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Abstract
Ammothum Kandy, A. K. 2021. Linear models for multiscale materials simulations. Towards 
a seamless linking of electronic and atomistic models for complex metal oxides. Digital 
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and 
Technology 2017. 62 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-1141-8.

Multiscale modelling approaches, connecting data from electronic structure calculations all the 
way towards engineering continuum models, have become an important ingredient in modern 
materials science. Materials modelling in a broader sense is already amply used to address 
complex chemical problems in academic science, but also in many industrial sectors. As far 
as multiscale modelling is concerned, however, many challenges remain, in particular when it 
comes to coupling and linking the various levels along the multiscale ladder in a seamless and 
efficient fashion.       

This thesis focusses on the development of new and efficient linear models to improve 
the quality and parameterisation processes of the two-body potentials used in empirical and 
semi-empirical methods within a multiscale materials modelling framework. In this regard, a 
machinery called curvature constrained splines (CCS) based on cubic splines to approximate 
general two-body potentials has been developed. The method is linear, and parameters can be 
easily solved in a least-square sense using a quadratic programming approach. Moreover, the 
objective function is  convex, implying that global minima can be readily found. This makes 
the optimisation process easy to handle and requires little to no human effort. Initial tests to 
validate the method were performed on molecular and bulk neon systems. Later, the method 
was extended to incorporate long-range interactions by including atomic charges. The 
capability of the method was demonstrated for ZnO polymorphs, and at the same time 
benchmarked towards the conventional  Buckingham potentials applied to the same problem. 
The results indicate that the CCS+Q method performs on par with the Buckingham 
approach, but is much faster and easier to parameterise. The merits of the method is further 
demonstrated with an exploration of size and shape dependent stability of CeO2 nanoparticles.

Having established the framework of the CCS methodology, the method was further used 
to develop repulsive potentials for the semi-empirical self-consistent charge density functional 
tight binding (SCC-DFTB) method. The generation of the repulsive potentials is normally a 
tedious and time-consuming task. The  CCS methodology  makes this process significantly 
more efficient, and further provides new opportunities to explore the limits of the SCC-DFTB 
method. The development of repulsive potentials for bulk Si polymorphs showed that it is 
possible to retrieve a good description of each individual polymorph, but impossible to obtain 
an acceptable joint description of all polymorphs. The results indicated that a transferable 
repulsive potential needs to have coordination dependence, and by the  use of a many-body 
artificial neural network representation for the repulsive potential, it was indeed possible to 
obtain a global transferability. The CCS methodology was finally used to model a system of 
considerable chemical diversity and complexity, namely reduced CeO2 within the SCC-
DFTB formalism. Here, the CCS framework facilitated the development of an efficient 
workflow that yielded a harmonized description of Ce ions in different oxidation states. In 
short, the introduced CCS-based workflow proved to extend the applicability of SCC-DFTB 
to complex oxide systems with correlated electronic states.              

To conclude, the CCS methodology is demonstrated to be a versatile tool for efficient linking 
between (and within) electronic and atomistic models.
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1. Introduction

1.1 Materials chemistry
Materials science is an interdisciplinary endeavor that requires domain-
specific knowledge from chemistry, physics, and engineering. The field
of materials engineering focuses mainly on the production and applica-
tion of materials. The areas of materials chemistry and physics, on the
other hand, often follow the atomic hypothesis1 in its view on matter.
Their aim is to gain a fundamental understanding on how the atomic
(or electronic) structure determines the chemical and physical proper-
ties of a material. Materials chemistry forms a scientific foundation to
design, synthesize, characterize, and understand existing and new func-
tional materials.

Materials are truly multiscale in nature, i.e., their properties are gov-
erned by events occurring at various time and length scales. While the
functionality of many materials is dictated by the well-defined bulk prop-
erties such as electronic band gaps, elastic modulus, dielectric constants,
etc., there are many situations where functionality stems from the devi-
ations from the bulk behavior. For example, the electronic and optical
properties of nanomaterials have shape and size dependency, in contrast
to bulk2,3.

