
Asset Management Taxonomy: A Roadmap
Ehsan Zabardasta,∗, Javier Gonzalez-Huertaa, Tony Gorscheka, Darja Šmitea, Emil Alégrotha and
Fabian Fagerholma,b

aSoftware Engineering Research Lab SERL, Blekinge Institute of Technology, Campus Gräsvik, Valhallavägen 1, Karlskrona, Sweden
bDepartment of Computer Science, Aalto University, Espoo, Finland

ART ICLE INFO
Keywords:
Taxonomy
Asset Management in Software Engi-
neering
Assets for Software-Intensive Products
and Services
Technical Debt
Value

ABSTRACT
Developing a software-intensive product or service can be a significant undertaking, associated with
unique challenges in each project stage, from inception to development, delivery, maintenance, and
evolution. Each step results in artefacts that are crucial for the project outcome, such as source-code
and supporting deliverables, e.g., documentation.

Artefacts which have inherent value for the organisation are assets, and as assets, they are subject
to degradation. This degradation occurs over time, as artefacts age, and can be more immediate or
slowly over a period of time, similar to the concept of technical debt. One challenge with the concept
of assets is that it seems not to be well-understood and generally delimited to a few types of assets
(often code-based), overlooking other equally important assets.

To bridge this gap, we have performed a study to formulate a structured taxonomy of assets. We use
empirical data collected through industrial workshops and a literature review to ground the taxonomy.
The taxonomy serves as foundations for concepts like asset degradation and asset management. The
taxonomy can help contextualise, homogenise, extend the concept of technical debt, and serves as a
conceptual framework for better identification, discussion, and utilisation of assets.

1. Introduction
The fast pace of software-intensive product and service

development (SIPS) impacts the decision-making process
both in design and operational decisions. Acting fast to cope
with change will compromise the values of the delivered
product, environment, development process, and the arte-
facts involved, such as source code, test cases, and documen-
tation [14]. Though the decisions that are made under these
circumstances focus on delivery, they might impact the qual-
ity of the delivered product or service, causing degradation
of supporting artefacts such as code, architecture, and doc-
umentation, to name a few. Researchers and practitioners
have traditionally used the Technical Debt (TD) [18]metaphor
to refer to the impact of the intentional and unintentional sub-
optimal decisions on assets as a consequence to meet dead-
lines [35]. However, the original TD metaphor focuses on
code-based artefacts and often does not take non-technical
assets such as documentation, test-cases, and supporting items
into account [4]. This is evident from, for example, the tools
available for measuring TD [55].

To elaborate and move towards a more holistic view of
This research was supported by the KKS foundation through the

SHADE KKS Hög project with ref: 20170176 and the KKS S.E.R.T. Re-
search Profilewith ref. 2018010 project at Blekinge Institute of Technology,
SERLSweden.

∗Corresponding author
ehsan.zabardast@bth.se (E. Zabardast);

javier.gonzalez.huerta@bth.se (J. Gonzalez-Huerta);
tony.gorschek@bth.se (T. Gorschek); darja.smite@bth.se (D. Šmite);
emil.alegroth@bth.se (E. Alégroth); fabian.fagerholm@bth.se (F.
Fagerholm)

https://ehsanzabardast.com/ (E. Zabardast);
http://gonzalez-huerta.net/ (J. Gonzalez-Huerta); https://gorschek.com/
(T. Gorschek)

ORCID(s): 0000-0002-1729-5154 (E. Zabardast); 0000-0003-1350-7030
(J. Gonzalez-Huerta); 0000-0002-7298-3021 (F. Fagerholm)

artefacts, more relevantly described as “assets” (having in-
herent value to the organisation in their efforts) [77], away
from studying them in isolation [55], this paper presents the
first version of a taxonomy, expandible as the field matures,
of assets that are relevant for companies during the inception,
planning, realisation, and evolution of SIPS. We define the
term “asset” in the software engineering context by refining
the definition in [ISO5500:2014] [30], as follows: an asset is
“any artefact with an inherent value for the organisation,
and that is used for, and/or enables the inception, develop-
ment, delivery, or evolution of software-intensive products
or services over time” [77].

From a practitioner perspective, the degradation of as-
sets is central as its accumulation slows down the product’s
maintenance and evolution [4]. Degradation is compounded
by the increase of SIPS complexity and size in general, even
without the degradation [43, 42]. The need for further re-
search into assets and asset degradation is also evident from
the empirical study presented in this paper and the fact that
assets are often not associated with the traditional technical
debt concept despite being deemed critical to the deliverable
product/service itself.

From a research perspective, the benefit of widening the
term of an implicit “debt” to assets is that it takes the so-
called “items of value” [49] into account and widens the
view of what can hold value in a SIPS development context.
This widening fosters an understanding of what artefacts can
be negatively impacted by degradation, making it harder to
develop and evolve SIPS. To this end, having a common vo-
cabulary and structure of potential assets – a taxonomy of
assets is presented – and the concepts of value and degrada-
tion are explored [77]. Besides, the purpose of a taxonomy
is to identify knowledge gaps and interrelationships between
objects and support decision-making [72, 71, 74, 70]. This

Zabardast et al.: Preprint submitted to Elsevier Page 1 of 22

https://ehsanzabardast.com/
http://gonzalez-huerta.net/
https://gorschek.com/

Asset Management Taxonomy: A Roadmap

work is mostly based on related work and industrial cases,
i.e., companies addressing challenges related to asset degra-
dation.

The taxonomy presented in this paper is based on the re-
sults acquired through a an empirical study. Our work’s very
motivation is connected to the interests of the five partner
companies, and the bulk of the results were acquired through
a workshop-survey with these companies. The workshops
were held on-site with participants sampled using conve-
nience sampling but included individuals with varying ex-
pertise and roles, e.g., project managers, senior architects,
and developers. These results were complemented with lit-
erature from peer-reviewed articles about assets, artefacts,
and technical debt, as well as the researchers’ own empiri-
cal experiences and knowledge. The aggregated results were
then synthesised to categorise and classify assets.

The paper is structured as follows: Section 2 provides
the background and related work on the topic. Section 3 de-
scribes the research methodology, which separately covers
the literature review and the industrial workshops. The re-
sults are presented in Section 4, together with the proposed
Asset Management Taxonomy. Section 5 discussed the prin-
cipal findings and the implications of the results. The threats
to validity are also discussed and addressed in Section 5.
And finally, Section 6 presents the conclusion and the con-
tinuation of the work together with the future directions.

2. Background and Related Work
Assets related to SIPS have been studied previously, for

instance, from amanagerial perspective where the term asset
is used to discuss that the products in product lines that are
developed from a set of core assets that might have built-
in variation mechanisms [53]. In contrast to this work, our
focus is instead on the inception, development, evolution,
and maintenance of software related assets and does thereby
not cover business- or market-related assets such as the work
of Ampatzoglou et al. [3], Cicchetti et al. [15], Wohlin et al.
[75], and Wolfram et al. [76].
2.1. Artefacts in Software Engineering

Describing how a software system is envisioned, built,
and maintained is part of the Software Development Pro-
cesses (SDP) [62]. The SDP prescribes the set of activi-
ties and roles to manipulate documents, i.e., software arte-
facts, namely source code, documentation, reports, and oth-
ers [14]. The artefacts in software engineering are defined
as i) “documentation of the results of development steps”
[14]; ii) “a work product that is produced, modified, or used
by a sequence of tasks that have value to a role” [49]; and
iii) ”a self-contained work result, having a context-specific
purpose and constitutes a physical representation, a syntac-
tic structure and a semantic content of said purpose, forming
three levels of perception” [49]. Software artefacts are self-
contained documentation and work products that are pro-
duced, modified, or used by a sequence of tasks that have
value to a role [49].

The definition and organisation of software artefacts have
a significant influence on software development. The de-
scriptions and documentation in large-scale systems can grow
exponentially and get “very large”; therefore, there is a need
for structural organisation of software artefacts [14]. Arte-
facts defined by most of the SDPs are monolithic and un-
structured [66]. The content of poorly structured artefacts is
difficult to reuse, and the evolution of such monolithic arte-
facts is cumbersome [60]. Therefore, different SDPs present
various models for presenting software artefacts, e.g., the
Rational Unified Process (RUP) [32, 33]. There are many
ways to classify and structure software artefacts based on
well-known modeling concepts. Examples of such models
are the work of Broy [14] and Silva et al. [60]. Moreover,
there are ontologies and metamodels to classify artefacts in
specific software development areas (e.g., Mendez et al. [50],
Zhao et al. [78], and Constantopoulos and Doerr [17]).

The definitions of artefacts presented in the literature do
not distinguish between the artefacts that have an inherent
value for the development organisation1 and are the artefacts
that subject to degradation over time from the artefacts that
do not have any value for the organisation. The value of each
asset is a property that can characterise its degradation, i.e.,
if an asset degrades, it is still an asset, but its value for the or-
ganisation has degraded. Following this reasoning, an arte-
fact that does not have value for the organisation cannot be
classified as an asset and cannot be described with respect to
its degradation.
2.2. Technical Debt and Assets

We have defined assets as artefacts with value for the or-
ganisation and, therefore, subject to degradation. Cunning-
ham introduced the Technical Debt (TD) metaphor in 1992
to describe the compromises resulting from suboptimal de-
cisions to achieve short-term benefits [18]. We assume that
TD’s focus is to identify the consequences of these subop-
timal decisions on relevant assets [47], and that is why we
study literature on this phenomenon intending to find rele-
vant assets.

The TDmetaphor has been extended and studied bymany
researchers [55]. It has been an interesting topic for both
academia and industry, and it has grown from a metaphor to
practice [36]. TD is currently recognised as one of the criti-
cal issues in the software development industry [8]. The ac-
tivities that are performed to prevent, identify, monitor, mea-
sure, prioritise, and repay technical debt are called Technical
Debt Management (TDM) activities [4, 26] and include, for
example, identifying TD items in the code, visualising the
evolution of TD, evaluating source code state, and calculat-
ing TD principal [55].

As the TD metaphor was extended to include different
aspects of software development, various Technical Debt types
were introduced [4], e.g., requirements debt, test debt, and
documentation debt. The introduction of different types of
TD has led researchers to attempt to classify the different

1Mendez et al. [49] define artefacts as having value for a role which is
substantially different from having value for the organisation.

Zabardast et al.: Preprint submitted to Elsevier Page 2 of 22

Asset Management Taxonomy: A Roadmap

types and categories of TD. One of the earliest classifica-
tions of TD is the work of Tom et al. [67]. Other secondary
and tertiary studies have been performed to summarise the
current state of TD and TD types, e.g., by Lenarduzzi et al.
[44], Rios et al. [55], and Li et al. [47].

The original TD definition focuses on source code, i.e.,
code, design, and architecture [4]. The organisational and
social aspects of technical debt have not received the same
amount of attention [55]. However, they might have been
studied under different topics than TD. Moreover, TD types
are often studied in isolation, not considering how they co-
occur and the permeation to other TD types [4]. For ex-
ample, when the code TD grows, a valid question would be
whether and how it affects the test TD and the extent of such
association’s impact.

