
Requirements-Level Reuse
Recommendation and
Prioritization of Product
Line Assets

Muhammad Abbas

M
u

h
a

m
m

a
d

 A
b

b
a

s R
EQ

U
IR

EM
EN

TS-LEV
EL R

EU
SE R

EC
O

M
M

EN
D

A
TIO

N
 A

N
D

 P
R

IO
R

ITIZA
TIO

N
 O

F P
R

O
D

U
C

T LIN
E A

SSETS 2021

Mälardalen University Licentiate Thesis 306

ISBN 978-91-7485-504-3
ISSN 1651-9256

Address: P.O. Box 883, SE-721 23 Västerås. Sweden
Address: P.O. Box 325, SE-631 05 Eskilstuna. Sweden
E-mail: info@mdh.se Web: www.mdh.se

Mälardalen University Press Licentiate Theses
No. 306

REQUIREMENTS-LEVEL REUSE RECOMMENDATION
AND PRIORITIZATION OF PRODUCT LINE ASSETS

Muhammad Abbas

2021

School of Innovation, Design and Engineering

Mälardalen University Press Licentiate Theses
No. 306

REQUIREMENTS-LEVEL REUSE RECOMMENDATION
AND PRIORITIZATION OF PRODUCT LINE ASSETS

Muhammad Abbas

2021

School of Innovation, Design and Engineering

1

Copyright © Muhammad Abbas, 2021
ISBN 978-91-7485-504-3
ISSN 1651-9256
Printed by E-Print AB, Stockholm, Sweden

Copyright © Muhammad Abbas, 2021
ISBN 978-91-7485-504-3
ISSN 1651-9256
Printed by E-Print AB, Stockholm, Sweden

2

Abstract

Software systems often target a variety of different market segments. Target-
ing varying customer requirements requires a product-focused development
process. Software Product Line (SPL) engineering is one possible approach
based on reuse rationale to aid quick delivery of quality product variants at
scale. SPLs reuse common features across derived products while still pro-
viding varying configuration options. The common features, in most cases,
are realized by reusable assets. In practice, the assets are reused in a clone-
and-own manner to reduce the upfront cost of systematic reuse. Besides, the
assets are implemented in increments, and requirements prioritization also has
to be done. In this context, the manual reuse analysis and prioritization process
become impractical when the number of derived products grows. Besides, the
manual reuse analysis process is time-consuming and heavily dependent on the
experience of engineers.

In this licentiate thesis, we study requirements-level reuse recommenda-
tion and prioritization for SPL assets in industrial settings. We first identify
challenges and opportunities in SPLs where reuse is done in a clone-and-own
manner. We then focus on one of the identified challenges: requirements-based
SPL assets reuse and provide automated support for identifying reuse oppor-
tunities for SPL assets based on requirements. Finally, we provide automated
support for requirements prioritization in the presence of dependencies result-
ing from reuse.

i

Abstract

Software systems often target a variety of different market segments. Target-
ing varying customer requirements requires a product-focused development
process. Software Product Line (SPL) engineering is one possible approach
based on reuse rationale to aid quick delivery of quality product variants at
scale. SPLs reuse common features across derived products while still pro-
viding varying configuration options. The common features, in most cases,
are realized by reusable assets. In practice, the assets are reused in a clone-
and-own manner to reduce the upfront cost of systematic reuse. Besides, the
assets are implemented in increments, and requirements prioritization also has
to be done. In this context, the manual reuse analysis and prioritization process
become impractical when the number of derived products grows. Besides, the
manual reuse analysis process is time-consuming and heavily dependent on the
experience of engineers.

In this licentiate thesis, we study requirements-level reuse recommenda-
tion and prioritization for SPL assets in industrial settings. We first identify
challenges and opportunities in SPLs where reuse is done in a clone-and-own
manner. We then focus on one of the identified challenges: requirements-based
SPL assets reuse and provide automated support for identifying reuse oppor-
tunities for SPL assets based on requirements. Finally, we provide automated
support for requirements prioritization in the presence of dependencies result-
ing from reuse.

i

3

4

Sammanfattning

Programvarusystem riktar sig ofta till en mängd olika marknadssegment. Upp-
fyllandet av olika kundkrav kräver ofta en produktfokuserad utvecklingspro-
cess. Software Product Line (SPL)-tekniker är en möjlig lösning baserad på
återanvändning för att underlätta snabb leverans av produktvarianter i stor skala
med hög kvalitet. SPLer återanvänder funktionalitet från tidigare produkter och
möjliggör samtidigt varierande konfigurationer. De vanligaste funktionerna re-
aliseras i de flesta fall av återanvändbara tillgångar. I praktiken återanvänds
tillgångarna på ett “clone-and-own”-manér för att minska de initiala kostnaderna
för systematisk återanvändning. Dessutom implementeras tillgångarna i steg,
och kravprioritering måste också göras. I detta sammanhang blir manuell
analys och prioritering av återanvändning opraktisk när antalet härledda pro-
dukter växer. Dessutom är den manuella analysen av återanvändning tidskrävande
och starkt beroende av ingenjörernas erfarenhet.

I den här licentiatavhandlingen studerar vi rekommendation för återanvänd-
ning och prioritering av SPL-tillgångar i industriella miljöer. Vi identifierar
först utmaningar och möjligheter i SPL där återanvändning sker på ett clone-
and-own-sätt. Vi fokuserar sedan på en av de identifierade utmaningarna:
kravbaserad återanvändning och tillhandahåller automatiskt stöd för att identi-
fiera återanvändningsmöjligheter för SPL-tillgångar baserat på krav. Slutligen
fokuserar vi på kravprioritering i närvaro av beroende beroende på återanvänd-
ning.

iii

Sammanfattning

Programvarusystem riktar sig ofta till en mängd olika marknadssegment. Upp-
fyllandet av olika kundkrav kräver ofta en produktfokuserad utvecklingspro-
cess. Software Product Line (SPL)-tekniker är en möjlig lösning baserad på
återanvändning för att underlätta snabb leverans av produktvarianter i stor skala
med hög kvalitet. SPLer återanvänder funktionalitet från tidigare produkter och
möjliggör samtidigt varierande konfigurationer. De vanligaste funktionerna re-
aliseras i de flesta fall av återanvändbara tillgångar. I praktiken återanvänds
tillgångarna på ett “clone-and-own”-manér för att minska de initiala kostnaderna
för systematisk återanvändning. Dessutom implementeras tillgångarna i steg,
och kravprioritering måste också göras. I detta sammanhang blir manuell
analys och prioritering av återanvändning opraktisk när antalet härledda pro-
dukter växer. Dessutom är den manuella analysen av återanvändning tidskrävande
och starkt beroende av ingenjörernas erfarenhet.

I den här licentiatavhandlingen studerar vi rekommendation för återanvänd-
ning och prioritering av SPL-tillgångar i industriella miljöer. Vi identifierar
först utmaningar och möjligheter i SPL där återanvändning sker på ett clone-
and-own-sätt. Vi fokuserar sedan på en av de identifierade utmaningarna:
kravbaserad återanvändning och tillhandahåller automatiskt stöd för att identi-
fiera återanvändningsmöjligheter för SPL-tillgångar baserat på krav. Slutligen
fokuserar vi på kravprioritering i närvaro av beroende beroende på återanvänd-
ning.

iii

5

6

To my parents To my parents

7

Acknowledgments

I would like to thank my main advisor, Prof. Daniel Sundmark, for the kind
support and constructive feedback throughout the thesis. Thanks to my co-
advisor, Dr. Eduard Paul Enoiu, for all the help in the focus groups and study
designs. Many thanks to my co-advisor, Dr. Mehrdad Saadatmand, for those
short but effective coffee breaks which shaped most of the research articles.
Also, many thanks for teaching me some good words in Persian. I would also
like to thank all my co-authors and collaborators for their contributions and
support.

I have been fortunate to have worked on real industrial problems at Al-
stom (formerly Bombardier). This was made possible by the support of Claes
Lindskog, and Daran Smalley. I would also like to thank Dr. Raluca Mari-
nescu, Max Johansson, Jörgen Ekefjial, and all the Power Propulsion Control
Software team at Alstom for their participation in the focus group sessions.

RISE Research Institutes of Sweden has always been at the center of all
these collaborations with Alstom. I would like to thank my managers at RISE
(at different times), Prof. Markus Bohlin, Larisa Rizvanovic, Stig Larsson, and
Karolina Winbo, for all the support. Also, I would like to thank Tomas Olsson,
Mats Tallfors, and the AI team at RISE for the feedback on the experiment
designs. Many thanks to my academic sister Mahshid Helali Moghadam for
the fun talks during the coffee breaks. Also, special thanks to all my fellow
Ph.D. students at MDH.

The work presented in this thesis is funded by the Swedish Knowledge
Foundation through the ARRAY industrial school and Vinnova through the
eXcellence In Variant Testing (XIVT) project.

Muhammad Abbas, Västerås, March 2021

vi

Acknowledgments

I would like to thank my main advisor, Prof. Daniel Sundmark, for the kind
support and constructive feedback throughout the thesis. Thanks to my co-
advisor, Dr. Eduard Paul Enoiu, for all the help in the focus groups and study
designs. Many thanks to my co-advisor, Dr. Mehrdad Saadatmand, for those
short but effective coffee breaks which shaped most of the research articles.
Also, many thanks for teaching me some good words in Persian. I would also
like to thank all my co-authors and collaborators for their contributions and
support.

I have been fortunate to have worked on real industrial problems at Al-
stom (formerly Bombardier). This was made possible by the support of Claes
Lindskog, and Daran Smalley. I would also like to thank Dr. Raluca Mari-
nescu, Max Johansson, Jörgen Ekefjial, and all the Power Propulsion Control
Software team at Alstom for their participation in the focus group sessions.

RISE Research Institutes of Sweden has always been at the center of all
these collaborations with Alstom. I would like to thank my managers at RISE
(at different times), Prof. Markus Bohlin, Larisa Rizvanovic, Stig Larsson, and
Karolina Winbo, for all the support. Also, I would like to thank Tomas Olsson,
Mats Tallfors, and the AI team at RISE for the feedback on the experiment
designs. Many thanks to my academic sister Mahshid Helali Moghadam for
the fun talks during the coffee breaks. Also, special thanks to all my fellow
Ph.D. students at MDH.

The work presented in this thesis is funded by the Swedish Knowledge
Foundation through the ARRAY industrial school and Vinnova through the
eXcellence In Variant Testing (XIVT) project.

Muhammad Abbas, Västerås, March 2021

vi

8

List of Publications

Papers included in this thesis1

Paper A: Muhammad Abbas, Robbert Jongeling, Claes Lindskog, Eduard
Paul Enoiu, Mehrdad Saadatmand, Daniel Sundmark. “Product Line Adoption
in Industry: An Experience Report from the Railway Domain.” In the 24th
International Systems and Software Product Line Conference (SPLC 2020).

Paper B: Muhammad Abbas, Mehrdad Saadatmand, Eduard Paul Enoiu,
Daniel Sundmark, Claes Lindskog. “Automated Reuse Recommendation of
Product Line Assets based on Natural Language Requirements.” In the 19th
International Conference on Software and Systems Reuse (ICSR 2020).

Paper C: Muhammad Abbas, Alessio Ferrari, Anas Shatnawi, Eduard Paul
Enoiu, Mehrdad Saadatmand. “Is Requirements Similarity a Good Proxy for
Software Similarity? An Empirical Investigation in Industry” In the 27th
International Working Conference on Requirement Engineering: Foundation
for Software Quality (REFSQ 2021).

Paper D: Muhammad Abbas, Irum Inayat, Naila Jan, Mehrdad Saadatmand,
Eduard Paul Enoiu, Daniel Sundmark. “MBRP: Model-based Requirements
Prioritization Using PageRank Algorithm” In the 26th Asia-Pacific Software
Engineering Conference (APSEC 2019).

1The included papers have been reformatted to comply with the thesis layout.

vii

List of Publications

Papers included in this thesis1

Paper A: Muhammad Abbas, Robbert Jongeling, Claes Lindskog, Eduard
Paul Enoiu, Mehrdad Saadatmand, Daniel Sundmark. “Product Line Adoption
in Industry: An Experience Report from the Railway Domain.” In the 24th
International Systems and Software Product Line Conference (SPLC 2020).

Paper B: Muhammad Abbas, Mehrdad Saadatmand, Eduard Paul Enoiu,
Daniel Sundmark, Claes Lindskog. “Automated Reuse Recommendation of
Product Line Assets based on Natural Language Requirements.” In the 19th
International Conference on Software and Systems Reuse (ICSR 2020).

Paper C: Muhammad Abbas, Alessio Ferrari, Anas Shatnawi, Eduard Paul
Enoiu, Mehrdad Saadatmand. “Is Requirements Similarity a Good Proxy for
Software Similarity? An Empirical Investigation in Industry” In the 27th
International Working Conference on Requirement Engineering: Foundation
for Software Quality (REFSQ 2021).

Paper D: Muhammad Abbas, Irum Inayat, Naila Jan, Mehrdad Saadatmand,
Eduard Paul Enoiu, Daniel Sundmark. “MBRP: Model-based Requirements
Prioritization Using PageRank Algorithm” In the 26th Asia-Pacific Software
Engineering Conference (APSEC 2019).

1The included papers have been reformatted to comply with the thesis layout.

vii

9

viii

Related publications, not included in this thesis
Paper W: Muhammad Abbas, Irum Inayat, Mehrdad Saadatmand, Naila Jan.
“Requirements dependencies-based test case prioritization for
extra-functional properties” In the IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW 2019).

Paper X: Saad Shafiq, Irum Inayat, Muhammad Abbas. “Communication
Patterns of Kanban Teams and their Impact on Iteration Performance and
Quality” In the Euromicro Conference on Software Engineering and
Advanced Applications (SEAA 2019).

Paper Y: Muhammad Abbas, Abdul Rauf, Mehrdad Saadatmand, Eduard
Paul Enoiu, Daniel Sundmark. “Keywords-based test categorization for
Extra-Functional Properties” In the IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW 2020).

Paper Z: Muhammad Abbas. “Variability Aware Requirements Reuse
Analysis” In the Doctoral Symposium of ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings (ICSE 2020).

viii

Related publications, not included in this thesis
Paper W: Muhammad Abbas, Irum Inayat, Mehrdad Saadatmand, Naila Jan.
“Requirements dependencies-based test case prioritization for
extra-functional properties” In the IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW 2019).

Paper X: Saad Shafiq, Irum Inayat, Muhammad Abbas. “Communication
Patterns of Kanban Teams and their Impact on Iteration Performance and
Quality” In the Euromicro Conference on Software Engineering and
Advanced Applications (SEAA 2019).

Paper Y: Muhammad Abbas, Abdul Rauf, Mehrdad Saadatmand, Eduard
Paul Enoiu, Daniel Sundmark. “Keywords-based test categorization for
Extra-Functional Properties” In the IEEE International Conference on
Software Testing, Verification and Validation Workshops (ICSTW 2020).

Paper Z: Muhammad Abbas. “Variability Aware Requirements Reuse
Analysis” In the Doctoral Symposium of ACM/IEEE 42nd International
Conference on Software Engineering: Companion Proceedings (ICSE 2020).

10

Contents

I Thesis 1

1 Introduction 3

2 Research Overview 7
2.1 Context & Research Goals 7
2.2 Research Process . 10

3 Background & Related Work 13
3.1 Software Product Line Engineering and its Adoption 13
3.2 Requirements Similarity . 14

3.2.1 Pre-Processing for representation and similarity 15
3.2.2 Word Embeddings 17

3.3 Related Similarity-Driven Tasks 20
3.3.1 Relevant Recommenders at the Requirements-Level . 21
3.3.2 Traceability . 22
3.3.3 Feature Model Extraction 23
3.3.4 Feature Location . 24

3.4 Requirements Prioritization 25

4 Research Results 29
4.1 Thesis Contributions . 29

4.1.1 C1: SPLE Challenges 30
4.1.2 C2: VARA . 31
4.1.3 C3: MBRP . 32

4.2 Paper Contributions . 32

ix

Contents

I Thesis 1

1 Introduction 3

2 Research Overview 7
2.1 Context & Research Goals 7
2.2 Research Process . 10

3 Background & Related Work 13
3.1 Software Product Line Engineering and its Adoption 13
3.2 Requirements Similarity . 14

3.2.1 Pre-Processing for representation and similarity 15
3.2.2 Word Embeddings 17

3.3 Related Similarity-Driven Tasks 20
3.3.1 Relevant Recommenders at the Requirements-Level . 21
3.3.2 Traceability . 22
3.3.3 Feature Model Extraction 23
3.3.4 Feature Location . 24

3.4 Requirements Prioritization 25

4 Research Results 29
4.1 Thesis Contributions . 29

4.1.1 C1: SPLE Challenges 30
4.1.2 C2: VARA . 31
4.1.3 C3: MBRP . 32

4.2 Paper Contributions . 32

ix

11

x Contents

4.2.1 Individual Contributions 33
4.2.2 Included Papers . 33

5 Conclusion, Discussion, & Future Work 37
5.1 Conclusion & Summary . 37
5.2 Discussion and Future Work 38

Bibliography 43

II Included Papers 53

6 Paper A:
Product Line Adoption in Industry: An Experience Report from
the Railway Domain 55
6.1 Introduction . 57
6.2 Research Method . 59
6.3 Results . 60

6.3.1 Current Development Practices 60
6.3.2 Experienced Benefits 65
6.3.3 Perceived Challenges 67
6.3.4 Additional Improvement Opportunities 72
6.3.5 Future Vision . 73

6.4 Discussion . 74
6.4.1 Related Work . 75

6.5 Conclusions . 77
6.6 Focus Group Protocol . 79

6.6.1 Focus Group Planning 79
6.6.2 Session and Transcription 80
6.6.3 Thematic Analysis 81
6.6.4 Validity Threats . 81

Bibliography . 83

7 Paper B:
Automated Reuse Recommendation of Product Line Assets based
on Natural Language Requirements 89
7.1 Introduction . 91

x Contents

4.2.1 Individual Contributions 33
4.2.2 Included Papers . 33

5 Conclusion, Discussion, & Future Work 37
5.1 Conclusion & Summary . 37
5.2 Discussion and Future Work 38

Bibliography 43

II Included Papers 53

6 Paper A:
Product Line Adoption in Industry: An Experience Report from
the Railway Domain 55
6.1 Introduction . 57
6.2 Research Method . 59
6.3 Results . 60

6.3.1 Current Development Practices 60
6.3.2 Experienced Benefits 65
6.3.3 Perceived Challenges 67
6.3.4 Additional Improvement Opportunities 72
6.3.5 Future Vision . 73

6.4 Discussion . 74
6.4.1 Related Work . 75

6.5 Conclusions . 77
6.6 Focus Group Protocol . 79

6.6.1 Focus Group Planning 79
6.6.2 Session and Transcription 80
6.6.3 Thematic Analysis 81
6.6.4 Validity Threats . 81

Bibliography . 83

7 Paper B:
Automated Reuse Recommendation of Product Line Assets based
on Natural Language Requirements 89
7.1 Introduction . 91

12

Contents xi

7.2 Approach . 93
7.3 Evaluation . 98

7.3.1 Results and Discussion 103
7.3.2 Validity Threats . 106

7.4 Related Work . 107
7.5 Conclusion . 108
Bibliography . 111

8 Paper C:
Is Requirements Similarity a Good Proxy for Software Similarity?
An Empirical Investigation in Industry 115
8.1 Introduction . 117
8.2 Related Work . 118
8.3 Study Design . 119

8.3.1 Study Context . 119
8.3.2 Objective and Research Questions 120
8.3.3 Data collection . 121
8.3.4 Language Models for Requirements Similarity 122
8.3.5 Software Similarity Pipeline 124
8.3.6 Execution . 125
8.3.7 Data Analysis . 125

8.4 Results . 126
8.5 Discussion . 129
8.6 Threats to Validity . 131
8.7 Conclusion and Future Work 132
Bibliography . 135

9 Paper D:
MBRP: Model-based Requirements Prioritization Using PageR-
ank Algorithm 141
9.1 Introduction . 143
9.2 Related Work . 145
9.3 Proposed Approach . 146

9.3.1 The Meta-Model and Concrete Syntax 147
9.3.2 Requirements Prioritization 149

9.4 Demonstration of the Proposed Approach 152

Contents xi

7.2 Approach . 93
7.3 Evaluation . 98

7.3.1 Results and Discussion 103
7.3.2 Validity Threats . 106

7.4 Related Work . 107
7.5 Conclusion . 108
Bibliography . 111

8 Paper C:
Is Requirements Similarity a Good Proxy for Software Similarity?
An Empirical Investigation in Industry 115
8.1 Introduction . 117
8.2 Related Work . 118
8.3 Study Design . 119

8.3.1 Study Context . 119
8.3.2 Objective and Research Questions 120
8.3.3 Data collection . 121
8.3.4 Language Models for Requirements Similarity 122
8.3.5 Software Similarity Pipeline 124
8.3.6 Execution . 125
8.3.7 Data Analysis . 125

8.4 Results . 126
8.5 Discussion . 129
8.6 Threats to Validity . 131
8.7 Conclusion and Future Work 132
Bibliography . 135

9 Paper D:
MBRP: Model-based Requirements Prioritization Using PageR-
ank Algorithm 141
9.1 Introduction . 143
9.2 Related Work . 145
9.3 Proposed Approach . 146

9.3.1 The Meta-Model and Concrete Syntax 147
9.3.2 Requirements Prioritization 149

9.4 Demonstration of the Proposed Approach 152

13

xii Contents

9.5 Evaluation . 154
9.5.1 Preparing the Baseline 154
9.5.2 Evaluation Experiment Execution 155
9.5.3 Experimental Results and Analysis 156

9.6 Discussion . 159
9.7 Threats To Validity . 159
9.8 Conclusion . 160
Bibliography . 161

xii Contents

9.5 Evaluation . 154
9.5.1 Preparing the Baseline 154
9.5.2 Evaluation Experiment Execution 155
9.5.3 Experimental Results and Analysis 156

9.6 Discussion . 159
9.7 Threats To Validity . 159
9.8 Conclusion . 160
Bibliography . 161

14

I

Thesis

1

I

Thesis

1

15

16

Chapter 1

Introduction

Software-intensive products are often seen in variants. The variants are devel-
oped to target different market segments within the same industry. For exam-
ple, the Tesla Model S comes in two variants, targeting the performance and
long-range electric vehicle market segments. In many cases, the product vari-
ants should also comply with regional standards and regulations. In addition,
products working with hardware should be able to tackle a variety of hardware
configurations. Besides, these products are expected to be delivered quickly
with high quality. Meeting these quick delivery and customization require-
ments necessitates an effective engineering process. Software Product Line
(SPL/PL) are said to help achieve the quick delivery of quality products by
providing an effective way to derive/develop an individual product by reusing
common features across the products [1]. SPL Engineering (SPLE) typically
consists of two main phases, known as Domain Engineering and Application
Engineering. In domain engineering, a set of common features are realized via
domain assets, satisfy a set of common requirements in a particular domain.
Variations in the assets are introduced to handle varying customization require-
ments of the same product. In application engineering, the focus is mainly on
deriving a product out of the SPL to satisfy particular customer requirements.
Among other reported benefits of SPLE, the most commonly perceived ben-
efits include reduced time to market, confidence boost, and increased product
quality, achieved via a high degree of asset reuse [2].