An exciting class of materials is the reducible metal oxides that have
attracted considerable research interest due to their versatile chemistry
and a wide variety of applicability, e.g. within heterogeneous catalysis4,
energy storage5, fuel cells6, and batteries7, to name a few. The versa-
tility and rich chemistry of reducible metal oxides are often ascribed to
their low oxygen-defect-formation energies and multiple metal ion oxida-
tion states8,9. To fully comprehend the complex chemistry of reducible
oxides detailed knowledge about the electronic structure, the shapes of
nanoparticles, the locations of metal ions, the interactions (long-range)
of defects, and their interplay is required. For example, in the case of ce-
ria nanoparticles, the locations of Ce3+ ions formed upon reduction and
the relative stability of surface and subsurface defects in ceria are yet
to be fully elucidated. Unfortunately, experimental techniques are often
too obtuse and cannot alone provide a holistic atomic-level description;
they need to be complemented with theoretical modelling.
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1.2 Modelling in materials chemistry
In the past decades, computational modeling has become a powerful tool
for identifying new materials and tailoring properties to improve appli-
cations. The rapid advancement of computing power, algorithms and
softwares is beginning to link understanding at the microscopic level to
functional behavior at the macroscale. However, real-world phenomena
are often highly complex with a large number of degrees of freedom and
span a wide range of length- and time-scales. Computational models are
yet to encompass such phenomena in full detail. Inevitably, we approxi-
mate models by coarse-graining the degrees of freedom based on different
interactions, that depend on magnitudes of length- and time-scales. This
has led to the development of the sequential multiscale ladder shown in
Fig. 1.1, which forms the backbone of modern-day computational mate-
rial science. Multiscale modelling methods have been successfully used
in a variety of applications, including heterogeneous catalysis10, batter-
ies,11,12 and memory devices13, to name a few.

Traditionally, multiscale models are classified according to time- and
length-scales. However, with the rapid development in computational
power, the boundaries between the scales have become ill-defined. This
thesis follows the ontology suggested by the European Materials Mod-
elling Council (EMMC) to bring forth a homogenized vocabulary among
researchers working at various levels of multiscale modelling, both in
academia and industry. According to Ref. 14, models are defined as
a combination of physics equations (PE) and materials relations (MR).
The physics equations and the materials relations for a particular prob-
lem are formulated in terms of one of four entities: electrons, atoms,
mesoscopic particles, or continuum. The physics equations and the ma-
terials relations together constitute "the governing equations" or "the
model", and describe the behaviour of the entity in focus (electrons,
atoms, ...). Within the EMMC framework, the models used in materi-
als modelling are thus classified based on the four entities. Strictly, by
the above definitions, the hierarchy of models should be called "multi-
equation-modelling" rather than "multiscale" modelling. In the rest of
the thesis, multiscale modelling refers to multi-equation-modelling.

Electronic models form the lowest level in the multiscale hierarchy,
where electrons are the entity and the Schrödinger equation is the physics
equation. Calculations at the electronic level provide information about
the electronic structure and structural properties (lattice parameter, elas-
tic constants, etc.). The subsequent atomistic models have atoms as the
entity and the physics equation follow Newtonian mechanics. Atomistic
models typically provide information about the structural and dynamical
properties of a system. Next are the mesoscopic models where nanopar-
ticles, grains, or beads (a group of molecules/atoms) are the entities,
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Figure 1.1. A schematic overview of the multiscale hierarchy. Models are
arranged according to their characteristic length- and time-scales. The entities
and their physics equations are also listed.

and Boltzmann transport equations (BTE), Newtonian mechanics, etc.,
are the physics equations. Mesoscopic models provide mainly details
about morphology, thermal stability, domain formation. The last step
is the continuum models, where finite volumes or cells are the entities,
and the physics equations are conservation laws. Continuum simulations
are used, for example, to predict crack propagation, or, the macroscopic
structural behavior of a material. In principle, the microscopic origin
of any macroscopic phenomenon could be studied by coupling and link-
ing a multitude of models in the multiscale hierarchy. The coupling
and linking of models refer to the integration of different models into a
single workflow such that the output from one is used as input to the
other (linking) and vice-versa (coupling). In this context, a workflow
describes how the models are arranged into a chain. A bottleneck of-
ten encountered in many multiscale simulation workflows is the transfer
of information from one model to the other. In this regard, complex
mathematical functions are often used, e.g. force fields in the linking of
the electronic and atomistic levels. At these levels, the currently avail-
able linking methods can be classified into two types: i) physics-based
methods and ii) data-driven methods. A recent recent trend among com-
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putational chemists is to develop purely data-driven methods with less
emphasis on the chemical nature of the problem. These approaches have
been quite successful but are often very cumbersome to use in practice.
In my view, the data-driven methods will be extensively used for cou-
pling and linking different models in the future. The question to address
is — How to retain the "chemical intuition" in data-driven methods in a
reliable and computationally efficient manner compared to physics-based
methods?

1.3 Scope of the thesis
This thesis summarizes my efforts to develop, understand and apply new
methods/schemes that are useful to fill some "gaps" in the multiscale
modelling approach. The primary focus lies on linking the electronic
and atomistic models (see Fig. 1.1). The methods developed in this
thesis comprise an initial step to improve data-driven methods taking
inspiration from physics-based methods. Fig. 1.2 provides an overview
of the thesis showing the relation between the various methods and the
corresponding papers.

