand, an update incurs a random service time,
denoted by X , at the server before it reaches the monitor.
We assume that the service times across the updates are i.i.d.
Further, we consider that a new update always preempts an
update under service. Let FX(·), fX(·) and E[X] denote the
cumulative distribution function, probability density function
and the mean of X , respectively. We use xmin ≥ 0 to denote
the minimum value in the support of X . We note that, for
d = 0, our model is equivalent to the generate-at-will source
model [8], [9], where the monitor indicates to the source if an
update was received (for instance by an ACK), and then the

3The idle time of the server after an update is received. Idling the server
does not reduce the average PAoI but may reduce the average AoI.

4Whether a fixed-threshold policy is optimal for average AoI minimization
remains an open problem.

0

2 5 6

0 2 2

1

1 3
5
6

2

3

4 5 6
7

1 2 3 4 5 6

Fig. 2: A sample path of AoI under service preemptions.

source decides (push model) when to generate the next update.
A subtle difference is that, our model is a pull model as the
monitor decides when to send the next update request and the
source merely generates an update upon receiving the request.
The pull model aptly models several applications; for example,
in web browsing, the monitor represents a web browser while
the source represents a web server.

At any time, the monitor aims to have the freshest update.
Note that this depends on the time instants at which monitor
requests new information. A scheduling policy for information
requests specifies these time instants. To be precise, let n
denote the index of a request and also its corresponding
update, then a scheduling policy s , {Sn, n ≥ 1}, where
Sn ∈ R≥0 denotes the generation time of request n. Using
the convention that request 1 is sent at time zero, the waiting
time between requests n and n + 1, denoted by Zn, is
given by Zn = Sn+1 − Sn. As a consequence of constant
delay d incurred for each request and the minimum service
time is xmin, we have Zn ≥ max{xmin, d} for all n. Note
that the scheduling policy can be equivalently written as
s = {Zn, n ≥ 1}. When the monitor sends request n at time
Sn, the corresponding update n is generated by the source at
time Sn+d. The monitor waits for duration Zn and sends the
next request at Sn+1 = Sn + Zn, for which the update n+ 1
is generated at Sn+1 + d. This update preempts update n if
the service time Xn exceeds Zn.

Let Dn denote the time at which information update n is
received at the monitor. We assign Dn = ∞, if the update n
is dropped due to preemption. We have

Dn =

{
Sn +Xn + d if update n is received
∞ otherwise

In this system, AoI at the monitor at time t, denoted by ∆(t),
is given by

∆(t) = t−max
n∈N
{Sn + d : Dn ≤ t}. (1)

Note that ∆(t) increases linearly with t and drops instanta-
neously when an update is received. In Figure 2, we present
a sample path of AoI under service preemptions. Here, we
have used the convention that, a packet is received at time
zero and the initial AoI ∆(0) = X0. Let k denote the kth AoI
peak and Ak(s) denote the corresponding PAoI value. Further,

4

Preemptive

server

Monitor

d d d d

X1

θ2

X3 X4

θ3
t

0

0

Request
Update

received

New update

generated

G1 G2 G3

Preemption

Fig. 3: Illustration of idle times Gk under a work-conserving
policy.

let nk denote the index of the update received just after the
kth AoI peak. Note that between updates nk and nk+1 there
could be multiple updates that are preempted. We now have
Ak(s) = ∆(D−nk), where D−nk is the time just before update
nk is received under s.

In the following, we describe the policies of interest.
• Work-conserving policy: Zn = min(θn, Xn + d), for all
n, where θn is a threshold for preemption and takes
values from [max{xmin, d},∞)∪{∞}. Under this policy,
a request is sent if an update is received or the threshold
θn is elapsed, which ever happens first. There might
be scenarios where an update (for previous request) is
received after a new request is sent but before the new
request reaches the source. In this case, the update is
accepted by the monitor and it does not generate another
request for receiving this update; the source, as always,
generates an update when the new request reaches it. We
note that, under this policy, the server will be always busy
when d = 0.

• Threshold policy: Zn = min(θn, Xn+d), for all n, where
θn ∈ [θmin, θmax] is a threshold for preemption, θmin >
xmin, θmin ≥ d, and θmax < ∞. A threshold policy is a
work-conserving policy with bounded thresholds.

• Fixed-threshold policy: Zn = min(θ,Xn + d), for all n,
for some θ ∈ [θmin, θmax]. We use sθ to denote this policy.

• Min-threshold policy: Zn = max{xmin, d}, for all n. We
use s to denote this policy.

• No-threshold policy: Zn = Xn + d, for all n5. We use
s∞ to denote this policy. Under s∞ a request is sent
immediately after an update is received and preemptions
are not allowed6. We note that s∞ is the only non-
preemptive work-conserving policy, where θn = ∞, for
all n.

Since a request incurs delay d before reaching the source,
the preemptive server may stay idle during this period. Under
work-conserving policies, the idle time of the server before
generation of a new packet can be at most d as the monitor
sends a new request immediately after it receives an update or
the threshold expires. Let Gk(s) denote the idle time of the

5For d = 0, no-threshold policy is equivalent to the zero-wait policy studied
in [9].

6In scenarios where updates are lost in a network, no-threshold policy and
in general any non-preemptive policy fails, and it is essential to consider pre-
emptive policies. Service-time distributions corresponding to such scenarios
are improper, i.e., limx→∞ F (x) < 1.

server between Dnk(s) and the time at which the next update
is generated. The timing diagram in Figure 3 complements
Figure 2 by illustrating how the request delay d induces the
idle times Gk(s) at the preemptive server. It can be observed
that, under work-conserving policy s, we have 0 ≤ Gk(s) ≤
d.

Under a given policy s, the average PAoI is defined as

ζ(s) , lim
K→∞

1

K
Es

[K∑
k=1

Ak(s)

]
, (2)

where the expectation above is taken with respect to a proba-
bility distribution determined by s and the distribution of X .
Let S denote the set of all admissible causal policies for which
the limit in (2) exists. For any given service-time distribution
FX(·) and request delay d, we are interested in solving the
average PAoI minimization problem P:

minimize
s∈S

ζ(s)

subject to Zn ≥ max{xmin, d}, ∀n ≥ 1.

Let s∗ denote an optimal policy, and ζ∗ denote the minimum
average PAoI achieved under s∗. We define a threshold θ∗ as
follows:

θ∗ = arg min
θ∈[max{xmin,d},∞)∪{∞}

ζ(sθ). (3)

Our main result is that the fixed-threshold policy sθ∗ achieves
the minimum average PAoI.

In the sequel, we use ηn := θn − d, and x+ = max{0, x}.
The list of symbols used are summarized in Table I.

TABLE I: NOMENCLATURE

d Request delay
n Index of a request and its corresponding update
k Index of AoI peak
X Service time
xmin The minimum value in the support of service time X
Sn Generation time of request n
Zn The waiting time between requests n and n+ 1
Dn The time at which update n is received at the monitor
∆(t) Age of information at time t
Ak k-th PAoI value
nk The index of the update received just after the k-th PAoI
X̌k The service time of update nk
Gk The idle time of the server between Dnk and Snk+1

θn Threshold for preemption of update n
θmin, θmax The minimum and maximum values of threshold θn
ηn θn − d
Yk+1 The duration between the time instances at which update nk

and nk+1 are received
FX(x) Cumulative distribution function of the service time X
fX(x) Probability density function of the service time X
s Scheduling policy
sθ Fixed-threshold policy
s Min-threshold policy
s∞ No-threshold policy
ζ(s) Average PAoI under a given policy s
s∗ Optimal policy that achieves minimum average PAoI
ζ∗ The minimum average PAoI
θ∗ Threshold of an optimal fixed-threshold policy

5

IV. THRESHOLD POLICIES AND AUXILIARY RESULTS

In this section, we define different classes of threshold
policies and provide some important auxiliary results which
will be used in the later parts of the paper. Let In denote the
causal information available at nth request. It includes all the
observed PAoI values, service times, and thresholds used prior
to the nth request.

Definition 1. A randomized-threshold causal policy specifies
a probability distribution for choosing θn ∈ [θmin, θmax] using
In.