Moreover, the TD management activities have not been
investigated thoroughly [4]. TD management activities have
been investigated in several secondary studies with different
perspectives, some focusing on tools, others on strategies,
but there is still a lack of unified analysis aligning these dif-
ferent perspectives [55]. Lastly, TD is generally studied in
the current state of the software and it is not studied with re-
gards to the evolutionary aspects of TD, i.e., studying TD on
a “snapshot” of a system is not enough [21, 54]. Therefore,
a more appropriate approach to study TD is to study its evo-
lution [13]. It is only by periodically monitoring TD that we
can study the economic consequences of TD [19], determine
the performance of the system in the future [20], and create
methods and frameworks to react quickly to the accumula-
tion of TD [45]. Based on research, but described slightly
differently can be as follows. An asset has value for an organ-
isation. If for any reason this value is degraded (e.g., code
comments are not kept up to date due to time constraints,
or an API description is not updated, etc.), you lessen the
value of the said asset. If you identify this value degradation
to be a problem, and you need to plan to invest resources
into addressing the issue (e.g., updating code comments),
this investment’s cost can be seen as the repayment of the
TD. Thus, TD is the delta between the current value of an
asset and the value of said asset’s preferred value (by the or-
ganisation).
2.3. Taxonomies in Software Engineering

Scientists and researchers have long used taxonomies as
a tool to communicate knowledge as early as the eighteen
century. One of the examples of early taxonomies is thework
of Carl von Linné [48]. Taxonomies are mainly created and
used to communicate knowledge, provide a common vocab-
ulary, and help structure and advance knowledge in the field
[24, 40, 70]. Taxonomies can be developed in one of two
approaches; top-down, also referred to as enumerative, and
bottom-up, also referred to as analytico-synthetic [12]. The
taxonomies that are created using the top-down method use
the existing knowledge structures and categories with estab-
lished definitions. In contrast, the taxonomies that use the
bottom-up approach are created using the available data such
as experts’ knowledge and literature, enabling them to enrich

the existing taxonomies by adding new categories and clas-
sifications [69].

Software Engineering (SE) is continually evolving and
becoming one of the principal fields of study with many sub-
areas. Therefore, the researchers of the field are required to
create and update the taxonomies and ontologies to help ma-
ture, extend, and evolve SE knowledge [70]. The Guide to
the Software Engineering Body of Knowledge (SWEBOK)
can be considered as a taxonomy that classifies software en-
gineering discipline and its body of knowledge in a struc-
tured way [11]. Software engineering knowledge areas are
defined in SWEBOK, and they can be used as a structured
way of communication in the discipline. Other examples of
taxonomies in software engineering are the work of Glass
et al. [25] and Blum [10]. Specialised taxonomies with nar-
rower scopes are also popular in the field. These taxonomies
are focused on specific sub-fields of software engineering
such as Taxonomy of IoT Client Architecture [65], Taxon-
omy of Requirement Change [58], Taxonomy of Architec-
ture Microservices [23], Taxonomy of Global Software En-
gineering [61], and Taxonomy ofVariability Realisation Tech-
niques [64] to name a few.

This paper presents a taxonomy of assets in the incep-
tion, planning, development, evolution, and maintenance of
a SIPS. The taxonomy is built using a hybrid method, i.e.,
the combination of top-down and bottom-up. The details of
the taxonomy creation are presented in Section 3.4. The pur-
pose of our taxonomy is to cluster.
2.4. Summary of the Gaps

In this paper, we introduce assets in software develop-
ment and software engineering. We use the concept of arte-
facts and their intentional degradation from the research in
the field of Technical Debt as a starting point for this work,
which we expand to include various types of valuable arte-
facts as Assets.

In particular, we aim to address the following challenges
and gaps:

• Identifying and distinguishing between the artefacts
with inherent value (assets) with those without.

• Identifying assets by considering every aspect of soft-
ware development. For example, Environment-and-
Infrastructure-, Development-Process-,Ways-of-Working-
, and Organisation-related aspects [4, 55] that have not
received much attention in TD.

• Laying the groundwork for capturing the evolution-
ary aspect of assets and their degradation. The TD
metaphor generally applies to the current state of the
product and dismisses the assets’ evolutionary aspect
[21, 54]. As described in Section 2.2, studying TD
with regards to its evolution is needed to understand
the economic consequences of TD [19], the quality of
the system in the future such as system performance
[20], and the creation of TD management frameworks
[45].

Zabardast et al.: Preprint submitted to Elsevier Page 3 of 22

Asset Management Taxonomy: A Roadmap

Based on the asset’s definition in [77], we identify the
artefacts that adhere to this definition and which of these are
common in the industry. There are adjacent and similar tax-
onomies that cover subsets and part of this work. However,
their purposes are different than what are aiming to achieve.
To the best of our knowledge, there is no ontology or taxon-
omy that we can use to describe and classify assets and their
interrelations.

3. Research Overview
This section presents the research methodology and de-

sign of the study. The study is divided into two parts; a lit-
erature review and an empirical study of industrial cases. In
the following subsections, we first cover how we performed
the literature review (Section 3.2). We explain how the data
was gathered, coded, and analysed. We describe the pro-
cess of studying company cases, the data collection, and the
analysis (Section 3.3). Later, we describe how the taxon-
omy was created based on the collected data (Section 3.4).
The steps taken to internally validate the taxonomy by the
researchers involved in the industrial workshops2 are pre-
sented (Section 3.5).

Tomake the research objectivemore concrete, it has been
broken down into the following research question:

RQ ∶ What assets are important for organisations dur-
ing the inception, planning, development, evolution, andmain-
tenance of SIPS?
We aim to provide a systematically constructed and extend-
able taxonomy to accommodate the set of terms and concepts
used in both academia and industrial practice as it pertains
to SIPS.

We performed a literature review to capture the classi-
fications and definitions of various assets studied and pre-
sented in research venues (top-down method). Included are
systematic literature reviews, systematic mapping studies,
and tertiary studies. The details of the literature review pro-
cedure are presented in Section 3.2.

To study state-of-practice, we performed industrial work-
shops over multiple companies to find evidence on how as-
sets are defined and used. The five cases were selected using
convenience sampling as companies involved in an ongoing
research project that is interested in addressing asset degra-
dation challenges. We organised several workshops with
the industrial partners to investigate and discuss the topics
with experts in each area. The reports and results from the
workshops were then coded and used for the construction of
the taxonomy. We used the bottom-up method for updating
the existing structure that we obtained from the literature re-
view. This approach enabled us to enrich the existing struc-
ture from the literature. The details of the procedure of the
industrial workshops are presented in Section 3.3.

Usman et al. [70] present a revised method for the devel-
opment of taxonomies in software engineering. The revised
method includes four phases of Planning, Identification and

2Industrial workshops refer to the workshops where the data was col-
lected.

Extraction, Design and Construction, and Validation. The
asset management taxonomy was created by following the
mentioned method.
Phase 1: during which the taxonomy’s context and objec-
tive (software engineering knowledge area, objective, sub-
ject matter, classification structure, and information sources)
were decided. This phase is corresponding to the planning
phase of the method (see Section 3.1)
Phase 2: during which the raw data for creating the taxon-
omy was collected. This phase is corresponding to the iden-
tification and extraction phase of themethod (see Section 3.2
and Section 3.3)
Phase 3: during which the taxonomy categories were ex-
tracted, and the relations between the items (i.e., the nodes
in the taxonomy tree) were identified. This phase is corre-
sponding to the design and construction phase of the method
(see Section 3.4)
Phase 4: during which the taxonomy was internally vali-
dated by utility demonstration. The utility of the taxonomy
was demonstrated by expert opinion (i.e., researchers). This
phase is corresponding to the validation phase of the method
(see Section 3.5)
3.1. Planning Taxonomy Creation

The complexity of developing software-intensive prod-
ucts and services makes it challenging to identify and main-
tain the assets [77]. In such cases, the need for an organ-
ised, well-structured body of knowledge is crucial. We dis-
cussed the concept and definition of assets in our previous
work [77] and planned to create a taxonomy of assets utilis-
ing the knowledge from academia and the industry to capture
the body of knowledge in an organised structure.
3.2. Literature Review

To investigate the terminology used in the area of as-
sets and asset management, we reviewed research papers that
classify assets and provide definitions of the term.

The assets (i.e., artefacts that we are interested in) are
subject to technical debt which makes the research on TD
a good input area to find assets. However, we do not de-
limit ourselves to the artefacts that are discussed in TD. We
chose to do a literature review on the topic of technical debt
and the classifications provided by the TD literature (i.e., TD
types) because the TDmetaphor is a subset of asset manage-
ment (see Figure 1). Technical Debt is part of Asset Degra-
dation defined in [77]. Moreover, the TD literature is con-
cerned with different aspects of software development. The
TD metaphor has been used as an umbrella term to include
all the assets involved during the development. TD has re-
ceived a growing interest in academia and the industry. And
the TD topic has been studied in various venues and research
for a considerable time.

We began by collecting the start set of the papers us-
ing “technical debt” AND (“systematic literature review”
OR “systematic mapping study” OR “tertiary study”) as the
search string in Google Scholar. We selected the articles
that presented a classification for TD. Finally, we completed

Zabardast et al.: Preprint submitted to Elsevier Page 4 of 22

Asset Management Taxonomy: A Roadmap

Technical
Debt

Asset
Management

Sub-Optimal
Solutions

Longitudinal
Degradation

Figure 1: Venn diagram depicting how Asset Management and
Technical Debt are related in their context.

the set by following the snowballing iteration guidelines pro-
vided by Wohlin [73].

The execution process included the following steps as
illustrated in Figure 2. The results of this process are pre-
sented in Section 4.1.

• Step 1: Collection of the start set of relevant arti-
cles (seed papers) including SLRs, SMSs, and Ter-
tiary studies on technical debt.

• Step 2: Evaluate the papers - start set in the first it-
eration - for inclusion/exclusion based on the criteria,
i.e., papers that presented any classification of TD and
artefacts affected by TD.

• Step 3: The snowballing procedure for identifying ad-
ditional secondary and tertiary studies on TD that sat-
isfy our inclusion/exclusion criteria:

– Step 3.1: Backward snowballing by looking at
the references of the papers.

– Step 3.2: Forward snowballing by looking at the
papers that cite the papers.

• Step 4: Extracting different types of assets and assets
together with their respective definitions from the se-
lected articles.

• Step 5: Synthesising the definitions of the types of
assets and assets provided by the selected articles.

• Step 6: Creating the matrix of types of assets and as-
sets based on technical debt classifications defined by
the selected articles.

3.3. Industrial Workshops
To collect data, we performed workshops with industrial

partners that develop and maintain software-intensive prod-
ucts and services according to the process presented in Fig-
ure 3.
3.3.1. Case Company Characterisation

We have collected the data for this study collaborating
with five companies that work construction machinery in-
dustry, communication technology industry, and banking and
financial services. The research partner companies are Eric-
sson (telecommunication & ICT), Fortnox (Finance), Time

People Group / Qtema (Consultancy), and Volvo CE (Au-
tomotive Industry). The companies were selected by conve-
nience and availability. The partner companies are mature in
their development practices and have well-established, suc-
cessful products. They are interested in continuously im-
proving their products and development life-cycles, which
turns into their willingness on participating in studies like
this. All the collaborating companies work on developing
software-intensive products and services and are involved in
an ongoing research project3. The details of the case com-
panies are presented in Table 1. Note that the order of the
companies in Table 1 does not correspond with the order
of workshops (workshops IDs) in Table 4, which has been
shuffled to preserve confidentiality.
3.3.2. Workshop Procedure

The workshops include six steps (see Figure 3):
• IW1. Workshop participants introducing themselves.
• IW2. One of the moderating researchers presenting

the topic.
• IW3. Workshop participants discussing the topic, pro-

viding insight into their views/experiences with TD
and document them in notes.

• IW4. Workshop participants discussing assets and as-
set management in detail after a second presentation
of the concept.

• IW5. Workshop participants discussingwhat theywrote
before as technical debt examples and rethinking them
in terms of assets, asset degradation, and asset man-
agement.

• IW6. A closing discussion and focus groups.
Eachworkshop starts with participants introducing them-

selves with background information about their work, in-
cluding their current role in the organisation (step IW1). One
of the moderating researchers then presents the workshop’s
agenda and covers the importance of the topic and the grow-
ing interest in value creation and waste reduction both in
academia and in the industry (step IW2).