In Paper I, the Curvature Constrained Splines (CCS) method was
developed to facilitate an efficient construction of two-body potentials.
The CCS method was used to construct simple, effective two-body po-
tentials from ab initio data for neon. The method was also packaged
into a python package, which is freely available at https://github.
com/aksam432/CCS. Paper II presents an extension to the CCS method
called CCS+Q, where long-ranged electrostatics are included for mod-
elling ionic materials. We show that the short-ranged potential and long-
ranged electrostatics can be optimised simultaneously using quadratic
programming (QP). The method is validated using bulk ZnO and CeO2

nanoparticles as examples.
InPaper III andPaper IV, the CCS method was further used to link

models within the electronic level. In Paper III, the CCS methodology
was used to improve aspects of the self-consistent charge density func-
tional tight binding (SCC-DFTB) method. Owing to the unique prop-
erties of the CCS formalism, also questions regarding the transferability
of the SCC-DFTB method could be addressed. It was shown that the
transferability of the method is limited when using a two-body repulsive
potential. If instead a many-body artificial neural network (ANN) rep-
resentation is used as repulsive potential, the transferability was shown
to be significantly improved. In Paper IV, a workflow utilising a "f
in-core" approach to study electron localisation in strongly correlated
reducible metal oxide systems within the SCC-DFTB formalism was in-
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troduced and validated. In this workflow, the CCS methodology is key
to harmonize the treatment of Ce ions in different oxidation states.

Figure 1.2. An overall sketch of the thesis content showing the relations be-
tween the various methods developed. The CCS development follows two
branches. The first one (to the right) comprises an electronic to atomistic
linking through the generation of the CCS+Q model based on QM data. The
second branch (left) refers to linking within the electronic level. Here, the CCS
methodology is used as the repulsive potential within the SCC-DFTB method
to reproduce ab initio reference data.
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2. Theory and methods

In this chapter, I will give the theoretical background for the scientific
models and the main mathematical methods used in this thesis. The
intention is not to give a complete overview, but instead focus on key
concepts and equations needed to understand the scope of this thesis. I
will follow the ontology introduced in the introduction for the multi-scale
modelling approach, but here solely focus on the electronic and atomic
levels, and the mathematics behind the "coupling and linking" between
them.

2.1 The multiscale modelling approach
Quantum mechanical (QM) methods form the lowest rung in the multi-
scale hierarchy, cf. Fig. 1.1. At this level, describing electrons, the
Schrödinger equation is the key to understand the time evolution and
properties of a system. However, the Schrödinger equation is only solv-
able for a few simple problems. So, approximations are necessary for
any practical use. One such approximation is the Born-Oppenheimer
(BO) approximation, which states that the motion of electrons can be
decoupled from the motion of the atomic nuclei. Equipped with the BO
approximation, we can describe the potential energy surface (PES) as a
function of atomic nuclei positions.

In QM methods, electronic Hamiltonians are used to evaluate the PES.
The most popular methods to construct the electronic Hamiltonian in-
clude the wave-function based Hartree-Fock (HF)15 method or the Den-
sity Functional Theory (DFT)16,17. Both the HF method and DFT has
many limitations. HF, for example, lack electron correlation, and DFT
has problems with electron self-interaction and cannot describe disper-
sion interactions, both resulting in major problems for certain systems.
Though post-HF methods18 account for correlation effects, and novel ad-
vanced DFT functionals include effects of non-local Fock exchange and
non-local correlation, which resolves many issues, these methods often
become too computationally costly for studies of large systems and long
time scales.

Within the framework of QM models, semi-empirical methods can
overcome the computational cost posed by DFT/HF methods19. The
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general theme in semi-empirical methods is to neglect, or parameter-
ize, the integrals in DFT/HF methods to gain computational speed. In
these models, empirical parameters are often added to compensate for
the errors due the rather invasive approximations. There are various
shades of semi-empirical methods that can be broadly classified as an
approximation of either HF based methods or DFT based methods.

The next rung on the multi-scale ladder concerns atoms (cf. Fig. 1.1),
and consequently, atomistic models form the next step. At this level,
we ignore the electronic degrees of freedom. Energies and forces are
evaluated using mathematical expressions that approximate the PES.
These mathematical expressions are commonly referred to as force fields
(FF). FF simulations are several orders of magnitude faster than QM
methods, but are considerably less transferable compared to the electron
based models. As a result, different atomic models are developed for
various classes of materials. In the following, I will discuss these rungs
in more detail.