However, SPLE adoption is inherently a complex and expensive task. Lit-

3

Chapter 1

Introduction

Software-intensive products are often seen in variants. The variants are devel-
oped to target different market segments within the same industry. For exam-
ple, the Tesla Model S comes in two variants, targeting the performance and
long-range electric vehicle market segments. In many cases, the product vari-
ants should also comply with regional standards and regulations. In addition,
products working with hardware should be able to tackle a variety of hardware
configurations. Besides, these products are expected to be delivered quickly
with high quality. Meeting these quick delivery and customization require-
ments necessitates an effective engineering process. Software Product Line
(SPL/PL) are said to help achieve the quick delivery of quality products by
providing an effective way to derive/develop an individual product by reusing
common features across the products [1]. SPL Engineering (SPLE) typically
consists of two main phases, known as Domain Engineering and Application
Engineering. In domain engineering, a set of common features are realized via
domain assets, satisfy a set of common requirements in a particular domain.
Variations in the assets are introduced to handle varying customization require-
ments of the same product. In application engineering, the focus is mainly on
deriving a product out of the SPL to satisfy particular customer requirements.
Among other reported benefits of SPLE, the most commonly perceived ben-
efits include reduced time to market, confidence boost, and increased product
quality, achieved via a high degree of asset reuse [2].

However, SPLE adoption is inherently a complex and expensive task. Lit-

3

17

4 Chapter 1. Introduction

Cost

Number of Products

Time to Market

Number of Products

(a) (b)

Single System Developement Big-Bang PL adoption Incremental and Evolutionary PL adotion

Figure 1.1: Cost comparison of PL adoption strategies [3]

erature suggests that the SPLE adoption can be done in two main ways, mostly
dependent on the initial investment the company is willing to pay [3]. One
way of adoption is the heavyweight approach (also known as the big-bang
approach), where the process and practices are changed drastically. Such an
approach to the SPLE adoption has a high upfront investment but reduces the
time-to-market significantly [3] (shown as the black line in Figure 1.1). Com-
panies are often not willing to pay substantial upfront investments if they see
a low short-term return on investment [4]. In contrast, a prevalent industrial
practice to the SPLE adoption is through incremental development of domain
assets (e.g., railway [5] and automotive [6] industries). This adoption strategy
allows an incremental change in the practices and might require less upfront
investment (shown as a red line in Figure 1.1). Besides, there is evidence that
most companies do not invest in a systematic reuse process but instead, go for
a clone-and-own manner of reuse [5, 7].

In clone-and-own based evolutionary SPL, functionality is added to the
SPL assets when needed. This approach results in many functional variants
of the product line assets. Thus this way of SPLE adoption comes with some
maintenance and co-evolution challenges as a by-product [5]. Figure 1.1 com-
pares the two SPLE adoption strategies with single system development in
terms of cost and time-to-market. Note that Figure 1.1 is a modified form

4 Chapter 1. Introduction

Cost

Number of Products

Time to Market

Number of Products

(a) (b)

Single System Developement Big-Bang PL adoption Incremental and Evolutionary PL adotion

Figure 1.1: Cost comparison of PL adoption strategies [3]

erature suggests that the SPLE adoption can be done in two main ways, mostly
dependent on the initial investment the company is willing to pay [3]. One
way of adoption is the heavyweight approach (also known as the big-bang
approach), where the process and practices are changed drastically. Such an
approach to the SPLE adoption has a high upfront investment but reduces the
time-to-market significantly [3] (shown as the black line in Figure 1.1). Com-
panies are often not willing to pay substantial upfront investments if they see
a low short-term return on investment [4]. In contrast, a prevalent industrial
practice to the SPLE adoption is through incremental development of domain
assets (e.g., railway [5] and automotive [6] industries). This adoption strategy
allows an incremental change in the practices and might require less upfront
investment (shown as a red line in Figure 1.1). Besides, there is evidence that
most companies do not invest in a systematic reuse process but instead, go for
a clone-and-own manner of reuse [5, 7].

In clone-and-own based evolutionary SPL, functionality is added to the
SPL assets when needed. This approach results in many functional variants
of the product line assets. Thus this way of SPLE adoption comes with some
maintenance and co-evolution challenges as a by-product [5]. Figure 1.1 com-
pares the two SPLE adoption strategies with single system development in
terms of cost and time-to-market. Note that Figure 1.1 is a modified form

18

5

of the figure presented by Tüzün et al. [3].
Also, requirements prioritization becomes a significant activity in the con-

text of SPL realized by clone-and-own reuse. In the case of SPLs, the product
requirements are usually inter-dependent with varying development costs. In
some cases, a significant amount of software can be reused from the SPL and
thus reducing the cost of development. Very few requirement prioritization
approaches consider inter-dependent product requirements with varying asso-
ciated risk and cost.

Problem. This thesis is motivated by practical problems companies face
in situations where reusable assets1 realize the SPL, reused in a clone-and-
own manner. In such a context, when a new product has to be derived from
the product line, a reuse analysis of the SPL assets has to be conducted to
ensure a high degree of asset reuse. In product derivation, the development
team only has access to the agreed-upon requirements. Some key engineers
read the requirements and recall if they have done something similar in other
products [7]. If so, the engineers recommend SPL assets or their functional
variants (usually from existing projects) for reuse. The recommended assets
usually need modifications and thus are prioritized for implementation. The
reuse analysis also helps in avoiding redundant development efforts in the early
stages of product derivation. However, this process depends on the experience
of the engineers and is time-consuming. Manual reuse analysis also becomes
impractical when the number of existing derived products grows.

Summary of the Contributions. This thesis is a collection of four papers,
realizing three contributions (i.e., C1, C2, and C3). In the first contribution, we
report the state-of-practice, challenges, and research opportunities in the SPLE
process with clone-and-own reuse. In the second contribution, we focus on one
of the identified challenges in the first contribution. In particular, we focus on
aiding automated reuse analysis of SPL assets using requirements similarity
as a proxy for software similarity. In addition, in the third contribution, we
provide means for requirements prioritization in the presence of dependencies
arising from reuse.

Thesis Outline. This thesis is divided into two parts. Part I gives an
overview of the thesis and is organized as follows. Chapter 2 gives an overview
of the research process followed, and Chapter 3 discusses the background and
related work to this thesis. In Chapter 4, we provide an overview of the in-

1In our case, an asset is a Simulink model implementing a functionality.

5

of the figure presented by Tüzün et al. [3].
Also, requirements prioritization becomes a significant activity in the con-

text of SPL realized by clone-and-own reuse. In the case of SPLs, the product
requirements are usually inter-dependent with varying development costs. In
some cases, a significant amount of software can be reused from the SPL and
thus reducing the cost of development. Very few requirement prioritization
approaches consider inter-dependent product requirements with varying asso-
ciated risk and cost.

Problem. This thesis is motivated by practical problems companies face
in situations where reusable assets1 realize the SPL, reused in a clone-and-
own manner. In such a context, when a new product has to be derived from
the product line, a reuse analysis of the SPL assets has to be conducted to
ensure a high degree of asset reuse. In product derivation, the development
team only has access to the agreed-upon requirements. Some key engineers
read the requirements and recall if they have done something similar in other
products [7]. If so, the engineers recommend SPL assets or their functional
variants (usually from existing projects) for reuse. The recommended assets
usually need modifications and thus are prioritized for implementation. The
reuse analysis also helps in avoiding redundant development efforts in the early
stages of product derivation. However, this process depends on the experience
of the engineers and is time-consuming. Manual reuse analysis also becomes
impractical when the number of existing derived products grows.

Summary of the Contributions. This thesis is a collection of four papers,
realizing three contributions (i.e., C1, C2, and C3). In the first contribution, we
report the state-of-practice, challenges, and research opportunities in the SPLE
process with clone-and-own reuse. In the second contribution, we focus on one
of the identified challenges in the first contribution. In particular, we focus on
aiding automated reuse analysis of SPL assets using requirements similarity
as a proxy for software similarity. In addition, in the third contribution, we
provide means for requirements prioritization in the presence of dependencies
arising from reuse.

Thesis Outline. This thesis is divided into two parts. Part I gives an
overview of the thesis and is organized as follows. Chapter 2 gives an overview
of the research process followed, and Chapter 3 discusses the background and
related work to this thesis. In Chapter 4, we provide an overview of the in-

1In our case, an asset is a Simulink model implementing a functionality.

19

6 Chapter 1. Introduction

cluded papers and the contributions. In Chapter 5, we conclude the thesis with
a discussion on the planned work for the doctoral dissertation. Part II includes
the collection of included papers, reformatted to comply with the thesis lay-
out.

6 Chapter 1. Introduction

cluded papers and the contributions. In Chapter 5, we conclude the thesis with
a discussion on the planned work for the doctoral dissertation. Part II includes
the collection of included papers, reformatted to comply with the thesis lay-
out.

20

Chapter 2

Research Overview

In this chapter, we present the overall goals of the thesis, the research process,
and the research methods used to realize the research goals.

2.1 Context & Research Goals

SPLs are based on the reuse rationale. The idea is to reuse implemented com-
mon features across variants to aid the quick delivery of complex products at
scale. Typically, the product line is documented in feature models, and a prod-
uct configurator is used to derive a product from the product line. However,
in the safety-critical domain, compliance with safety standards requires com-
panies to demonstrate the traceability between natural language requirements
and their implementation. Thus a common practice in the safety-critical prod-
uct lines is to describe the product line using natural language requirements. In
our case, we consider the safety-critical product lines realized by assets (devel-
oped evolutionary) where the clone-and-own practices of reuse are followed.
The assets typically realizes one or more customer requirements within the
domain.

In the studied setting, the product derivation and configuration could mod-
ify product line assets. As shown in Figure 2.1, the product line (shown in
purple) assets realizes a set of common requirements. When new products are
derived and new functionality has to be added, the assets are evolved within

7

Chapter 2

Research Overview

In this chapter, we present the overall goals of the thesis, the research process,
and the research methods used to realize the research goals.

2.1 Context & Research Goals

SPLs are based on the reuse rationale. The idea is to reuse implemented com-
mon features across variants to aid the quick delivery of complex products at
scale. Typically, the product line is documented in feature models, and a prod-
uct configurator is used to derive a product from the product line. However,
in the safety-critical domain, compliance with safety standards requires com-
panies to demonstrate the traceability between natural language requirements
and their implementation. Thus a common practice in the safety-critical prod-
uct lines is to describe the product line using natural language requirements. In
our case, we consider the safety-critical product lines realized by assets (devel-
oped evolutionary) where the clone-and-own practices of reuse are followed.
The assets typically realizes one or more customer requirements within the
domain.

In the studied setting, the product derivation and configuration could mod-
ify product line assets. As shown in Figure 2.1, the product line (shown in
purple) assets realizes a set of common requirements. When new products are
derived and new functionality has to be added, the assets are evolved within

7

21

8 Chapter 2. Research Overview

input

Requirements

producesReuse Analysis uses

Reuse
Recommendations

uses
Requirements
Prioritization

...

Existing Derived
Products

realizes

Asset Base

Domain
Requirements

realizes

realizes

Figure 2.1: Reuse Analysis in clone-and-own reuse-based evolutionary product lines

the derived products. Figure 2.1 shows the evolution of the product line assets
in the derived products (in gray color). As seen, the asset in circular shape is
modified in both of the derived products to satisfy the product requirements.

In the considered SPLE context, companies are facing several challenges
in their SPLE process. With many derived products and functional variants
of product line assets, a company has to know if a new requirement(s) could
already be satisfied by an existing asset(s). Same challenges are also reported
in the literature [7]. To avoid redundant development efforts and ensure a high
degree of reuse, a reuse analysis and prioritization process for product devel-
opment is often introduced. Figure 2.1 outlines the reuse analysis activities,
which uses existing derived products, product line, and new requirements as
input. The reuse analysis phase’s output is a list of recommended assets that
could be reused to realize the new requirements. The requirements are then
also prioritized for implementation. This process of reuse analysis in the SPLE
context is heavily dependent on the experience of some key engineers and is
time-consuming. Therefore, we propose to enhance the existing process of
SPLE and formulated our first research goal as follows:

RG1: To identify challenges and opportunities in the current state-of-
practice of a safety-critical SPLE process where reuse is done in a clone-

8 Chapter 2. Research Overview

input

Requirements

producesReuse Analysis uses

Reuse
Recommendations

uses
Requirements
Prioritization

...

Existing Derived
Products

realizes

Asset Base

Domain
Requirements

realizes

realizes

Figure 2.1: Reuse Analysis in clone-and-own reuse-based evolutionary product lines

the derived products. Figure 2.1 shows the evolution of the product line assets
in the derived products (in gray color). As seen, the asset in circular shape is
modified in both of the derived products to satisfy the product requirements.

In the considered SPLE context, companies are facing several challenges
in their SPLE process. With many derived products and functional variants
of product line assets, a company has to know if a new requirement(s) could
already be satisfied by an existing asset(s). Same challenges are also reported
in the literature [7]. To avoid redundant development efforts and ensure a high
degree of reuse, a reuse analysis and prioritization process for product devel-
opment is often introduced. Figure 2.1 outlines the reuse analysis activities,
which uses existing derived products, product line, and new requirements as
input. The reuse analysis phase’s output is a list of recommended assets that
could be reused to realize the new requirements. The requirements are then
also prioritized for implementation. This process of reuse analysis in the SPLE
context is heavily dependent on the experience of some key engineers and is
time-consuming. Therefore, we propose to enhance the existing process of
SPLE and formulated our first research goal as follows:

RG1: To identify challenges and opportunities in the current state-of-
practice of a safety-critical SPLE process where reuse is done in a clone-

22

2.1 Context & Research Goals 9

and-own manner.

RG1 also aims at collecting data about the current SPLE practices. In addition,
it focuses on identifying concrete challenges and opportunities for research in
the area.

In the journey towards achieving RG1, we first selected a representative in-
dustrial case, following similar SPLE practices with requirements at the center
of the development process and with a clone-and-own reuse process. In par-
ticular, we selected the Power Propulsion Control (PPC) division of the Bom-
bardier Transportation AB (BT) as a representative of the considered context.
BT is one of the leading railway vehicle manufacturing companies in the world.
The PPC team is responsible for developing the PPC software for BT’s railway
vehicles for different customers. The team follows similar SPLE practices, as
discussed above. We started to study the RG1 through document analysis [8],
participant observation [9], and focus groups [10]. As a result, we identified
several challenges in the current practices, requiring further investigation. In
particular, we found that identifying reuse opportunities for SPL assets (reuse
analysis) at the requirements level is a laborious activity, it depends on some
key engineers’ experience and is prone to human error (also realized in the
literature [7]). As discussed, the reuse analysis typically uses new product re-
quirements as input and looks for reuse opportunities for already implemented
software assets. The idea is to find reusable assets that could be reused as-is or
with fewer modifications to realize the new product’s requirements. This pro-
cess could also result in the addition of a new reusable asset(s) to the product
line. While in some case, candidate assets could directly realize new customer
requirements. Therefore, requirements prioritization also becomes a key activ-
ity in this context. This leads to the definition of our second research goal as
follows:

RG2: To support and automate the resource-intensive reuse analysis pro-
cess in industrial SPLE settings.

We mainly focus on the product lines described using natural language re-
quirements. In addition, we assume that the requirements could be traced to
the assets implementing them.

Literature suggests that the reuse analysis process follows a series of steps
as follows [11]).

2.1 Context & Research Goals 9

and-own manner.

RG1 also aims at collecting data about the current SPLE practices. In addition,
it focuses on identifying concrete challenges and opportunities for research in
the area.

In the journey towards achieving RG1, we first selected a representative in-
dustrial case, following similar SPLE practices with requirements at the center
of the development process and with a clone-and-own reuse process. In par-
ticular, we selected the Power Propulsion Control (PPC) division of the Bom-
bardier Transportation AB (BT) as a representative of the considered context.
BT is one of the leading railway vehicle manufacturing companies in the world.
The PPC team is responsible for developing the PPC software for BT’s railway
vehicles for different customers. The team follows similar SPLE practices, as
discussed above. We started to study the RG1 through document analysis [8],
participant observation [9], and focus groups [10]. As a result, we identified
several challenges in the current practices, requiring further investigation. In
particular, we found that identifying reuse opportunities for SPL assets (reuse
analysis) at the requirements level is a laborious activity, it depends on some
key engineers’ experience and is prone to human error (also realized in the
literature [7]). As discussed, the reuse analysis typically uses new product re-
quirements as input and looks for reuse opportunities for already implemented
software assets. The idea is to find reusable assets that could be reused as-is or
with fewer modifications to realize the new product’s requirements. This pro-
cess could also result in the addition of a new reusable asset(s) to the product
line. While in some case, candidate assets could directly realize new customer
requirements. Therefore, requirements prioritization also becomes a key activ-
ity in this context. This leads to the definition of our second research goal as
follows:

RG2: To support and automate the resource-intensive reuse analysis pro-
cess in industrial SPLE settings.

We mainly focus on the product lines described using natural language re-
quirements. In addition, we assume that the requirements could be traced to
the assets implementing them.

Literature suggests that the reuse analysis process follows a series of steps
as follows [11]).

23

10 Chapter 2. Research Overview

1. Identify high-level features that can help implement the requirements

2. Search existing assets in the asset base and in existing projects, to locate
the different implementations of the feature

3. Analyze and select from the shortlisted assets

4. Plan and adapt the assets to the new product requirements

The RG2 focuses on automating reuse analysis and requirements prioritization
in the presence of dependencies (shown in blue color in Figure 2.1). Specifi-
cally, RG2 is focused on supporting the first three steps in reuse analysis, and
it partially supports the fourth activity in planning (i.e., requirements prioriti-
zation).

2.2 Research Process

Software engineering research often lacks practical relevance in the indus-
try [12, 13]. If the research is conducted in an industrial setup, it mostly lacks
engineers’ views on the results. As a solution, the research community sug-
gests the co-production process, where industry-academia collaboration is a
key to achieve practical relevance [13]. Our research was performed in close
collaboration with an industrial partner under the eXcellence In Variant Testing
(XIVT) project [14]. In our case, the focus was to address a research problem
of practical relevance. With this in mind, we conducted most of our studies in
an industrial context. In addition, we focus on both qualitative and quantitative
aspects. With qualitative assessment, we aim to realize our RG1 and provide an
overview of what engineers think of the results (obtained in RG2) and how they
can be improved. To gather qualitative data, we use empirical methods which
requires less time from the participants, such as document analysis and focus
group research. Specifically, we use a mixed-method research approach by us-
ing a combination of empirical studies (focus groups and case studies) with
constructive research [15] to realize our research goals. We mainly followed
a modified version of the standard collaborative research model proposed by
Gorschek et al. [16]. The modifications were made to highlight our included
papers. The model is shown in Figure 2.2. We summarized each step of our
collaborative research process below.

10 Chapter 2. Research Overview

1. Identify high-level features that can help implement the requirements

2. Search existing assets in the asset base and in existing projects, to locate
the different implementations of the feature

3. Analyze and select from the shortlisted assets

4. Plan and adapt the assets to the new product requirements

The RG2 focuses on automating reuse analysis and requirements prioritization
in the presence of dependencies (shown in blue color in Figure 2.1). Specifi-
cally, RG2 is focused on supporting the first three steps in reuse analysis, and
it partially supports the fourth activity in planning (i.e., requirements prioriti-
zation).

2.2 Research Process

Software engineering research often lacks practical relevance in the indus-
try [12, 13]. If the research is conducted in an industrial setup, it mostly lacks
engineers’ views on the results. As a solution, the research community sug-
gests the co-production process, where industry-academia collaboration is a
key to achieve practical relevance [13]. Our research was performed in close
collaboration with an industrial partner under the eXcellence In Variant Testing
(XIVT) project [14]. In our case, the focus was to address a research problem
of practical relevance. With this in mind, we conducted most of our studies in
an industrial context. In addition, we focus on both qualitative and quantitative
aspects. With qualitative assessment, we aim to realize our RG1 and provide an
overview of what engineers think of the results (obtained in RG2) and how they
can be improved. To gather qualitative data, we use empirical methods which
requires less time from the participants, such as document analysis and focus
group research. Specifically, we use a mixed-method research approach by us-
ing a combination of empirical studies (focus groups and case studies) with
constructive research [15] to realize our research goals. We mainly followed
a modified version of the standard collaborative research model proposed by
Gorschek et al. [16]. The modifications were made to highlight our included
papers. The model is shown in Figure 2.2. We summarized each step of our
collaborative research process below.