Let ST denote the set of all randomized-threshold causal
policies. The constraint θn ∈ [θmin, θmax] in threshold policies
is an artefact introduced to bound the MDP costs and facilitate
the proof of convergence of the optimal policy to a stationary
fixed-threshold policy. Note that, considering xmin < θmin

7 and
θmax <∞ excludes min-threshold policy when d < xmin, and
no-threshold policy, respectively, from ST. Nevertheless, for
a given problem, choosing θmin arbitrarily close to xmin and
θmax sufficiently large, the imposed constraints result in only
a mild restriction of ST. If d > xmin, θmin takes value d on the
left extreme. Figure 4 visualizes ST and other work-conserving
policies using a Venn diagram.

In our proof for optimality of a fixed-threshold policy, we
first show that an optimal policy belongs the set randomized-
threshold policies which choose the same set of thresholds
between two successfully received updates. We define this set
of policies below.

Definition 2. A repetitive randomized-threshold policy is a
randomized-threshold causal policy under which the joint
distributions for choosing the set of thresholds between any
two AoI peaks are identical.

Let STR denote the set of all repetitive randomized-threshold
policies, and Sθ denote the set of all fixed-threshold policies.
From the above definitions, we have Sθ ⊂ STR ⊂ ST ⊂ S.

From Figure 2, it is easy to infer that under any policy s,
we have, for all k,

Ak+1(s) = Dnk+1
− (Snk + d)

= Dnk+1
−Dnk︸ ︷︷ ︸

,Yk+1(s)

+Dnk − (Snk + d)︸ ︷︷ ︸
, X̌k(s)

. (4)

Note that X̌k(s) is equal to Xnk , the service time of update
nk. However, under preemptive policies X̌k(s) does not have
the same distribution as X . The time Yk+1(s) denotes the
duration between the time instances at which update nk and
nk+1 are received. Note that Yk+1(s) includes the idle time of
the server after reception of update nk. Therefore, introducing
idle time penalizes PAoI and it is always beneficial to send
a request immediately after receiving an update. This implies
that an optimal policy belongs to the set of work-conserving
policies. Hence, we arrive at the following lemma.

Lemma 1. An optimal policy s∗ belongs to the set of work-
conserving policies.

7An optimal policy s∗ never chooses a θn < xmin. Thus, the constraint
xmin < θmin only excludes the case θn=xmin.

Work-conserving

policies

No-threshold

policy (s∞)
Min-threshold

policy (s)

Fixed-threshold

policies (sθ)
Randomized-

threshold

policies (sT)

Fig. 4: Venn diagram showing different sets of policies.

Next, we define deterministic-repetitive threshold policies
and compute ζ(s) for this class of policies.

Definition 3. A deterministic-repetitive-threshold policy uses
the same sequence of deterministic thresholds between any two
AoI peaks.

Let {θi, i ≥ 1} denote a sequence of deterministic thresh-
olds. Then, a deterministic-repetitive-threshold policy s re-
peats this sequence between any two peaks. We emphasize that
θi is the threshold for ith request between any two AoI peaks,
but not the threshold for ith request from time zero; here, we
have abused the notation for brevity. In the following lemma,
we characterize X̌k(s) and Yk+1(s). Recall that ηi = θi − d.

Lemma 2. For a deterministic-repetitive-threshold policy s,
X̌k(s) are i.i.d., Gk(s) are i.i.d., and Yk+1(s) are identically
distributed (but not i.i.d.). Further, we have

E[X̌(s)] =

∫ θ1

0

xfX(x)dx+

∞∑
j=1

j∏
i=1

P{Xi>θi}
∫ θj+1

0

xfX(x)dx,

(5)

E[Y (s)]=E[G(s)]+ E[X̌(s)]+

∞∑
j=1

j∏
i=1

P{Xi>θi}FX(θj+1)

j∑
i=1

θi, (6)

E[G(s)] =

∞∑
j=0

j∏
i=1

P{Xi>θi}×

[
FX(ηj+1)d+

∫ θj+1

ηj+1

(θj+1 − x)fX(x)dx
]
, (7)

and ζ(s) = E[X̌(s)] + E[Y (s)].

Proof. The proof is given in Appendix A.

Using the result in Lemma 2 we compute ζ(sθ), the average
PAoI under a fixed-threshold policy.

Corollary 1. For a fixed-threshold policy sθ, we have the
average PAoI ζ(sθ) = E[X̌(sθ)] + E[Y (sθ)], where

E[X̌(sθ)] =

∫ θ
0
xfX(x)dx

FX(θ)
, (8)

6

E[Y (sθ)] = E[X̌(sθ)] + E[G(sθ)] +
θP(X > θ)

FX(θ)
, (9)

E[G(sθ)] =
FX(η)d+

∫ θ
η

(θ − x)fX(x)dx

FX(θ)
, (10)

and η = θ − d.

Proof. The proof is given in Appendix B.

The following lemma provides a simplified expression for
E[Y (sθ)] when FX(·) is continuously differentiable.

Lemma 3. If FX(·) is continuously differentiable and
FX(xmin) = 0, then

E[Y (sθ)] =
θ −

∫ η
0
FX(x)dx

FX(θ)
. (11)

Proof. The proof is given in Appendix C.

We note that the condition in Lemma 3 is satisfied by well-
known continuous probability distributions including Erlang,
Pareto, and log-normal, and we use it for computing average
PAoI in our numerical analysis. Finally, in the following
corollary, we present the average PAoI for min-threshold
policy and no-threshold policy.

Corollary 2. For a given distribution FX(·), the average
PAoIs achieved by the min-threshold policy s and the no-
threshold policy s∞ are given by

ζ(s) = ζ(smax{xmin,d}) and ζ(s∞) = 2E[X] + d.

Proof. The proof is given in Appendix D.

Remark: Even though FX(x) and fX(x) are zero for
0 ≤ x < xmin, in the expressions above we chose to use
lower limit 0 for the integrals. This is done for simplicity in
the expressions; one can equivalently replace the lower limits
by xmin. Similarly, η in the lower limit can be replaced by
max{xmin, η}.

V. MINIMUM ACHIEVABLE AVERAGE PAOI

In this section, we first present a fixed-threshold policy that
is optimal among randomized-threshold causal policies. Next,
in any single-source-single-server queuing system, we present
the optimal policy among all work-conserving policies and
provide an expression for the minimum average PAoI.

Theorem 1. Given the distribution of service times FX(·),
there exists a fixed-threshold policy sθ† in Sθ that is optimal
in ST, where θ† is given by

θ† , arg min
θ∈[θmin,θmax]

ζ(sθ). (12)

Proof. The proof of the theorem is given in two steps. First,
we formulate an infinite horizon average cost MDP problem
equivalent to P in the domain of ST and show that an
optimal policy s† belongs to STR. Next, we consider the
decision process between two successive updates and show
the independence of the optimal policy with the past decisions.
Further, we prove that the fixed-threshold policy sθ† minimizes
the average PAoI. The details are provided in Appendix E.

Now, as illustrated in Figure 4, for a given problem,
by choosing θmin arbitrarily close to xmin and θmax suffi-
ciently large, the set ST ∪ {s∞, s} can closely approxi-
mate the set of work-conserving policies. Therefore, from
Theorem 1 and Lemma 1, it immediately follows that
min(ζ(sθ†), ζ(s∞), ζ(s)) is the minimum achievable PAoI.
Using Corollary 2, we arrive at the following result.

Theorem 2. Given the service-time distribution FX(·), the
minimum average PAoI is given by

ζ∗ = min(ζ(sθ†), 2E[X] + d, ζ(smax{xmin,d})), (13)

and thus, the optimal policy s∗ is either sθ† or s∞ or s,
whichever achieves ζ∗.

From Theorem 2 and by the definition of θ∗ (defined in (3)),
we conclude θ∗ = θ†, if ζ∗ = ζ(sθ†); θ∗ = max{xmin, d}, if
ζ∗ = ζ(smax{xmin,d}); θ∗ =∞, if ζ∗ = 2E[X] + d.

Consider a single-source-single-server queuing system with
a given service time distribution, having any arrival process
and any queuing policy, e.g., FCFS/LCFS, preemptions/no
preemptions, packet drops/no drops etc. We observe that, in
our system, the update arrivals at the server is determined by
the scheduled requests from the monitor, which is a design
choice that allows for achieving a lower AoI when compared
to systems with same service-time distribution but with some
pre-determined structure for the arrival process. Furthermore,
in systems where the update arrivals is a design choice, but
has some form of queuing, AoI will be higher as queuing an
update makes it stale. Combining the above two observations
and the fact that we allow service preemption, which further
reduces the minimum achievable PAoI, we conclude that
the minimum average PAoI in any single-source-single-server
queuing system will be at least the minimum average PAoI in
our system. Therefore, the following corollary follows from
Theorem 2.