2.1.1 Electronic structure methods
In the computational materials science community, DFT has emerged
as the primary working tool to perform electronic structure calcula-
tions. The DFT method greatly simplifies the notion of handling a
many-electron system by using its electron density. The Hohenberg-
Kohn theorem16 states that the ground state energy of a system can be
exactly determined by the electron density. However, to allow for this,
an exact energy functional is required, and such has not yet been discov-
ered. Nevertheless, the available approximations (density functionals)
today allow researchers to make accurate predictions of properties and
characteristics for a broad class of materials20.

Despite its tremendous success, standard DFT (local and semi-local
functionals) has many limitations, including failure to acccrately describe
strongly correlated systems21,22, inaccurate band gap predictions23 and
high computational cost for modelling systems with many electrons21,22.
These shortcomings all result in a poor description of properties related
to the redox chemistry of metal oxides24, which is a chemistry of partic-
ular interest in this thesis. To overcome some limitations, for example
concerning the inaccuracy for correlated systems and electronic band
gaps, the DFT+U method (an extension of DFT with a Hubbard U cor-
rection), or, a hybrid functional (functionals with a portion of semi-local
exchange replaced by non-local Fock exchange) can be used. Such efforts
tend to improve the theoretical description of redox systems significantly,
albeit at an even higher computational cost. Ideally, an electronic model
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with the accuracy of the hybrid DFT, but with a reasonable computa-
tional cost is wanted.

In recent years, the self consistent charge density functional tight bind-
ing method (SCC-DFTB)25,26, a semi-empirical approach derived from
DFT, has been widely used for electronic structure calculations. The
method has been successfully applied to study large biological systems27,
redox chemistry in oxides28, and electron transport29 to give some ex-
amples. In SCC-DFTB, the Hamiltonian matrix elements are tabulated
using a higher level of theory (usually DFT) as a reference, and stored
in so-called Slater-Koster (SK) tables. The empirical part commonly
referred to as repulsive potential is later added to overcome any short-
comings caused by the parameterization of the Hamiltonian. However,
fitting this repulsive potential is often a laborious task, and addressing
this problem is one of the primary focus of this thesis.

In this thesis, I have primarily used these two methods for evaluating
the electronic structure of materials. In the following, I will go in to more
detail concerning the relation (and links) between these two electronic
level models.

Density Functional Theory
A rigorous derivation of the DFT method can be found in the following
Refs. 30,31. Here, I will go through the basic theory leading to equations
that are further expanded on in the SCC-DFTB method. Within DFT,
the total energy of a system is a functional of the electron density n(r)
and can be written as:

E[(n(r))] = Ekin[n(r)] + Eext[n(r)] + EH [n(r)] + Exc[n(r)] + ENN .
(2.1)

Here, Ekin is the kinetic energy of non-intercting electrons, Eext is the
energy from the interaction between the nucleus and electrons, EH (the
Hartree term) is the energy from the classical electron-electron Coulomb
repulsion, Exc is the exchange-correlation energy, as well as corrections
to the kinetic energy due to electron-electron interactions, and ENN is
the energy from the nucleus-nucleus interaction. In this formulation, all
quantities but Exc can be computed readily. As such, the actual func-
tional is defined through the choice if the approximation for Exc. The
exact Exc functional is, however, unknown, and there exists a plethora
of different approximations for it. Hence, the accuracy of a DFT calcu-
lation heavily rely on the choice of Exc functional used. In the literature
the different functionals have been classified on the basis of the level
of approximations following a Jacob’s Ladder towards functional heaven
of chemical accuracy32. Still, however, the most common density func-
tionals used in the materials science community are the local density
approximation (LDA)17 and various forms of generalized gradient cor-

9



rections to LDA (so called GGA’s)32 which are found at the base of the
ladder.

The insightful idea of Kohn and Sham was to approximate the Ekin in
Eq. 2.1 using a "single-particle approach" with the help of Kohn-Sham
orbitals ψi(r). The resulting Kohn-Sham equation for a non-interacting
system of N electrons is as follows:{∇2

2
+ V ext +

∫
n(r2)

r12
dr2 + V xc(r)

}
Ψi(r1) = εiΨi(r1)

and n(r) =

N∑
i=1

|ψi(r)|2
(2.2)

where εi are Kohn-Sham orbital energies, V ext is the potential from
nuclei, and the exchange-correlation potential is defined as follows:

V xc(r) =
δExc[n(r)]

δn(r)
(2.3)

The one-electron Kohn-Sham equations are solved using an iterative
method. Initially, a guess density n(r) is chosen to compute the or-
bitals ψi using Eq. 2.2. These new orbitals are used to generate the next
n(r). This procedure is repeated until self-consistency is achieved.