After the initial introduction of the topic by the moder-
ating researchers, the participants are divided into groups.
They are asked to list and discuss the challenges with their
ways of working (while considering varying aspects of tech-
nical debt), i.e., the problems they know or have encountered
or experienced (step IW3). After the time is up, the notes are
read, discussed, and abstracted to a more general description
and later put on a whiteboard. The connections between the
items on the board are identified and marked down with a
marker.

After the second presentation, i.e., introducing the par-
ticipants with the concepts related toAssetManagement (AM)
and Asset Degradation (AD) [77] (step IW4), participants

3See www.rethought.se.

Zabardast et al.: Preprint submitted to Elsevier Page 5 of 22

www.rethought.se

Asset Management Taxonomy: A Roadmap

Collection of the Start
Set

Selection of Relevant
Articles with TD
Classification

Snowballing Extracting Assets and
Types of Assets

Sythesizing the
Definitions

Forward
 Snowballing

Backward
Snowballing

Step 1: Step 2: Step 3:

Step 3.1: Step 3.2:

Step 4: Step 5:

Creating the Matrix of
Assets and Types of

Assets

Step 6:

Figure 2: The literature review execution process.

Company Selection

Industrial Workshops
IW

Data Extraction
DE

Extracting the Asset Matrix
Closing Discussion

Participants' View on TD Items in Terms of Assets

Introduction of the Concept of Asset Management

Participants' View on What TD Is

Introduction of the Topic

Introduction of the Participants

First Cycle Coding In Vivo Coding

Validating and Resolving the Conflicts

Second Cycle Coding Pattern Coding

Validating and Resolving the Conflicts

IW1

DE1

IW2

IW3

IW4

IW5

IW6

DE2

DE3

DE4

Figure 3: The execution process for industrial cases.

add new items to the previous notes on the board. Partici-
pants then refine the items from the board for the rest of the
workshop (step IW5). The workshop ends with a closing
discussion on the topic and the items (step IW6).

In the context of this research, we have moved the focus
from the traditional technical debt metaphor to asset degra-
dation. In this framework, we talk about asset degradation as
the deviation of an asset from its representation. That way,
we can focus, potentially, on any type of asset and its repre-
sentation. This framework provides us with a broader, holis-
tic view that allows us to study how an asset’s degradation
(e.g., requirements) might introduce degradation in other as-
sets (e.g., code or test cases) [77].

The written notes from the participants, the minutes of
the workshops, as well as the final reports that were sent to
companies after the workshops were used as raw data. The
researchers’ minutes were written during each session and
were then aggregated and summarised in a report sent to the
companies. The notes were used for coding and later to ex-
tract types of assets and explicit assets. The details of the
data extraction and taxonomy creation are described in Sec-
tion 3.4.
3.3.3. Data Extraction

Two sources of raw data were gathered from the indus-
trial workshops; written notes from workshop participants
and notes from moderating researchers specifically assigned
to scribe each session’s discussions. To create the matrix of

assets from industrial insights, we use the hybrid method of
coding, as Saldaña [59] suggested. The coding is divided
into two main cycles: First Cycle Coding and Second Cycle
Coding.

First Cycle Coding of the raw data happens in the ini-
tial stage of coding. The raw data, which can be a clause, a
sentence, a compound sentence, or a paragraph, is labelled
based on the semantic content and the context in which it
was discussed during the workshop. We have used the in
vivo coding method to label the raw data in the first cycle.
In vivo coding is suitable for labelling raw data in the first
cycle coding. It prioritises the interviewees’ / participants’
opinions [59]. It adheres to the “verbatim principle, using
terms and concepts drawn from the words of the participants
themselves. By doing so [the researchers] are more likely to
capture the meanings inherent to people’s experiences.” [63,
p. 140] It is commonly used in empirical and practitioner
research. [63, 16, 22]

The coding was done by two researchers independently
(step DE1, see Figure 3). The labels were then compared to
validate the labels and to identify conflicting cases. A third
researcher helped to resolve the conflicts by discussing the
labels with the two initial researchers (step DE2, see Fig-
ure 3).

Second Cycle Coding is done primarily to categorise,
theorise, conceptualise, or reorganise the coded data from
the first cycle coding. We have used Pattern Coding [59]

Zabardast et al.: Preprint submitted to Elsevier Page 6 of 22

Asset Management Taxonomy: A Roadmap

Table 1
Case company details. The table is ordered alphabetically based on the name of the
companies, and does not correspond to the order in Table 4.

Company Domain Investigated
Site

Enterprise
Size Participants’ Roles

Ericsson
Telecommunication

& ICT
Karlskrona,
Sweden Large

Senior System Architect
Corporate Senior Strategic Expert

Operations & Testing

Fortnox Finance
Växjö,
Sweden Large

Head of Development
Product Owners

Development Managers
System Architect

Testing

Qtema† Consultancy
Stockholm,
Sweden SME

Chairman of the Board
Requirements Analyst

Sales Manager
Project Manager

IT Administration Manager

Time People Group† Consultancy
Stockholm,
Sweden SME

Data Consultant
Project Manager Consultant

Senior Agile Coach
IT Project Manager

Team Leader
Chief Exevutive Officer (CEO)

Consultant
Test Leader

Vovlo CE
Construction
Machinery

Gothenburg,
Sweden Large

Enterprise Architects
Solution Architect

Business Information Architect
† Time People Group and Qtema participated in the same workshop.

as the second cycle coding method. According to Miles
et al. [51, p. 86], pattern coding is used in cases where: (i) the
researchers aim to turn larger amounts of data into smaller
analytical units. (ii) the researchers aim to identify themes
from the data. (iii) the researchers aim to perform cross-
case analysis on common themes from the data gathered by
studying multiple cases.

Similar to the first cycle coding process, pattern coding
was done by two researchers independently (step DE3, see
Figure 3). The results were compared to validate the classi-
fications and to identify conflicting cases. A third researcher
resolved the conflicting cases in a discussion sessionwith the
two researchers (step DE4, see Figure 3). The results of the
insights gathered from industrial workshops are presented in
Section 4.2.
3.4. Taxonomy Creation

To describe a precise syntax and the semantics of the dif-
ferent concepts used for the taxonomy creation, we created
a metamodel (presented in Figure 4). The metamodel sum-
marises and identifies the metaclasses, i.e., the characteris-
tics of assets, their definitions, and their relation. The meta-
model illustrates the structural relationships between themeta-
classes. The metaclasses presented in the metamodel are:

• The “AssetComponent”metaclass is the containermeta-
class for the items in the model.

• The “TypeOfAsset” metaclass represents the hierar-
chical classification of assets. The items belonging to
this metaclass can be further broken down into sub-
classifications representing various groups of assets.
The types of assets are containers for the assets. Asset
types are identified from the state-of-the-art (i.e., ex-
isting academic literature), state-of-practice (i.e., the
industrial insights gathered through the industrial work-
shops), or the identified by researchers.

• The “Asset”metaclass represents atomic and measur-
able assets. Each asset belongs to a type of asset. As-
sets are identified from the state-of-the-art (i.e., exist-
ing academic literature), state-of-practice (i.e., the in-
dustrial insights gathered through the industrial work-
shops), or identified by researchers.

• The “Reference” metaclass represents the references
from which each asset or type of asset has been iden-
tified. Reference can originate from academic litera-
ture (the literature review) or industrial insights (gath-
ered from industrial workshops). References can be
mapped to individual assets/type of assets or multiple

Zabardast et al.: Preprint submitted to Elsevier Page 7 of 22

Asset Management Taxonomy: A Roadmap

assets/type of assets.

Reference

title : String
type : String

TypeOfAsset

name : String
definition : String

0...*

0...*

Asset

name : String
definition : String

1...*

AssetComponent

1...*

1...* 0...*

1...*

0...*

Figure 4: Asset Management Metamodel.

The creation of the taxonomy included three steps. First,
we created an asset matrix based on the technical debt types
(top-down approach) with items that we extracted from the
literature review. We created the matrix based on the lit-
erature’s definitions, i.e., by synthesising the definitions to
identify similarities, differences, and hierarchies of identi-
fied items. We have grouped the definitions provided by the
literature based on their semantic meaning.

In the second step, we utilised the extracted assets from
industrial workshops (Section 3.3.3) to create a second as-
set matrix (bottom-up approach). Like the previous step, we
used the definitions of the assets and their types and the par-
ticipants’ statements from the workshops.

By combining the two matrices in the last step, we cre-
ated the asset management tree. To complete the tree, we
added some nodes based on the researchers’ expertise that
we perceive were missing nodes and leaves. We mention
such cases as Author Defined Assets (ADA) when present-
ing the results.

The process of addingADA started with researchers sug-
gesting assets that should be included in the taxonomy. These
suggested assets were brought up in internal workshops 4
where all the researchers discussed, reflected, improved, and
added / removed the suggested assets. User Stories, as an
example, were suggested by one of the researchers to be
considered as assets during one of the internal workshops.
The discussion was regarding (i) whether or not User Sto-
ries are assets, (ii) if they fit in the taxonomy according to
the definition, (iii) where they belong in the tree, (iv) what
they represent, (v) and how they degrade. After the discus-
sions, the researchers decided that User Stories belong to
[AM1] - [AM1.1] Functional-Requirements-Related Assets
in the taxonomy tree.

4Internal workshops refer to the workshops where the researchers dis-
cussed the taxonomy.

The assets included in the taxonomy should adhere to
the definition of an asset presented in [77], thereby also the
following inclusion criteria:

• Assets are artefacts that have inherent value for the
organisation and are subject to degradation, i.e., the
value of the asset can degrade (lessen).

• Assets are persistent and not inherently transient, i.e.,
we do not consider intermediate entities as assets. In
our definition, artefacts that are created with a particu-
lar purpose and then immediately transformed to other
artefacts are not assets.

3.5. Internal Validation
The taxonomy was created by the authors after the data

collection was complete. We conducted internal workshops
to validate the taxonomy and its structure with the seven
researchers who were involved during the industrial work-
shops.
Step 1: The taxonomywas sent to all the researchers to study
and prepare for the internal workshop.
Step 2: An internal workshop was held where the first and
second authors presented the taxonomy and the researchers
provided their feedback. The discussions were on both the
structure of the taxonomy and on the assets.
Step 3: The taxonomy was updated based on the discussion
and the feedback provided during the internal workshops.
Step 4: The authors held individual meetings with each re-
searcher to further discuss the latest updates on the taxonomy
and delve into the areas of expertise of each researcher.
Step 5: The taxonomy was updated based on the individual
meetings and presented to the researchers for the final ap-
proval.

4. Results
This section presents the results of the literature review,

then the results of the workshops. Finally, we will present
the Asset Management Taxonomy based on both.
4.1. Input from the Literature

The final list of papers included nine articles presented
in Table 2. To create the assets matrix, we extracted the
types of technical debt from each article. For example, in
paper P8 [44], we refer to Table 1 on page 4 of the arti-
cle, where the authors summarise different types of technical
debt and their respective definitions. The authors define Re-
quirements TD as “the distance between the optimal require-
ments specifications and the actual system implementation,
under domain assumptions and constraints” [44]. Require-
ments is also mentioned as a TD item in P3, P4, P5, and P6.
Table 3 presents the asset matrix based on the types of tech-
nical debt. The codes of the papers are used as a reference
throughout this paper.

Looking at Table 3 we can see that there are fewer cat-
egories in the earlier studies (P1 and P2). The papers that
follow these studies break down the bigger categories into

Zabardast et al.: Preprint submitted to Elsevier Page 8 of 22

Asset Management Taxonomy: A Roadmap

Table 2
The articles gathered for the literature review during the snowballing process.