24

2.2 Research Process 11

Start

Review
Industrial

NeedsRG1

Problem
Formulation

SoA

SoP Propose
Solutions

Lab
validation

Industrial
Evaluation

Deploy
Solution

Industry

Academia

RG2
Paper A Paper B

Paper CPaper B
Paper C

Paper D

Figure 2.2: Research process followed in this thesis for technology transfer to industry

Review of Industrial Needs. We started with RG1 in order to review the cur-
rent practice of SPLE and identify challenges and opportunities in it. In Paper
A, we started with the state-of-the-art of SPLE adoption. We supplemented
document analysis with around twelve months of participant observation to
report the state-of-practice in the team developing safety-critical software sys-
tems using SPLE. In addition, we conducted a focus group session with key
engineers to identify challenges and opportunities in the studied context. We
recorded the focus group and performed a thematic analysis to obtain results
relevant to RG1.

Problem formulation. The results of Paper A inspired the problem formu-
lation. One of the identified challenges in Paper A was considered for further
investigation. The problem was formulated under the supervision of the re-
searchers and the involved industrial partner and was refined over several iter-
ations. An early version of the problem specific to this thesis also resulted in a
doctoral symposium publication [17]. This motivated the formulation of RG2.

Propose Solutions & Evaluation. Solutions were proposed, evaluated, and
prototypes were developed. In Paper B, we hypothesized that semantic sim-
ilarity among requirements could be used to identify reuse opportunities for
product line assets. We proposed a solution based on requirements similarity

2.2 Research Process 11

Start

Review
Industrial

NeedsRG1

Problem
Formulation

SoA

SoP Propose
Solutions

Lab
validation

Industrial
Evaluation

Deploy
Solution

Industry

Academia

RG2
Paper A Paper B

Paper CPaper B
Paper C

Paper D

Figure 2.2: Research process followed in this thesis for technology transfer to industry

Review of Industrial Needs. We started with RG1 in order to review the cur-
rent practice of SPLE and identify challenges and opportunities in it. In Paper
A, we started with the state-of-the-art of SPLE adoption. We supplemented
document analysis with around twelve months of participant observation to
report the state-of-practice in the team developing safety-critical software sys-
tems using SPLE. In addition, we conducted a focus group session with key
engineers to identify challenges and opportunities in the studied context. We
recorded the focus group and performed a thematic analysis to obtain results
relevant to RG1.

Problem formulation. The results of Paper A inspired the problem formu-
lation. One of the identified challenges in Paper A was considered for further
investigation. The problem was formulated under the supervision of the re-
searchers and the involved industrial partner and was refined over several iter-
ations. An early version of the problem specific to this thesis also resulted in a
doctoral symposium publication [17]. This motivated the formulation of RG2.

Propose Solutions & Evaluation. Solutions were proposed, evaluated, and
prototypes were developed. In Paper B, we hypothesized that semantic sim-
ilarity among requirements could be used to identify reuse opportunities for
product line assets. We proposed a solution based on requirements similarity

25

12 Chapter 2. Research Overview

and clustering to aid the reuse analysis process in the studied context. The
proposed solution is evaluated in an industrial SPLE context.

In Paper C, we gathered empirical evidence for the hypothesis of Paper
B (“semantic similarity among requirement can be used to identify reuse op-
portunities”). We explored the relationship between requirements similarity
and software similarity in our particular case, studying the extent to which the
similarity of the requirements can be used as a proxy for software similarity.

In Paper D, we proposed an approach to prioritize requirements based on
dependencies. We proposed a domain-specific modeling language (DSML) for
modeling requirements and their dependencies. We provided a tooled-solution
to generate instance models of the proposed DSML from spreadsheets contain-
ing requirements and their dependencies. The proposal then uses the PageRank
algorithm to rank the requirements based on dependencies, associated risk, and
development cost. The approach is evaluated using the experiment research
method in an academic setup.

Deploy Solution(s). The thesis resulted in two solutions called VARA
(Variability-Aware requirements Reuse Analysis) and MBRP (Model-Based
Requirements Prioritization). VARA is deployed at the PPC division of BT in
Sweden. According to the company’s internal evaluation, VARA can already
reduce the time to market of the PPC software system by at least 20 days 1.
MBRP is available as an open-source tool 2.

1“VARA in News”, available online, https://itea3.org/news/promising-results-using-nlp-and-
machine-learning-to-automate-variability-and-reuse-analysis-at-bombardier-transportation.html

2“MBRP”, available online, https://github.com/a66as/mbrp

12 Chapter 2. Research Overview

and clustering to aid the reuse analysis process in the studied context. The
proposed solution is evaluated in an industrial SPLE context.

In Paper C, we gathered empirical evidence for the hypothesis of Paper
B (“semantic similarity among requirement can be used to identify reuse op-
portunities”). We explored the relationship between requirements similarity
and software similarity in our particular case, studying the extent to which the
similarity of the requirements can be used as a proxy for software similarity.

In Paper D, we proposed an approach to prioritize requirements based on
dependencies. We proposed a domain-specific modeling language (DSML) for
modeling requirements and their dependencies. We provided a tooled-solution
to generate instance models of the proposed DSML from spreadsheets contain-
ing requirements and their dependencies. The proposal then uses the PageRank
algorithm to rank the requirements based on dependencies, associated risk, and
development cost. The approach is evaluated using the experiment research
method in an academic setup.

Deploy Solution(s). The thesis resulted in two solutions called VARA
(Variability-Aware requirements Reuse Analysis) and MBRP (Model-Based
Requirements Prioritization). VARA is deployed at the PPC division of BT in
Sweden. According to the company’s internal evaluation, VARA can already
reduce the time to market of the PPC software system by at least 20 days 1.
MBRP is available as an open-source tool 2.

1“VARA in News”, available online, https://itea3.org/news/promising-results-using-nlp-and-
machine-learning-to-automate-variability-and-reuse-analysis-at-bombardier-transportation.html

2“MBRP”, available online, https://github.com/a66as/mbrp

26

Chapter 3

Background & Related Work

This chapter discusses the background and related work on the included papers
in this thesis and is structured as follows. This chapter first presents back-
ground on the product line engineering adoption and the clone-and-own reuse
practices. This thesis uses natural language processing approaches to aid the
reuse analysis at the requirements-level. Therefore, the chapter also presents
requirements similarity computation approaches and their role in reuse recom-
mendation and other related software engineering tasks. Finally, the chapter
ends with a short discussion on the related work.

3.1 Software Product Line Engineering and its
Adoption

Software Product Line Engineering (SPLE) refers to the engineering of simi-
lar software products from a common assets base using a common means of
production. The SPLs are based on the rationale of predictive reuse, unlike
opportunistic reuse. The common assets in an SPL are developed if they will
be reused in one or more software products. The assets satisfy a set of common
requirements within a particular market segment. One or more assets could be
combined to realize a high-level system feature.

Features are user-visible, high-level abstractions of the software capabili-
ties. The Feature-Oriented Domain Analysis (FODA) method introduced the

13

Chapter 3

Background & Related Work

This chapter discusses the background and related work on the included papers
in this thesis and is structured as follows. This chapter first presents back-
ground on the product line engineering adoption and the clone-and-own reuse
practices. This thesis uses natural language processing approaches to aid the
reuse analysis at the requirements-level. Therefore, the chapter also presents
requirements similarity computation approaches and their role in reuse recom-
mendation and other related software engineering tasks. Finally, the chapter
ends with a short discussion on the related work.

3.1 Software Product Line Engineering and its
Adoption

Software Product Line Engineering (SPLE) refers to the engineering of simi-
lar software products from a common assets base using a common means of
production. The SPLs are based on the rationale of predictive reuse, unlike
opportunistic reuse. The common assets in an SPL are developed if they will
be reused in one or more software products. The assets satisfy a set of common
requirements within a particular market segment. One or more assets could be
combined to realize a high-level system feature.

Features are user-visible, high-level abstractions of the software capabili-
ties. The Feature-Oriented Domain Analysis (FODA) method introduced the

13

27

14 Chapter 3. Background & Related Work

concept of feature modeling [18]. Ideally, feature modeling is used to model
the common set of features, variations, and dependencies within an SPL. In a
feature model-based SPL, new products are derived from the SPL by selecting
a set of features from the feature model in a specific configuration. The se-
lection of features and feature configurations must satisfy a set of pre-defined
constraints and dependencies requirements. The feature models could aid the
automation of various resource-intensive activities such as product configura-
tion, verification, and combinatorial interaction testing.

However, most companies are not often willing to maintain yet another
model. Therefore, low-cost approaches are used to product line abstractions.
In some cases, the SPLs are documented in natural language in the form of
domain requirements or feature descriptions. Furthermore, companies try to
reduce the SPLE cost by using an evolutionary development approach aided
by clone-and-own reuse. This way of SPLE allows engineers with Free Selec-
tion [19]. Free selection allows engineers to freely browse and clone artifacts
from asset-base to satisfy new product requirements. This can lead to the vio-
lation of dependency requirements, such as mutual exclusion.

Generally, clone-and-own reuse and free selection are not recommended
in SPLE. However, it requires significantly less coordination, it is a low-cost
approach, and is quite quick [7]. Furthermore, it allows companies to reduce
the cost of SPLE adoption. In addition, requirements similarity analysis could
be used to aid engineers in the free selection in this context. Note that in this
thesis, we refer to the free selection process as reuse analysis.

3.2 Requirements Similarity
Requirements are typically written as natural language text. Therefore, most
of the Natural Language Processing (NLP) and Information Retrieval (IR) al-
gorithms that work with textual data are used for different requirements engi-
neering tasks. Estimating the degree of similarity between requirements can be
done on different levels as follows.

Lexical Similarity is a word-level textual similarity measure of the close-
ness of surface between requirements. Therefore, requirements with more
overlapping terms would result in a high lexical similarity value.

Semantic Similarity is a phrase-level textual similarity measure of the close-
ness of meaning between the requirements. The semantic similarity approaches

14 Chapter 3. Background & Related Work

concept of feature modeling [18]. Ideally, feature modeling is used to model
the common set of features, variations, and dependencies within an SPL. In a
feature model-based SPL, new products are derived from the SPL by selecting
a set of features from the feature model in a specific configuration. The se-
lection of features and feature configurations must satisfy a set of pre-defined
constraints and dependencies requirements. The feature models could aid the
automation of various resource-intensive activities such as product configura-
tion, verification, and combinatorial interaction testing.

However, most companies are not often willing to maintain yet another
model. Therefore, low-cost approaches are used to product line abstractions.
In some cases, the SPLs are documented in natural language in the form of
domain requirements or feature descriptions. Furthermore, companies try to
reduce the SPLE cost by using an evolutionary development approach aided
by clone-and-own reuse. This way of SPLE allows engineers with Free Selec-
tion [19]. Free selection allows engineers to freely browse and clone artifacts
from asset-base to satisfy new product requirements. This can lead to the vio-
lation of dependency requirements, such as mutual exclusion.

Generally, clone-and-own reuse and free selection are not recommended
in SPLE. However, it requires significantly less coordination, it is a low-cost
approach, and is quite quick [7]. Furthermore, it allows companies to reduce
the cost of SPLE adoption. In addition, requirements similarity analysis could
be used to aid engineers in the free selection in this context. Note that in this
thesis, we refer to the free selection process as reuse analysis.

3.2 Requirements Similarity
Requirements are typically written as natural language text. Therefore, most
of the Natural Language Processing (NLP) and Information Retrieval (IR) al-
gorithms that work with textual data are used for different requirements engi-
neering tasks. Estimating the degree of similarity between requirements can be
done on different levels as follows.

Lexical Similarity is a word-level textual similarity measure of the close-
ness of surface between requirements. Therefore, requirements with more
overlapping terms would result in a high lexical similarity value.

Semantic Similarity is a phrase-level textual similarity measure of the close-
ness of meaning between the requirements. The semantic similarity approaches

28

3.2 Requirements Similarity 15

Table 3.1: Example Requirements for demonstration

ID Text

R1
When a new waypoint is created, it shall be added to the end of the
flight route.

R2
The user shall reorder waypoints using mouse drag actions within
a window listing waypoints for the route.

focus on the chain of words, unlike the lexical similarity to capture the se-
mantics. Requirements might share high lexical similarity with very different
meaning and therefore, semantic similarity approaches focuses on the meaning
rather than the surface. For demonstration of different approaches, we will use
example requirements taken from the design specification of the Dronology
project 1. The example requirements are shown in Table 3.1.

Requirements similarity computation approaches exist both on the string-
level and on the vector-level. For example, the Jaccard similarity index is com-
puted by dividing the intersection of words in the requirement pair on their
union. For the example requirements, the Jaccard index would be 0.15, and
the intersecting set is a set with {a, route, shall, the} as members. Besides,
Levenshtein distance is another string-level metric computed based on the edit
distance between two strings of the requirements. On the other hand, vector-
based requirements similarity approaches mostly use the cosine angle between
the extracted vectors from the requirements as a measure of the degree of simi-
larity. These approaches are focused on learning the representation of the doc-
uments in many dimensions represented in the form of vectors. The vectors can
be derived from the requirements using word embedding and term-document-
based information retrieval (IR) approaches. However, most of the document
representation approaches require clean and pre-processed input text.

3.2.1 Pre-Processing for representation and similarity

Pre-processing textual data can vary between different NLP tasks. However, in
this section, we outline and discuss the commonly used pre-processing pipeline
for requirements engineering tasks. As shown in Figure 3.1, the example re-
quirement R1 is given as an input to the pipeline, and the requirement text

1Available online, https://dronology.info/datasets/

3.2 Requirements Similarity 15

Table 3.1: Example Requirements for demonstration

ID Text

R1
When a new waypoint is created, it shall be added to the end of the
flight route.

R2
The user shall reorder waypoints using mouse drag actions within
a window listing waypoints for the route.

focus on the chain of words, unlike the lexical similarity to capture the se-
mantics. Requirements might share high lexical similarity with very different
meaning and therefore, semantic similarity approaches focuses on the meaning
rather than the surface. For demonstration of different approaches, we will use
example requirements taken from the design specification of the Dronology
project 1. The example requirements are shown in Table 3.1.

Requirements similarity computation approaches exist both on the string-
level and on the vector-level. For example, the Jaccard similarity index is com-
puted by dividing the intersection of words in the requirement pair on their
union. For the example requirements, the Jaccard index would be 0.15, and
the intersecting set is a set with {a, route, shall, the} as members. Besides,
Levenshtein distance is another string-level metric computed based on the edit
distance between two strings of the requirements. On the other hand, vector-
based requirements similarity approaches mostly use the cosine angle between
the extracted vectors from the requirements as a measure of the degree of simi-
larity. These approaches are focused on learning the representation of the doc-
uments in many dimensions represented in the form of vectors. The vectors can
be derived from the requirements using word embedding and term-document-
based information retrieval (IR) approaches. However, most of the document
representation approaches require clean and pre-processed input text.

3.2.1 Pre-Processing for representation and similarity

Pre-processing textual data can vary between different NLP tasks. However, in
this section, we outline and discuss the commonly used pre-processing pipeline
for requirements engineering tasks. As shown in Figure 3.1, the example re-
quirement R1 is given as an input to the pipeline, and the requirement text

1Available online, https://dronology.info/datasets/

29

16 Chapter 3. Background & Related Work

 toLowerCaseR1 Tokenization
Lemmatization

OR
Stemming

 POS Tagging
Pre-Processed

R1

Figure 3.1: Pre-Processing pipeline

is tokenized, tagged, and finally, lemmatization is applied. In some cases,
language-specific stop words (such as shall, the, and a) might be removed from
the text of the requirements. We will explain each step in details using R1 as
an example input from the Table 3.1.

Lower Case. The requirements text might be converted in to lower case.
However, some word embedding algorithms make use of the case information
within the requirements’ text. Therefore, this step might be skipped.

Tokenization is the process of demarcating the tokens of the text in the
requirements. Simply put, the requirement text is split into sentences, and then
sentences are split into words. The tokenization helps in guiding the part-of-
speech (POS) tagging. Also, tokenization guides n-grams, where n number
of tokens are considered, which carry more semantic and contextual meaning.
The R1 only has one sentence and 17 tokens in total.

Figure 3.2: Tagged text of R1 with Part-Of-Speech

16 Chapter 3. Background & Related Work

 toLowerCaseR1 Tokenization
Lemmatization

OR
Stemming

 POS Tagging
Pre-Processed

R1

Figure 3.1: Pre-Processing pipeline

is tokenized, tagged, and finally, lemmatization is applied. In some cases,
language-specific stop words (such as shall, the, and a) might be removed from
the text of the requirements. We will explain each step in details using R1 as
an example input from the Table 3.1.

Lower Case. The requirements text might be converted in to lower case.
However, some word embedding algorithms make use of the case information
within the requirements’ text. Therefore, this step might be skipped.

Tokenization is the process of demarcating the tokens of the text in the
requirements. Simply put, the requirement text is split into sentences, and then
sentences are split into words. The tokenization helps in guiding the part-of-
speech (POS) tagging. Also, tokenization guides n-grams, where n number
of tokens are considered, which carry more semantic and contextual meaning.
The R1 only has one sentence and 17 tokens in total.

Figure 3.2: Tagged text of R1 with Part-Of-Speech

30

3.2 Requirements Similarity 17

POS Tagging tags the tokens of text with their part-of-speech tags based
on their context. The tagged token of R1 is shown in Figure 3.2. The POS-
Tagging guides the lemmatization and further classification of the tokens. For
example, the nouns can be further classified into stakeholders, sub-systems, or
parameter names. In addition, Named Entity Recognition (NER) is also applied
in some cases to locate and classify named entities (such as names, codes, and
expressions).

Stemming and Lemmatization. The future NLP tasks can interpret the same
word in various forms differently. Therefore, the tokens of the requirements
are rooted to their lemmas. Lemmas are computed using either stemming or
lemmatization algorithms. The Porter stemming algorithm [20] is widely used
in NLP. However, lemmatization is preferred since it produces lemmas that
syntactically belongs to the same language with better precision [21]. For ex-
ample, the WordNet lemmatizer uses a database search to lemmatize the tokens
to their lemmas that exist within the language. The stemmed and lemmatized
version of R1 is as follows:

Stemmed: When a new waypoint is creat , it shall be ad to the end of the
flight rout .
Lemmatized: Same as the text of R1

After the above pre-processing steps, other text-related tasks, such as word
embedding, classification, and clustering are performed.

3.2.2 Word Embeddings

Word embedding algorithms are used to derive meaningful feature vectors out
of textual data. Generally, a word embedding model maps the words of text into
many different dimensions. This helps in providing more information (such as
context) to the machine than the word itself. The idea is that semantically sim-
ilar words in text should end up close to each other on the euclidean space. Re-
quirement vectors can be extracted by taking an average of all the word vectors
in the requirement. Upon query, similar requirements can be retrieved by infer-
ring vectors for the query requirement. Note that the use of word embedding
is not just limited to requirements engineering. In 2019, Google introduced
the Bidirectional Encoder Representations from Transformers (BERT) embed-
ding model to their searches [22]. BERT improved the web search and results

3.2 Requirements Similarity 17

POS Tagging tags the tokens of text with their part-of-speech tags based
on their context. The tagged token of R1 is shown in Figure 3.2. The POS-
Tagging guides the lemmatization and further classification of the tokens. For
example, the nouns can be further classified into stakeholders, sub-systems, or
parameter names. In addition, Named Entity Recognition (NER) is also applied
in some cases to locate and classify named entities (such as names, codes, and
expressions).

Stemming and Lemmatization. The future NLP tasks can interpret the same
word in various forms differently. Therefore, the tokens of the requirements
are rooted to their lemmas. Lemmas are computed using either stemming or
lemmatization algorithms. The Porter stemming algorithm [20] is widely used
in NLP. However, lemmatization is preferred since it produces lemmas that
syntactically belongs to the same language with better precision [21]. For ex-
ample, the WordNet lemmatizer uses a database search to lemmatize the tokens
to their lemmas that exist within the language. The stemmed and lemmatized
version of R1 is as follows:

Stemmed: When a new waypoint is creat , it shall be ad to the end of the
flight rout .
Lemmatized: Same as the text of R1

After the above pre-processing steps, other text-related tasks, such as word
embedding, classification, and clustering are performed.

3.2.2 Word Embeddings

Word embedding algorithms are used to derive meaningful feature vectors out
of textual data. Generally, a word embedding model maps the words of text into
many different dimensions. This helps in providing more information (such as
context) to the machine than the word itself. The idea is that semantically sim-
ilar words in text should end up close to each other on the euclidean space. Re-
quirement vectors can be extracted by taking an average of all the word vectors
in the requirement. Upon query, similar requirements can be retrieved by infer-
ring vectors for the query requirement. Note that the use of word embedding
is not just limited to requirements engineering. In 2019, Google introduced
the Bidirectional Encoder Representations from Transformers (BERT) embed-
ding model to their searches [22]. BERT improved the web search and results

31

18 Chapter 3. Background & Related Work

ranking significantly. For example, for the search query “math practice books
for adults” Google search before BERT included a book in the “Young Adult”
category. After BERT, Google can better understand the context and retrieve
more helpful entries 2.

However, the requirements engineering tasks are not that complex com-
pared to general language understanding and processing tasks. Therefore, sim-
ple term frequency-based approaches for vector generation may yield accu-
rate results for retrieval. This is because the choice of terms when writing
requirements is limited [23]. Therefore, in this subsection, we first present
term frequency-based document representation approaches followed by more
advanced neural network-based approaches for embeddings.

Term Frequency-Based Approaches. Term frequencies can be used to rep-
resent the presence/absence and the frequencies of terms in the documents.
The terms are treated as the features of the vectors, and their frequencies are
treated as values of the features. The bag-of-words approach, for example,
is one popular frequency-based approach to term-document matrix generation
and vectorization [24]. A term-document matrix is basically the representation
of all the vectors of frequencies for all the documents and their terms. For
the running example, the term-document matrix, generated using the Count
Vectorizer, is shown in Figure 3.3. The rows of the matrix represent docu-
ments/requirements and can be treated as a vector.