Corollary 3. In any single-source-single-server queuing sys-
tem, given the service-time distribution FX(·), service times
are i.i.d., and the request delay is d, the minimum achievable
average PAoI is given by ζ(sθ∗), where θ∗ is defined in (3).

VI. WHEN ARE PREEMPTIONS BENEFICIAL?

In this section, we study the conditions under which pre-
emptions are beneficial, i.e., allowing preemptions will result
in a strictly lower average PAoI. From Theorem 2, a necessary
and sufficient condition for preemptions to be beneficial is as
follows:

∃ θ ≥ 0 s. t. min(ζ(sθ†), ζ(smax{xmin,d})) < 2E[X] + d.
(14)

In the following we consider an example distribution and
obtain the condition under which preemptions are beneficial.

Case Study: Consider a random service time X that takes
value t1 with probability p and t2 with probability 1−p, where
0 < t1 < t2. Also, consider that d = 0. The distribution of X
can be written as follows:

f(x) = pδ(x− t1) + (1− p)δ(x− t2),

7

FX(x) = pu(x− t1) + (1− p)u(x− t2),

where δ(·) and u(·) are Dirac delta function and unit-step
function, respectively. For this distribution, xmin = t1 and
therefore ζ(smax{xmin,d}) = ζ(sxmin) = t1(1 + p)/p. Note that
choosing threshold θ < t1 or θ > t2 does not reduce average
PAoI. Therefore, we compute ζ(sθ) for t1 < θ ≤ t2. Using
Corollary 1, and noting that, E[Gk(sθ)] = 0 for d = 0, we
compute

ζ(sθ) = E[X̌(s)] + E[Y (s)]

=
2
∫ θ
t1
xf(x)dx

FX(θ)
+
θP(X > θ)

FX(θ)

=
2pt1
p

+
θ(1− p)

p

=
2pt1 + (1− p)θ

p
> t1(1 + p)/p for all θ > t1.

From the last step above we conclude that
min(ζ(sxmin), ζ(sθ†)) = ζ(sxmin).

Since E[X] = pt1 + (1− p)t2, using (14), preemptions are
beneficial iff ζ(sxmin) < 2E[X], which implies

t2 >
t1

1− p

[
1 +

1

p
− 2p

]
. (15)

The condition in (15) establishes a lower bound on t2 for
preemptions to be beneficial. For example, if p = 1

2 and t1 =
1, then preemptions are beneficial if t2 is greater than 2. In this
case, whenever an update is not received within the duration
t1, it is optimal to send a new request just after t1.

Example - Refreshing a Webpage: The above insights are
directly useful for the problem of when to refresh a webpage.
Consider that a webpage loads in time t1 = 0.1 sec with
probability 0.5 or half a minute, i.e., t2 = 30 sec with
probability 0.5. Since t2 > 2, (15) is satisfied and hence a
user should always refresh immediately after waiting 0.1 sec
to minimize PAoI. This solution is also intuitive; because,
t2 >> t1 the user can greedily refresh the webpage after
t1 duration in order to reduce the expected time to load the
webpage. Thus, solving for minimum PAoI provides a sensible
solution for the refresh times demonstrating the applicability
of this seemingly theoretical problem.

Note that the service-time distribution in the above example
is simple enough to compute θ∗ analytically and use (14)
to infer whether preemptions will be beneficial or not. In
general, it is not straightforward to do so for any service-time
distribution. In the following lemma, we provide a sufficient
condition that is useful to infer if preemptions are beneficial
for a given class of distributions.

Lemma 4. For any single-source-single-server queueing sys-
tem, a sufficient condition for preemptions to be beneficial for
minimizing average PAoI is as follows:

∃ θ ≥ 0 such that E[X] < E[X − θ|X > θ] +
θ

2
.

Proof. The proof is given in Appendix F.

From Lemma 4, we infer that a sufficient condition is the
existence of a θ that satisfies E[X − θ|X > θ] > E[X].

Fig. 5: Average PAoI vs. θ under the Pareto service-time
distribution for different α and xm = 0.5.

0 0.5 1 1.5 2 2.5
d

1

1.5

2

2.5

3

3.5

4

4.5

5

O
p
ti
m

a
l
th

re
sh

o
ld
3
$

Tail index , = 0:5

xm = 2
xm = 1
xm = 0:5

Fig. 6: Optimal threshold versus d for different xm and α =
0.5.

This condition implies that given an elapsed time θ, the
expected residual should be greater than the mean value. This
is satisfied by heavy-tailed distributions and hyper-exponential
distributions [38].

VII. NUMERICAL ANALYSIS

In this section, we compute optimal fixed thresholds for
Pareto, log-normal, and Erlang service-time distributions.
Pareto and log-normal distributions are used to illustrate the
effectiveness of preemptions for heavy-tailed distributions, and
the Erlang distribution is chosen due to the fact that it models a
tandem of exponential (memoryless) servers. We compare the
average PAoI achieved by no-threshold policy, optimal fixed-
threshold policy sθ† , and median-threshold policy, which uses
median of the service-time distribution as the fixed threshold.
We study the median-threshold policy because it can be useful
in cases where the distribution of the service times is not
known apriori but the sample median can be computed from

8

0 1 2 3 4 5
Tail index ,

101

102
A
v
er
a
g
e
P
ea
k
A
o
I

xm = 0:5

d = 0, Optimal policy s$

d = 0, Median-threshold policy
d = 0, No-threshold policy s1
d = 1, Optimal policy s$

d = 1, Median-threshold policy
d = 1, No-threshold policy s1

Fig. 7: Average PAoI achieved by different policies under the
Pareto service-time distribution with varying α and xm=0.5.

the history of service times. Furthermore, unlike sample mean,
sample median is always finite and is an unbiased estimate.
Finally, we conclude this section with a case study on the effect
of variance of a distribution on the minimum average PAoI.
All the numerical computations are implemented in MATLAB.
A. Pareto Service-Time Distribution

The Pareto distribution is characterized by two parameters
{xm, α}, where xm is the scale parameter and α is the tail
index. The smaller the α, the heavier the tail. The default
values are xm = 0.5 and α = 0.5. In Figure 5, we plot
the average PAoI ζ(sθ), computed using Corollary 1 and
Lemma 3, by varying the threshold θ for α equal to 0.5 and
5. The minimum values of ζ(sθ) are indicated by the points
in magenta. Observe that, for d = 0, ζ(sθ) is convex in θ for
both the α values. Therefore, in this case we obtain θ∗ = θ†.
For d > 0, Since θ values are lower bounded by d, we observe
that θ∗ = d for some parameter values. Further, for α = 5, as
θ increases PAoI converges to 2E[X] + d, the value achieved
by the no-threshold policy. For α = 0.5, this convergence does
occur, albeit at larger threshold values.

In Figure 6, we plot the optimal threshold θ∗ as d increases.
It can be observed that θ∗ initially decreases as d increases to
compensate for the increase of PAoI due to d. As d increases
beyond a certain value, θ∗ attains d as it is bounded below
by d. In Figure 7, we compare the average PAoI achieved by
different policies for different d values. Observe that for higher
α values, i.e., the distribution has a light tail, the no-threshold
policy achieves lower average PAoI values, comparable with
that of the optimal policy. On the other hand, for α ≤ 1,
the distribution has a heavy tail and infinite mean, and thus
the average PAoI under the no-threshold policy is infinity.
In contrast, the optimal policy achieves finite average PAoI
values in this case, and this illustrates the effectiveness of
preemptions for heavy-tailed distributions. Furthermore, the
median-threshold policy performs consistently well and is an
attractive choice when the parameters {xm, α} are not known
apriori, but only an estimate of the median is available. Finally,

2 4 6 8 10 12 14
Threshold 3

0

1

2

3

4

5

6

7

8

A
v
er

a
g
e

P
ea

k
A

o
I

7 = 0

d = 0, < = 0:1
d = 0, < = 1
d = 0, < = 2
d = 1, < = 0:1
d = 1, < = 1
d = 1, < = 2

Fig. 8: Average PAoI vs. θ under log-normal distribution for
different σ and µ = 0.

we note that the PAoI values achieved by a policy is insensitive
to d = 0 and d = 1 when the tail is heavier.