Code Title Seed
Paper

Backward
Snowballing

Forward
Snowballing

P1 A Consolidated Understanding of Technical Debt [67] x
P2 An Exploration of Technical Debt [68] x
P3 Towards an Ontology of Terms on Technical Debt [2] x
P4 A Systematic Mapping Study on Technical Debt and Its Management [47] x
P5 Identification and Management of Technical Debt: A Systematic Mapping

Study [1]
x

P6 Managing Architectural Technical Debt: A Unified Model and Systematic
Literature Review [9]

x

P7 A tertiary study on technical debt: Types, management strategies, research
trends, and base information for practitioners [55]

x

P8 Technical Debt Prioritisation: State of the Art. A Systematic Literature
Review [44]

x

P9 Investigate, identify and estimate the technical debt: a systematic mapping
study [6]

x

more specific categories. For example, Architecture and De-
sign are put into one category in P1 and P2 and later, they
are broken down to their own categories. It is important to
mention that P7 has fewer categories since the study is on
the specific topic of Architectural Technical Debt.
4.2. Input from the Workshops

There were a total number of four workshops, each held
with participation of different companies. The workshops’
procedure stayed the same while the closing discussion of
each workshop was on the topic of interest for the work-
shop participants (the stakeholders). The topics included,
but were not limited to, Lack of Knowledge/Competence, Ar-
chitecture Artefact Lifecycle, Business Models for Products,
and Backlog Update Issues/Backlog Size.

The data extraction process was done, as described in
Section 3.3.3. Two researchers used the in vivo codingmethod
to label 386 statements during the first cycle coding. After
matching and validating the labels, 14 cases of conflicting
labels were identified. The conflicting labels were resolved
during a discussion session with a third researcher. The re-
searchers agreed on the new labels for the conflicting cases
during the discussion.

After solving the conflicting cases of in vivo coding, the
researchers continued with pattern coding [59] of the first
cycle coding results. The two researchers classified the as-
sets based on in vivo labels. Table 4 presents the asset matrix
based on the results of the second cycle coding.

The workshops presented in Table 4 are chronological,
i.e., WS1 was the first workshop. Though the workshops
were executed using the same procedure, we only extracted
relevant statements. Therefore,WS1 has fewer entries in Ta-
ble 4. That is why we observe only two assets/types of assets
in the first column, and this might be due to the profiles or
experience of the participants.

Examining Table 4, we can observe that assets are men-
tioned more often than types of assets in the industrial work-
shops whereas types of assets are more frequent in the liter-

ature review (see Table 3). Finally, assets that are related to
Operations,Management, and Organisational Management
were highlighted more in the industrial workshops than the
literature review.

It appears that the assets that are mentioned frequently
are:

• Easier to contextualise: It is easier for the stakehold-
ers to identify such assets in the software product con-
text. For example, the data that the company acquires
from the operation of the product, i.e., Application
Data, can be used as input to improve the product.

• More tangible: The assets that have been studied and
discussed before, and the concept is not foreign any-
more. For example, every software company, one way
or another, has a Product Backlog with specific char-
acteristics which is familiar for all the people involved
in the development of the software-intensive product.

• Easier tomeasure: There are already existingmetrics
used to measure the state of such assets. For example,
there are many metrics available to measure Source
Code, such as LOC and Cyclomatic Complexity.

• Used universally: The assets that are defined in the
sameway across different organisations and academia,
meaning that they are not organisation-specific. For
example, the software’s architecture (Code Structure)
is a universal and inherent aspect of any software-intensive
product.

4.3. The Asset Management Taxonomy
Using the key concepts extracted from the labelled data

(presented in Table 3 and Table 4), we build the taxonomy
of assets. The taxonomy contains the terminology identified
through the literature review and the industrial workshops.
The terms included in the taxonomy are presented in a tree

Zabardast et al.: Preprint submitted to Elsevier Page 9 of 22

Asset Management Taxonomy: A Roadmap

Table 3
Asset matrix from technical debt literature.

P
1

20
12

P
2

20
13

P
3

20
14

P
4

20
15

P
5

20
16

P
6

20
18

P
7

20
18

P
8

20
19

P
9

20
20

E
m
er
gi
ng

C
at
eg
or
y(
ie
s)

P
ha
se
,

du
ri
ng

w
hi
ch

th
e

ar
te
fa
ct

is
pr
od

uc
ed

Fe
at
ur
es

R
eq
ui
re
m
en
ts

R
eq
ui
re
m
en
ts

R
eq
ui
re
m
en
ts

R
eq
ui
re
m
en
ts

R
eq
ui
re
m
en
ts

R
eq
ui
re
m
en
ts

P
ro
du

ct
R
eq
ui
re
m
en
ts

R
eq
ui
re
m
en
ts

U
sa
bi
lit
y

U
sa
bi
lit
y

U
sa
bi
lit
y

Q
ua
lit
y

R
eq
ui
re
m
en
ts

D
es
ig
n\

A
rc
hi
te
ct
ur
e

D
es
ig
n
an
d

A
rc
hi
te
ct
ur
e

A
rc
hi
te
ct
ur
e

D
es
ig
n

A
rc
hi
te
ct
ur
e

D
es
ig
n

A
rc
hi
te
ct
ur
e

D
es
ig
n

A
rc
hi
te
ct
ur
e

D
es
ig
n

A
rc
hi
te
ct
ur
e

A
rc
hi
te
ct
ur
e

D
es
ig
n

A
rc
hi
te
ct
ur
e

D
es
ig
n

A
rc
hi
te
ct
ur
e

D
es
ig
n

D
ec
is
io
ns

D
oc
um

en
ta
ti
on

D
es
ig
n

D
oc
um

en
ta
ti
on

D
oc
um

en
ta
ti
on

D
oc
um

en
ta
ti
on

D
oc
um

en
ta
ti
on

D
oc
um

en
ta
ti
on

D
oc
um

en
ta
ti
on

D
oc
um

en
ta
ti
on

D
oc
um

en
ta
ti
on

P
ro
du

ct
D
oc
um

en
ta
ti
on

D
es
ig
n

Sp
ec
ifi
ca
ti
on

s
A
rc
hi
te
ct
ur
al

D
oc
um

en
ta
ti
on

A
rc
hi
te
ct
ur
al

D
oc
um

en
ta
ti
on

C
od

e
C
od

e
C
od

e
C
od

e
C
od

e
C
od

e
C
od

e
C
od

e
C
od

e
So

ur
ce

C
od

e

D
ev
el
op

m
en
t

B
ui
ld

B
ui
ld

B
ui
ld

B
ui
ld

B
ui
ld

B
ui
ld

B
ui
ld

D
oc
um

en
ta
ti
on

Se
rv
ic
e

Se
rv
ic
e

Se
rv
ic
e

Se
rv
ic
e

W
eb

Se
rv
ic
es

V
er
si
on

in
g

V
er
si
on

in
g

V
er
si
on

in
g

V
er
si
on

in
g

V
er
si
on

in
g

V
er
si
on

in
g

T
es
ti
ng

T
es
ti
ng

T
es
t

T
es
t

T
es
t

T
es
t

T
es
t

T
es
t

Fu
nc
ti
on

al
T
es
ts

V
er
ifi
ca
ti
on

an
d

V
al
id
at
io
n

D
ef
ec
ts
/

K
no
w
n

D
ef
ec
ts

D
ef
ec
t

D
ef
ec
t

D
ef
ec
t

D
ef
ec
t

D
ef
ec
t

T
es
t

A
ut
om

at
io
n

T
es
t

A
ut
om

at
io
n

T
es
t

A
ut
om

at
io
n

T
es
t

A
ut
om

at
io
n

T
es
t

A
ut
om

at
io
n

T
es
t
C
as
e

D
oc
um

en
ta
ti
on

T
es
t

D
oc
um

en
ta
ti
on

E
nv
ir
on

m
en
t

E
nv
ir
on

m
en
t

an
d

In
fr
as
tr
uc
tu
re

O
pe
ra
ti
on

s

In
fr
as
tr
uc
tu
re

H
ar
dw

ar
e

In
fr
as
tr
uc
tu
re

In
fr
as
tr
uc
tu
re

In
fr
as
tr
uc
tu
re

In
fr
as
tr
uc
tu
re

In
fr
as
tr
uc
tu
re

In
fr
as
tr
uc
tu
re

In
fr
as
tr
uc
tu
re

E
nv
ir
on

m
en
t

an
d

In
fr
as
tr
uc
tu
re

O
pe
ra
ti
on

al
P
ro
ce
ss
es

O
pe
ra
ti
on

s

P
ro
ce
ss

P
ro
ce
ss

P
ro
ce
ss

P
ro
ce
ss

P
ro
ce
ss

M
an
ag
m
en
et

M
an
ag
em

en
t

D
oc
um

en
ta
ti
on

Sp
ec
ifi
ca
ti
on

s

D
oc
um

en
ta
ti
on

In
te
rn
al

R
ul
es

an
d

Sp
ec
ifi
ca
ti
on

s

C
ol
or

G
ui
de
:

A
ss
et
s

T
yp

es
of

A
ss
et
s

T
em

po
ra
ry

A
rt
ef
ac
ts

Zabardast et al.: Preprint submitted to Elsevier Page 10 of 22

Asset Management Taxonomy: A Roadmap

Table 4
Asset matrix from industrial workshops.

WS1 WS2 WS3 WS4 Emerging
Category(ies)

Phase, during
which the

artefact is produced

Contradictory
Requirements Requirements Requirements Requirements Product Requirements Requirements

Architectural Models Documentation
Documentation Documentation Product Documentation

DesignArchitectural
Documents

Architectural
Documentation

Architectural
Documentation

Architecture Software Structure Architecture Architectural
(Source Code)

Dangerous Code Code Code Code Source Code
DevelopmentAPIs API Versions APIs

Libraries Third Party Products Libraries\
External Libraries

Test Cases Tests Test Cases Test Cases Verification
and

Validation
Automated Tests Test Automation Scripts
Bug Reports

Application Data Application Data OperationsKubernets Containers\Kubernets Tools

Ways of Working Ways of Working Documentation about
Ways of Working

Documentation about
Ways of Working

Management
Coding Standards Coding Standards Coding Standards

Architectural Rules Architectural Internal
Standards

Documentation
Standards

Documentation Internal
Rules\Standards

Product Roadmap Product Management Product Management
Backlog Product Backlog

Organisation’s
Roadmap Holistic Strategy Organisation’s Strategy Organisational

ManagementOrganisation’s Structure Organisation’s Structure
Business Models Business Models

Color Guide: Assets Types of Assets Temporary Artefacts

(graph). The nodes represent the assets (the leaf nodes) and
the types/categories of assets (non-leaf nodes).

The tree presented in Figure 5 contains the types of as-
sets (The full tree is presented in Appendix A). Note that the
nodes in the tree in Figure 5 are mapped to represent their
source. For example, a node can be assigned with [P1] as a
reference for an article in the literature review. Similarly,
[WS1] as a reference for an asset coming from industrial
workshops5. And finally, Author Defined Assets ([ADA])
which are assets included in the taxonomy by the researchers
although it was not coming from industrial workshops or
from the TD literature that we have covered but is supported
by SE literature.

The following example clarifies the distinction between
Temporary Artefact (grey cells presented in Table 3 and Ta-
ble 4) and Assets:
An API description used by developers as a reference has
value in the development effort. If changes are made (new
decisions, new ways to adhere to components, etc.), but the
API description is not updated to reflect this, the utility (value)
of the API description becomes lower (the asset degrades).
On the other hand, an automatically generated bug report is
not seen as an asset, as it is transient or intermediate. It is

5The IDs on theworkshops on Table 4 have been obfuscated to preserve
anonymity, and has no relationship with the order of companies shown in
Table 1.

generally created as a work product used once to be “trans-
formed” into “change requests” or other management arte-
facts. Once transformed, it is discarded to be replaced with
a new bug report in subsequent test runs.