Term-frequency Inverse Document Frequency (TFIDF) approach adds
more information to the term-document matrix. As the name suggests, the
term frequencies are divided by the document’s total number of terms. This
helps in considering the importance of the terms in the requirements. Note that
the vectors generated by the frequency-based approaches might be very sparse
(containing a lot of zeros). Therefore, the vectors are scaled to get more dense
vectors.

Figure 3.3: Term-Document Matrix for the Example Requirements

2Available online, https://blog.google/products/search/search-language-understanding-bert/

18 Chapter 3. Background & Related Work

ranking significantly. For example, for the search query “math practice books
for adults” Google search before BERT included a book in the “Young Adult”
category. After BERT, Google can better understand the context and retrieve
more helpful entries 2.

However, the requirements engineering tasks are not that complex com-
pared to general language understanding and processing tasks. Therefore, sim-
ple term frequency-based approaches for vector generation may yield accu-
rate results for retrieval. This is because the choice of terms when writing
requirements is limited [23]. Therefore, in this subsection, we first present
term frequency-based document representation approaches followed by more
advanced neural network-based approaches for embeddings.

Term Frequency-Based Approaches. Term frequencies can be used to rep-
resent the presence/absence and the frequencies of terms in the documents.
The terms are treated as the features of the vectors, and their frequencies are
treated as values of the features. The bag-of-words approach, for example,
is one popular frequency-based approach to term-document matrix generation
and vectorization [24]. A term-document matrix is basically the representation
of all the vectors of frequencies for all the documents and their terms. For
the running example, the term-document matrix, generated using the Count
Vectorizer, is shown in Figure 3.3. The rows of the matrix represent docu-
ments/requirements and can be treated as a vector.

Term-frequency Inverse Document Frequency (TFIDF) approach adds
more information to the term-document matrix. As the name suggests, the
term frequencies are divided by the document’s total number of terms. This
helps in considering the importance of the terms in the requirements. Note that
the vectors generated by the frequency-based approaches might be very sparse
(containing a lot of zeros). Therefore, the vectors are scaled to get more dense
vectors.

Figure 3.3: Term-Document Matrix for the Example Requirements

2Available online, https://blog.google/products/search/search-language-understanding-bert/

32

3.2 Requirements Similarity 19

Furthermore, the frequency vectors can be enriched with information by
considering the co-occurrences of terms (n-grams). In n-grams, n number of
terms are combined and treated as features. For example, “new” and “way-
point” from R1 can be combined to add more semantically rich features to the
term-document matrix. However, this could result in a very large term-matrix
with a lot of dimensions. Therefore, dimensionality reduction approaches are
used to reduce the vectors to a predefined number of dimensions without losing
meaningful information.

The term-matrix based approaches can be combined with other statistical
methods for IR. For example, Latent Semantic Indexing (LSI) is used to iden-
tify patterns in the relations of the terms and high-level concepts. LSI is be-
ing utilized in many software engineering tasks such as feature location and
traceablity [25, 26]. Frequency vectors are also used by other topic modeling
approaches, such as Latent Dirichlet Allocation (LDA) for grouping similar
documents. LDA is also heavily utilized in requirements traceability, test se-
lection, and even malicious mobile application detection [27, 28].

Neural Network-Based Approaches. The vectors can be more enriched by
considering the contextual meaning of the words inside documents. This can
be done using many available neural network architectures for representation
learning. In this part of the subsection, we will only focus on the most com-
monly used neural network-based word embedding models, i.e., approaches
based on skip-gram architecture and BERT.

The neural network-based word embedding approaches are based on the
hypothesis of “words in similar context have similar meaning”. In other words,
the surrounding words before and after a word are focused. One popular exam-
ple of these models is the architectures based on the word2vec approach [29].
A word2vec model tries to learn the context pairing, given the word as input.
Word2vec uses a pre-defined window on the corpus in which it tries to learn
the context of the seminal words. For example, (“Waypoint”, “create”) can be
used as a context pair for learning as a positive example. In addition, negative
pairs for training are also generated by randomly pairing unrelated words, such
as (“Waypoint”, “end”). The values on the model’s output layer can be used as
vectors representing a word in many dimensions.

Doc2Vec uses word2vec to learn vector representation of documents [30].
The Doc2Vec model also considers the uniqueness of each document by incor-
porating identifiers as features. As shown in Figure 3.4, a Doc2Vec model uses

3.2 Requirements Similarity 19

Furthermore, the frequency vectors can be enriched with information by
considering the co-occurrences of terms (n-grams). In n-grams, n number of
terms are combined and treated as features. For example, “new” and “way-
point” from R1 can be combined to add more semantically rich features to the
term-document matrix. However, this could result in a very large term-matrix
with a lot of dimensions. Therefore, dimensionality reduction approaches are
used to reduce the vectors to a predefined number of dimensions without losing
meaningful information.

The term-matrix based approaches can be combined with other statistical
methods for IR. For example, Latent Semantic Indexing (LSI) is used to iden-
tify patterns in the relations of the terms and high-level concepts. LSI is be-
ing utilized in many software engineering tasks such as feature location and
traceablity [25, 26]. Frequency vectors are also used by other topic modeling
approaches, such as Latent Dirichlet Allocation (LDA) for grouping similar
documents. LDA is also heavily utilized in requirements traceability, test se-
lection, and even malicious mobile application detection [27, 28].

Neural Network-Based Approaches. The vectors can be more enriched by
considering the contextual meaning of the words inside documents. This can
be done using many available neural network architectures for representation
learning. In this part of the subsection, we will only focus on the most com-
monly used neural network-based word embedding models, i.e., approaches
based on skip-gram architecture and BERT.

The neural network-based word embedding approaches are based on the
hypothesis of “words in similar context have similar meaning”. In other words,
the surrounding words before and after a word are focused. One popular exam-
ple of these models is the architectures based on the word2vec approach [29].
A word2vec model tries to learn the context pairing, given the word as input.
Word2vec uses a pre-defined window on the corpus in which it tries to learn
the context of the seminal words. For example, (“Waypoint”, “create”) can be
used as a context pair for learning as a positive example. In addition, negative
pairs for training are also generated by randomly pairing unrelated words, such
as (“Waypoint”, “end”). The values on the model’s output layer can be used as
vectors representing a word in many dimensions.

Doc2Vec uses word2vec to learn vector representation of documents [30].
The Doc2Vec model also considers the uniqueness of each document by incor-
porating identifiers as features. As shown in Figure 3.4, a Doc2Vec model uses

33

20 Chapter 3. Background & Related Work

D

R1

Word Word Word

When new waypoint

Word
Vectors

Avg./
Concat.

C

Figure 3.4: The architecture of Doc2Vec

averaging/concatenation of word vectors to generate a representation for the
entire document. FastText is another similar widely used sentence represen-
tation learning approach developed by Facebook [31]. The FastText approach
enriches the learning of representation with character-level (sub-word) infor-
mation.

BERT is a recent breakthrough by Google in language understanding and
representation learning. BERT uses a transformer-based deep neural network
architecture to learn the contextual relations of the words and sub-words. The
architecture uses the encoder-decoder mechanism where the encoder reads the
input text, and the decoder produces the predictions. However, for language
modeling tasks, only encoders are utilized. The BERT model takes the in-
put sequence and breaks it down to token embeddings, sentence embeddings,
and positional embeddings. The sentence embeddings could be used to derive
meaning-rich representation vectors for requirements.

3.3 Related Similarity-Driven Tasks

Textual similarity metrics are exploited both on the vector representation-level
and on the text-level in different software engineering tasks. Typically, the vec-
tors together with similarity metrics are used in clustering and classification to
aid different software engineering tasks. In this section, we present the related
work to this thesis where NLP and language models are exploited.

20 Chapter 3. Background & Related Work

D

R1

Word Word Word

When new waypoint

Word
Vectors

Avg./
Concat.

C

Figure 3.4: The architecture of Doc2Vec

averaging/concatenation of word vectors to generate a representation for the
entire document. FastText is another similar widely used sentence represen-
tation learning approach developed by Facebook [31]. The FastText approach
enriches the learning of representation with character-level (sub-word) infor-
mation.

BERT is a recent breakthrough by Google in language understanding and
representation learning. BERT uses a transformer-based deep neural network
architecture to learn the contextual relations of the words and sub-words. The
architecture uses the encoder-decoder mechanism where the encoder reads the
input text, and the decoder produces the predictions. However, for language
modeling tasks, only encoders are utilized. The BERT model takes the in-
put sequence and breaks it down to token embeddings, sentence embeddings,
and positional embeddings. The sentence embeddings could be used to derive
meaning-rich representation vectors for requirements.

3.3 Related Similarity-Driven Tasks

Textual similarity metrics are exploited both on the vector representation-level
and on the text-level in different software engineering tasks. Typically, the vec-
tors together with similarity metrics are used in clustering and classification to
aid different software engineering tasks. In this section, we present the related
work to this thesis where NLP and language models are exploited.

34

3.3 Related Similarity-Driven Tasks 21

3.3.1 Relevant Recommenders at the Requirements-Level

Recommender systems are basically information filtering systems based on rel-
evance to the query or user actions. Typically, the content-based recommenders
exploit similarity metrics and clustering to recommend existing artifacts from
the repository. For example, most requirements recommenders exploit require-
ments similarity to recommend stakeholders, dependencies, traceability links,
or reuse [32]. The underlying hypothesis for reuse is that associated artifacts
(such as implementation) to similar requirements are similar and can be reused.
This subsection will focus only on the related applications of these approaches
and recommender systems in requirements engineering. First, we will present
work related to requirements reuse and reuse recommendations, and then we
will present the recommendation and prediction of requirements dependencies.
We refer interested readers to a more comprehensive overview of the recom-
mender systems in requirements engineering [32].

Identifying similar requirements for reuse can substantially reduce the de-
velopment time and efforts. In literature, most approaches in this area mainly
aid the reuse of requirements by deriving or structuring domain requirements.
Models have been used to structure requirements for reuse and for configu-
ration at the requirements level [33]. For example, Zen-ReqConf is a tooled
approach to extract requirements hierarchies based on two different similarity
measures. Moon et al. [34] propose a systematic method (called DREAM)
for deriving generic domain requirements as core reusable assets. The method
is based on analyzing the existing legacy requirements for commonalities and
variabilities in base (primitive) requirements concerning system built. Litera-
ture also reveals the effective combination of IR techniques, NLP techniques,
and Fillmore’s theory for case analysis to extract requirements profile and Or-
thogonal Variability Model (OVM) [35]. The approach focuses on extracting
the functional requirements profile using lexical affinity. A framework [36] for
managing requirements was proposed. The framework uses a defined taxon-
omy to aid the reuse of requirements in an SPL. In addition, the literature re-
veals the use of a multi-ontology based approach for requirements reuse [37].
The approach is based on four ontologies, and the domain expert is tasked
to construct domain and task-specific ontologies. Computer-aided tools and
questionnaires are used to guide the analysts and end-users in deriving/elicit-
ing application-specific requirements. Furthermore, Catalog-based approaches

3.3 Related Similarity-Driven Tasks 21

3.3.1 Relevant Recommenders at the Requirements-Level

Recommender systems are basically information filtering systems based on rel-
evance to the query or user actions. Typically, the content-based recommenders
exploit similarity metrics and clustering to recommend existing artifacts from
the repository. For example, most requirements recommenders exploit require-
ments similarity to recommend stakeholders, dependencies, traceability links,
or reuse [32]. The underlying hypothesis for reuse is that associated artifacts
(such as implementation) to similar requirements are similar and can be reused.
This subsection will focus only on the related applications of these approaches
and recommender systems in requirements engineering. First, we will present
work related to requirements reuse and reuse recommendations, and then we
will present the recommendation and prediction of requirements dependencies.
We refer interested readers to a more comprehensive overview of the recom-
mender systems in requirements engineering [32].

Identifying similar requirements for reuse can substantially reduce the de-
velopment time and efforts. In literature, most approaches in this area mainly
aid the reuse of requirements by deriving or structuring domain requirements.
Models have been used to structure requirements for reuse and for configu-
ration at the requirements level [33]. For example, Zen-ReqConf is a tooled
approach to extract requirements hierarchies based on two different similarity
measures. Moon et al. [34] propose a systematic method (called DREAM)
for deriving generic domain requirements as core reusable assets. The method
is based on analyzing the existing legacy requirements for commonalities and
variabilities in base (primitive) requirements concerning system built. Litera-
ture also reveals the effective combination of IR techniques, NLP techniques,
and Fillmore’s theory for case analysis to extract requirements profile and Or-
thogonal Variability Model (OVM) [35]. The approach focuses on extracting
the functional requirements profile using lexical affinity. A framework [36] for
managing requirements was proposed. The framework uses a defined taxon-
omy to aid the reuse of requirements in an SPL. In addition, the literature re-
veals the use of a multi-ontology based approach for requirements reuse [37].
The approach is based on four ontologies, and the domain expert is tasked
to construct domain and task-specific ontologies. Computer-aided tools and
questionnaires are used to guide the analysts and end-users in deriving/elicit-
ing application-specific requirements. Furthermore, Catalog-based approaches

35

22 Chapter 3. Background & Related Work

for functional requirements reuse [38, 11, 39] can also aid reuse of functional
requirements in new similar projects. Such approaches can be useful for small
companies with no SPL in place.

Dependencies extraction. Product requirements can be inter-dependent,
therefore extracting the relationships between different requirements becomes
crucial. Example dependencies for requirements could be mutual exclusion, a
requirement requiring another requirement, and refinements [40]. The require-
ment dependency information can be used for requirements prioritization, test
case prioritization, and change impact analysis. In this part of the subsection,
we summarize some efforts towards automated dependencies extraction from
textual requirements. Atas et al. [41] propose an approach based on classifica-
tion for extracting requires type of dependencies between requirements. The
work compares different classifiers in the context of dependencies extraction
from a labeled data-set. Their results show that the Random Forest classifier
outperformed other classifiers in terms of F1 score for dependencies extrac-
tion. Samer et al. [42] propose two variants of their approach for dependencies
extraction of type requires. The first variant of the approach uses the TFIDF
feature with probabilistic features for learning and applies classifiers for depen-
dencies extraction. The second variant uses LSA for dependencies extraction.
Their results also show that the Random Forest-based classifier performs bet-
ter than all other classifiers and the LSA-based recommender. Deshpande et
al. [43] combine ontologies with active learning for dependencies extraction.
The approaches classifies the dependencies into requires, refines and others.

3.3.2 Traceability

One popular application of similarity in software engineering is the trace link
recovery between requirements and other artifacts. These approaches typically
use term tracing and similarity to establish traceability links between require-
ments and other artifacts. In this part of the subsection, we summarize some
of the seminal approaches for traceability using IR and NLP approaches. Lu-
cassen et al. propose an approach to extract traceability matrix to link user sto-
ries with source code given the textual test specifications [44]. IR-based trace
link recovery approaches can be found in the literature [45, 46, 47, 48]. These
approaches mostly make use of the Vector Space Model (VSM) and TFIDF for
the similarity-based tracing of requirements. Probabilistic inference models

22 Chapter 3. Background & Related Work

for functional requirements reuse [38, 11, 39] can also aid reuse of functional
requirements in new similar projects. Such approaches can be useful for small
companies with no SPL in place.

Dependencies extraction. Product requirements can be inter-dependent,
therefore extracting the relationships between different requirements becomes
crucial. Example dependencies for requirements could be mutual exclusion, a
requirement requiring another requirement, and refinements [40]. The require-
ment dependency information can be used for requirements prioritization, test
case prioritization, and change impact analysis. In this part of the subsection,
we summarize some efforts towards automated dependencies extraction from
textual requirements. Atas et al. [41] propose an approach based on classifica-
tion for extracting requires type of dependencies between requirements. The
work compares different classifiers in the context of dependencies extraction
from a labeled data-set. Their results show that the Random Forest classifier
outperformed other classifiers in terms of F1 score for dependencies extrac-
tion. Samer et al. [42] propose two variants of their approach for dependencies
extraction of type requires. The first variant of the approach uses the TFIDF
feature with probabilistic features for learning and applies classifiers for depen-
dencies extraction. The second variant uses LSA for dependencies extraction.
Their results also show that the Random Forest-based classifier performs bet-
ter than all other classifiers and the LSA-based recommender. Deshpande et
al. [43] combine ontologies with active learning for dependencies extraction.
The approaches classifies the dependencies into requires, refines and others.

3.3.2 Traceability

One popular application of similarity in software engineering is the trace link
recovery between requirements and other artifacts. These approaches typically
use term tracing and similarity to establish traceability links between require-
ments and other artifacts. In this part of the subsection, we summarize some
of the seminal approaches for traceability using IR and NLP approaches. Lu-
cassen et al. propose an approach to extract traceability matrix to link user sto-
ries with source code given the textual test specifications [44]. IR-based trace
link recovery approaches can be found in the literature [45, 46, 47, 48]. These
approaches mostly make use of the Vector Space Model (VSM) and TFIDF for
the similarity-based tracing of requirements. Probabilistic inference models

36

3.3 Related Similarity-Driven Tasks 23

are also used for trace recovery [49]. The tool computes a probability value be-
tween the source query and the target artifact for linking. The calculations are
based on term frequencies of textual content of the source and target artifacts.
Latent Semantic Indexing (LSI [50]) for traceability link recovery is also one
of the popular choices of algorithms [51]. These approaches extract terms from
the source and target artifacts and then use LSI to suggest traceability links.

Traceability link recovery problem is also often formulated as a search
problem [52, 53]. Ghannem et al. use TFIDF-based semantic similarity,
recency, and frequency of change to recover traceability links using a non-
dominant genetic algorithm (NSGA-II). Hariri et al. propose a conceptual
framework for traceability link recovery for self-adaptive systems at run-
time [53]. The conceptual framework is based on the use of NLP and IR
techniques, together with evolutionary algorithms.

Another conceptual model [54] is also proposed to handle the traceability
of variability. The conceptual model aims to provide a one-to-one mapping of
variability from problem to solution space. The model is demonstrated using a
small case study. An effort has been made for formalizing the traceability rela-
tions between PL artifacts [55]. The study presents a formalization of different
types of relationships (such as satisfiability, similarity, variability, etc.). The
study also presents tool support for traceability link recovery in the context of
a PL. The tool relies on XQuery rules for trace recovery. Other rule-based trace
link recovery approaches also exist in the literature [56].

3.3.3 Feature Model Extraction

Some feature model extraction approaches also use NLP and IR-based ap-
proaches, together with clustering and similarity metrics. These approaches
typically reverse engineer variability from existing product variants. However,
some feature model extraction approaches do support the domain engineering
phase in forward engineering manner. For example, public documents such
as brochures and online reviews can be used for extracting domain terms and
their variabilities [57, 58]. Bottom-up technologies for reuse (But4Reuse) uses
existing variants to identify the feature and extract variability [26]. But4Reuse
also allows the construction of reusable assets for systematic reuse. Feature and
Feature Relationship Extraction (FFRE) [59] is a tooled approach for recom-
mending features and their relationships. Like other feature model extraction

3.3 Related Similarity-Driven Tasks 23

are also used for trace recovery [49]. The tool computes a probability value be-
tween the source query and the target artifact for linking. The calculations are
based on term frequencies of textual content of the source and target artifacts.
Latent Semantic Indexing (LSI [50]) for traceability link recovery is also one
of the popular choices of algorithms [51]. These approaches extract terms from
the source and target artifacts and then use LSI to suggest traceability links.

Traceability link recovery problem is also often formulated as a search
problem [52, 53]. Ghannem et al. use TFIDF-based semantic similarity,
recency, and frequency of change to recover traceability links using a non-
dominant genetic algorithm (NSGA-II). Hariri et al. propose a conceptual
framework for traceability link recovery for self-adaptive systems at run-
time [53]. The conceptual framework is based on the use of NLP and IR
techniques, together with evolutionary algorithms.

Another conceptual model [54] is also proposed to handle the traceability
of variability. The conceptual model aims to provide a one-to-one mapping of
variability from problem to solution space. The model is demonstrated using a
small case study. An effort has been made for formalizing the traceability rela-
tions between PL artifacts [55]. The study presents a formalization of different
types of relationships (such as satisfiability, similarity, variability, etc.). The
study also presents tool support for traceability link recovery in the context of
a PL. The tool relies on XQuery rules for trace recovery. Other rule-based trace
link recovery approaches also exist in the literature [56].

3.3.3 Feature Model Extraction

Some feature model extraction approaches also use NLP and IR-based ap-
proaches, together with clustering and similarity metrics. These approaches
typically reverse engineer variability from existing product variants. However,
some feature model extraction approaches do support the domain engineering
phase in forward engineering manner. For example, public documents such
as brochures and online reviews can be used for extracting domain terms and
their variabilities [57, 58]. Bottom-up technologies for reuse (But4Reuse) uses
existing variants to identify the feature and extract variability [26]. But4Reuse
also allows the construction of reusable assets for systematic reuse. Feature and
Feature Relationship Extraction (FFRE) [59] is a tooled approach for recom-
mending features and their relationships. Like other feature model extraction

37

24 Chapter 3. Background & Related Work

approaches, the FFRE focuses on aggregating the natural language require-
ments to extract a high-level system feature model. ArborCraft [60, 61] uses
LSA to calculate the similarity between requirements pairs and clusters the re-
quirements based on similarity (shared concepts in the requirements) to extract
feature trees. SOVA [62] uses semantic role labeling to calculate similarity-
based semantic roles. The roles extracted in SOVA reflect behavioral informa-
tion and base the similarity metrics on behavior. SOVA applies a hierarchical
clustering algorithm to cluster the requirements based on behavioral similarity.

3.3.4 Feature Location

Feature location approaches locate SPL features in the source code. Typically,
these approaches assume that the feature description and source code of the
variants share common terms. Identifying the features’ initial location might
help in maintenance activities, such as the feature to code traceability, change
impact analysis, and re-engineering of legacy variants. As shown in Figure 3.5,
applying feature location approaches identifies initial location of pre-defined
features in the variants of the product.

F1...

F2...

F3...