B. Log-normal Service-Time Distribution

Log-normal distribution is characterized by the parameters
(µ, σ), where µ is the mean and σ is the standard deviation
of the underlying normal distribution. For this distribution the
higher the σ, the heavier the tail. The default value for µ is
0. Since the median value is given by eµ, its default value
is 1. In Figure 8, we plot ζ(sθ) by varying the threshold
θ. Again, the minimum values of ζ(sθ) are indicated by the
points in magenta. Observe that, for a given d the minimum
PAoI that can be achieved is lower for higher σ value. This
is interesting as it suggests that the higher the variance, the
lower the average PAoI that can be achieved. Note that this
statement is not true for Pareto distribution (cf. Figure 5). In
Section VII-D, we will further study the affect of variance for
Pareto distribution. In Figure 9, we compare the average PAoI
achieved by different policies. Under the no-threshold policy,
it increases exponentially with σ as E[X] = e(µ+σ2

2). Under
both median-threshold policy and optimal policy, average PAoI
decreases with σ. Note that, for d = 0, we compute θ∗ = 0,
and the minimum average PAoI goes to 0 as σ goes to infinity.
However, in Figure 9 we lower bound the thresholds by 0.01
and thus the minimum average PAoI converges to this value.

C. Erlang Service-Time Distribution

Erlang distribution is characterized by two parameters
{k, λ}, where k is the shape parameter and λ is the rate
parameter. In Figure 10, we plot the average PAoI by varying
the threshold θ and d = 1. The minimum values of ζ(sθ) are
indicated by the points in magenta. Recall that, for k = 1 the
Erlang distribution results in an exponential distribution. For
this case, from Figure 10 we observe that the function ζ(sθ) is
concave, and therefore s∗ in this case is min-threshold policy
with θ∗ = d = 1, and ζ∗ = 2. In contrast, for k ≥ 2, the

9

0 2 4 6 8 10
<

10-1

100

101

102

103
A

v
er

a
g
e

P
ea

k
A

o
I

7 = 0

d = 0, Optimal policy s$

d = 0, Median-threshold policy
d = 0, No-threshold policy s1
d = 1, Optimal policy s$

d = 1, Median-threshold policy
d = 1, No-threshold policy s1

Fig. 9: Average PAoI achieved by different policies under log-
normal distribution for varying σ and µ = 0.

5 10 15 20 25
Threshold 3

101

102

103

104

A
v
er

a
g
e

P
ea

k
A

o
I

d = 1

k = 12
k = 8
k = 4
k = 2
k = 1

Fig. 10: Average PAoI vs. θ under the Erlang service-time
distribution for different k and λ = 1.

functions are convex in θ and we obtain θ∗ = θ†. In Figure 11,
we compare the average PAoI achieved by different policies.
It can be observed that no-threshold policy has average PAoI
close to ζ(s∗). This is because the sufficiency condition
E[X − θ|X > θ] > E[X] is not satisfied by the Erlang
distribution for any θ [38], and thus allowing preemptions
does not significantly reduce average PAoI. The average PAoI
under median-threshold policy is relatively higher and also
diverges from both no-threshold and s∗ when k increases,
thus suggesting that using preemptions with arbitrary threshold
could in fact penalize the average PAoI. Therefore, it is im-
portant to verify first if preemptions are beneficial for a given
service-time distribution. The conditions provided in (14) and
Lemma 4 are potentially useful toward this end.

D. Effect of Variance

Consider a scenario where there are multiple parallel pre-
emptive servers with equal mean service time that connect

2 4 6 8 10
Erlang shape parameter k

0

5

10

15

20

25

30

A
v
er

a
g
e

P
ea

k
A

o
I

6 = 1

d = 0, Optimal policy s$

d = 0, Median-threshold policy
d = 0, No-threshold policy s1
d = 1, Optimal policy s$

d = 1, Median-threshold policy
d = 1, No-threshold policy s1

Fig. 11: Average PAoI achieved by different policies under the
Erlang service-time distribution with varying k and λ = 1.

the information source and the monitor. Only one of them
should be chosen to send the packets from the source to
the monitor. For this scenario, a natural choice is to use the
prememptive server which provides the lowest possible PAoI.
An interesting finding from our simulations is that the server
with largest variance in the service times has lower minimum
achievable PAoI. In Table II, we present the minimum PAoI ζ∗

that is achieved under three preemptive servers, each having
Pareto-service distribution with equal mean 1 but different
scale parameter xm and tail index α, and the request delay
to each of the servers is zero. Observe that as α increases ζ∗

increases. This implies that the larger the variance the lower
the PAoI value that can be achieved using preemptions. If this
statement is true, in general, is left for the future work.

TABLE II: Paerto-service distributions with mean 1. Request
delay d = 0.

{xm, α} mean Variance θ† min PAoI (ζ∗)
{ 1
3
, 3
2
} 1 ∞ 0.753 1.263

{ 1
2
, 2} 1 ∞ 1.110 1.661

{ 5
6
, 6} 1 1

24
1.713 1.994

VIII. CONCLUSION

We have studied a problem of finding the minimum achiev-
able average PAoI for a given service-time distribution. To
this end, we have considered generate-at-will source model
with service preemptions and request delays d. Using an
MDP formulation we have shown that a fixed-threshold policy
achieves minimum average PAoI in the set of randomized-
threshold causal policies. The minimum achievable average
PAoI in any single-source-single-server queuing system is
then given by the minimum average PAoI achieved by an
optimal fixed-threshold policy. Using the fact that no-threshold
policy is optimal among all non-preemptive policies, we
establish necessary and sufficient conditions for the service-
time distributions under which allowing preemptions result in

10

a lower minimum average PAoI. In the numerical analysis, we
have used the Pareto and log-normal service-time distributions
to illustrate the effectiveness of preemptions for heavy-tailed
distributions. Based on the inference from Section VII-D, we
conjecture that when two distributions are drawn from the
same family and has the same mean but different variances,
then the minimum achievable average PAoI will be lower for
the distribution with higher variance.

We conclude by presenting some open problems. A theoret-
ical study on the effect of variance on the minimum average
PAoI, proving/disproving the above conjecture, would be in-
teresting. One may consider minimum achievability for other
functions of AoI including the average AoI. Also, it would be
interesting to consider multiple information sources and study
how preemptions affect both sampling and communication
scheduling.

APPENDIX

A. Proof of Lemma 2

We first analyse X̌k(s). Recall that nk is the index of the kth
received update and s repeats the same sequence {θi, i ≥ 1}
between any two peaks. Consider update nk−1 + 1, the first
update that is generated after k − 1th packet is received, if
Xnk−1+1 ≤ θ1, then it will be received successfully. In this
case, we set nk = nk−1 + 1 and X̌k(s) = Xnk−1+1. If
Xnk−1+1 > θ1, then update nk−1 + 1 will be preempted by
sending request nk−1 + 2. In this case the above statements
can be similarly repeated by comparing Xnk−1+2 and θ2.
Since Xnk−1+i and Xi are i.i.d., from the above analysis we
characterize X̌k(s) as follows:

X̌k(s) =

X1 X1 ≤ θ1

X2 X1 > θ1, X2 ≤ θ2

X3 X1 > θ1, X2 > θ2, X3 ≤ θ3

...

The above characterization of X̌k(s) is true for any k as s is
a deterministic-repetitive threshold policy. Since Xn are i.i.d.
we infer that X̌k(s) are also i.i.d. In the following we write
X̌k(s) using indicator functions.

X̌k(s) =X11{X1 ≤ θ1}+
∞∑
j=1

j∏
i=1

1{Xi>θi}Xj+11{Xj+1≤θj+1} (16)

Taking expectation on both sides we arrive at (5).
To analyse Yk+1(s), we first need to compute Gk(s) –

the time instant at which a new update is generated after
Dnk(s). Let ik denote the the number of requests sent between
AoI peaks k − 1 and k after which update k is received
successfully. This implies X̌k(s) = Xnk−1+ik ≤ θik . If a
request is sent at time Dnk(s), then Gk(s) = d. This happens
when X̌k(s) ≤ ηik . If ηik < X̌k(s) ≤ θik , then we obtain
Gk(s) = θik − X̌k(s). See Figure 12 for an illustration of
Gk(s) for some policy. Observe that, just before the peak
Ak+1 the monitor has sent a new request as θ2 is elapsed.
For the new request the threshold should be θ3. However,

Δ(t)

t

….

Request

Update

received

New update

generated

Ak+1

….