The process of combining the asset matrices from the lit-
erature review, the input from the industrial workshop, and
completing the tree with Author Defined Assets (ADA) re-
sulted in the taxonomy containing 24 asset types and the to-
tal of 57 assets. In the following subsections, we will first
present the types of assets and then describe the eight major
types of assets labelled AM1-AM8. We include the defini-
tions of each asset type together with their corresponding
assets. After following the process described in Section 3.4,
the following major types of assets were extracted:
Product-Requirements-Related Assets (AM1) refer to the
types of assets and assets concerned with software require-
ments, including the elicitation, analysis, specification, vali-
dation, and management of requirements during the life cy-
cle of the software product.
Product-Representation-RelatedAssets (AM2) refer to the
types of assets and assets concerned with system-and archi-
tectural design and any documentation related to these arte-
facts.
Development-Related Assets (AM3) refer to the types of
assets and assets concernedwith the development of the soft-
ware product, including the code, build, versioning, and arte-

Zabardast et al.: Preprint submitted to Elsevier Page 11 of 22

Asset Management Taxonomy: A Roadmap

Figure 5: The Asset Management Taxonomy. The tree contains only the types of assets.
The full tree is presented in Appendix A.

facts related to them.
Verification-and-Validation-RelatedAssets (AM4) refer to
the types of assets (including sub-types) and assets concerned
with software testing and quality assurance, and the output
provided by such sub-type assets that help the stakeholders
investigate the quality of the software product.
Operations-Related Assets (AM5) refer to the types of as-
sets and assets concerned with the data produced from oper-
ational activities.
Environment-and-Infrastructure-Related Assets (AM6)
refers to the types of assets and assets concerned with the
development environment, the infrastructure, and the tools
and artefacts (including support applications) that facilitate
the development process.
Development-Process/Ways-of-Working- Related Assets
(AM7) refer to the types of assets and assets concerned with
all the interrelated processes and procedures that transform
inputs into outputs during the development process.
Organisation-Related Assets (AM8) refer to the types of
assets and assets concerned with the organisation itself, such
as team constellation, team collaborations, and organisational
governance.

4.3.1. Product-Requirements-Related Assets (AM1)
Product-Requirements-RelatedAssets include the follow-

ing three types of assets (see Figure 6). Table 5 presents
product-requirements-related assets, their properties, and def-
initions.
Functional-Requirement-Related Assets (AM1.1) refer to the
assets related to the functions that the software shall provide
and that can be tested [11]. We have observed the follow-
ing assets belonging to this type: Feature-Related Backlog
Items, User Stories, and Use Cases.
Quality-Requirement-Related Assets (AM1.2) refer to the as-
sets related to non-functional requirements that act to con-
strain the solution [11]. We have observed the following as-
sets belonging to this type: SystemRequirements,User Inter-
face Designs, Quality Scenarios (i.e., the -ilities), and User
Experience Requirements.
Product-Modification-Related Assets (AM1.3) refer to assets
that mandate a change of the system and, but not necessarily,
the requirements. Change Requests is an asset we observed
belonging to this type.
4.3.2. Product-Representation-Related Assets (AM2)

Product-Representation-Related Assets include the fol-
lowing two types of assets (see Figure 7). Table 6 presents
product-representation-related assets, their properties, and

Zabardast et al.: Preprint submitted to Elsevier Page 12 of 22

Asset Management Taxonomy: A Roadmap

Figure 6: Product-Requirements-Related Assets Subtree.

Table 5
Product-Requirements-Related Assets’ Definitions.

Asset AM type Definition

Feature-Related
Backlog Items

AM1.1 Feature-Related Backlog Items are the results of refining and breaking down the user stories to create
executable tasks [52].

User Stories AM1.1 User Stories are, according to the agile development paradigm, a way to specify the features of the software
that is being developed [52].

Use Cases AM1.1 Use Cases are lists of actions or events that describe how a user will achieve a goal in a system [34].
System Requirements AM1.2 “System Requirements are the requirements for the system as a whole. System Requirements [...] encompass

user requirements, requirements of other stakeholders (such as regulatory authorities), and requirements
without an identifiable human source.” [11].

User Interface Designs AM1.2 “User Interface Design is an essential part of the software design process. User interface design should ensure
that interaction between the human and the machine provides for effective operation and control of the
machine. For software to achieve its full potential, the user interface should be designed to match the skills,
experience, and expectations of its anticipated users.” [11].

Quality Scenarios
(The -ilities)

AM1.2 “A quality attribute (QA) is a measurable or testable property of a system that is used to indicate how well
the system satisfies the needs of its stakeholders.” [5] A quality scenario is a way of stating a requirement in
an unambiguous and testable manner [5].

User Experience Re-
quirements

AM1.2 User Experience Requirements “are considered key quality determinants of any product, system or service
intended for human use, which in turn can be considered as product, system or service success or failure
indicators and improve user loyalty.” [41, 38].

Change Requests AM1.3 Change Requests are the modifications to the software product that are not coming from the requirements
analysis of the product.

definitions.
Architecture-and-Design-Related Assets (AM2.1) refer to the
assets that are used to design, communicate, represent, main-
tain, and evolve the software product, which is divided into:

• Architectural-Documentation-Related Assets (AM2.1.1)
refer to the assets used to design, communicate, repre-
sent, maintain, and evolve the architectural represen-
tation of a software product. We have observed the
following assets belonging to this type: Architectural
Models and Architectural Documentation.

• Design-Related Assets (AM2.1.2) refer to the assets
that belong to the design and design artefacts used dur-
ing the development process. We have observed the
following assets belonging to this type: Design Deci-
sions Documentation and System Designs.

Product-Documentation-Related Assets (AM2.2) refer to the
assets that belong to the product documentation and the pro-
cess of creating such documentation. We have observed the
following assets belonging to this type: Documentation Au-
tomation Scripts and Product Documentation.
4.3.3. Development-Related Assets (AM3)

Development-Related Assets include the following three
types of assets (see Figure 8). Table 7 presents the development-
related assets, their properties, and definitions.

Build-Documentation-Related Assets (AM3.1) refer to the as-
sets related to the build system itself, the build environment,
and the build process. We have observed the following as-
sets belonging to this type: Build Plans, Build Results, and
Build Scripts.
Code-Related Assets (AM3.2) refer to the assets that are re-
lated to the source code. We have observed the following as-
sets belonging to this type: Source Code, Code Comments,
APIs, Architecture (Code Structure)—i.e., a set of structures
that can be used to reason about the system including the ele-
ments, relations among them, and their properties [5]—, and
Libraries/External Libraries.
Source-Code-Management-Related Assets (AM3.3) refer to
the assets related to managing the source code such as ver-
sioning and problems in code versioning and burndown charts.
Versioning Comments is an asset we observed belonging to
this type.
4.3.4. Verification-and-Validation-Related Assets

(AM4)
Verification-and-Validation-RelatedAssets include the fol-

lowing four types of assets (see Figure 9). Table 8 presents
verification-and-validation-related assets, their properties, and
definitions.
Functional-Tests-Related Assets (AM4.1) refer to the assets
related to testing the functionality of the system, its related
features, and how they work together. We have observed the

Zabardast et al.: Preprint submitted to Elsevier Page 13 of 22

Asset Management Taxonomy: A Roadmap

Figure 7: Product-Representation-Related Assets Subtree.

Table 6
Product-Representation-Related Assets’ Definitions.

Asset AM type Definition

Architectural Models AM2.1.1 Architecture Models are partial abstractions of systems, they capture different properties of the system [37].
“Architecture modeling involves identifying the characteristics of the system and expressing it as models so
that the system can be understood. Architecture models allow visualisation of information about the system
represented by the model.” [39]

Architectural Docu-
mentation

AM2.1.1 Architectural Documentation are the representations of the decisions made to construct the architecture of
the software [37].

Design Decisions Doc-
umentation

AM2.1.2 Design Decisions Documentation are the results of the design decisions that architects create and document
during the architectural design process [11].

System Designs AM2.1.2 System Designs are the processes of defining elements of a system. These elements are specified in the
requirements and are extracted to create modules, architecture, components and their interfaces and data
for a system.

Documentation
Automation Scripts

AM2.2 Documentation Automation Scripts are the scripts that generate documentation based on the state of the
source code.

Product Documenta-
tion

AM2.2 Product Documentation are the operational guidelines (such as user manuals and installation guides) for
when the product is in use.

following assets belonging to this type: Unit Tests, Integra-
tion Tests, System Tests, and Acceptance Tests.
Non-Functional-Test-Related Assets (AM4.2) refer to the as-
sets related to testing the quality attributes of the system and
whether they satisfy the business goals and requirements.
We have observed the following assets belonging to this type:
Non-Functional Test Cases andNon-Functional Test Results.
Test-Documentation-Related Assets (AM4.3) refer to the as-
sets related to documenting the testing process. Test Plans
is an asset we observed belonging to this type.
Test-Automation-Related Assets (AM4.4) refer to the assets
that are utilised for automated testing of the system. We have
observed the following assets belonging to this type: Test
Automation Scripts and Test Automation (Real/Synthetic) Data.
4.3.5. Operations-Related Assets (AM5)

Operation-Related Assets are all the assets created as the
result of operational activities, extracted during the oper-

ational activities, or used during the operational activities,
e.g., any data collected during product use (see Figure 10).
The observed operations-related assets includeCustomerData,
ApplicationData, andUsageData. Table 9 presents operations-
related assets, their properties, and definitions.
4.3.6. Environment-and-Infrastructure-Related Assets

(AM6)
Environment-and-Infrastructure-RelatedAssets are all the

assets used in the development environment or as an infras-
tructure for development during software development (see
Figure 11). The observed environment-and-infrastructure-
related assets include Deployment Infrastructure, Tools, and
Tools Pipelines. Table 10 presents environment-and- infras-
tructure -related assets, their properties, and definitions.

Figure 8: Development-Related Assets Subtree.

Zabardast et al.: Preprint submitted to Elsevier Page 14 of 22

Asset Management Taxonomy: A Roadmap

Table 7
Development-Related Assets’ Definitions.

Asset AM type Definition

Build Plans AM3.1 Build Plans are the descriptions of how developers intend to build the software, i.e., by compilation of
artefacts in a build chain, which will end in a running software.

Build Results AM3.1 Build Results are the results of the build process, including the comments, documentation, and other artefacts
that are generated during the build process.This is seen as a persistent asset if it holds more data than just
an automated “throw away” report, and/or if the asset is used for reference over time.

Build Scripts AM3.1 Build Scripts are the scripts that are used to run the build process.
Source Code AM3.2 Source Code is the collection of code written in a human-readable and comprehensible manner stored as

plain text [31].
Code Comments AM3.2 Code Comments are the comments that developers integrate and write within the source code to clarify and

describe certain parts of the code or its functionality [27].
APIs AM3.2 APIs (Application Program Interfaces) are the interfaces that are created to facilitate interaction of different

components and modules.
Architecture (Code
Structure)

AM3.2 Architecture is the actual and fundamental relationships and structure of a software system and its source
code [5].

Libraries/ External Li-
braries

AM3.2 Libraries/External Libraries are source code that belongs to the product but is not developed or maintained
within the project, i.e., the developers. The software project depends on it and references the library.

Web Services AM3.2 Web Services are running services on devices handling requests coming from networks
Versioning Comments AM3.3 Versioning comments are the comments that developers submit to any version control application they use

for the development. Such comments can later be extracted and viewed to identify the purpose of each
event.

Figure 9: Verification-and-Validation-Related Assets Subtree.