Features Variants

Figure 3.5: The result of Feature Location approaches

Over the years, many approaches for feature location have been pro-
posed [63]. The feature location approaches can be classified into three main
classes as follows.

24 Chapter 3. Background & Related Work

approaches, the FFRE focuses on aggregating the natural language require-
ments to extract a high-level system feature model. ArborCraft [60, 61] uses
LSA to calculate the similarity between requirements pairs and clusters the re-
quirements based on similarity (shared concepts in the requirements) to extract
feature trees. SOVA [62] uses semantic role labeling to calculate similarity-
based semantic roles. The roles extracted in SOVA reflect behavioral informa-
tion and base the similarity metrics on behavior. SOVA applies a hierarchical
clustering algorithm to cluster the requirements based on behavioral similarity.

3.3.4 Feature Location

Feature location approaches locate SPL features in the source code. Typically,
these approaches assume that the feature description and source code of the
variants share common terms. Identifying the features’ initial location might
help in maintenance activities, such as the feature to code traceability, change
impact analysis, and re-engineering of legacy variants. As shown in Figure 3.5,
applying feature location approaches identifies initial location of pre-defined
features in the variants of the product.

F1...

F2...

F3...

Features Variants

Figure 3.5: The result of Feature Location approaches

Over the years, many approaches for feature location have been pro-
posed [63]. The feature location approaches can be classified into three main
classes as follows.

38

3.4 Requirements Prioritization 25

Run-Time feature location approaches use run-time information for feature lo-
cation. These approaches are also called dynamic feature location approaches.
Static feature location approaches use static analysis on the product variants to
locate feature in product variants.
Text-based feature location approaches use NLP and textual analysis to locate
features in product variants.

Note that many feature location approaches combine different classes of
methods (such as static and text-based) for feature location. Here, we provide
an overview of some of the approaches for feature location.

But4Reuse use LSI to locate features in different product variants. In ad-
dition, But4Reuse provides several real-world benchmarks for evaluating new
feature location approaches [64]. Zhao et al. use branch reverse call graphs
together with IR to locate features in the source code [65]. This is done by
establishing an initial trace between the functions and feature description. The
initial traces are filtered by pruning and analyzing the call graph. Poshyvanyk
et al. combine execution scenario-based probabilistic ranking with LSI to lo-
cate features in the source code [66]. The approach uses ranked dynamic events
from the execution traces with lexical similarity of the text of the source to lo-
cate the feature of interest. The approach is evaluated using two case studied,
Eclipse and Mozilla. Andam et al. propose the tool called FLOrIDA for feature
location [67]. FLOrIDA uses a TFIDF-based approach, Lucene, to compute
the similarity between feature description and source files. The most similar
source files are then ranked using PageRank algorithm. Moslehi et al. use
topic modeling on textual data in the graphical interfaces and speech, related
to products, to locate the features in source code [68]. Recent empirical ev-
idence shows that the feature location approaches are sensitive to the system
under analysis [69]. Results further indicate that the Lucene-based approach
for feature location performed significantly better than other approaches.

3.4 Requirements Prioritization
Requirements prioritization is the process of ordering requirements based on
their relative importance for implementation [70]. Typically, the prioritization
is done based on multi-criteria, such as development cost, risk, and business
value. The results of requirements prioritization approaches is a ranked list of
requirements with the most valuable requirements on the top. Therefore, the

3.4 Requirements Prioritization 25

Run-Time feature location approaches use run-time information for feature lo-
cation. These approaches are also called dynamic feature location approaches.
Static feature location approaches use static analysis on the product variants to
locate feature in product variants.
Text-based feature location approaches use NLP and textual analysis to locate
features in product variants.

Note that many feature location approaches combine different classes of
methods (such as static and text-based) for feature location. Here, we provide
an overview of some of the approaches for feature location.

But4Reuse use LSI to locate features in different product variants. In ad-
dition, But4Reuse provides several real-world benchmarks for evaluating new
feature location approaches [64]. Zhao et al. use branch reverse call graphs
together with IR to locate features in the source code [65]. This is done by
establishing an initial trace between the functions and feature description. The
initial traces are filtered by pruning and analyzing the call graph. Poshyvanyk
et al. combine execution scenario-based probabilistic ranking with LSI to lo-
cate features in the source code [66]. The approach uses ranked dynamic events
from the execution traces with lexical similarity of the text of the source to lo-
cate the feature of interest. The approach is evaluated using two case studied,
Eclipse and Mozilla. Andam et al. propose the tool called FLOrIDA for feature
location [67]. FLOrIDA uses a TFIDF-based approach, Lucene, to compute
the similarity between feature description and source files. The most similar
source files are then ranked using PageRank algorithm. Moslehi et al. use
topic modeling on textual data in the graphical interfaces and speech, related
to products, to locate the features in source code [68]. Recent empirical ev-
idence shows that the feature location approaches are sensitive to the system
under analysis [69]. Results further indicate that the Lucene-based approach
for feature location performed significantly better than other approaches.

3.4 Requirements Prioritization
Requirements prioritization is the process of ordering requirements based on
their relative importance for implementation [70]. Typically, the prioritization
is done based on multi-criteria, such as development cost, risk, and business
value. The results of requirements prioritization approaches is a ranked list of
requirements with the most valuable requirements on the top. Therefore, the

39

26 Chapter 3. Background & Related Work

use of multi-criteria decision making and ranking approaches for requirements
prioritization is a common practice. In this section, we first present some of the
most seminal requirements prioritization approaches, followed by a discussion
on the use of models for requirements prioritization.

Analytical Hierarchy Process (AHP) is one of the most widely known re-
quirements prioritization approaches [71]. AHP models the process in multi-
level hierarchies considering the goal, criteria, and options/alternatives. The
approach then computes the relative importance of the considered criteria based
on their contribution towards the goal. Then the options are evaluated based on
each criterion. Finally, judgments are made based on pair-wise comparisons. In
addition, a generalized form of the AHP method is also used for requirements
prioritization called Analytical Network Process (ANP). ANP uses networks
instead of hierarchies and thus helps in considering bidirectional relationships
between the criteria. Furthermore, the pair-wise comparison for judgments be-
comes double in the case of ANP.

Cumulative Voting (CV) assigns fix number of prioritization scores
to stakeholders that are participating in the prioritization process. All the
stakeholders then assign some points from their prioritization score to different
requirements. At the end of the process, a ranked list of requirements is
obtained based on the score assigned to them by different stakeholders. The
100-points method is also a variant of the CV method, where stakeholders are
given 100 points to be assigned to their favorite requirements. Furthermore,
other similar numerical methods, such as Planning Game (PG) and Numerical
Assignment Technique (NAT), use a fixed scale, between which stakeholder is
supposed to assign a priority to requirements [72].

Binary Search Trees (BST) has also been used for prioritization of require-
ments [73]. In the BST method, a root requirement is selected, followed by
a systematic comparison of each requirement with the root node. This results
in a prioritized list of requirements. Furthermore, the requirements prioritiza-
tion is also formulated as a search problem. A genetic algorithm (GA) is used
together with manual input to minimize the disagreement between the total or-
der of requirements [74]. The approach relies on user input in cases where
requirements with high fitness cannot be distinguished.

Domain-Specific Modeling and Requirements Prioritization. Domain-
Specific Modeling Languages (DSMLs) provides domain-specific constructs
for modeling systems for analysis and development tasks. Typically, the lan-

26 Chapter 3. Background & Related Work

use of multi-criteria decision making and ranking approaches for requirements
prioritization is a common practice. In this section, we first present some of the
most seminal requirements prioritization approaches, followed by a discussion
on the use of models for requirements prioritization.

Analytical Hierarchy Process (AHP) is one of the most widely known re-
quirements prioritization approaches [71]. AHP models the process in multi-
level hierarchies considering the goal, criteria, and options/alternatives. The
approach then computes the relative importance of the considered criteria based
on their contribution towards the goal. Then the options are evaluated based on
each criterion. Finally, judgments are made based on pair-wise comparisons. In
addition, a generalized form of the AHP method is also used for requirements
prioritization called Analytical Network Process (ANP). ANP uses networks
instead of hierarchies and thus helps in considering bidirectional relationships
between the criteria. Furthermore, the pair-wise comparison for judgments be-
comes double in the case of ANP.

Cumulative Voting (CV) assigns fix number of prioritization scores
to stakeholders that are participating in the prioritization process. All the
stakeholders then assign some points from their prioritization score to different
requirements. At the end of the process, a ranked list of requirements is
obtained based on the score assigned to them by different stakeholders. The
100-points method is also a variant of the CV method, where stakeholders are
given 100 points to be assigned to their favorite requirements. Furthermore,
other similar numerical methods, such as Planning Game (PG) and Numerical
Assignment Technique (NAT), use a fixed scale, between which stakeholder is
supposed to assign a priority to requirements [72].

Binary Search Trees (BST) has also been used for prioritization of require-
ments [73]. In the BST method, a root requirement is selected, followed by
a systematic comparison of each requirement with the root node. This results
in a prioritized list of requirements. Furthermore, the requirements prioritiza-
tion is also formulated as a search problem. A genetic algorithm (GA) is used
together with manual input to minimize the disagreement between the total or-
der of requirements [74]. The approach relies on user input in cases where
requirements with high fitness cannot be distinguished.

Domain-Specific Modeling and Requirements Prioritization. Domain-
Specific Modeling Languages (DSMLs) provides domain-specific constructs
for modeling systems for analysis and development tasks. Typically, the lan-

40

3.4 Requirements Prioritization 27

guages are based on a meta-model describing the semantics of the language.
The meta-model is instantiated by the end-users with concrete syntax to model
the system in the DSML using its capabilities. The intended use of DSML
can vary. For example, SysML is a domain-specific modeling language for
modeling system’s architectures 3. On the other hand, the MARTE profile
provides more concrete concepts relevant to time and is used to model
real-time systems 4.

Many DSMLs have been proposed for modeling and visualizing the re-
quirements, their inter-dependencies, and stakeholders. For example, the Sys-
temWeawer Requirement Management tool 5 uses a DSML for requirements
management. The tool allows modeling high-level features and requirements
with a focus on traceability. Furthermore, goal modeling frameworks, such as
i*, are used for understanding the problem domain of the systems [75]. The
i* framework allows modeling of actors, goals, tasks, and resources and thus
could be used for goal-driven requirements engineering. Therefore, the in-
stance models of the requirements’ DSMLs can also be used for requirements
prioritization. For example, the DRank approach extract dependencies from
i* models and apply PageRank algorithm to rank the requirements based on
several criteria [76].

Reflection on the Related Work. Many related approaches for requirements-
level reuse exists in the literature. The problem of reuse recommendation can
also be formulated as a traceability or feature location problem. In addition,
requirements prioritization is heavily studied in the literature. However,
the context of the studies is very different from the studies included in this
thesis. In this thesis, we first report the challenges and opportunities in our
studied settings. We then target requirements-level reuse recommendation and
prioritization for safety-critical SPLs (where requirements can be traced) with
clone-and-own reuse.

3Available online, https://sysml.org/
4Available online, https://www.omg.org/omgmarte/
5Available online, https://www.systemweaver.se/

3.4 Requirements Prioritization 27

guages are based on a meta-model describing the semantics of the language.
The meta-model is instantiated by the end-users with concrete syntax to model
the system in the DSML using its capabilities. The intended use of DSML
can vary. For example, SysML is a domain-specific modeling language for
modeling system’s architectures 3. On the other hand, the MARTE profile
provides more concrete concepts relevant to time and is used to model
real-time systems 4.

Many DSMLs have been proposed for modeling and visualizing the re-
quirements, their inter-dependencies, and stakeholders. For example, the Sys-
temWeawer Requirement Management tool 5 uses a DSML for requirements
management. The tool allows modeling high-level features and requirements
with a focus on traceability. Furthermore, goal modeling frameworks, such as
i*, are used for understanding the problem domain of the systems [75]. The
i* framework allows modeling of actors, goals, tasks, and resources and thus
could be used for goal-driven requirements engineering. Therefore, the in-
stance models of the requirements’ DSMLs can also be used for requirements
prioritization. For example, the DRank approach extract dependencies from
i* models and apply PageRank algorithm to rank the requirements based on
several criteria [76].

Reflection on the Related Work. Many related approaches for requirements-
level reuse exists in the literature. The problem of reuse recommendation can
also be formulated as a traceability or feature location problem. In addition,
requirements prioritization is heavily studied in the literature. However,
the context of the studies is very different from the studies included in this
thesis. In this thesis, we first report the challenges and opportunities in our
studied settings. We then target requirements-level reuse recommendation and
prioritization for safety-critical SPLs (where requirements can be traced) with
clone-and-own reuse.

3Available online, https://sysml.org/
4Available online, https://www.omg.org/omgmarte/
5Available online, https://www.systemweaver.se/

41

42

Chapter 4

Research Results

In this chapter, we discuss our results and present a summary of the contri-
butions. We highlight the specific contributions of the included papers with a
discussion on the validity of the results.

4.1 Thesis Contributions

This thesis focus on two main goals, realized by three contributions. Here we
re-present the goals as follows:

RG1: To identify challenges and opportunities in the current state-of-
practice of a safety-critical SPLE process where reuse is done in a
clone-and-own manner.

RG2: To support and automate the resource-intensive reuse analysis pro-
cess in industrial SPLE settings.

Our research goals are realized by three main contributions as follows.

• C1: Identified challenges and opportunities in SPLE adoption (SPLE
Challenges)

• C2: An approach for automated reuse recommendation of product line
assets based on natural language requirements similarity (VARA)

29

Chapter 4

Research Results

In this chapter, we discuss our results and present a summary of the contri-
butions. We highlight the specific contributions of the included papers with a
discussion on the validity of the results.

4.1 Thesis Contributions

This thesis focus on two main goals, realized by three contributions. Here we
re-present the goals as follows:

RG1: To identify challenges and opportunities in the current state-of-
practice of a safety-critical SPLE process where reuse is done in a
clone-and-own manner.

RG2: To support and automate the resource-intensive reuse analysis pro-
cess in industrial SPLE settings.

Our research goals are realized by three main contributions as follows.

• C1: Identified challenges and opportunities in SPLE adoption (SPLE
Challenges)

• C2: An approach for automated reuse recommendation of product line
assets based on natural language requirements similarity (VARA)

29

43

30 Chapter 4. Research Results

• C3 An approach for requirements prioritization based on requirements
dependencies (MBRP)

Table 4.1 present a mapping of the contributions to our research goals.

Table 4.1: Mapping of contributions to the research goals

RG1 RG2

C1 X
C2 X
C3 X

4.1.1 C1: SPLE Challenges

C1 is realized by Paper A [5], which outlines the current practices of SPLE at a
company, benefits of SPLE, perceived challenges, areas of improvements, and
future vision of the company regarding their SPLE process. Using the clone-
and-own and evolutionary SPLE process, the company was able to achieve
significant improvements. In particular, the development and testing time was
reduced significantly. In addition, a confidence boost was experienced in de-
rived products.

Several challenges and improvement opportunities were identified. The
challenges were divided into three classes as follows: Product Derivation, Au-
tomation, and SPLE Awareness. In product derivation, among several con-
crete challenges, the identification of reuse opportunities was one of them. We
specifically focused on the identification of reuse opportunities and require-
ments prioritization in the process of reuse analysis. In the automation, it was
observed that the configuration of general supporting tools for SPLE is a chal-
lenge. Besides, it was also observed that the lack of SPLE awareness leads to
architectural decisions that negatively impact reuse.

The future vision of the company includes Test automation, continuous in-
tegration (CI), and the creation of a regression test suite. Specifically, the focus
would be on variability-aware automated test generation for product variants
in a CI environment.

30 Chapter 4. Research Results

• C3 An approach for requirements prioritization based on requirements
dependencies (MBRP)

Table 4.1 present a mapping of the contributions to our research goals.

Table 4.1: Mapping of contributions to the research goals

RG1 RG2

C1 X
C2 X
C3 X

4.1.1 C1: SPLE Challenges

C1 is realized by Paper A [5], which outlines the current practices of SPLE at a
company, benefits of SPLE, perceived challenges, areas of improvements, and
future vision of the company regarding their SPLE process. Using the clone-
and-own and evolutionary SPLE process, the company was able to achieve
significant improvements. In particular, the development and testing time was
reduced significantly. In addition, a confidence boost was experienced in de-
rived products.

Several challenges and improvement opportunities were identified. The
challenges were divided into three classes as follows: Product Derivation, Au-
tomation, and SPLE Awareness. In product derivation, among several con-
crete challenges, the identification of reuse opportunities was one of them. We
specifically focused on the identification of reuse opportunities and require-
ments prioritization in the process of reuse analysis. In the automation, it was
observed that the configuration of general supporting tools for SPLE is a chal-
lenge. Besides, it was also observed that the lack of SPLE awareness leads to
architectural decisions that negatively impact reuse.

The future vision of the company includes Test automation, continuous in-
tegration (CI), and the creation of a regression test suite. Specifically, the focus
would be on variability-aware automated test generation for product variants
in a CI environment.

44

4.1 Thesis Contributions 31

Validity: The paper realizes this contribution using the focus group research
combined with thematic analysis on the transcript. Several measures were
taken to tackle the potential validity threats, such as following well-established
research methods, selecting a diverse set of participants within the company,
and including multiple researchers and practitioners in study design. Also, the
focus group results were supplemented with document analysis and participant
observation.

4.1.2 C2: VARA

Paper B [77] and Paper C [78] forms this thesis contribution. In the identified
challenges in C1, this contribution is focused on supporting the reuse analysis
activities at the requirements-level. Therefore, we explored the use of require-
ments similarity for reuse recommendation. In Paper B, we proposed an ap-
proach for SPL asset reuse recommendation based on customer requirements.
The approach uses word embedding algorithms and clustering to recommend
the reuse of SPL assets for new customer requirements. Results show that the
approach can recommend reuse with around 74% average accuracy. Besides,
engineers think that the results produced by the approach are useful and in-
sightful for reuse analysis.

The approach assumes that similar software assets realize similar require-
ments. However, this assumption is not validated in the literature. Therefore,
in Paper C, we explore the relationship between requirements similarity and
software similarity. Specifically, we computed the correlation between require-
ments similarity and software similarity. We found a moderate positive corre-
lation between the two variables and concluded that there is a need for new
methods to compute requirements similarity that reflects the software similar-
ity better.

Validity: We evaluated the approach in industrial settings and presented en-
gineer’s perception on the obtained results. The typical assumption that “re-
quirement similarity can be used to recommend reuse” was validated. To tackle
potential validity threats, we used data obtained from two different projects at
the company.

4.1 Thesis Contributions 31

Validity: The paper realizes this contribution using the focus group research
combined with thematic analysis on the transcript. Several measures were
taken to tackle the potential validity threats, such as following well-established
research methods, selecting a diverse set of participants within the company,
and including multiple researchers and practitioners in study design. Also, the
focus group results were supplemented with document analysis and participant
observation.

4.1.2 C2: VARA

Paper B [77] and Paper C [78] forms this thesis contribution. In the identified
challenges in C1, this contribution is focused on supporting the reuse analysis
activities at the requirements-level. Therefore, we explored the use of require-
ments similarity for reuse recommendation. In Paper B, we proposed an ap-
proach for SPL asset reuse recommendation based on customer requirements.
The approach uses word embedding algorithms and clustering to recommend
the reuse of SPL assets for new customer requirements. Results show that the
approach can recommend reuse with around 74% average accuracy. Besides,
engineers think that the results produced by the approach are useful and in-
sightful for reuse analysis.

The approach assumes that similar software assets realize similar require-
ments. However, this assumption is not validated in the literature. Therefore,
in Paper C, we explore the relationship between requirements similarity and
software similarity. Specifically, we computed the correlation between require-
ments similarity and software similarity. We found a moderate positive corre-
lation between the two variables and concluded that there is a need for new
methods to compute requirements similarity that reflects the software similar-
ity better.

Validity: We evaluated the approach in industrial settings and presented en-
gineer’s perception on the obtained results. The typical assumption that “re-
quirement similarity can be used to recommend reuse” was validated. To tackle
potential validity threats, we used data obtained from two different projects at
the company.

45

32 Chapter 4. Research Results

4.1.3 C3: MBRP

Paper D [79] realizes this thesis contribution and is motivated by C2. When
reuse is done in an evolutionary context, the risk and cost associated with the
requirements may vary. This is because some requirements could be realized
by making no/some adaptations to existing assets. While for some require-
ments, a new asset should be developed to implement them. For release plan-
ning in such scenarios, requirements prioritization has to be done.

In this contribution, we propose and evaluate an approach for dependencies
based requirements prioritization. The approach uses a domain-specific model-
ing language for modeling the requirements and their inter-dependencies. We
then use a modified version of the PageRank algorithm to transform the in-
stance model into a prioritize requirements list. The prioritization is done based
on associated risk, cost, business value, and dependencies of the requirements.
Results show that our approach was able to produce closer results to human
subjects than the state-of-the-art.

Validity: We evaluated the approach in academic settings and compared the
results to five state-of-the-art requirements prioritization approaches. We con-
ducted an experiment with 30 graduate students to obtain a baseline for com-
parison, which could be a potential threat to the validity of the results. How-
ever, scientific evidence [80] supports the use of students in software engineer-
ing experiments.

4.2 Paper Contributions

In this section, we present the abstracts and a short description of the contri-
butions for the included papers. Each thesis contribution is mapped to at least
one included, as shown in Table 4.2.

Table 4.2: Mapping of contributions to the included papers

Paper A Paper B Paper C Paper D
C1 X
C2 X X
C3 X

32 Chapter 4. Research Results

4.1.3 C3: MBRP

Paper D [79] realizes this thesis contribution and is motivated by C2. When
reuse is done in an evolutionary context, the risk and cost associated with the
requirements may vary. This is because some requirements could be realized
by making no/some adaptations to existing assets. While for some require-
ments, a new asset should be developed to implement them. For release plan-
ning in such scenarios, requirements prioritization has to be done.