X̌k

d

θ1 θ2

d

X̌k+1

d

Gk+1

Yk+1

Gk

θ1

d

X̌k+2Yk+2

Ak+2

Fig. 12: An illustration of the server idle times Gk.

before this request could reach the source, the update for the
previous request is received. As noted before, this update will
be accepted by the monitor, no new request will be generated,
and the monitor replaces threshold θ3 by θ1 in accordance
with the deterministic-repetitive threshold policy.

Using similar analysis as in the case of X̌k(s), we obtain

Gk(s) =

d X1 ≤ η1

(θ1 −X1) η1 < X1 ≤ θ1

d X1 > θ1, X2 ≤ η2,

(θ2 −X2) X1 > θ1, η2 < X2 ≤ θ2

...

It is easy to see that Gk(s) are i.i.d., and we obtain

E[Gk(s)] =

∞∑
j=0

j∏
i=1

P{Xi>θi} ×
[
FX(ηj+1)d+

∫ θj+1

ηj+1

(θj+1 − x)fX(x)dx
]
.

At time Dnk(s) + Gk(s), update nk + 1 is generated. If
Xnk+1

≤ θ1, then it will be received successfully and Yk+1(s)
equals Gk(s)+Xnk+1. Otherwise, Gk(s) + θ1 will get added
to Yk+1(s) and then Xnk+2

is compared with θ2 and the
arguments are repeated. From this analysis and noting that
Xnk+i and Xi are i.i.d., we characterized Yk+1(s) as follows8:

Yk+1(s) =

Gk(s) +X1 X1 ≤ θ1

Gk(s) + θ1 +X2 X1 > θ1, X2 ≤ θ2

Gk(s)+θ1+θ2+X3 X1>θ1,X2>θ2,X3≤θ3

...

The above equation is further simplified in (17). Note that
Yk+1(s) and Yk(s) have the same distribution but are depen-
dent through Gk(s). Nevertheless, Yk+1(s) and Yk−1(s) are
independent for all k. Again, taking expectation on both sides
and noting that Xi are i.i.d. we arrive at (6).

8Even though we use the same {Xi} to characterize Yk+1(s) as well
X̌k(s) and Gk(s), one should note that actual service time random variables
that result in X̌k(s) and Gk(s) are different from that of Yk+1(s). We,
however, chose to use the same {Xi} as it doesn’t change the intended results
and avoids introducing any additional notation.

11

Yk+1(s)=Gk(s)+X11{X1≤θ1}+
∞∑
j=1

j∏
i=1

1{Xi>θi}
[
1{Xj+1≤θj+1}

j∑
i=1

θi+Xj+11{Xj+1≤θj+1}
]

= Gk(s) + X̌k+1(s) +

∞∑
j=1

j∏
i=1

1{Xi>θi}1{Xj+1≤θj+1}
j∑
i=1

θi (17)

Since X̌k(s) are i.i.d., and Yk(s) have identical distribution,
and Ak+1(s) = X̌k(s)+Yk+1(s), we conclude that Ak(s) for
all k have identical distribution with mean E[X̌(s)]+E[Y (s)].
Therefore,

ζ(s) = lim
K→∞

1

K
Es

[K∑
k=1

Ak(s)

]
= E[X̌(s)] + E[Y (s)].

B. Proof of Corollary 1

Substituting θi = θ for all i in (5), we obtain

E[X̌(sθ)]
(a)
=

∫ θ

0

xfX(x)dx+

∞∑
j=1

P(X > θ)j
∫ θ

0

xfX(x)dx

(18)

(b)
=

∫ θ

0

xfX(x)dx

∞∑
j=0

P(X > θ)j
(c)
=

∫ θ
0
xfX(x)dx

FX(θ)
.

(19)

In step (a) we have used E[X1{x ≤ θ}] =
∫ θ

0
xfX(x)dx. In

step (c) we have used the sum for infinite geometric series.
In order to compute E[Y (sθ)], we first compute E[G(sθ)]

by substituting θi = θ and ηi = η for all i in (7).

E[G(sθ)] =

∞∑
j=0

j∏
i=1

P{Xi>θ}
[
FX(η)d+

∫ θ

η

(θ − x)fX(x)dx
]

=
FX(η)d+

∫ θ
η

(θ − x)fX(x)dx

FX(θ)
(20)

By substituting θi = θ for all i and using (18) and (20) in (6),
we obtain

E[Y (sθ)] = E[G(sθ)] + E[X̌(sθ)] +

∞∑
j=1

P(X > θ)jFX(θ)jθ

= E[G(sθ)] + E[X̌(sθ)] + θFX(θ)

∞∑
j=1

jP(X>θ)j

= E[G(sθ)] + E[X̌(sθ)] +
θP(X > θ)

FX(θ)
. (21)

C. Proof of Lemma 3

Given that FX(·) is continuously differentiable, in the
following we use integral by parts.

Case 1: η > xmin. For this case, we have∫ θ

0

xfx(x)dx =

∫ θ

xmin

xfx(x)dx

= θFX(θ)− xminFX(xmin)−
∫ θ

xmin

FX(x)dx

= θFX(θ)−
∫ θ

0

FX(x)dx (22)

Further,∫ θ

η

(θ − x)fx(x)dx

= θ[FX(θ)− FX(η)]− [θFX(θ)− ηFX(η)−
∫ θ

η

FX(x)dx]

= −FX(η)d+

∫ θ

η

FX(x)dx. (23)

From (23) and (10), we obtain

E[G(sθ)] =
FX(η)d+

∫ θ
η

(θ − x)fX(x)dx

FX(θ)
=

∫ θ
η
FX(x)dx

FX(θ)
.

(24)

From (9) we have

E[Y (sθ)] = E[X̌(sθ)] + E[G(sθ)] +
θP(X > θ)

FX(θ)

=
θFX(θ)−

∫ θ
0
FX(x)dx

FX(θ)
+

∫ θ
η
FX(x)dx

FX(θ)
+
θP(X > θ)

FX(θ)

=
θ −

∫ η
0
FX(x)dx

FX(θ)
.

In the second step above, we have used (22) and (24).
Case 2: η ≤ xmin. For this case F (η) = 0, and we have∫ θ

η

(θ − x)fx(x)dx =

∫ θ

xmin

(θ − x)fx(x)dx

=⇒
∫ θ

η

(θ − x)fx(x)dx+

∫ θ

xmin

fx(x)dx = θFX(θ).

Again, using the above expression in (9), we obtain

E[Y (sθ)] = θ +
θP(X > θ)

FX(θ)
=

θ

FX(θ)
.

Also, for η ≤ xmin, we have

θ −
∫ η

0
FX(x)dx

FX(θ)
=

θ

FX(θ)
.

Hence the result is proven.

D. Proof of Corollary 2

Both s and s∞ are deterministic-repetitive-threshold poli-
cies using fixed thresholds θ = max{xmin, d} and θ = ∞,
respectively. Therefore, applying the result in Corollary 1 to
these policies, we obtain ζ(s) = ζ(smax{xmin,d}), and for
ζ(s∞) we have

E[X̌(s∞)] =

∫∞
0
xfX(x)dx

FX(∞)
= E[X]

12

and

E[G(s∞)] = lim
θ→∞

FX(η)d+
∫ θ
η

(θ − x)fX(x)dx

FX(θ)
= d.

Using above results for E[X̌(s∞)] and E[G(s∞)] in (9), we
obtain E[Y (s∞)] = E[X]+d. Therefore, ζ(s∞) = 2E[X]+d.

E. Proof of Theorem 1

In this proof, we use the notation FN1 to denote the sequence
[F1, . . . , FN] and AN to denote the N-fold Cartesian product
of a set A. Let Ik,r = {Ak−1

1 , X̌k−1
0 , Ĩk−1

1 , θk,1, . . . , θk,r−1}
denote the causal information available to the scheduler at rth
request after (k − 1)th update, where Ĩk = {θk,1, . . . , θk,Řk}
denotes the sequence of threshold values between (k − 1)th
and kth updates and Řk = nk − nk−1. Here, Ik,0 denotes
the information state exactly at (k − 1)th update. Further,
we use ik,r to denote a realization of Ik,r and δk,r(ik,r) to
denote the conditional distribution function of the threshold
θk,r given ik,r. Let ηk,r = θk,r − d and F̄X(x) = 1−FX(x).
A randomized-threshold causal policy s specifies a causal
sub-policy at each update k − 1, denoted by µk(ik,0), where
µk specifies the conditional distributions δk,r(ik,r) for all
requests between the (k − 1)th and kth updates. For a
given ik,0, the sub-policy µk belongs to U , which is the set
of randomized sub-policies that specify the distributions of
thresholds between two successive updates. For a given ik,r,
the distribution δk,r belongs to F , which is the set of valid
probability distribution functions.