4.3.7. Development-Process/Ways-of-Working-Related
Assets (AM7)

Development-Process /Ways-of-Working-RelatedAssets
include the following three types of assets (see Figure 12).
Table 11 presents development-process / ways-of-working
-related assets, their properties, and definitions.
Product-Management-Related Assets (AM7.1) refer to the as-
sets related to dealing with the specific software-intensive
product that is being created. These assets come from dif-
ferent stages, such as business justification, planning, devel-

opment, verification, pricing, and product launch. We have
observed the following assets belonging to this type: Prod-
uct Management Documentation, Documentation About Re-
lease Procedure, Product BusinessModels, Product Roadmap,
Product Scope, and Product Backlog.
Process-Management-Related Assets (AM7.2) refer to the as-
sets related to managing the development process, including
internal rules, plans, descriptions, specifications, strategies,
and standards. We have observed the following assets be-
longing to this type: Requirements Internal Standards, Ar-

Table 8
Verification-and-Validation-Related Assets Definitions.

Asset AM type Definition

Unit Tests AM4.1 Unit Tests are the tests written to examine the individual units of the code [28]. “Unit tests generally
focus on the program logic within a software component and on correct implementation of the component
interface.” [7]

Integration Tests AM4.1 Integration Tests are the tests written to examine the combined set of modules as a group [7, 29].
System Tests AM4.1 System Tests are the tests written to examine the system’s compliance with the requirements.
Acceptance Tests AM4.1 Acceptance Tests are the tests conducted to examine and determine whether the requirements are met

according to the specifications of the requirements.
Non-Functional Test
Cases

AM4.2 Non-Functional Test Cases are the tests that examine the quality of the system, i.e., non-functional aspects
such as performance, availability, and scalability.

Test Plans AM4.3 Test Plans are the documents that describe the testing scope and test activities that will be performed on
the system throughout the development lifecycle.

Test Automation
Scripts

AM4.4 Test Automation Scripts are the scripts that automate part of the testing process. More specifically, the
scripts automate distinct testing activities or types of tests.

Test Automation
(Real/ Synthetic)
Data

AM4.4 Test Automation (Real/Synthetic) Data is the generated data that are used by the automation scripts to
test the system.

Zabardast et al.: Preprint submitted to Elsevier Page 15 of 22

Asset Management Taxonomy: A Roadmap

Figure 10: Operation-Related Assets Subtree.

Table 9
Operations-Related Assets’ Definitions.

Asset AM type Definition

Customer Data AM5 Customer Data is data that is collected from the customers (end users) of the software product such as user
feedback.

Application Data AM5 Application Data is the data that is created, collected, used, and maintained while developing the software
product such as system performance.

Usage Data AM5 Usage Data is the data that is collected while the software product is operational such as the data related
to the performance of the system.

chitectural Internal Standards,Documentation Internal Rules
/ Specifications, Build Internal Standards, Coding Internal
Standards / Specifications, Versioning Internal Rules / Spec-
ifications, Testing Internal Rules / Specifications / Plans /
Strategies, Process Internal Descriptions, ProcessData, and
Documentation About Ways of Working.
4.3.8. Organisation-Related Assets (AM8)

Organisation-Related Assets are all the assets that repre-
sent organisations’ properties (see Figure 13). The observed
organisation-related assets include Organisation’s Structure,
Organisation’s Strategy, Human Capital, and Business Mod-
els. Table 12 presents organisation-related assets, their prop-
erties, and definitions.

5. Discussion
In this section, we first discuss our findings in light of the

research questions, followed by the general lessons learned
and implications.
5.1. Principal Findings

RQ ∶ What assets are important for organisations dur-
ing the inception, planning, development, evolution, andmain-
tenance of SIPS?

We present a taxonomy of assets, which includes eight
major types of assets AM1 to AM8. The types of assets be-
longing to each of the major types of assets are not isolated,
i.e., some types of assets and assets in them are interrelated.
For example, the asset architectural documentation is di-
rectly related to the asset architecture. Architectural doc-
umentation represents the architecture of the system.

Out of the eight major types of assets, two types have

Figure 11: Environment-and-Infrastructure-Related Assets Subtree.

Table 10
Environment-and-Infrastructure-Related Assets’ Definitions.

Asset AM type Definition

Deployment Infras-
tructure

AM6 Deployment Infrastructure are all the steps, activities, tools, process descriptions, and processes that facilitate
the deployment of a software-intensive product.

Tools AM6 Tools are any physical and virtual entities that are used for the development of a software product such as
integrated development environments (IDE), version control systems, spreadsheets applications, compilers,
and debuggers.

Tools Pipelines AM6 Tool Pipelines are automated processes and activities that facilitate and enable developers to reliably and
efficiently compile, build, and deploy the software-intensive product.

Zabardast et al.: Preprint submitted to Elsevier Page 16 of 22

Asset Management Taxonomy: A Roadmap

Figure 12: Development-Process/Ways-of-Working-Related Assets Subtree.

Table 11
Development-Process/Ways-of-Working-Related Assets’ Definitions.

Asset AM type Definition

Product Management
Documentation

AM7.1 Product Management Documentation is any documentation that is used to facilitate the management
activities and processes during the product development.

Documentation
About Release Proce-
dure

AM7.1 Documentation About Release Procedure is the description of the product release plan and the entities and
activities associated with release.

Product Business
Models

AM7.1 Product Business Models are the descriptions of how the organisation creates value for the customers with
the software-intensive product.

Product Roadmap AM7.1 Product Road Map is the abstract, high-level description of the evolution of the product during the devel-
opment.

Product Scope AM7.1 Product Scope is the description of the characteristics, functionality, and features of the software-intensive
product.

Product Backlog AM7.1 Product Backlog is any document that acts as a list where the features, change requests, bug fixes, and
other similar activities are stored, listed, and prioritised.

Requirements Internal
Standards

AM7.2 Requirements Internal Standards are the specific rules that the company introduces and utilises internally
for dealing with the requirements of the product.

Architectural Internal
Standards

AM7.2 Architectural Internal Standards are the specific rules that the development team introduces and utilises
internally for designing, creating, and maintaining the architecture of the software-intensive product.

Documentation Inter-
nal Rules / Specifica-
tions

AM7.2 Documentation Internal Rules/Specifications are the specific rules that the development team introduces
and utilises internally for creating and maintaining the documentation.

Build Internal Stan-
dards

AM7.2 Build Internal Standards are the specific rules that the development team introduces and utilises internally
for the build activities.

Coding Internal Stan-
dards/Specifications

AM7.2 Coding Internal Standards/Specifications are the rules that the development team introduces and utilises
internally while developing the software-intensive product.

Versioning Internal
Rules / Specifications

AM7.2 Versioning Internal Rules/Specifications are the rules that the development team introduces and utilises
internally for version control during the development of software-intensive products.

Testing Internal Rules
/ Specifications /
Plans / Strategies

AM7.2 Testing Internal Rules/Specifications/Plans/Strategies are the rules that the development team introduces
and utilises internally for testing activities and procedures.

Process Internal De-
scriptions

AM7.2 Process Internal Descriptions are the descriptions of the procedures and activities that the development team
introduce and utilise during the development of software-intensive products.

Process Data AM7.2 Process Data is are the metrics and other information that concern the past and current status of the
development process. Examples of such data are velocity, issues, bugs, backlog items, etc.

Documentation
About Ways of
Working

AM7.2 Documentation About Ways of Working are the description of work plans and working patterns, i.e., how
the organisation and the development team plan to create and release the software-intensive product.

Figure 13: Organisation-Related Assets Subtree.

Zabardast et al.: Preprint submitted to Elsevier Page 17 of 22

Asset Management Taxonomy: A Roadmap

Table 12
Organisation-Related Assets’ Definitions.

Asset AM type Definition

Organisation’s Struc-
ture

AM8 Organisation’s Structure is the description of how the organisation directs the activities to achieve organisa-
tional goals.

Organisation’s Strat-
egy

AM8 Organisation’s Strategy is the description of the plans that guide the organisation how to allocate its resources
to support the development of the software-intensive product.

Business Models AM8 Business Models are the descriptions of how the organisation creates value with the software-intensive product
for the organisation.

been studiedmore extensively, namelyDevelopment-Related
Assets and Product-Representation-Related Assets, which
are aligned with previous studies such [4], i.e., prior studies
focus on source-code-related assets. These types of assets
are easier to study due to the abundance of metrics and eval-
uation methods and, therefore, have been studied in many
articles. The reason behind this might be that:

• The technical debt metaphor was initially introduced
in the context of these prevalent assets [4]. Therefore
the researchers had more time investigating and ex-
ploring this specific phenomenon. For example, many
papers investigate a software product’s architecture,
exploring different ways of evaluating architecture us-
ing different tools and measurements.

• These types of assets are easier to contextualise in the
TD metaphor, i.e., identifying such assets and how
they can be subject to incur debt. For example, the
concept of code smells is easier to grasp since it is
a more tangible artefact. It is simple to define how
the software product can incur debt if the code is not
“quite right”; i.e., it is smelly.

The rest of the types of assets have not received extensive
time to be explored. The reason behind this might be that:

• These types of assets were added later as “types of
technical debt,” such as Requirements Debt and Pro-
cess Debt. The technical debt metaphor was not ini-
tially used to deal with these types of artefacts [4].
These types of TD were introduced in an effort to ex-
tend the metaphor and, therefore, have not been inves-
tigated thoroughly.

• Unlike the other types (i.e., Development-Related and
Product-Representation-Related Assets), it is harder
to identify and/or define how and to what extent they
can incur debt in software products. For example, in-
curring Documentation Debt might differ in different
companies and development teams.

• These types of assets are intertwined with the context
of the development process, the culture of the com-
pany and the development team, and their standards
and way-of-work. What is considered debt might be
different depending on the context.

We have seen that the existing literature on TD classi-
fies various TD types and presents ontologies on the topic.

These classifications have evolved since the introduction of
the extended TD metaphor. We observe that the relevant as-
set categories we have extracted from industrial insights can
be mapped to the classifications provided in TD literature.
We observe that:

• Some existing TD types and categories, such as code
that are well-defined and well-recognised fit into sim-
ilar categories as in the presented taxonomy. The in-
dustrial insights and definitions of such assets are con-
sistent with the definitions from TD literature.

• Some asset types that are relevant to the industry have
been understudied. There is room for extending the
research in such areas, e.g.,Operations-Related Assets
(AM5) andEnvironment-and-Infrastructure-Related As-
sets (AM6), which is noticeable when examining Ta-
ble 3, i.e., more assets and types of assets are in the
top rows of the matrix (see Section 4.1).

• By creating the taxonomy, we highlight both the areas
of interest and the gaps in research. Therefore, iden-
tifying the areas in the software engineering body of
knowledge that need to be investigated and the areas
that need to evolve according to the current interest.

5.2. Lessons Learned
In this section, we will present the lessons learned from

running the industrial workshops, synthesising the findings,
and creating the taxonomy. The importance of source-code-
related assets is undeniable (i.e., assets in AM1, AM2, AM3,
and AM4). However, we observe that the social and organi-
sation aspect of the development is very important to indus-
try though these aspects have not received as much attention
in the TD area [4, 55]. Taking a look at some statements
from participants in the industrial workshops highlights this
fact. Examples of such statements are:

• “There are many people who work in the same area
in the same code base. Creates conflicts and slow re-
leases.”

• “The problem is the delta operation, and the plan is
at such a high level that it is impossible to understand.
Too abstract.”

• “... training the teams in what is considered best prac-
tices improves team cohesion and eases collaboration.”

• “[There is] no holistic platform strategy (Conway’s
law).”

Zabardast et al.: Preprint submitted to Elsevier Page 18 of 22

Asset Management Taxonomy: A Roadmap

The large-scale software projects developed in large or-
ganisations are highly coupled with the social and organisa-
tion aspect of work. The prevalence of assets related to the
social and organisation aspect of development, e.g., Busi-
ness Models and Product Management Documentation, in-
dicates the necessity to characterise and standardise such as-
sets, how they are perceived, and how they are measured and
monitored.