In this contribution, we propose and evaluate an approach for dependencies
based requirements prioritization. The approach uses a domain-specific model-
ing language for modeling the requirements and their inter-dependencies. We
then use a modified version of the PageRank algorithm to transform the in-
stance model into a prioritize requirements list. The prioritization is done based
on associated risk, cost, business value, and dependencies of the requirements.
Results show that our approach was able to produce closer results to human
subjects than the state-of-the-art.

Validity: We evaluated the approach in academic settings and compared the
results to five state-of-the-art requirements prioritization approaches. We con-
ducted an experiment with 30 graduate students to obtain a baseline for com-
parison, which could be a potential threat to the validity of the results. How-
ever, scientific evidence [80] supports the use of students in software engineer-
ing experiments.

4.2 Paper Contributions

In this section, we present the abstracts and a short description of the contri-
butions for the included papers. Each thesis contribution is mapped to at least
one included, as shown in Table 4.2.

Table 4.2: Mapping of contributions to the included papers

Paper A Paper B Paper C Paper D
C1 X
C2 X X
C3 X

46

4.2 Paper Contributions 33

4.2.1 Individual Contributions

I have been the primary driving researcher and the author for all the included
papers. However, the co-authors helped in writing few sections in some of the
included papers. The supervision team participated in the brainstorming and
planning sessions for the research and provided useful feedback on the drafts
of the included papers.

4.2.2 Included Papers

Paper A: Product Line Adoption in Industry: An Experience Report from
the Railway Domain
Authors: Muhammad Abbas, Robbert Jongeling, Claes Lindskog, Eduard Paul
Enoiu, Mehrdad Saadatmand, Daniel Sundmark
Abstract: The software system controlling a train is typically deployed on var-
ious hardware architectures and is required to process various signals across
those deployments. Increases of such customization scenarios, as well as the
needed adherence of the software to various safety standards in different appli-
cation domains, has led to the adoption of product line engineering within the
railway domain. This paper explores the current state-of-practice of software
product line development within a team developing industrial embedded soft-
ware for a train propulsion control system. Evidence is collected by means of a
focus group session with several engineers and through inspection of archival
data. We report several benefits and challenges experienced during product
line adoption and deployment. Furthermore, we identify and discuss research
opportunities, focusing in particular on the areas of product line evolution and
test automation.
Paper Contributions: The results of Paper A confirms the benefits of SPLE in
the literature. Besides, it adds to the body of knowledge by identifying concrete
challenges that need investigation. Furthermore, it outlines the future vision
and area of improvements regarding SPLE from the engineer’s perspective.

Paper B: Automated Reuse Recommendation of Product Line Assets based
on Natural Language Requirements
Authors: Muhammad Abbas, Mehrdad Saadatmand, Eduard Paul Enoiu,
Daniel Sundmark, Claes Lindskog
Abstract: Software product lines (SPLs) are based on reuse rationale to aid

4.2 Paper Contributions 33

4.2.1 Individual Contributions

I have been the primary driving researcher and the author for all the included
papers. However, the co-authors helped in writing few sections in some of the
included papers. The supervision team participated in the brainstorming and
planning sessions for the research and provided useful feedback on the drafts
of the included papers.

4.2.2 Included Papers

Paper A: Product Line Adoption in Industry: An Experience Report from
the Railway Domain
Authors: Muhammad Abbas, Robbert Jongeling, Claes Lindskog, Eduard Paul
Enoiu, Mehrdad Saadatmand, Daniel Sundmark
Abstract: The software system controlling a train is typically deployed on var-
ious hardware architectures and is required to process various signals across
those deployments. Increases of such customization scenarios, as well as the
needed adherence of the software to various safety standards in different appli-
cation domains, has led to the adoption of product line engineering within the
railway domain. This paper explores the current state-of-practice of software
product line development within a team developing industrial embedded soft-
ware for a train propulsion control system. Evidence is collected by means of a
focus group session with several engineers and through inspection of archival
data. We report several benefits and challenges experienced during product
line adoption and deployment. Furthermore, we identify and discuss research
opportunities, focusing in particular on the areas of product line evolution and
test automation.
Paper Contributions: The results of Paper A confirms the benefits of SPLE in
the literature. Besides, it adds to the body of knowledge by identifying concrete
challenges that need investigation. Furthermore, it outlines the future vision
and area of improvements regarding SPLE from the engineer’s perspective.

Paper B: Automated Reuse Recommendation of Product Line Assets based
on Natural Language Requirements
Authors: Muhammad Abbas, Mehrdad Saadatmand, Eduard Paul Enoiu,
Daniel Sundmark, Claes Lindskog
Abstract: Software product lines (SPLs) are based on reuse rationale to aid

47

34 Chapter 4. Research Results

quick and quality delivery of complex products at scale. Deriving a new
product from a product line requires reuse analysis to avoid redundancy and
support a high degree of asset reuse. In this paper, we propose and evaluate
automated support for recommending SPL assets that can be reused to realize
new customer requirements. Using the existing customer requirements as
input, the approach applies natural language processing and clustering to
generate reuse recommendations for unseen customer requirements in new
projects. The approach is evaluated both quantitatively and qualitatively in the
railway industry. Results show that our approach can recommend reuse with
74% accuracy and 57.4% exact match. The evaluation further indicates that
the recommendations are relevant to engineers and can support the product
derivation and feasibility analysis phase of the projects. The results encourage
further study on automated reuse analysis on other levels of abstractions.
Paper Contributions: Many existing approaches are mainly focused on
requirements reuse. This paper proposes a similar reuse recommender but
specifically focused on the reuse of SPL assets based on customer require-
ments. The approach supports product derivation in industrial settings and is
evaluated both qualitatively and quantitatively.

Paper C: Is Requirements Similarity a Good Proxy for Software Similarity?
An Empirical Investigation in Industry
Authors: Muhammad Abbas, Alessio Ferrari, Anas Shatnawi, Eduard Paul
Enoiu, Mehrdad Saadatmand
Abstract: [Context and Motivation] Content-based recommender systems
for requirements are typically built on the assumption that similar requirements
can be used as proxies to retrieve similar software. When a new requirement is
proposed by a stakeholder, natural language processing (NLP)-based similarity
metrics can be exploited to retrieve existing requirements, and in turn identify
previously developed code. [Question/problem] Several NLP approaches for
similarity computation are available, and there is little empirical evidence on
the adoption of an effective technique in recommender systems specifically ori-
ented to requirements-based code reuse. [Principal ideas/results] This study
compares different state-of-the-art NLP approaches and correlates the similar-
ity among requirements with the similarity of their source code. The evaluation
is conducted on real-world requirements from two industrial projects in the
railway domain. Results show that requirements similarity computed with the

34 Chapter 4. Research Results

quick and quality delivery of complex products at scale. Deriving a new
product from a product line requires reuse analysis to avoid redundancy and
support a high degree of asset reuse. In this paper, we propose and evaluate
automated support for recommending SPL assets that can be reused to realize
new customer requirements. Using the existing customer requirements as
input, the approach applies natural language processing and clustering to
generate reuse recommendations for unseen customer requirements in new
projects. The approach is evaluated both quantitatively and qualitatively in the
railway industry. Results show that our approach can recommend reuse with
74% accuracy and 57.4% exact match. The evaluation further indicates that
the recommendations are relevant to engineers and can support the product
derivation and feasibility analysis phase of the projects. The results encourage
further study on automated reuse analysis on other levels of abstractions.
Paper Contributions: Many existing approaches are mainly focused on
requirements reuse. This paper proposes a similar reuse recommender but
specifically focused on the reuse of SPL assets based on customer require-
ments. The approach supports product derivation in industrial settings and is
evaluated both qualitatively and quantitatively.

Paper C: Is Requirements Similarity a Good Proxy for Software Similarity?
An Empirical Investigation in Industry
Authors: Muhammad Abbas, Alessio Ferrari, Anas Shatnawi, Eduard Paul
Enoiu, Mehrdad Saadatmand
Abstract: [Context and Motivation] Content-based recommender systems
for requirements are typically built on the assumption that similar requirements
can be used as proxies to retrieve similar software. When a new requirement is
proposed by a stakeholder, natural language processing (NLP)-based similarity
metrics can be exploited to retrieve existing requirements, and in turn identify
previously developed code. [Question/problem] Several NLP approaches for
similarity computation are available, and there is little empirical evidence on
the adoption of an effective technique in recommender systems specifically ori-
ented to requirements-based code reuse. [Principal ideas/results] This study
compares different state-of-the-art NLP approaches and correlates the similar-
ity among requirements with the similarity of their source code. The evaluation
is conducted on real-world requirements from two industrial projects in the
railway domain. Results show that requirements similarity computed with the

48

4.2 Paper Contributions 35

traditional tf-idf approach has the highest correlation with the actual software
similarity in the considered context. Furthermore, results indicate a moderate
positive correlation with Spearman’s rank correlation coefficient of more than
0.5. [Contribution] Our work is among the first ones to explore the relation-
ship between requirements similarity and software similarity. In addition, we
also identify a suitable approach for computing requirements similarity that re-
flects software similarity well in an industrial context. This can be useful not
only in recommender systems but also in other requirements engineering tasks
in which similarity computation is relevant, such as tracing and categorization.
Paper Contributions: Content-Based requirements reuse recommenders typ-
ically assume that similar requirements are realized by similar software. How-
ever, the relationship between the requirements similarity and software sim-
ilarity remains un-explored. The paper contributes to the body of knowledge
by providing industrial empirical evidence on the relationship between require-
ments similarity and software similarity.

Paper D: MBRP: Model-based Requirements Prioritization Using PageR-
ank Algorithm
Authors: Muhammad Abbas, Irum Inayat , Naila Jan , Mehrdad Saadatmand,
Eduard Paul Enoiu, Daniel Sundmark
Abstract: Requirements prioritization plays an important role in driving
project success during software development. Literature reveals that existing
requirements prioritization approaches ignore vital factors such as interdepen-
dency between requirements. Existing requirements prioritization approaches
are also generally time-consuming and involve substantial manual effort.
Besides, these approaches show substantial limitations in terms of the number
of requirements under consideration. There is some evidence suggesting that
models could have a useful role in the analysis of requirements interdepen-
dency and their visualization, contributing towards the improvement of the
overall requirements prioritization process. However, to date, just a handful of
studies are focused on model-based strategies for requirements prioritization,
considering only conflict-free functional requirements. This paper uses a
meta-model-based approach to help the requirements analyst to model the
requirements, stakeholders, and inter-dependencies between requirements.
The model instance is then processed by our modified PageRank algorithm to
prioritize the given requirements. An experiment was conducted, comparing

4.2 Paper Contributions 35

traditional tf-idf approach has the highest correlation with the actual software
similarity in the considered context. Furthermore, results indicate a moderate
positive correlation with Spearman’s rank correlation coefficient of more than
0.5. [Contribution] Our work is among the first ones to explore the relation-
ship between requirements similarity and software similarity. In addition, we
also identify a suitable approach for computing requirements similarity that re-
flects software similarity well in an industrial context. This can be useful not
only in recommender systems but also in other requirements engineering tasks
in which similarity computation is relevant, such as tracing and categorization.
Paper Contributions: Content-Based requirements reuse recommenders typ-
ically assume that similar requirements are realized by similar software. How-
ever, the relationship between the requirements similarity and software sim-
ilarity remains un-explored. The paper contributes to the body of knowledge
by providing industrial empirical evidence on the relationship between require-
ments similarity and software similarity.

Paper D: MBRP: Model-based Requirements Prioritization Using PageR-
ank Algorithm
Authors: Muhammad Abbas, Irum Inayat , Naila Jan , Mehrdad Saadatmand,
Eduard Paul Enoiu, Daniel Sundmark
Abstract: Requirements prioritization plays an important role in driving
project success during software development. Literature reveals that existing
requirements prioritization approaches ignore vital factors such as interdepen-
dency between requirements. Existing requirements prioritization approaches
are also generally time-consuming and involve substantial manual effort.
Besides, these approaches show substantial limitations in terms of the number
of requirements under consideration. There is some evidence suggesting that
models could have a useful role in the analysis of requirements interdepen-
dency and their visualization, contributing towards the improvement of the
overall requirements prioritization process. However, to date, just a handful of
studies are focused on model-based strategies for requirements prioritization,
considering only conflict-free functional requirements. This paper uses a
meta-model-based approach to help the requirements analyst to model the
requirements, stakeholders, and inter-dependencies between requirements.
The model instance is then processed by our modified PageRank algorithm to
prioritize the given requirements. An experiment was conducted, comparing

49

36 Chapter 4. Research Results

our modified PageRank algorithm’s efficiency and accuracy with five existing
requirements prioritization methods. Besides, we also compared our results
with a baseline prioritized list of 104 requirements prepared by 28 graduate
students. Our results show that our modified PageRank algorithm was able
to prioritize the requirements more effectively and efficiently than the other
prioritization methods.
Paper Contributions: Very few existing requirement prioritization ap-
proaches considers requirements dependencies. This paper contributes with an
approach for requirements prioritization based on requirement dependencies,
associated risk, development cost, and business value. The paper also evaluates
the proposed approach in comparison with five state-of-the-art techniques for
requirement prioritization.

36 Chapter 4. Research Results

our modified PageRank algorithm’s efficiency and accuracy with five existing
requirements prioritization methods. Besides, we also compared our results
with a baseline prioritized list of 104 requirements prepared by 28 graduate
students. Our results show that our modified PageRank algorithm was able
to prioritize the requirements more effectively and efficiently than the other
prioritization methods.
Paper Contributions: Very few existing requirement prioritization ap-
proaches considers requirements dependencies. This paper contributes with an
approach for requirements prioritization based on requirement dependencies,
associated risk, development cost, and business value. The paper also evaluates
the proposed approach in comparison with five state-of-the-art techniques for
requirement prioritization.

50

Chapter 5

Conclusion, Discussion, &
Future Work

5.1 Conclusion & Summary

Evolutionary adoption of SPLE with a clone-and-own reuse helps companies
in saving time and resources. Companies may see a quick return on the invest-
ment in the SPLE. However, down the road, companies have to deal with many
challenges in co-evolution and assets management. In safety-critical product
lines, the natural language requirements are at the center of the development
process. By supporting the product derivation at the requirements-level in such
cases, we aim to allow companies to avoid redundant development efforts and
ensure a high degree of asset reuse.

This thesis focuses on two research goals: identifying challenges in the
SPLE process and supporting the reuse analysis, and prioritization process for
the SPL assets at the requirements-level. The goals are realized by three con-
tributions, packaged into four included papers.

In Paper A, we used empirical methods to report the current practices of
SPLE at a company. We collected data about the benefits of SPLE adoption,
perceived challenges and improvement opportunities, and future vision of the
SLPE process at the company. Results show that with unsystematic reuse in the
evolutionary SPLE process, the company could reduce time-to-market. Fur-

37

Chapter 5

Conclusion, Discussion, &
Future Work

5.1 Conclusion & Summary

Evolutionary adoption of SPLE with a clone-and-own reuse helps companies
in saving time and resources. Companies may see a quick return on the invest-
ment in the SPLE. However, down the road, companies have to deal with many
challenges in co-evolution and assets management. In safety-critical product
lines, the natural language requirements are at the center of the development
process. By supporting the product derivation at the requirements-level in such
cases, we aim to allow companies to avoid redundant development efforts and
ensure a high degree of asset reuse.

This thesis focuses on two research goals: identifying challenges in the
SPLE process and supporting the reuse analysis, and prioritization process for
the SPL assets at the requirements-level. The goals are realized by three con-
tributions, packaged into four included papers.

In Paper A, we used empirical methods to report the current practices of
SPLE at a company. We collected data about the benefits of SPLE adoption,
perceived challenges and improvement opportunities, and future vision of the
SLPE process at the company. Results show that with unsystematic reuse in the
evolutionary SPLE process, the company could reduce time-to-market. Fur-

37

51

38 Chapter 5. Conclusion, Discussion, & Future Work

thermore, the adoption allowed incremental safety assessment and resulted in
a confidence boost in the derived products. However, challenges in product
derivation and maintenance were observed. Mainly, maintaining a high degree
of asset reuse, the evolution of assets, and change impact analysis were seen as
challenges.

In Paper B, and Paper C, we support the reuse analysis activities in product
derivation. We hypothesized that similarity among requirements could be used
to recommend the reuse of product line assets. Results show that we were able
to recommend the reuse of product line assets with around 74% of average ac-
curacy. Results further indicate that the reuse recommendations generated by
our approach are useful to engineers and can support reuse analysis activities in
the studied settings, Besides, we tested the typical assumption that similar re-
quirements are realized by similar software. We applied correlation analysis to
study the relationship between requirements similarity and software similarity.
We found a moderate correlation between the two variables.

Evolutionary development of product line assets requires requirements pri-
oritization for release planning. When parts of the requirements are already im-
plemented, such cases reduces the risk and development cost associated with
the requirements. Furthermore, the reuse creates a dependency between the
new requirements and the reused ones. In such cases, requirements prioritiza-
tion based on dependencies, development cost, and associate risk becomes an
ideal solution.

Paper D provides support in modeling the requirement and their inter-
dependencies. Furthermore, it uses a modified version of the PageRank al-
gorithm to prioritize the requirement for implementation. Results from the
evaluation show that dependencies-based prioritization produces closer results
to human subjects compared to the state-of-the-art.

5.2 Discussion and Future Work

In the future, we plan to address some of the encountered challenges in the
included papers. This section provides a brief overview of the possible future
directions and extensions for the work presented in this thesis.

38 Chapter 5. Conclusion, Discussion, & Future Work

thermore, the adoption allowed incremental safety assessment and resulted in
a confidence boost in the derived products. However, challenges in product
derivation and maintenance were observed. Mainly, maintaining a high degree
of asset reuse, the evolution of assets, and change impact analysis were seen as
challenges.

In Paper B, and Paper C, we support the reuse analysis activities in product
derivation. We hypothesized that similarity among requirements could be used
to recommend the reuse of product line assets. Results show that we were able
to recommend the reuse of product line assets with around 74% of average ac-
curacy. Results further indicate that the reuse recommendations generated by
our approach are useful to engineers and can support reuse analysis activities in
the studied settings, Besides, we tested the typical assumption that similar re-
quirements are realized by similar software. We applied correlation analysis to
study the relationship between requirements similarity and software similarity.
We found a moderate correlation between the two variables.

Evolutionary development of product line assets requires requirements pri-
oritization for release planning. When parts of the requirements are already im-
plemented, such cases reduces the risk and development cost associated with
the requirements. Furthermore, the reuse creates a dependency between the
new requirements and the reused ones. In such cases, requirements prioritiza-
tion based on dependencies, development cost, and associate risk becomes an
ideal solution.

Paper D provides support in modeling the requirement and their inter-
dependencies. Furthermore, it uses a modified version of the PageRank al-
gorithm to prioritize the requirement for implementation. Results from the
evaluation show that dependencies-based prioritization produces closer results
to human subjects compared to the state-of-the-art.

5.2 Discussion and Future Work

In the future, we plan to address some of the encountered challenges in the
included papers. This section provides a brief overview of the possible future
directions and extensions for the work presented in this thesis.

52

5.2 Discussion and Future Work 39

Extensions to the Included Papers: In Paper B, we presented an approach
for reuse recommendation of SPL assets. We noticed that the results are sen-
sitive to the existing requirements used for training by the approach. In some
cases, existing requirements could result in high similarity with multiple new
customer requirements. We found that some requirements could be broken
down into multiple requirements. A future extension of the VARA approach
could be to warn about requirements that could be broken down into multiple
requirements. Furthermore, metrics on the quality of the requirements could be
calculated. Requirements that are hard to read, ambiguous, and are not com-
plete could be marked for review. This same analysis could also be applied at
different levels of abstraction to support project bids and testing.

Writing new test cases is a resource-intensive task. Test cases written for
existing products are often available in a shared repository. One of our future
areas of research is to support testers in manual test design. We aim to use
static analysis to identify similar software slices to the software under the test
from the repository and recommend the reuse of test cases. Specifically, we
aim to support the test data reuse and test oracle reuse.

The work presented in Paper C correlates the similarity of the requirements
with software similarity in a particular case. A future extension could be ex-
tending existing requirement similarity computation methods to reflect the soft-
ware similarity better. A large-scale empirical evaluation of multiple case stud-
ies could also yield interesting results. Furthermore, companies are often not
willing to pay substantial investment in SPLE unless they see a good return on
investment. The approaches used in Paper C could be packaged into a tool that
derives a business case for product line adoption and systematic reuse. Metrics
on incoming customer requirements and the implementing software can indi-
cate that a huge portion of the products is similar and can be migrated to an
SPL to save time and avoid redundant development efforts. Finally, automati-
cally migrating clone variants is also an interesting area of research and is one
of our planned future directions.

Paper D focuses on requirements prioritization in the presence of depen-
dencies. A relevant parallel activity is the test case prioritization and selection
in cases where the execution of the entire test suite is not possible. An exten-
sion to work presented in Paper D could be test case prioritization based on
dependencies. PageRank algorithm could be used to rank the test cases based
on their dependencies with other test cases and software components. Further-

5.2 Discussion and Future Work 39

Extensions to the Included Papers: In Paper B, we presented an approach
for reuse recommendation of SPL assets. We noticed that the results are sen-
sitive to the existing requirements used for training by the approach. In some
cases, existing requirements could result in high similarity with multiple new
customer requirements. We found that some requirements could be broken
down into multiple requirements. A future extension of the VARA approach
could be to warn about requirements that could be broken down into multiple
requirements. Furthermore, metrics on the quality of the requirements could be
calculated. Requirements that are hard to read, ambiguous, and are not com-
plete could be marked for review. This same analysis could also be applied at
different levels of abstraction to support project bids and testing.

Writing new test cases is a resource-intensive task. Test cases written for
existing products are often available in a shared repository. One of our future
areas of research is to support testers in manual test design. We aim to use
static analysis to identify similar software slices to the software under the test
from the repository and recommend the reuse of test cases. Specifically, we
aim to support the test data reuse and test oracle reuse.