Now, we solve for an optimal policy in ST in two steps.
First, we formulate an infinite-horizon average cost MDP
problem with the decision epochs as the times at which the
updates are received. In the next step, we consider the decision
epochs as the times at which requests are sent between any
two successive updates.

Step 1: The identified infinite-horizon average cost MDP
problem equivalent to P has the following elements:
• State: the service time of the previous update, X̌k−1 ∈

R≥0,
• Action: the sequence of conditional distribution functions,

µk(ik,0) =
{
δk,r(ik,r)

∣∣r ∈ N
}

• Cost function: the expected PAoI given ik,0,

ck(ik,0, µk) = Eµk
[
Ak|Ik,0 = ik,0

]
= x̌k−1 + Eµk

[
Gk +Bk + X̌k

∣∣Ik,0 = ik,0
]
,

where Bk = Yk − (Gk + X̌k) denotes the time lost due
to preemptions.

Here, using the result from the Lemma 2, we obtain

αX(µk) =: Eµk
[
X̌k|Ik,0 = ik,0

]
= Eµk

[
X̌k

]
= Eµk

[∞∑
r=1

r−1∏
m=1

F̄X(θk,m)

∫ θk,r

0

xfX(x)dx

]
,

βX(µk) =: Eµk
[
Bk|Ik,0 = ik,0

]
= Eµk

[
Yk|Ik,0 = ik,0

]
− Eµk

[
Gk + X̌k|Ik,0 = ik,0

]

= Eµk
[
Yk

]
− Eµk

[
Gk + X̌k

]
= Eµk

[∞∑
r=1

r∏
m=1

F̄X(θk,m)θk,r

]
,

γX(µk) =: Eµk
[
Gk|Ik,0 = ik,0

]
= Eµk

[
Gk
]

= Eµk

[∞∑
r=1

r−1∏
m=1

F̄X(θk,m)
[
FX(ηk,r)d

+

∫ θk,r

ηk,r

(θk,r − x)fX(x)dx
]]
,

where αX : U → R, βX : U → R, and γX : U → R are
deterministic functions. Therefore, we can express the cost
function as

ck(x̌k−1, µk) = x̌k−1 + αX(µk) + βX(µk) + γX(µk). (25)

Now, the problem P in the domain of ST is equivalent to the
infinite horizon average cost problem given by

s† = arg min
s∈ST

{
lim
K→∞

1

K
Es

[K∑
k=1

ck(x̌k−1, µk)

]}
, (26)

where s† is the optimal policy. Note that for a given policy
s ∈ ST ⊂ S, we have αX(µk) < ∞, βX(µk) < ∞, and
γX(µk) < ∞ because the limit in (2) exists for all s ∈ S.
Given x̌1, let JK denote the minimum expected cumulative
cost over a finite horizon k = [1, · · · ,K], given by

JK(x̌0) = min
µK1 ∈UK

{
EµK1

[
K∑
k=1

ck(x̌k−1, µk)

]}
. (27)

The optimal finite-horizon solution to (27) can be obtained
using the backward recursion of the stochastic Bellman’s
dynamic programming [15] given by

Vk(ik,0)= min
µk∈U

{
ck(x̌k−1, µk) + Eµk

[
Vk+1

∣∣Ik,0 = ik,0

]}
,

where the value function Vk denotes the optimal expected
cumulative cost-to-go from k to K. Since we consider a finite-
horizon without a terminal cost, we initialize the recursion
with VK+1 = 0. Thus, for k = K, we have

VK(iK,0) = x̌K−1 + min
µK∈U

{
αX(µK) + βX(µK) + γX(µK)

}
︸ ︷︷ ︸

ṼK

where ṼK is a constant for all iK,0 since αX , βX , and γX do
not depend on iK,0. Similarly, for k = K − 1,

VK−1(iK−1,0) = x̌K−2 + ṼK−1 + ṼK , (28)

where

ṼK−1 = min
µK−1∈U

{
2αX(µK−1) + βX(µK−1) + γX(µK−1)

}
,

µ†K−1 = argmin
µK−1∈U

{
2αX(µK−1) + βX(µK−1) + γX(µK−1)

}
.

Here, ṼK−1 is a constant and the optimal sub-policy µ†K−1

is independent of iK−1,0. Now, for some k = m such that
1 < m ≤ K − 1, we assume that the optimal sub-policy

13

satisfies µ†m = µ†K−1 and the value function has the same
structure as in (28), that is given by

Vm(im,0) = x̌m−1 +
∑K
l=m Ṽl,

where Ṽ Km are some constants. Next, for k = m − 1, we
get (29), where Ṽk is a constant for all ik,0 and µ†k = µ†K−1.
Therefore, using backward induction, for all 1 ≤ k < K, we
have that µ†k = µ†, where µ† is independent of ik,0 and is
given by

µ† = argmin
µ∈U

{
2αX(µ) + βX(µ) + γX(µ)

}
. (30)

Further, we have

V1(x̌0) = JK(x̌0) = min
µK1 ∈UK

{
EµK1

[
K∑
k=1

ck(x̌k−1, µk)

]}
= x̌0 +K · min

µ∈U

{
2αX(µ) + βX(µ) + γX(µ)

}
.

That is, for any arbitrary K > 1, we have

min
µK1 ∈UK

{
1

K
EµK1

[
K∑
k=1

ck(x̌k−1, µk)

]}
=
x̌0

K
+ min
µ∈U

{
2αX(µ) + βX(µ) + γX(µ)

}
.

Thus, the minimum expected PAoI at the limit K → ∞ is
given by

ζ† = min
µK1 ∈UK

{
lim
K→∞

1

K
EµK1

[
K∑
k=1

ck(x̌k−1, µk)

]}

= lim
K→∞

[
x̌0

K
+ min
µ∈U

{
2αX(µ) + βX(µ) + γX(µ)

}]
= 2αX(µ†) + βX(µ†) + γX(µ†). (31)

Hence, the optimal policy s† that minimizes P among
ST specifies µ† at each update, independent of the current
information, i.e., s† ∈ STR.

Step 2: In the following, we drop the index k and ignore
the information Ik,0, as the optimal policy s† is invariant with
respect to k and Ik,0. Here, we solve (30) by changing the
decision epochs of the MDP problem to the times at which
requests are sent between any two successive updates. Let I ′r =
{θ1, . . . , θr−1} denote the causal information sequence at rth
request after an update and c′ denotes the cost defined as

c′(θr) =2

∫ θr

0

xfX(x)dx+ θrF̄X(θr)

+ FX(ηr)d+

∫ θr

ηr

(θr − x)fX(x)dx,

such that, for any µ ∈ U , we have

ζ(µ) = 2αX(µ) + βX(µ) + γX(µ)

= Eµ

[∞∑
r=1

r−1∏
m=1

F̄X(θm)c′(θr)

]
.

Let ω = {θi|i ∈ N} be a realization of µ for which, we
have the sequence {Jr} defined by

Jr =

r−1∏
m=1

F̄X(θm)c′(θr). (32)

The derivative of c′(θr) with respect to θr given by

dc′(θr)

dθr
= θrfX(θr) +

∫ θr

0

fX(x)dx−
∫ θr

ηr

fX(x)dx

is non-negative since 0 ≤ ηr ≤ θr. Hence, c′(θr) is an
increasing function of θr. Further, for all r ≥ 1, we have
θr ∈ [θmin, θmax], where θmin = xmin + ε, ε > 0. That is,
we have 0 ≤ c′(θr) ≤ c′(θmax) < ∞. Further, we have
0 ≤ F̄X(θr) < 1 for all r ≥ 1. Therefore, Jr → 0 as r →∞
and consequently, for a sufficiently large R, we have

∞∑
r=R+1

Jr ≈ 0. (33)

Let ζ†R be the minimum expected cumulative cost over the
finite horizon [1, · · · , R], which is given by

ζ†R = min
δR1 ∈FR

{
EδR1

[
R∑
r=1

r−1∏
m=1

F̄X(θm)c′(θr)

]}
. (34)

Similar to Step 1, the optimal solution to (34) can be
obtained using the backward recursion of the stochastic Bell-
man’s dynamic programming [15] given by

ζr(i
′
r)= min

δr∈F

{
Eδr

[
r−1∏
m=1

F̄X(θm)c′(θr) + ζr+1(I ′r+1)