While creating the taxonomy, we observed that assets
do not exist in isolation, i.e., they are entities with charac-
teristics and properties that exist in a software development
ecosystem. In the following, we will discuss the assets with
similar characteristics and properties and assets that have im-
plicit relations between each other.
Assets that have similar characteristics and properties.
For example,Unit Tests have similar characteristics and prop-
erties as Source Code, i.e., unit tests are code, and there-
fore, their value degradation can have analogous connota-
tions. This means that there are possibilities to evaluate such
assets’ degradation with similar characteristics and proper-
ties using similar metrics. Still, the degradation of one (e.g.,
Unit Tests) regarding the other (e.g., Source Code) is also
relevant.-Moreover, the degradation of one asset (e.g., Source
Code) might impact the degradation of the other asset (e.g.,
Unit Tests). Therefore, such coupling and relations of the
assets should be considered when analysing and managing
such assets.
Assets that have implicit relations between each other.
Implicit relations between assets can arise from their inher-
ent coupling properties. Different assets related to certain
aspects of the product will have implicit relations that are not
visible in the taxonomy as presented now. For example, Ar-
chitectural Models and Architecture (Code Structure) have
an inherent relationship. Architectural Models should be
the representation of the architecture of the system, i.e., the
code structure. Therefore, similar to the previous point, the
value degradation of the assets with such implicit relations
can have analogous connotations. Their degradation might
impact the degradation of the other assets in the relation-
ship. For example, the degradation of any of the functional-
requirements-related assets will eventually be reflected in the
degradation of functional-test-related assets.
5.3. Contributions

The contribution of this work is the following:
• Providing common terminology and taxonomy for as-

sets that are utilised during software development and;
• Providing amapping over the assets and the input used

to create the taxonomy, i.e., input from the literature
and input from the industry

One contribution of the taxonomy is that it is a guideline
for future research by providing a map of different types of
assets. Themap illustrates the different areas that are defined
and studied, and the ones that are not standardised or under-
explored. Therefore, the taxonomy provides a summary of

the body of knowledge by linking empirical studies with in-
dustrial insights gathered through the industrial workshops.
Providing a common taxonomy and vocabulary:

• Makes it easier for the communities to communicate
the knowledge.

• Creates the opportunity to find and build upon previ-
ous work.

• Helps to identify the gaps by linking the empirical
studies to the taxonomy.

• Highlights the areas of interest.
• Makes it possible to build and add to the taxonomy

(new assets, details) as knowledge is changed over time
by researchers in the field.

• For practitioners, the evolving taxonomy can be used
as a map of different assets that are normally not as-
sociated with the implications of degradation, and po-
tentially the implications of said degradation can be
traced.

Another minor contribution is that the taxonomy helps
draw out the assets with similar characteristics and implicit
relations between each other. Most of such similarities of
characteristics, properties, and relations are not immediately
visible when considering the assets from certain perspec-
tives. Taking amore abstract and high-level look at the assets
involved in the development of software-intensive products
can help facilitate the management activities and the overall
development process.

Finally, large companies deal with developing SIPS, and
they rely on external resources to help them achieve the busi-
ness goals of their products. A major external contributor
to new knowledge that can help the practitioners in the in-
dustry is research findings. Therefore, understanding and
applying the research findings is crucial for them. Having
a taxonomy of assets summarising the state-of-the-art and
state-of-practice body of knowledge for the assets utilised
for developing software-intensive products is useful. Prac-
titioners can refer to the taxonomy systematically built with
the accumulated knowledge of academia and other practi-
tioners to extract what they need in specific domains.

We believe that our observations and effort to bring the
different assets and terminologies used to describe the assets
will help practitioners be more aware of each type of assets
and how they are managed in the context.
5.4. Limitations and Threats to Validity

Similar to any other research work, this research has its
limitations and threats to validity. In this section, we cover
the limitations of our work and how they might affect the
results. The asset management taxonomy dimensions, both
asset types and assets, do not represent an exhaustive list.
The taxonomy is created based on the data extracted from
the literature review and the industrial workshops. We com-
bined the inputs from literature and industry to create the

Zabardast et al.: Preprint submitted to Elsevier Page 19 of 22

Asset Management Taxonomy: A Roadmap

taxonomy. We designed the taxonomy to be extendable with
new data identified by us and others in future studies as soft-
ware engineering areas evolve. We encourage researchers
and practitioners to consider the taxonomy within their or-
ganisation and identify the potential new asset types and as-
sets that can complement the asset management taxonomy’s
representativeness.

In the rest of this section, we cover the threats to con-
struct, internal, and external validity as suggested by Rune-
son and Höst [56] and Runeson et al. [57].

• Construct validity reflects the operationalmeasurements
and how the study represents what is being investi-
gated. Our research uses two primary sources of data,
namely the literature review and the industrial work-
shops. We are aware that the literature review is not
inclusive, and it is within a limited area, i.e., Techni-
cal Debt. We chose the technical debt topic for the
reasons mentioned in Section 3.2. We acknowledge
that limiting the literature review to a specific topic
might affect the construct validity of this work, i.e.,
the input from literature. We are also aware that the
participants’ statements in the workshops can be in-
terpreted differently by the researcher and the partic-
ipants. We mitigate this threat in two ways. First, by
having two researchers coding the raw data indepen-
dently; and second, by choosing to code the data using
the in vivo coding method, the qualitative analysis pri-
oritises the participants’ opinions.

• External validity refers to the generalisability of the
results andwhether the results of a particular study can
hold in other cases. We acknowledge and understand
that the results are not comprehensive and might not
be generalisable. The created taxonomy is based on
the collected data and is extendable. Additionally, the
taxonomy was designed to be agnostic to processes,
but since some of the assets are more associated with
certain processes, the taxonomy cannot be truly ag-
nostic. Finally, other threats that can affect the study’s
external validity are the number of involved compa-
nies, the country where the companies (investigated
sites) are located, i.e., Sweden, and involvement of all
the roles in these organisations.

• Reliability refers to the extend that the data and analy-
sis is dependent of the researchers. When conducting
qualitative studies, the threat to validity is the replica-
bility of the results and the process [46]. In the case of
our study, the context and the participants of the work-
shops are unique and therefore not repeatable. But
there is an acceptable margin of validity on the results
when conducting qualitative research [46]. We have
tried to mitigate this threat by relying on consistency
in both when conducting the workshops and the anal-
ysis.

6. Conclusions and Future Work
This paper presents a taxonomy for classifying assets that

have inherent value for an organisation and are subject to
degradation. These assets are used during the development
of SIPS. The taxonomy is created and built upon the data
extracted from a literature review and industrial workshops.
The authors completed the taxonomy by identifying the as-
sets that were not mentioned during the workshops or the lit-
erature review, i.e., author defined assets (ADA). This work,
i.e., the creation of the taxonomy of assets, attempts to pro-
vide an overarching perspective on various assets for aca-
demicians and practitioners. The taxonomy allows us to char-
acterise and organise the body of knowledge by providing a
common vocabulary of and for assets.

We have addressed the research question by creating the
taxonomy and defining the types of assets and the assets that
belong to those types. Eight major asset types are introduced
in the taxonomy: assets related to Product Requirements,
Product Representation,Development, Verification and Val-
idation,Operations, Environment and Infrastructure,Devel-
opment Process/ Ways-of-Working, and Organisation. The
taxonomy could be used for:

• Identify the gaps in research by providing the points
of interest from practitioners’ perspectives.

• Identify the state-of-the-art research for individual as-
sets and their properties for practitioners.

• Communicate and disperse the body of knowledge.
The dimensions provided by our taxonomy are not ex-

haustive. Therefore, we intend to conduct further investiga-
tion to complement the taxonomy by incorporating the new
knowledge. Furthermore, we would like to study assets that
co-occur in management activities and how they impact each
other and the development process. Lastly, we intend to in-
vestigate the individual properties of assets to identify the
metrics used for measuring the asset (or lack thereof). The
metrics will be investigated to evaluate how they can help us
present the state of assets and their degradation.

Besides, future and ongoing work will use the taxon-
omy as a base for further studies and exploration of assets,
their characteristics, and the concepts of value, degradation,
and different types of degradation. Finally, we would like to
investigate how the taxonomy can be utilised practically in
the industry beyond the mainstream of (mostly) code related
tools and methods.

A. Appendix: The Asset Management
Taxonomy
The full tree of the asset management taxonomy is pre-

sented in Figure 14.

References
[1] Alves, N.S., Mendes, T.S., de Mendonça, M.G., Spínola, R.O., Shull,

F., Seaman, C., 2016. Identification and management of technical

Zabardast et al.: Preprint submitted to Elsevier Page 20 of 22

Asset Management Taxonomy: A Roadmap

debt: A systematic mapping study. Information and Software Tech-
nology 70, 100–121.

[2] Alves, N.S., Ribeiro, L.F., Caires, V., Mendes, T.S., Spínola, R.O.,
2014. Towards an ontology of terms on technical debt, in: 2014 Sixth
International Workshop on Managing Technical Debt, IEEE. pp. 1–7.

[3] Ampatzoglou, A., Bibi, S., Chatzigeorgiou, A., Avgeriou, P., Stame-
los, I., 2018. Reusability index: A measure for assessing software
assets reusability, in: International Conference on Software Reuse,
Springer. pp. 43–58.

[4] Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C., 2016. Manag-
ing technical debt in software engineering (dagstuhl seminar 16162),
in: Dagstuhl Reports, Schloss Dagstuhl-Leibniz-Zentrum fuer Infor-
matik.

[5] Bass, L., Clements, P., Kazman, R., 2003. Software architecture in
practice. Addison-Wesley Professional.

[6] BenIdris, M., 2020. Investigate, identify and estimate the technical
debt: a systematic mapping study. Available at SSRN 3606172 .

[7] Berner, S., Weber, R., Keller, R.K., 2005. Observations and lessons
learned from automated testing, in: Proceedings. 27th International
Conference on Software Engineering, 2005. ICSE 2005., pp. 571–
579. doi:10.1109/ICSE.2005.1553603.

[8] Besker, T., Martini, A., Bosch, J., 2017. Time to pay up: Technical
debt from a software quality perspective., in: CIbSE, pp. 235–248.

[9] Besker, T., Martini, A., Bosch, J., 2018. Managing architectural tech-
nical debt: A unified model and systematic literature review. Journal
of Systems and Software 135, 1–16.

[10] Blum, B.I., 1994. A taxonomy of software development methods.
Communications of the ACM 37, 82–94.

[11] Bourque, P., Fairley, R.E., et al., 2014. Guide to the software engineer-
ing body of knowledge (SWEBOK (R)): Version 3.0. IEEE Computer
Society Press.

[12] Broughton, V., 2015. Essential classification. Facet Publishing.
[13] Brown, N., Cai, Y., Guo, Y., Kazman, R., Kim, M., Kruchten, P.,

Lim, E., MacCormack, A., Nord, R., Ozkaya, I., et al., 2010. Manag-
ing technical debt in software-reliant systems, in: Proceedings of the
FSE/SDP workshop on Future of software engineering research, pp.
47–52.

[14] Broy, M., 2018. A logical approach to systems engineering artifacts:
semantic relationships and dependencies beyond traceability—from
requirements to functional and architectural views. Software & Sys-
tems Modeling 17, 365–393.

[15] Cicchetti, A., Borg, M., Sentilles, S., Wnuk, K., Carlson, J., Pap-
atheocharous, E., 2016. Towards software assets origin selection sup-
ported by a knowledge repository, in: 2016 1st International Work-
shop on Decision Making in Software ARCHitecture (MARCH),
IEEE. pp. 22–29.