The work presented in Paper C correlates the similarity of the requirements
with software similarity in a particular case. A future extension could be ex-
tending existing requirement similarity computation methods to reflect the soft-
ware similarity better. A large-scale empirical evaluation of multiple case stud-
ies could also yield interesting results. Furthermore, companies are often not
willing to pay substantial investment in SPLE unless they see a good return on
investment. The approaches used in Paper C could be packaged into a tool that
derives a business case for product line adoption and systematic reuse. Metrics
on incoming customer requirements and the implementing software can indi-
cate that a huge portion of the products is similar and can be migrated to an
SPL to save time and avoid redundant development efforts. Finally, automati-
cally migrating clone variants is also an interesting area of research and is one
of our planned future directions.

Paper D focuses on requirements prioritization in the presence of depen-
dencies. A relevant parallel activity is the test case prioritization and selection
in cases where the execution of the entire test suite is not possible. An exten-
sion to work presented in Paper D could be test case prioritization based on
dependencies. PageRank algorithm could be used to rank the test cases based
on their dependencies with other test cases and software components. Further-

53

40 Chapter 5. Conclusion, Discussion, & Future Work

more, the requirements similarity information, bug detection capability, test
case diversity, and coverage could also be used for test selection.

Delta-oriented Test repair and Amplification (DoTA): In the studied set-
tings, the SPL assets are modified to realize new customer requirements. The
test cases for the original version of the assets are usually available. The mod-
ification to the assets results in test breakages. Future works include a what-if
analysis to support the developer in the change-impact analysis. We aim to
classify the test cases into two classes (repairable and not repairable) based on
heuristics. This way, we would be able to quickly compute the impact of a
given change on the linked test cases and let the developer know about the po-
tential test breakages. In addition, an approach that would automatically repair
the test cases for the modified assets is also planned for future research. Fur-
thermore, we aim to use search-based algorithms to amplify the existing test
suite for coverage of the deltas in the modified assets.

Towards a more systematic SPLE process: Due to the safety-critical nature
of the studied case, requirements are at the center of the process. The product
line is described using natural language in the form of domain requirements.
Automated product derivation is not of high interest. This is due to the fact that
the derived product might end up with a dead code. However, small increments
towards a more systematic SPLE process are of very high interest to the com-
pany. Given the existing assets (Simulink models in the studies setting) and
their natural language requirements, feature model synthesis approaches could
be used to extract the feature model. In addition, decision models can also be
extracted from the variants. This will open a lot of possible research directions
for the company, such as combinatorial interaction testing and requirements to
feature traceability.

Co-evolution of the product line and the derived products is seen as a chal-
lenge. In many cases, smaller patches are committed to the product line assets,
and the decision of whether or not to propagate those changes to the derived
products becomes challenging. Migrating the clone-and-own SPL to more sys-
tematic reuse would also be of high interest. Given the existing variants, an
approach could be designed to automatically identify the identical clones in
the variants and migrate them to a central library for future reuse. This way,
the future modifications could be done in a central assets base, and the changes

40 Chapter 5. Conclusion, Discussion, & Future Work

more, the requirements similarity information, bug detection capability, test
case diversity, and coverage could also be used for test selection.

Delta-oriented Test repair and Amplification (DoTA): In the studied set-
tings, the SPL assets are modified to realize new customer requirements. The
test cases for the original version of the assets are usually available. The mod-
ification to the assets results in test breakages. Future works include a what-if
analysis to support the developer in the change-impact analysis. We aim to
classify the test cases into two classes (repairable and not repairable) based on
heuristics. This way, we would be able to quickly compute the impact of a
given change on the linked test cases and let the developer know about the po-
tential test breakages. In addition, an approach that would automatically repair
the test cases for the modified assets is also planned for future research. Fur-
thermore, we aim to use search-based algorithms to amplify the existing test
suite for coverage of the deltas in the modified assets.

Towards a more systematic SPLE process: Due to the safety-critical nature
of the studied case, requirements are at the center of the process. The product
line is described using natural language in the form of domain requirements.
Automated product derivation is not of high interest. This is due to the fact that
the derived product might end up with a dead code. However, small increments
towards a more systematic SPLE process are of very high interest to the com-
pany. Given the existing assets (Simulink models in the studies setting) and
their natural language requirements, feature model synthesis approaches could
be used to extract the feature model. In addition, decision models can also be
extracted from the variants. This will open a lot of possible research directions
for the company, such as combinatorial interaction testing and requirements to
feature traceability.

Co-evolution of the product line and the derived products is seen as a chal-
lenge. In many cases, smaller patches are committed to the product line assets,
and the decision of whether or not to propagate those changes to the derived
products becomes challenging. Migrating the clone-and-own SPL to more sys-
tematic reuse would also be of high interest. Given the existing variants, an
approach could be designed to automatically identify the identical clones in
the variants and migrate them to a central library for future reuse. This way,
the future modifications could be done in a central assets base, and the changes

54

5.2 Discussion and Future Work 41

could be easily propagated to the derived products. However, the propagation
of changes to the derived products will lead to another challenge of re-testing
the derived products. Variability-aware change impact analysis methods are
needed to avoid re-testing of the entire product.

Metrics, Smells, and Process Consistency Checking: During product
derivation cycles, many modifications are done to the standard product line
assets. The quality characteristic may vary in each derived variant. Metrics
relevant to the quality trends could be computed across product variants
by looking into history. Integration points, clones, and bug rates could be
computed across product variants and commits to visualize quality trends
in the derived products. Furthermore, configuration smells relevant to the
evolutionary development of SPLs could be detected in the variants. For
example, features/assets that are modified in most variants could be flagged,
and assets that do many things and are used by many other assets (god asset)
could be detected.

One of our future directions also includes domain-specific modeling of the
SPLE process. We aim to provide support to the architect to model the SPLE
process and define feature-level rules that must be followed. We then aim to
propose an approach to check the defined rules in the variants. For example,
two mutually exclusive features cannot be part of the same product, and this is
a rule violation and should be flagged.

5.2 Discussion and Future Work 41

could be easily propagated to the derived products. However, the propagation
of changes to the derived products will lead to another challenge of re-testing
the derived products. Variability-aware change impact analysis methods are
needed to avoid re-testing of the entire product.

Metrics, Smells, and Process Consistency Checking: During product
derivation cycles, many modifications are done to the standard product line
assets. The quality characteristic may vary in each derived variant. Metrics
relevant to the quality trends could be computed across product variants
by looking into history. Integration points, clones, and bug rates could be
computed across product variants and commits to visualize quality trends
in the derived products. Furthermore, configuration smells relevant to the
evolutionary development of SPLs could be detected in the variants. For
example, features/assets that are modified in most variants could be flagged,
and assets that do many things and are used by many other assets (god asset)
could be detected.

One of our future directions also includes domain-specific modeling of the
SPLE process. We aim to provide support to the architect to model the SPLE
process and define feature-level rules that must be followed. We then aim to
propose an approach to check the defined rules in the variants. For example,
two mutually exclusive features cannot be part of the same product, and this is
a rule violation and should be flagged.

55

56

Bibliography

[1] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software prod-
uct line engineering: foundations, principles and techniques. Springer
Science & Business Media, 2005.

[2] Frank Dordowsky and Walter Hipp. Adopting software product line prin-
ciples to manage software variants in a complex avionics system. In
Proceedings of the 13th International Software Product Line Conference,
SPLC ’09, page 265–274, USA, 2009. Carnegie Mellon University.

[3] Eray Tüzün and Bedir Tekinerdogan. Analyzing impact of experience
curve on roi in the software product line adoption process. Inf. Softw.
Technol., 59:136–148, 2015.

[4] Jan Bosch. On the development of software product-family components.
In Robert L. Nord, editor, Software Product Lines, pages 146–164, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[5] Muhammad Abbas, Robbert Jongeling, Claes Lindskog, Eduard Paul
Enoiu, Mehrdad Saadatmand, and Daniel Sundmark. Product line adop-
tion in industry: An experience report from the railway domain. In Pro-
ceedings of the 24th ACM Conference on Systems and Software Product
Line: Volume A - Volume A, SPLC ’20, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

[6] Damir Bilic, Daniel Sundmark, Wasif Afzal, Peter Wallin, Adnan Cau-
sevic, Christoffer Amlinger, and Dani Barkah. Towards a model-driven
product line engineering process – an industrial case study. In 13th Inno-
vations in Software Engineering Conference, March 2020.

43

Bibliography

[1] Klaus Pohl, Günter Böckle, and Frank J van Der Linden. Software prod-
uct line engineering: foundations, principles and techniques. Springer
Science & Business Media, 2005.

[2] Frank Dordowsky and Walter Hipp. Adopting software product line prin-
ciples to manage software variants in a complex avionics system. In
Proceedings of the 13th International Software Product Line Conference,
SPLC ’09, page 265–274, USA, 2009. Carnegie Mellon University.

[3] Eray Tüzün and Bedir Tekinerdogan. Analyzing impact of experience
curve on roi in the software product line adoption process. Inf. Softw.
Technol., 59:136–148, 2015.

[4] Jan Bosch. On the development of software product-family components.
In Robert L. Nord, editor, Software Product Lines, pages 146–164, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg.

[5] Muhammad Abbas, Robbert Jongeling, Claes Lindskog, Eduard Paul
Enoiu, Mehrdad Saadatmand, and Daniel Sundmark. Product line adop-
tion in industry: An experience report from the railway domain. In Pro-
ceedings of the 24th ACM Conference on Systems and Software Product
Line: Volume A - Volume A, SPLC ’20, New York, NY, USA, 2020. As-
sociation for Computing Machinery.

[6] Damir Bilic, Daniel Sundmark, Wasif Afzal, Peter Wallin, Adnan Cau-
sevic, Christoffer Amlinger, and Dani Barkah. Towards a model-driven
product line engineering process – an industrial case study. In 13th Inno-
vations in Software Engineering Conference, March 2020.

43

57

44 Bibliography

[7] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Mar-
tin Becker, and Krzysztof Czarnecki. An exploratory study of cloning in
industrial software product lines. In 2013 17th European Conference on
Software Maintenance and Reengineering, pages 25–34. IEEE, 2013.

[8] Glenn A Bowen et al. Document analysis as a qualitative research
method. Qualitative research journal, 9(2):27, 2009.

[9] Barbara B Kawulich. Participant observation as a data collection method.
In Forum qualitative sozialforschung/forum: Qualitative social research,
volume 6, 2005.

[10] Jyrki Kontio, Johanna Bragge, and Laura Lehtola. The focus group
method as an empirical tool in software engineering. In Guide to ad-
vanced empirical software engineering, pages 93–116. Springer, 2008.

[11] C. Pacheco, I. Garcia, J. A. Calvo-Manzano, and M. Arcilla. Reusing
functional software requirements in small-sized software enterprises: a
model oriented to the catalog of requirements. Requirements Engineer-
ing, 22(2):275–287, 2017.

[12] Vahid Garousi, Markus Borg, and Markku Oivo. Practical relevance of
software engineering research: synthesizing the community’s voice. Em-
pirical Software Engineering, pages 1–68, 2020.

[13] V. Basili, L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabet-
zadeh. Software engineering research and industry: A symbiotic rela-
tionship to foster impact. IEEE Software, 35(05):44–49, sep 2018.

[14] Holger Schlingloff, Peter M. Kruse, and Mehrdad Saadatmand. Excel-
lence in variant testing. In Proceedings of the 14th International Working
Conference on Variability Modelling of Software-Intensive Systems, VA-
MOS ’20, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[15] Gordana Dodig Crnkovic. Constructive Research and Info-computational
Knowledge Generation, pages 359–380. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

44 Bibliography

[7] Yael Dubinsky, Julia Rubin, Thorsten Berger, Slawomir Duszynski, Mar-
tin Becker, and Krzysztof Czarnecki. An exploratory study of cloning in
industrial software product lines. In 2013 17th European Conference on
Software Maintenance and Reengineering, pages 25–34. IEEE, 2013.

[8] Glenn A Bowen et al. Document analysis as a qualitative research
method. Qualitative research journal, 9(2):27, 2009.

[9] Barbara B Kawulich. Participant observation as a data collection method.
In Forum qualitative sozialforschung/forum: Qualitative social research,
volume 6, 2005.

[10] Jyrki Kontio, Johanna Bragge, and Laura Lehtola. The focus group
method as an empirical tool in software engineering. In Guide to ad-
vanced empirical software engineering, pages 93–116. Springer, 2008.

[11] C. Pacheco, I. Garcia, J. A. Calvo-Manzano, and M. Arcilla. Reusing
functional software requirements in small-sized software enterprises: a
model oriented to the catalog of requirements. Requirements Engineer-
ing, 22(2):275–287, 2017.

[12] Vahid Garousi, Markus Borg, and Markku Oivo. Practical relevance of
software engineering research: synthesizing the community’s voice. Em-
pirical Software Engineering, pages 1–68, 2020.

[13] V. Basili, L. Briand, D. Bianculli, S. Nejati, F. Pastore, and M. Sabet-
zadeh. Software engineering research and industry: A symbiotic rela-
tionship to foster impact. IEEE Software, 35(05):44–49, sep 2018.

[14] Holger Schlingloff, Peter M. Kruse, and Mehrdad Saadatmand. Excel-
lence in variant testing. In Proceedings of the 14th International Working
Conference on Variability Modelling of Software-Intensive Systems, VA-
MOS ’20, New York, NY, USA, 2020. Association for Computing Ma-
chinery.

[15] Gordana Dodig Crnkovic. Constructive Research and Info-computational
Knowledge Generation, pages 359–380. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2010.

58

Bibliography 45

[16] Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. A model for
technology transfer in practice. IEEE software, 23(6):88–95, 2006.

[17] Muhammad Abbas. Variability aware requirements reuse analysis. In
The 42nd International Conference on Software Engineering Companion.
ACM, May 2020.

[18] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst, 1990.

[19] Mike Mannion and Javier Camara. Theorem proving for product line
model verification. In International Workshop on Software Product-
Family Engineering, pages 211–224. Springer, 2003.

[20] Martin F. Porter. An algorithm for suffix stripping. Program, 40:211–218,
1980.

[21] Vimala Balakrishnan and Ethel Lloyd-Yemoh. Stemming and lemmatiza-
tion: a comparison of retrieval performances. Lecture Notes on Software
Engineering, 2014.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805, 2018.

[23] A. Ferrari, G. O. Spagnolo, and S. Gnesi. Pure: A dataset of public
requirements documents. In 2017 IEEE 25th International Requirements
Engineering Conference (RE), pages 502–505, 2017.

[24] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words
model: a statistical framework. International Journal of Machine Learn-
ing and Cybernetics, 1(1-4):43–52, 2010.

[25] Markus Borg, Per Runeson, and Anders Ardö. Recovering from a decade:
a systematic mapping of information retrieval approaches to software
traceability. Empirical Software Engineering, 19(6):1565–1616, 2014.

Bibliography 45

[16] Tony Gorschek, Per Garre, Stig Larsson, and Claes Wohlin. A model for
technology transfer in practice. IEEE software, 23(6):88–95, 2006.

[17] Muhammad Abbas. Variability aware requirements reuse analysis. In
The 42nd International Conference on Software Engineering Companion.
ACM, May 2020.

[18] Kyo C Kang, Sholom G Cohen, James A Hess, William E Novak, and
A Spencer Peterson. Feature-oriented domain analysis (foda) feasibility
study. Technical report, Carnegie-Mellon Univ Pittsburgh Pa Software
Engineering Inst, 1990.

[19] Mike Mannion and Javier Camara. Theorem proving for product line
model verification. In International Workshop on Software Product-
Family Engineering, pages 211–224. Springer, 2003.

[20] Martin F. Porter. An algorithm for suffix stripping. Program, 40:211–218,
1980.

[21] Vimala Balakrishnan and Ethel Lloyd-Yemoh. Stemming and lemmatiza-
tion: a comparison of retrieval performances. Lecture Notes on Software
Engineering, 2014.

[22] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.
Bert: Pre-training of deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805, 2018.

[23] A. Ferrari, G. O. Spagnolo, and S. Gnesi. Pure: A dataset of public
requirements documents. In 2017 IEEE 25th International Requirements
Engineering Conference (RE), pages 502–505, 2017.

[24] Yin Zhang, Rong Jin, and Zhi-Hua Zhou. Understanding bag-of-words
model: a statistical framework. International Journal of Machine Learn-
ing and Cybernetics, 1(1-4):43–52, 2010.

[25] Markus Borg, Per Runeson, and Anders Ardö. Recovering from a decade:
a systematic mapping of information retrieval approaches to software
traceability. Empirical Software Engineering, 19(6):1565–1616, 2014.

59

46 Bibliography

[26] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon. Bottom-up adoption of software product lines: a
generic and extensible approach. In Proceedings of the 19th International
Conference on Software Product Line, SPLC 2015, Nashville, TN, USA,
July 20-24, 2015, pages 101–110, 2015.

[27] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller.
Checking app behavior against app descriptions. In ICSE’14: Proceed-
ings of the 36th International Conference on Software Engineering, 2014.

[28] Stephen W Thomas, Hadi Hemmati, Ahmed E Hassan, and Dorothea
Blostein. Static test case prioritization using topic models. Empirical
Software Engineering, 19(1):182–212, 2014.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space, 2013.

[30] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences
and documents, 2014.

[31] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information, 2017.

[32] Alexander Felfernig, Gerald Ninaus, Harald Grabner, Florian Reinfrank,
Leopold Weninger, Dennis Pagano, and Walid Maalej. An overview of
recommender systems in requirements engineering. In Managing re-
quirements knowledge, pages 315–332. Springer, 2013.

[33] Yan Li, Tao Yue, Shaukat Ali, and Li Zhang. Enabling automated re-
quirements reuse and configuration. Software and Systems Modeling,
18(3):2177–2211, 2019.

[34] Mikyeong Moon, Keunhyuk Yeom, and Heung Seok Chae. An approach
to developing domain requirements as a core asset based on commonality
and variability analysis in a product line. IEEE Transactions on Software
Engineering, 31(7):551–569, 2005.

[35] Nan Niu, Juha Savolainen, Zhendong Niu, Mingzhou Jin, and Jing-ru C
Cheng. A Systems Approach to Product Line Requirements Reuse. IEEE
Systems Journal, 8:827–836, 2014.

46 Bibliography

[26] Jabier Martinez, Tewfik Ziadi, Tegawendé F. Bissyandé, Jacques Klein,
and Yves Le Traon. Bottom-up adoption of software product lines: a
generic and extensible approach. In Proceedings of the 19th International
Conference on Software Product Line, SPLC 2015, Nashville, TN, USA,
July 20-24, 2015, pages 101–110, 2015.

[27] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller.
Checking app behavior against app descriptions. In ICSE’14: Proceed-
ings of the 36th International Conference on Software Engineering, 2014.

[28] Stephen W Thomas, Hadi Hemmati, Ahmed E Hassan, and Dorothea
Blostein. Static test case prioritization using topic models. Empirical
Software Engineering, 19(1):182–212, 2014.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient
estimation of word representations in vector space, 2013.

[30] Quoc V. Le and Tomas Mikolov. Distributed representations of sentences
and documents, 2014.

[31] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov.
Enriching word vectors with subword information, 2017.

[32] Alexander Felfernig, Gerald Ninaus, Harald Grabner, Florian Reinfrank,
Leopold Weninger, Dennis Pagano, and Walid Maalej. An overview of
recommender systems in requirements engineering. In Managing re-
quirements knowledge, pages 315–332. Springer, 2013.

[33] Yan Li, Tao Yue, Shaukat Ali, and Li Zhang. Enabling automated re-
quirements reuse and configuration. Software and Systems Modeling,
18(3):2177–2211, 2019.

[34] Mikyeong Moon, Keunhyuk Yeom, and Heung Seok Chae. An approach
to developing domain requirements as a core asset based on commonality
and variability analysis in a product line. IEEE Transactions on Software
Engineering, 31(7):551–569, 2005.

[35] Nan Niu, Juha Savolainen, Zhendong Niu, Mingzhou Jin, and Jing-ru C
Cheng. A Systems Approach to Product Line Requirements Reuse. IEEE
Systems Journal, 8:827–836, 2014.

60

Bibliography 47

[36] Maximiliano Arias, Agustina Buccella, and Alejandra Cechich. A Frame-
work for Managing Requirements of Software Product Lines. Electronic
Notes in Theoretical Computer Science, 339:5–20, 2018.

[37] Zong Yong Li, Zhi Xue Wang, Ying Ying Yang, Yue Wu, and Ying Liu.
Towards a multiple ontology framework for requirements elicitation and
reuse. In Proceedings - International Computer Software and Applica-
tions Conference, volume 1, pages 189–195, 2007.

[38] C. L. Pacheco, I. A. Garcia, J. A. Calvo-Manzano, and M. Arcilla. A pro-
posed model for reuse of software requirements in requirements catalog.
Journal of Software: Evolution and Process, 27(1):1–21, 2015.

[39] Fabiane Barreto Vavassori Benitti and Rodrigo Cezario da Silva. Evalua-
tion of a systematic approach to requirements reuse. Journal of Universal
Computer Science, 19(2):254–280, 2013.

[40] He Zhang, Juan Li, Liming Zhu, Ross Jeffery, Yan Liu, Qing Wang,
and Mingshu Li. Investigating dependencies in software requirements
for change propagation analysis. Information and Software Technology,
56(1):40–53, 2014.

[41] Muesluem Atas, Ralph Samer, and Alexander Felfernig. Automated iden-
tification of type-specific dependencies between requirements. In 2018
IEEE/WIC/ACM International Conference on Web Intelligence (WI),
pages 688–695. IEEE, 2018.

[42] Ralph Samer, Martin Stettinger, Müslüm Atas, Alexander Felfernig,
Guenther Ruhe, and Gouri Deshpande. New approaches to the identi-
fication of dependencies between requirements. In 2019 IEEE 31st Inter-
national Conference on Tools with Artificial Intelligence (ICTAI), pages
1265–1270. IEEE, 2019.