]}
,

where the value function ζr denotes the optimal expected
cumulative cost-to-go from r to R. As (33) is true for any
realization ω of µ, we have ζR+1 ≈ 0. Now, for r = R,

ζR(i′R) =

R−1∏
m=1

F̄X(θm) min
δR∈F

{
Eδr
[
c′(θr)

]}
︸ ︷︷ ︸

ζ̃R

. (35)

From (35), it is easy to see that ζ̃R is a constant and the optimal
distribution δ†R is independent of i′R. Next, for some l > 1,
we assume that the optimal distribution δ†l is independent of
i′l and the value function has the same structure as in (35),
that is given by

ζl(i
′
l) =

l−1∏
m=1

F̄X(θm)× ζ̃l,

for some constant ζ̃l > 0. Next, for r = l − 1, we have

ζr(ir) =

r−1∏
m=1

F̄X(θm) min
δr∈F

{
Eδr
[
c′(θr) + ζ̃lF̄X(θr)

]}
︸ ︷︷ ︸

ζ̃r

, (36)

where ζ̃r is a constant for all i′r. Therefore, using backward
induction, we have that all δ†r are independent of i′r, where
r ∈ [1, . . . , R]. As the backward induction is true for any

14

Vk(ik,0) = min
µk∈U

{
x̌k−1 + αX(µk) + βX(µk) + γX(µk) + Eµk

[
X̌k +

K∑
l=k+1

Ṽl

∣∣∣∣Ik,0 = ik,0

]}

= x̌k−1 + min
µk∈U

{
2αX(µk) + βX(µk) + γX(µk)

}
︸ ︷︷ ︸

Ṽk

+

K∑
l=k+1

Ṽl. (29)

arbitrarily large R, it is also true for the optimal sub-policy
µ†. Next, we drop i′r and rewrite (36) in terms of ζ̃r as

ζ̃r = min
δr∈F

{
Eδr
[
c′(θr) + ζ̃r+1F̄X(θr)

]}
, (37)

Now, let θ†r be given by

θ†r = argmin
θr∈[θmin,θmax]

{
c′(θr) + ζ̃r+1F̄X(θr)

}
, (38)

Here, we denote a deterministic distribution with 1θ for which
P(θr=θ)=1. From (38), at each backward iteration, we have
that δ†r = 1θ†r minimizes (37) since, for any δr ∈ F , we have

c′(θ†r) + ζ̃r+1F̄X(θ†r) ≤ Eδr
[
c′(θ) + ζ̃r+1F̄X(θ)

]
.

Let T : R≥0→ R≥0 be the Bellman’s operator, given by

T (U) = min
θ∈[θmin,θmax]

{
c′(θ) + UF̄X(θ)

}
.

Using the similar argument as in [15, Theorem 7.6.2], for any
U1 and U2 in R≥0, we have∣∣∣T (U1)− T (U2)

∣∣∣ ≤ ∣∣∣U1 − U2

∣∣∣ max
θ∈[θmin,θmax]

{
F̄X(θ)

}
.

Therefore, the Bellman’s operator forms a contraction mapping
for all θ ∈ [θmin, θmax]. Using Banach’s fixed point theorem, for
some θ† ∈ [θmin, θmax], we have that there exists a unique fixed
point ζ̃† to the recursive equation (37). Similar to the case of
an infinite horizon discounted cost MDP problem discussed in
[15, Theorem 7.6.2], where the conclusion is that a stationary
(but state-dependent) policy is optimal for the infinite-horizon,
we conclude that using a policy with the fixed-threshold θ† at
all requests minimizes average PAoI, i.e., there exists a fixed-
threshold policy sθ† ∈ Sθ which is optimal. Therefore, using
Corollary 1, we obtain the optimal θ†, which is given by

θ† , arg min
θ∈[θmin,θmax]

ζ(sθ), (39)

And, the minimum expected PAoI among ST is given by

ζ(sθ†) =
1

FX(θ†)
×

[
2

∫ θ†

0

xfX(x)dx+ θ†F̄X(θ†)

+ FX(θ† − d)d+

∫ θ†

θ†−d
(θ† − x)fX(x)dx

]
.

F. Proof of Lemma 4

Recall that, for a work-conserving policy G(s) ≤ d. Since
sθ is a work-conserving policy, we have

E[G(sθ)] ≤ d. (40)

Now, consider that there exists θ such that

E[X] < E[X − θ|X > θ] +
θ

2

(a)⇔E[X] +
θ

2
<

∫∞
θ
xfX(x)dx

P(X > θ)

⇔2P(X > θ)E[X] + θP(X > θ) < 2

∫ ∞
θ

xfX(x)dx

⇔2(1−FX(θ))E[X]+θP(X>θ)<2(E[X]−
∫ θ

0

xfX(x)dx)

⇔2

∫ θ

0

xfX(x)dx+θP(X>θ) < 2E[X]FX(θ)

⇔2E[X̌(sθ)] +
θP(X>θ)

FX(θ)
< 2E[X]

(b)
=⇒ E[G(sθ)] + 2E[X̌(sθ)] +

θP(X>θ)

FX(θ)
< 2E[X] + d

(c)⇔ζ(sθ) < 2E[X] + d.

In step (a) we have used the following equation.

E[X − θ|X > θ]=

∫∞
θ

(x− θ)fX(x)dx

P(X > θ)
=

∫∞
θ
xfX(x)dx

P(X > θ)
−θ.

In step (b), we have used (40), and step (c) follows from
Corollary 1.

REFERENCES

[1] S. Kaul, M. Gruteser, V. Rai, and J. Kenney, “Minimizing age of
information in vehicular networks,” in Proc. IEEE SECON, 2011.

[2] S. Kaul, R. Yates, and M. Gruteser, “Real-time status: How often should
one update?” in Proc. IEEE INFOCOM, 2012.

[3] R. D. Yates and S. Kaul, “Real-time status updating: Multiple sources,”
in Proc. IEEE ISIT, 2012.

[4] B. T. Bacinoglu, E. T. Ceran, and E. Uysal-Biyikoglu, “Age of infor-
mation under energy replenishment constraints,” in Proc. Information
Theory and Applications Workshop (ITA), 2015.

[5] L. Huang and E. Modiano, “Optimizing age-of-information in a multi-
class queueing system,” in Proc. IEEE ISIT, 2015.

[6] J. P. Champati, H. Al-Zubaidy, and J. Gross, “Statistical guarantee
optimization for aoi in single-hop and two-hop FCFS systems with
periodic arrivals,” IEEE Transactions on Communications, vol. 69, no. 1,
pp. 365–381, 2021.

[7] A. M. Bedewy, Y. Sun, and N. B. Shroff, “The age of information in
multihop networks,” IEEE/ACM Transactions on Networking, vol. 27,
no. 3, pp. 1248–1257, 2019.

[8] R. D. Yates, “Lazy is timely: Status updates by an energy harvesting
source,” in Proc. IEEE ISIT, 2015.

[9] Y. Sun, E. Uysal-Biyikoglu, R. D. Yates, C. E. Koksal, and N. B. Shroff,
“Update or wait: How to keep your data fresh,” IEEE Transactions on
Information Theory, vol. 63, no. 11, pp. 7492–7508, Nov 2017.

15

[10] A. Arafa, R. D. Yates, and H. V. Poor, “Timely cloud computing:
Preemption and waiting,” in Proc. Annual Allerton Conference on
Communication, Control, and Computing (Allerton), 2019, pp. 528–535.

[11] M. Costa, M. Codreanu, and A. Ephremides, “On the age of information
in status update systems with packet management,” IEEE Transactions
on Information Theory, vol. 62, no. 4, pp. 1897–1910, April 2016.

[12] Q. He, D. Yuan, and A. Ephremides, “On optimal link scheduling with
min-max peak age of information in wireless systems,” in Proc. IEEE
ICC, May 2016, pp. 1–7.

[13] C. Xu, H. H. Yang, X. Wang, and T. Q. S. Quek, “On peak age of
information in data preprocessing enabled IoT networks,” CoRR, vol.
abs/1901.09376, 2019.

[14] J. P. Champati, R. R. Avula, T. J. Oechtering, and J. Gross, “On
the minimum achievable age of information for general service-time
distributions,” in Proc. IEEE INFOCOM, 2020, pp. 456–465.

[15] V. Krishnamurthy, Partially Observed Markov Decision Processes.
Cambridge University Press, 2016.