[16] Coghlan, D., Brannick, T., 2014. DoingAction Research in Your Own
Organization (4th ed.). London: Sage.

[17] Constantopoulos, P., Doerr, M., 1995. Component classification in
the software information base. Object-Oriented Software Composi-
tion , 177.

[18] Cunningham, W., 1992. The wycash portfolio management system.
ACM SIGPLAN OOPS Messenger 4, 29–30.

[19] Falessi, D., Shaw, M.A., Shull, F., Mullen, K., Keymind, M.S., 2013.
Practical considerations, challenges, and requirements of tool-support
for managing technical debt, in: 2013 4th International Workshop on
Managing Technical Debt (MTD), IEEE. pp. 16–19.

[20] Fernández-Sánchez, C., Díaz, J., Pérez, J., Garbajosa, J., 2014. Guid-
ing flexibility investment in agile architecting, in: 2014 47th Hawaii
International Conference on System Sciences, IEEE. pp. 4807–4816.

[21] Fernández-Sánchez, C., Garbajosa, J., Yagüe, A., Perez, J., 2017.
Identification and analysis of the elements required to manage techni-
cal debt by means of a systematic mapping study. Journal of Systems
and Software 124, 22–38.

[22] Fox, M., Green, G., Martin, P., 2007. Doing practitioner research.
Sage.

[23] Garriga, M., 2017. Towards a taxonomy of microservices architec-
tures, in: International Conference on Software Engineering and For-

mal Methods, Springer. pp. 203–218.
[24] Glass, R.L., Vessey, I., 1995. Contemporary application-domain tax-

onomies. IEEE Software 12, 63–76.
[25] Glass, R.L., Vessey, I., Ramesh, V., 2002. Research in software en-

gineering: an analysis of the literature. Information and Software
technology 44, 491–506.

[26] Griffith, I., Taffahi, H., Izurieta, C., Claudio, D., 2014. A simula-
tion study of practical methods for technical debt management in ag-
ile software development, in: Proceedings of the Winter Simulation
Conference 2014, IEEE. pp. 1014–1025.

[27] Grubb, P., Takang, A.A., 2003. Software maintenance: concepts and
practice. World Scientific.

[28] Hamill, P., 2004. Unit test frameworks: tools for high-quality software
development. " O’Reilly Media, Inc.".

[29] ISO/IEC/IEEE, 2010. Systems and software engineering.
ISO/IEC/IEEE 24765:2010. Technical Report. ISO/IEC/IEEE.

[30] ISO/IEC/IEEE, 2014. Asset management - Overview, principles,
andsch terminology ISO/IEC/IEEE 55000:2014. Technical Report.
ISO/IEC/IEEE.

[31] Kernighan, B.W., 1974. ‘programming in c- a tutorial. Unpublished
internal memorandum, Bell Laboratories .

[32] Kroll, P., Kruchten, P., 2003. The Rational Unified Process Made
Easy: A Practitioner’s Guide to the RUP: A Practitioner’s Guide to
the RUP. Addison-Wesley Professional.

[33] Kruchten, P., 2000. The rational unified process 2nd edition: An in-
troduction.

[34] Kruchten, P., 2004. The rational unified process: an introduction.
Addison-Wesley Professional.

[35] Kruchten, P., Nord, R., Ozkaya, I., 2019. Managing Technical Debt:
Reducing Friction in Software Development. Addison-Wesley Pro-
fessional.

[36] Kruchten, P., Nord, R.L., Ozkaya, I., 2012. Technical debt: From
metaphor to theory and practice. Ieee software 29, 18–21.

[37] Kruchten, P.B., 1995. The 4+ 1 view model of architecture. IEEE
software 12, 42–50.

[38] Kujala, S., Miron-Shatz, T., 2013. Emotions, experiences and usabil-
ity in real-life mobile phone use, in: Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems, pp. 1061–1070.

[39] Kumar, A., Nori, K.V., Natarajan, S., Lokku, D.S., 2014. Value ma-
trix: From value to quality and architecture, in: Economics-Driven
Software Architecture. Elsevier, pp. 205–240.

[40] Kwasnik, B.H., 1992. The role of classification structures in reflecting
and building theory. Advances in Classification Research Online 3,
63–82.

[41] Law, E.L.C., Van Schaik, P., 2010. Modelling user experience–an
agenda for research and practice. Interacting with computers 22, 313–
322.

[42] Lehman, M., 1996. Laws of software evolution revisited, in: Euro-
pean Workshop on Software Process Technology, Springer, Berlin,
Heidelberg. pp. 108–124.

[43] Lehman, M.M., 1979. On understanding laws, evolution, and conser-
vation in the large-program life cycle. Journal of Systems and Soft-
ware 1, 213–221.

[44] Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., Fontana, F.A.,
2019. Technical debt prioritization: State of the art. a systematic lit-
erature review. arXiv preprint arXiv:1904.12538 .

[45] Letouzey, J.L., Ilkiewicz, M., 2012. Managing technical debt with the
sqale method. IEEE software 29, 44–51.

[46] Leung, L., 2015. Validity, reliability, and generalizability in qualita-
tive research. Journal of family medicine and primary care 4, 324.

[47] Li, Z., Avgeriou, P., Liang, P., 2015. A systematic mapping study on
technical debt and its management. Journal of Systems and Software
101, 193–220.

[48] von Linné, C., 1735. Systema naturae; sive, Regna tria naturae: sys-
tematice proposita per classes, ordines, genera & species. Haak.

[49] Méndez, D., Böhm, W., Vogelsang, A., Mund, J., Broy, M.,
Kuhrmann, M., Weyer, T., 2019. Artefacts in software engineering:
a fundamental positioning. Software & Systems Modeling 18, 2777–

Zabardast et al.: Preprint submitted to Elsevier Page 21 of 22

http://dx.doi.org/10.1109/ICSE.2005.1553603

Asset Management Taxonomy: A Roadmap

2786.
[50] Méndez, D., Penzenstadler, B., Kuhrmann, M., Broy, M., 2010.

A meta model for artefact-orientation: fundamentals and lessons
learned in requirements engineering, in: International Conference
on Model Driven Engineering Languages and Systems, Springer. pp.
183–197.

[51] Miles, M.B., Huberman, A.M., Saldaña, J., 2014. Qualitative data
analysis: A methods sourcebook. 3rd.

[52] Müter, L., Deoskar, T., Mathijssen, M., Brinkkemper, S., Dalpiaz, F.,
2019. Refinement of user stories into backlog items: Linguistic struc-
ture and action verbs, in: International Working Conference on Re-
quirements Engineering: Foundation for Software Quality, Springer.
pp. 109–116.

[53] Northrop, L., Clements, P., Bachmann, F., Bergey, J., Chastek, G.,
Cohen, S., Donohoe, P., Jones, L., Krut, R., Little, R., et al., 2007.
A framework for software product line practice, version 5.0. SEI.–
2007–http://www. sei. cmu. edu/productlines/index. html .

[54] Power, K., 2013. Understanding the impact of technical debt on the
capacity and velocity of teams and organizations: Viewing team and
organization capacity as a portfolio of real options, in: 2013 4th Inter-
national Workshop on Managing Technical Debt (MTD), IEEE. pp.
28–31.

[55] Rios, N., de Mendonça Neto, M.G., Spínola, R.O., 2018. A ter-
tiary study on technical debt: Types, management strategies, research
trends, and base information for practitioners. Information and Soft-
ware Technology 102, 117–145.

[56] Runeson, P., Höst, M., 2009. Guidelines for conducting and report-
ing case study research in software engineering. Empirical software
engineering 14, 131–164.

[57] Runeson, P., Host, M., Rainer, A., Regnell, B., 2012. Case study re-
search in software engineering: Guidelines and examples. JohnWiley
& Sons.

[58] Saher, N., Baharom, F., Ghazali, O., 2017. Requirement change tax-
onomy and categorization in agile software development, in: 2017
6th International Conference on Electrical Engineering and Informat-
ics (ICEEI), IEEE. pp. 1–6.

[59] Saldaña, J., 2015. The coding manual for qualitative researchers.
Sage.

[60] Silva, M., Oliveira, T., Bastos, R., 2008. Software artifact meta-
model: An approach to software artifact authoring .

[61] Šmite, D., Wohlin, C., Galvin, a, Z., Prikladnicki, R., 2014. An empir-
ically based terminology and taxonomy for global software engineer-
ing. Empirical Software Engineering 19, 105–153.

[62] Sommerville, I., 2015. Software engineering. 10th, in: Book
Software Engineering. 10th, Series Software Engineering. Addison-
Wesley.

[63] Stringer, E.T., 2014. Action Research (4th Edition). Thousand Oaks,
CA: Sage.

[64] Svahnberg, M., Van Gurp, J., Bosch, J., 2005. A taxonomy of vari-
ability realization techniques. Software: Practice and experience 35,
705–754.

[65] Taivalsaari, A., Mikkonen, T., 2018. A taxonomy of iot client archi-
tectures. IEEE software 35, 83–88.

[66] Tilley, S., Huang, S., 2002. Documenting software systems with
views iii: towards a task-oriented classification of program visual-
ization techniques, in: Proceedings of the 20th annual international
conference on Computer documentation, pp. 226–233.

[67] Tom, E., Aurum, A., Vidgen, R., 2012. A consolidated understanding
of technical debt .

[68] Tom, E., Aurum, A., Vidgen, R., 2013. An exploration of technical
debt. Journal of Systems and Software 86, 1498–1516.

[69] Unterkalmsteiner, M., Feldt, R., Gorschek, T., 2014. A taxonomy for
requirements engineering and software test alignment. ACMTransac-
tions on Software Engineering and Methodology (TOSEM) 23, 1–38.

[70] Usman, M., Britto, R., Börstler, J., Mendes, E., 2017. Taxonomies in
software engineering: A systematic mapping study and a revised tax-
onomy development method. Information and Software Technology
85, 43–59.

[71] Vegas, S., Juristo, N., Basili, V.R., 2009. Maturing software engineer-
ing knowledge through classifications: A case study on unit testing
techniques. IEEE Transactions on Software Engineering 35, 551–
565.

[72] Vessey, I., Ramesh, V., Glass, R.L., 2005. A unified classification
system for research in the computing disciplines. Information and
Software Technology 47, 245–255.

[73] Wohlin, C., 2014a. Guidelines for snowballing in systematic litera-
ture studies and a replication in software engineering, in: Proceedings
of the 18th international conference on evaluation and assessment in
software engineering, pp. 1–10.

[74] Wohlin, C., 2014b. Writing for synthesis of evidence in empirical
software engineering, in: Proceedings of the 8th ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and Measure-
ment, pp. 1–4.

[75] Wohlin, C., Wnuk, K., Smite, D., Franke, U., Badampudi, D., Cic-
chetti, A., 2016. Supporting strategic decision-making for selection
of software assets, in: International conference of software business,
Springer. pp. 1–15.

[76] Wolfram, K., Martine, M., Sudnik, P., 2020. Recognising the types of
software assets and its impact on asset reuse, in: European Conference
on Software Process Improvement, Springer. pp. 162–174.

[77] Zabardast, E., Frattini, J., Gonzalez-Huerta, J., Mendez, D.,
Gorschek, T., 2021. Asset management in software engineering –
what is it after all? arXiv preprint arXiv:2101.07768 .

[78] Zhao, Y., Dong, J., Peng, T., 2009. Ontology classification for
semantic-web-based software engineering. IEEETransactions on Ser-
vices Computing 2, 303–317.

Zabardast et al.: Preprint submitted to Elsevier Page 22 of 22

Asset Management Taxonomy: A Roadmap

Figure 14: The asset management taxonomy.

Zabardast et al.: Preprint submitted to Elsevier Page 23 of 22