[43] Gouri Deshpande, Quim Motger, Cristina Palomares, Ikagarjot Kamra,
Katarzyna Biesialska, Xavier Franch, Guenther Ruhe, and Jason Ho.
Requirements dependency extraction by integrating active learning with
ontology-based retrieval. In 2020 IEEE 28th International Requirements
Engineering Conference (RE), pages 78–89. IEEE, 2020.

Bibliography 47

[36] Maximiliano Arias, Agustina Buccella, and Alejandra Cechich. A Frame-
work for Managing Requirements of Software Product Lines. Electronic
Notes in Theoretical Computer Science, 339:5–20, 2018.

[37] Zong Yong Li, Zhi Xue Wang, Ying Ying Yang, Yue Wu, and Ying Liu.
Towards a multiple ontology framework for requirements elicitation and
reuse. In Proceedings - International Computer Software and Applica-
tions Conference, volume 1, pages 189–195, 2007.

[38] C. L. Pacheco, I. A. Garcia, J. A. Calvo-Manzano, and M. Arcilla. A pro-
posed model for reuse of software requirements in requirements catalog.
Journal of Software: Evolution and Process, 27(1):1–21, 2015.

[39] Fabiane Barreto Vavassori Benitti and Rodrigo Cezario da Silva. Evalua-
tion of a systematic approach to requirements reuse. Journal of Universal
Computer Science, 19(2):254–280, 2013.

[40] He Zhang, Juan Li, Liming Zhu, Ross Jeffery, Yan Liu, Qing Wang,
and Mingshu Li. Investigating dependencies in software requirements
for change propagation analysis. Information and Software Technology,
56(1):40–53, 2014.

[41] Muesluem Atas, Ralph Samer, and Alexander Felfernig. Automated iden-
tification of type-specific dependencies between requirements. In 2018
IEEE/WIC/ACM International Conference on Web Intelligence (WI),
pages 688–695. IEEE, 2018.

[42] Ralph Samer, Martin Stettinger, Müslüm Atas, Alexander Felfernig,
Guenther Ruhe, and Gouri Deshpande. New approaches to the identi-
fication of dependencies between requirements. In 2019 IEEE 31st Inter-
national Conference on Tools with Artificial Intelligence (ICTAI), pages
1265–1270. IEEE, 2019.

[43] Gouri Deshpande, Quim Motger, Cristina Palomares, Ikagarjot Kamra,
Katarzyna Biesialska, Xavier Franch, Guenther Ruhe, and Jason Ho.
Requirements dependency extraction by integrating active learning with
ontology-based retrieval. In 2020 IEEE 28th International Requirements
Engineering Conference (RE), pages 78–89. IEEE, 2020.

61

48 Bibliography

[44] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E.M. Van Der Werf, Sjaak
Brinkkemper, and DIdar Zowghi. Behavior-driven requirements trace-
ability via automated acceptance tests. In Proceedings - 2017 IEEE 25th
International Requirements Engineering Conference Workshops, REW
2017, pages 431–434. IEEE, 2017.

[45] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram,
E. Ashlee Holbrook, Sravanthi Vadlamudi, and Alain April. REquire-
ments TRacing On target (RETRO): Improving software maintenance
through traceability recovery. Innovations in Systems and Software Engi-
neering, 3(3):193–202, 2007.

[46] Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemper, and Bjorn
Regnell. A linguistic-engineering approach to large-scale requirements
management. IEEE Softw., 22(1):32–39, January 2005.

[47] Wentao Wang, Nan Niu, Hui Liu, and Zhendong Niu. Enhancing auto-
mated requirements traceability by resolving polysemy. In Proceedings
- 2018 IEEE 26th International Requirements Engineering Conference,
RE 2018, pages 40–51. IEEE, 2018.

[48] Wentao Wang, Arushi Gupta, Nan Niu, Li Da Xu, Jing Ru C. Cheng,
and Zhendong Niu. Automatically Tracing Dependability Requirements
via Term-Based Relevance Feedback. IEEE Transactions on Industrial
Informatics, 14(1):342–349, 2018.

[49] Jun Lin, Chan Chou Lin, Jane Cleland-Huang, Raffaella Settimi, Joseph
Amaya, Grace Bedford, Brian Berenbach, Oussama Ben Khadra, Chuan
Duan, and Xuchang Zou. Poirot: A distributed tool supporting enterprise-
wide automated traceability. In Proceedings of the 14th IEEE Interna-
tional Requirements Engineering Conference, RE ’06, page 356–357,
USA, 2006. IEEE Computer Society.

[50] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Lan-
dauer, and Richard Harshman. Indexing by latent semantic analysis.
Journal of the American society for information science, 41(6):391–407,
1990.

48 Bibliography

[44] Garm Lucassen, Fabiano Dalpiaz, Jan Martijn E.M. Van Der Werf, Sjaak
Brinkkemper, and DIdar Zowghi. Behavior-driven requirements trace-
ability via automated acceptance tests. In Proceedings - 2017 IEEE 25th
International Requirements Engineering Conference Workshops, REW
2017, pages 431–434. IEEE, 2017.

[45] Jane Huffman Hayes, Alex Dekhtyar, Senthil Karthikeyan Sundaram,
E. Ashlee Holbrook, Sravanthi Vadlamudi, and Alain April. REquire-
ments TRacing On target (RETRO): Improving software maintenance
through traceability recovery. Innovations in Systems and Software Engi-
neering, 3(3):193–202, 2007.

[46] Johan Natt och Dag, Vincenzo Gervasi, Sjaak Brinkkemper, and Bjorn
Regnell. A linguistic-engineering approach to large-scale requirements
management. IEEE Softw., 22(1):32–39, January 2005.

[47] Wentao Wang, Nan Niu, Hui Liu, and Zhendong Niu. Enhancing auto-
mated requirements traceability by resolving polysemy. In Proceedings
- 2018 IEEE 26th International Requirements Engineering Conference,
RE 2018, pages 40–51. IEEE, 2018.

[48] Wentao Wang, Arushi Gupta, Nan Niu, Li Da Xu, Jing Ru C. Cheng,
and Zhendong Niu. Automatically Tracing Dependability Requirements
via Term-Based Relevance Feedback. IEEE Transactions on Industrial
Informatics, 14(1):342–349, 2018.

[49] Jun Lin, Chan Chou Lin, Jane Cleland-Huang, Raffaella Settimi, Joseph
Amaya, Grace Bedford, Brian Berenbach, Oussama Ben Khadra, Chuan
Duan, and Xuchang Zou. Poirot: A distributed tool supporting enterprise-
wide automated traceability. In Proceedings of the 14th IEEE Interna-
tional Requirements Engineering Conference, RE ’06, page 356–357,
USA, 2006. IEEE Computer Society.

[50] Scott Deerwester, Susan T Dumais, George W Furnas, Thomas K Lan-
dauer, and Richard Harshman. Indexing by latent semantic analysis.
Journal of the American society for information science, 41(6):391–407,
1990.

62

Bibliography 49

[51] Andrea De Lucia, Rocco Oliveto, and Paola Sgueglia. Incremental ap-
proach and user feedbacks: A silver bullet for traceability recovery. In
Proceedings of the 22nd IEEE International Conference on Software
Maintenance, ICSM ’06, page 299–309, USA, 2006. IEEE Computer So-
ciety.

[52] Adnane Ghannem, Mohamed Salah Hamdi, Marouane Kessentini, and
Hany H. Ammar. Search-based requirements traceability recovery: A
multi-objective approach. In 2017 IEEE Congress on Evolutionary Com-
putation, CEC 2017 - Proceedings, pages 1183–1190. IEEE, 2017.

[53] Reihaneh H Hariri and Erik M Fredericks. Towards Traceability Link
Recovery for Self-Adaptive Systems. pages 762–766, 2016.

[54] Kathrin Berg, Judith Bishop, and Dirk Muthig. Tracing software product
line variability: from problem to solution space. In Proceedings of the
2005 annual research conference of the South African institute of com-
puter scientists and information technologists on IT research in develop-
ing countries, pages 182–191, 2005.

[55] Luis C. Lamb, Waraporn Jirapanthong, and Andrea Zisman. Formalizing
traceability relations for product lines. In Proceedings - International
Conference on Software Engineering, pages 42–45, 2011.

[56] George Spanoudakis, Andrea Zisman, Elena Pérez-Miñana, and Paul
Krause. Rule-based generation of requirements traceability relations.
Journal of Systems and Software, 72(2):105–127, 2004.

[57] Alessio Ferrari, Giorgio O Spagnolo, and Felice Dell Orletta. Mining
Commonalities and Variabilities from Natural Language Documents. In
International Software Product Line Conference, pages 116–120, Tokyo,
Japan, 2013. ACM.

[58] Noor Hasrina Bakar, Zarinah M. Kasirun, Norsaremah Salleh, and
Hamid A. Jalab. Extracting features from online software reviews to
aid requirements reuse. Applied Soft Computing Journal, 49:1297–1315,
2016.

[59] Mostafa Hamza and Robert J Walker. Recommending Features and Fea-
ture Relationships from Requirements Documents for Software Product

Bibliography 49

[51] Andrea De Lucia, Rocco Oliveto, and Paola Sgueglia. Incremental ap-
proach and user feedbacks: A silver bullet for traceability recovery. In
Proceedings of the 22nd IEEE International Conference on Software
Maintenance, ICSM ’06, page 299–309, USA, 2006. IEEE Computer So-
ciety.

[52] Adnane Ghannem, Mohamed Salah Hamdi, Marouane Kessentini, and
Hany H. Ammar. Search-based requirements traceability recovery: A
multi-objective approach. In 2017 IEEE Congress on Evolutionary Com-
putation, CEC 2017 - Proceedings, pages 1183–1190. IEEE, 2017.

[53] Reihaneh H Hariri and Erik M Fredericks. Towards Traceability Link
Recovery for Self-Adaptive Systems. pages 762–766, 2016.

[54] Kathrin Berg, Judith Bishop, and Dirk Muthig. Tracing software product
line variability: from problem to solution space. In Proceedings of the
2005 annual research conference of the South African institute of com-
puter scientists and information technologists on IT research in develop-
ing countries, pages 182–191, 2005.

[55] Luis C. Lamb, Waraporn Jirapanthong, and Andrea Zisman. Formalizing
traceability relations for product lines. In Proceedings - International
Conference on Software Engineering, pages 42–45, 2011.

[56] George Spanoudakis, Andrea Zisman, Elena Pérez-Miñana, and Paul
Krause. Rule-based generation of requirements traceability relations.
Journal of Systems and Software, 72(2):105–127, 2004.

[57] Alessio Ferrari, Giorgio O Spagnolo, and Felice Dell Orletta. Mining
Commonalities and Variabilities from Natural Language Documents. In
International Software Product Line Conference, pages 116–120, Tokyo,
Japan, 2013. ACM.

[58] Noor Hasrina Bakar, Zarinah M. Kasirun, Norsaremah Salleh, and
Hamid A. Jalab. Extracting features from online software reviews to
aid requirements reuse. Applied Soft Computing Journal, 49:1297–1315,
2016.

[59] Mostafa Hamza and Robert J Walker. Recommending Features and Fea-
ture Relationships from Requirements Documents for Software Product

63

50 Bibliography

Lines. In 2015 IEEE/ACM 4th International Workshop on Realizing Arti-
ficial Intelligence Synergies in Software Engineering, pages 25–31. IEEE,
2015.

[60] J A R Noppen, P M van den Broek, N Weston, and A Rashid. Mod-
elling Imperfect Product Line Requirements with Fuzzy Feature Dia-
grams. In Third International Workshop on Variability Modelling of
Software-intensive Systems, Sevilla, Spain, number 29, pages 93–102,
2009.

[61] Nathan Weston, Ruzanna Chitchyan, and Awais Rashid. A framework for
constructing semantically composable feature models from natural lan-
guage requirements. In Proceedings of the 13th International Software
Product Line Conference, pages 211–220, 2009.

[62] Nili Itzik and Iris Reinhartz-Berger. Sova - a tool for semantic and onto-
logical variability analysis. In CAiSE, 2014.

[63] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk.
Feature location in source code: a taxonomy and survey. Journal of soft-
ware: Evolution and Process, 25(1):53–95, 2013.

[64] Jabier Martinez, Tewfik Ziadi, Mike Papadakis, Tegawendé F Bissyandé,
Jacques Klein, and Yves Le Traon. Feature location benchmark for soft-
ware families using eclipse community releases. In International Confer-
ence on Software Reuse, pages 267–283. Springer, 2016.

[65] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. Sniafl: To-
wards a static noninteractive approach to feature location. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 15(2):195–
226, 2006.

[66] Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano
Antoniol, and Vaclav Rajlich. Feature location using probabilistic ranking
of methods based on execution scenarios and information retrieval. IEEE
Transactions on Software Engineering, 33(6):420–432, 2007.

[67] Berima Andam, Andreas Burger, Thorsten Berger, and Michel RV Chau-
dron. Florida: Feature location dashboard for extracting and visualizing

50 Bibliography

Lines. In 2015 IEEE/ACM 4th International Workshop on Realizing Arti-
ficial Intelligence Synergies in Software Engineering, pages 25–31. IEEE,
2015.

[60] J A R Noppen, P M van den Broek, N Weston, and A Rashid. Mod-
elling Imperfect Product Line Requirements with Fuzzy Feature Dia-
grams. In Third International Workshop on Variability Modelling of
Software-intensive Systems, Sevilla, Spain, number 29, pages 93–102,
2009.

[61] Nathan Weston, Ruzanna Chitchyan, and Awais Rashid. A framework for
constructing semantically composable feature models from natural lan-
guage requirements. In Proceedings of the 13th International Software
Product Line Conference, pages 211–220, 2009.

[62] Nili Itzik and Iris Reinhartz-Berger. Sova - a tool for semantic and onto-
logical variability analysis. In CAiSE, 2014.

[63] Bogdan Dit, Meghan Revelle, Malcom Gethers, and Denys Poshyvanyk.
Feature location in source code: a taxonomy and survey. Journal of soft-
ware: Evolution and Process, 25(1):53–95, 2013.

[64] Jabier Martinez, Tewfik Ziadi, Mike Papadakis, Tegawendé F Bissyandé,
Jacques Klein, and Yves Le Traon. Feature location benchmark for soft-
ware families using eclipse community releases. In International Confer-
ence on Software Reuse, pages 267–283. Springer, 2016.

[65] Wei Zhao, Lu Zhang, Yin Liu, Jiasu Sun, and Fuqing Yang. Sniafl: To-
wards a static noninteractive approach to feature location. ACM Transac-
tions on Software Engineering and Methodology (TOSEM), 15(2):195–
226, 2006.

[66] Denys Poshyvanyk, Yann-Gael Gueheneuc, Andrian Marcus, Giuliano
Antoniol, and Vaclav Rajlich. Feature location using probabilistic ranking
of methods based on execution scenarios and information retrieval. IEEE
Transactions on Software Engineering, 33(6):420–432, 2007.

[67] Berima Andam, Andreas Burger, Thorsten Berger, and Michel RV Chau-
dron. Florida: Feature location dashboard for extracting and visualizing

64

Bibliography 51

feature traces. In Proceedings of the Eleventh International Workshop
on Variability Modelling of Software-intensive Systems, pages 100–107,
2017.

[68] Parisa Moslehi, Bram Adams, and Juergen Rilling. A feature location
approach for mapping application features extracted from crowd-based
screencasts to source code. Empirical Software Engineering, 25(6):4873–
4926, 2020.

[69] Abdul Razzaq, Andrew Le Gear, Chris Exton, and Jim Buckley. An em-
pirical assessment of baseline feature location techniques. Empirical Soft-
ware Engineering, 25(1):266–321, 2020.

[70] Patrik Berander and Anneliese Andrews. Requirements Prioritization,
pages 69–94. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[71] Thomas L Saaty. Decision making with the analytic hierarchy process.
International journal of services sciences, 1(1):83–98, 2008.

[72] Muhammad Aasem, Muhammad Ramzan, and Arfan Jaffar. Analysis
and optimization of software requirements prioritization techniques. In
2010 International Conference on Information and Emerging Technolo-
gies, pages 1–6. IEEE, 2010.

[73] Thomas Bebensee, Inge van de Weerd, and Sjaak Brinkkemper. Binary
priority list for prioritizing software requirements. In International work-
ing conference on requirements engineering: foundation for software
quality, pages 67–78. Springer, 2010.

[74] Paolo Tonella, Angelo Susi, and Francis Palma. Interactive requirements
prioritization using a genetic algorithm. Information and software tech-
nology, 55(1):173–187, 2013.

[75] Xavier Franch, Lidia López, Carlos Cares, and Daniel Colomer. The i*
framework for goal-oriented modeling. In Domain-specific conceptual
modeling, pages 485–506. Springer, 2016.

[76] Fei Shao, Rong Peng, Han Lai, and Bangchao Wang. Drank: A semi-
automated requirements prioritization method based on preferences and
dependencies. Journal of Systems and Software, 126:141–156, 2017.

Bibliography 51

feature traces. In Proceedings of the Eleventh International Workshop
on Variability Modelling of Software-intensive Systems, pages 100–107,
2017.

[68] Parisa Moslehi, Bram Adams, and Juergen Rilling. A feature location
approach for mapping application features extracted from crowd-based
screencasts to source code. Empirical Software Engineering, 25(6):4873–
4926, 2020.

[69] Abdul Razzaq, Andrew Le Gear, Chris Exton, and Jim Buckley. An em-
pirical assessment of baseline feature location techniques. Empirical Soft-
ware Engineering, 25(1):266–321, 2020.

[70] Patrik Berander and Anneliese Andrews. Requirements Prioritization,
pages 69–94. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[71] Thomas L Saaty. Decision making with the analytic hierarchy process.
International journal of services sciences, 1(1):83–98, 2008.

[72] Muhammad Aasem, Muhammad Ramzan, and Arfan Jaffar. Analysis
and optimization of software requirements prioritization techniques. In
2010 International Conference on Information and Emerging Technolo-
gies, pages 1–6. IEEE, 2010.

[73] Thomas Bebensee, Inge van de Weerd, and Sjaak Brinkkemper. Binary
priority list for prioritizing software requirements. In International work-
ing conference on requirements engineering: foundation for software
quality, pages 67–78. Springer, 2010.

[74] Paolo Tonella, Angelo Susi, and Francis Palma. Interactive requirements
prioritization using a genetic algorithm. Information and software tech-
nology, 55(1):173–187, 2013.

[75] Xavier Franch, Lidia López, Carlos Cares, and Daniel Colomer. The i*
framework for goal-oriented modeling. In Domain-specific conceptual
modeling, pages 485–506. Springer, 2016.

[76] Fei Shao, Rong Peng, Han Lai, and Bangchao Wang. Drank: A semi-
automated requirements prioritization method based on preferences and
dependencies. Journal of Systems and Software, 126:141–156, 2017.

65

[77] Muhammad Abbas, Mehrdad Saadatmand, Eduard Enoiu, Daniel Sun-
damark, and Claes Lindskog. Automated reuse recommendation of
product line assets based on natural language requirements. In Si-
hem Ben Sassi, Stéphane Ducasse, and Hafedh Mili, editors, Reuse in
Emerging Software Engineering Practices, pages 173–189, Cham, 2020.
Springer International Publishing.

[78] Muhammad Abbas, Alessio Ferrari, Anas Shatnawi, Eduard Paul Enoiu,
and Mehrdad Saadatmand. Is requirements similarity a good proxy for
software similarity? an empirical investigation in industry. In Fabiano
Dalpiaz and Paola Spoletini, editors, Requirements Engineering: Foun-
dation for Software Quality, pages 3–18, Cham, 2021. Springer Interna-
tional Publishing.

[79] Muhammad Abbas, Irum Inayat, Naila Jan, Mehrdad Saadatmand, Ed-
uard Paul Enoiu, and Daniel Sundmark. Mbrp: Model-based require-
ments prioritization using pagerank algorithm. In The 26th Asia-Pacific
Software Engineering Conference, December 2019.

[80] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. Are students rep-
resentatives of professionals in software engineering experiments? In
2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, volume 1, pages 666–676. IEEE, 2015.

[77] Muhammad Abbas, Mehrdad Saadatmand, Eduard Enoiu, Daniel Sun-
damark, and Claes Lindskog. Automated reuse recommendation of
product line assets based on natural language requirements. In Si-
hem Ben Sassi, Stéphane Ducasse, and Hafedh Mili, editors, Reuse in
Emerging Software Engineering Practices, pages 173–189, Cham, 2020.
Springer International Publishing.

[78] Muhammad Abbas, Alessio Ferrari, Anas Shatnawi, Eduard Paul Enoiu,
and Mehrdad Saadatmand. Is requirements similarity a good proxy for
software similarity? an empirical investigation in industry. In Fabiano
Dalpiaz and Paola Spoletini, editors, Requirements Engineering: Foun-
dation for Software Quality, pages 3–18, Cham, 2021. Springer Interna-
tional Publishing.

[79] Muhammad Abbas, Irum Inayat, Naila Jan, Mehrdad Saadatmand, Ed-
uard Paul Enoiu, and Daniel Sundmark. Mbrp: Model-based require-
ments prioritization using pagerank algorithm. In The 26th Asia-Pacific
Software Engineering Conference, December 2019.

[80] Iflaah Salman, Ayse Tosun Misirli, and Natalia Juristo. Are students rep-
resentatives of professionals in software engineering experiments? In
2015 IEEE/ACM 37th IEEE International Conference on Software Engi-
neering, volume 1, pages 666–676. IEEE, 2015.

66

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut right edge by 26.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 26.3622
 Right

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut bottom edge by 26.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 26.3622
 Bottom

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut top edge by 26.36 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309
 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 26.3622
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: cut left edge by 540.28 points
 Shift: none
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 1243
 309

 None
 Up
 0.0000
 0.0000

 Both
 8
 AllDoc
 13

 CurrentAVDoc

 Smaller
 540.2835
 Left

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9b
 Quite Imposing Plus 2
 1

 0
 1
 0
 1

 1

 HistoryList_V1
 qi2base