[16] M. Luby, A. Sinclair, and D. Zuckerman, “Optimal speedup of Las Vegas
algorithms,” Information Processing Letters, vol. 47, pp. 173–180, 1993.

[17] S. Kaul, R. Yates, and M. Gruteser, “Status updates through queues,” in
Proc. Conference on Information Sciences and Systems (CISS), 2012.

[18] K. Chen and L. Huang, “Age-of-information in the presence of error,”
CoRR, vol. abs/1605.00559, 2016.

[19] E. Najm and R. Nasser, “Age of information: The gamma awakening,”
in Proc. ISIT, July 2016, pp. 2574–2578.

[20] E. Najm, R. D. Yates, and E. Soljanin, “Status updates through M/G/1/1
queues with HARQ,” in Proc. IEEE ISIT, June 2017, pp. 131–135.

[21] Y. Inoue, H. Masuyama, T. Takine, and T. Tanaka, “A general formula for
the stationary distribution of the age of information and its application
to single-server queues,” CoRR, vol. abs/1804.06139, 2018.

[22] A. Soysal and S. Ulukus, “Age of information in G/G/1/1 systems:
Age expressions, bounds, special cases, and optimization,” CoRR, vol.
abs/1905.13743, 2019.

[23] J. P. Champati, H. Al-Zubaidy, and J. Gross, “On the distribution of
AoI for the GI/GI/1/1 and GI/GI/1/2* systems: Exact expressions and
bounds,” in Proc. IEEE INFOCOM, April 2019, pp. 37–45.

[24] Y. Sun, I. Kadota, R. Talak, E. Modiano, and R. Srikant, Age of
Information: A New Metric for Information Freshness. Morgan &
Claypool, 2019.

[25] J. P. Champati, H. Al-Zubaidy, and J. Gross, “Statistical guarantee
optimization for age of information for the D/G/1 queue,” in Proc. IEEE
INFOCOM Workshop, April 2018, pp. 130–135.

[26] E. Najm and E. Telatar, “Status updates in a multi-stream M/G/1/1
preemptive queue,” CoRR, vol. abs/1801.04068, 2018.

[27] A. Soysal and S. Ulukus, “Age of information in G/G/1/1 systems,”
CoRR, vol. abs/1805.12586, 2018.

[28] R. Talak, S. Karaman, and E. Modiano, “Minimizing age-of-information
in multi-hop wireless networks,” in Proc. Allerton Conference on Com-
munication, Control, and Computing, Oct 2017, pp. 486–493.

[29] S. Farazi, A. G. Klein, and D. R. Brown, “Fundamental bounds on the
age of information in general multi-hop interference networks,” in Proc.
IEEE INFOCOM Workshop, April 2019, pp. 96–101.

[30] B. T. Bacinoglu, Y. Sun, E. Uysal, and V. Mutlu, “Optimal status
updating with a finite-battery energy harvesting source,” Journal of
Communications and Networks, vol. 21, no. 3, pp. 280–294, June 2019.

[31] R. D. Yates and S. K. Kaul, “The age of information: Real-time
status updating by multiple sources,” IEEE Transactions on Information
Theory, vol. 65, no. 3, pp. 1807–1827, 2019.

[32] S. Farazi, A. G. Klein, and D. Richard Brown, “Average age of informa-
tion in multi-source self-preemptive status update systems with packet
delivery errors,” in Proc. Asilomar Conference on Signals, Systems, and
Computers, 2019, pp. 396–400.

[33] J. Xu, I.-H. Hou, and N. Gautam, “Status updates in a multi-stream
M/G/1/1 preemptive queue,” CoRR, vol. abs/2004.11847, 2020.

[34] V. Kavitha, E. Altman, and I. Saha, “Controlling packet drops to improve
freshness of information,” CoRR, vol. abs/1807.09325, 2018.

[35] B. Wang, S. Feng, and J. Yang, “When to preempt? age of information
minimization under link capacity constraint,” Journal of Communica-
tions and Networks, vol. 21, no. 3, pp. 220–232, 2019.

[36] R. Wang, Y. Gu, H. Chen, Y. Li, and B. Vucetic, “On the age of
information of short-packet communications with packet management,”
in Proc. IEEE GLOBECOM, 2019, pp. 1–6.

[37] Y. Sun, E. Uysal-Biyikoglu, and S. Kompella, “Age-optimal updates
of multiple information flows,” in Proc. IEEE INFOCOM Workshop.
IEEE, 2018, pp. 136–141.

[38] A. P. A. van Moorsel and K. Wolter, “Analysis of restart mechanisms in
software systems,” IEEE Transactions on Software Engineering, vol. 32,
no. 8, pp. 547–558, Aug 2006.

Jaya Prakash Champati received his bachelor of
technology degree from the National Institute of
Technology Warangal, India in 2008, and master of
technology degree from the Indian Institute of Tech-
nology (IIT) Bombay, India in 2010. He received his
PhD in Electrical and Computer Engineering from
the University of Toronto, Canada in 2017. From
2017-2020, he was a post-doctoral researcher with
the division of Information Science and Engineering,
EECS, KTH Royal Institute of Technology, Sweden.
He is currently a Research Assistant Professor at

IMDEA Networks Institute, Madrid, Spain. His general research interest is
in the design and analysis of algorithms for scheduling problems that arise
in networking and information systems. Currently, his focus is on freshness
(Age of Information) and delay analysis for time-critical control applications
in Cyber-Physical Systems (CPS) and the Internet of Things (IoT), and
computational offloading in edge computing systems. Prior to joining PhD he
worked at Broadcom Communications, where he was involved in developing
the LTE MAC layer. He was a recipient of the best paper award at IEEE
National Conference on Communications, India, 2011.

Ramana R. Avula (S’18) received his bachelor
and master of technology degrees in Electrical En-
gineering from the Indian Institute of Technology,
Madras, India in 2015. From 2015 to 2017, he was
a Senior Engineer at the Robert Bosch Engineering
and Business Solutions, India. Since 2017, he is pur-
suing his Ph.D. degree at the Division of Information
Science and Engineering, KTH Royal Institute of
Technology, Sweden. His current research interests
include statistical signal processing and inference
with emphasis on consumer privacy for smart me-

tering systems.

Tobias J. Oechtering (S’01-M’08-SM’12) received
his Dipl-Ing degree in Electrical Engineering and In-
formation Technology in 2002 from RWTH Aachen
University, Germany, his Dr-Ing degree in Electrical
Engineering in 2007 from the Technische Universität
Berlin, Germany. In 2008 he joined KTH Royal
Institute of Technology, Stockholm, Sweden and has
been a Professor since 2018. In 2009, he received the
“Förderpreis 2009” from the Vodafone Foundation.

Dr. Oechtering is currently Senior Editor of IEEE
Transactions on Information Forensic and Security

since May 2020 and served previously as Associate Editor for the same journal
since June 2016, and IEEE Communications Letters during 2012-2015. He
has served on numerous technical program committees for IEEE sponsored
conferences, and he was general co-chair for IEEE ITW 2019. His research
interests include communication and information theory, communication for
networked control, statistical signal processing, and physical layer privacy and
security.

16

James Gross received his Ph.D. degree from TU
Berlin in 2006. From 2008-2012 he was Assistant
Professor and head of the Mobile Network Perfor-
mance Group at RWTH Aachen University, as well
as a member of the DFG-funded UMIC Research
Centre of RWTH. Since November 2012, he has
been with the Electrical Engineering and Computer
Science School, KTH Royal Institute of Technology,
Stockholm, where he is professor for machine-to-
machine communications. He served as Director for
the ACCESS Linnaeus Centre from 2016 to 2019,

while he is currently a member of the board of KTHs Innovative Centre for
Embedded Systems. His research interests are in the area of mobile systems
and networks, with a focus on critical machine-to-machine communications,
cellular networks, resource allocation, as well as performance evaluation
methods. He has authored about 150 (peer-reviewed) papers in international
journals and conferences. His work has been awarded multiple times, includ-
ing the Best Paper Award at ACM MSWiM 2015, the Best Demo Paper Award
at IEEE WoWMoM 2015, the Best Paper Award at IEEE WoWMoM 2009,
and the Best Paper Award at European Wireless 2009. In 2007, he was the
recipient of the ITG/KuVS dissertation award for his Ph.D. thesis. He is also
co-founder of R3 Communications GmbH, a Berlin-based start-up in the area
of ultrareliable low-latency wireless networking for industrial automation.