The total energy in DFT in Eq. 2.2 can be written in term of Kohn-
Sham orbital energies (εi) as follows:

E[(n(r))] =
occ∑
i

εi − 1

2

∫∫
n(r1)n(r2)

r12
dr1dr2

−
∫

V xc[n]n(r)dr + Exc[n] + ENN

(2.4)

where i runs over all the occupied orbitals.
The DFT calculations presented in the this thesis primarily utilized

semi-local functionals, falling under the class of GGA’s discussed above.
This type of functional also forms the basis in the SCC-DFTB method
described below. All the DFT calculations were performed using the
Vienna Ab initio Simulation Package (VASP)33–36. A small remark is in
place here: the focus of the thesis have been to develop tools to facilitate
the coupling and linking in the multi-scale modeling approach, and this
tool is agnostic to the method used in the electronic model as well as the
software used to solve it.

Self-Consistent Charge Density Functional based Tight
Binding
The SCC-DFTB method is a second-order expansion of the KS-DFT
energy with respect to the charge density. A detailed derivation of the
method can be found in Refs. 26,37.
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The ground state density is defined as a perturbation of a reference
density n0(r) and using Taylor expansion, the total energy can be written
down as follows:

ESCC−DFTB[n0 + δn] = E0[n0] + E1[n0, δn] + E2[n0, (δn)
2] (2.5)

with

E0[n0] = Enn − 1

2

∫∫ ′
n0(r)n0(r

′)
|r − r′| drdr′

−
∫

V xc[n0]n0(r)dr + Exc[n0]

E1[n0, δn] =

occ∑
i

〈
ψi

∣∣∣Ĥ[n0]
∣∣∣ψi

〉

E2[n0, (δn)
2] =

∫∫ ′ (
1

|r − r′| +
δ2Exc

δnδn′

)
δn(r)δn(r)′drdr′

(2.6)

The first term E0 is commonly referred to as the repulsive potential en-
ergy (Erep). The second term E1[n0, δn] is the sum of the one-particle
energies commonly referred to as the band structure energy (EBS). The
third term E2[n0, (δn)

2] is the second-order correction to the total en-
ergy. Using these definitions, the total energy in SCC-DFTB can be
written as:

Etotal = EBS + E2nd + Erep (2.7)

These energies will be discussed in more detalil in the following.

The band structure energy (EBS)
The SCC-DFTB method only explicitly treats the valence electrons,
while the core electron interactions are approximated via empirical two-
body potentials. The electron orbitals Ψi can be expanded in a minimal
basis set of valence-only atomic orbitals φμ within the linear combination
of atomic orbitals (LCAO) ansatz as follows:

ψi =
∑
μ

cμiφμ(r) (2.8)

where φμ is the atomic basis function of orbital μ centered on the atom,
and cμi are the basis-set coefficients. The atomic orbitals are obtained
from a modified Kohn-Sham equation, where an additional confinement
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potential (V conf) is added to the Hamiltonian as follows:{∇2

2
+ V atom[n(r)] + V conf

}
φν(r) = εatomν φν(r)

where

V conf =

(
r

r0

)m

V atom = V ext + V H + V xc(r)

(2.9)

where r0 is a parameter that needs to be optimised, and usually a
quadratic potential (m = 2) is used for the confinement. Due to the con-
finement potential, the resultant atomic orbitals φν are compressed, mak-
ing them more apt to describe chemical bonds in solids and molecules.
Additionally, atomic densities are also computed in a similar fashion, but
with a different r0 value.

The following secular equations are obtained to determine the coeffi-
cients (cμi): ∑

ν

cνi
(
H0

μν − εiSμν

)
= 0 ∀ μ, i

where

H0
μν =

occ∑
i

〈
φμ

∣∣∣Ĥ[n0]
∣∣∣ψν

〉
Sμν = 〈φμ|ψν〉

(2.10)

where Sμν is the overlap matrix. We can rewrite EBS in Eq. 2.7 in terms
of H0

μν as follows:

EBS =

occ∑
i

〈
ψi

∣∣∣Ĥ[n0]
∣∣∣ψi

〉
=

occ∑
i

∑
AB

∑
ν∈A

∑
μ∈B

cμicνiH
0
μν (2.11)

The repulsive energy (Erep)
The repulsive energy term in Eq. 2.6 contains to a large extent the core-
core repulsive energy, thereby its name. But it also contains exchange-
correlation energy, and double counting corrections. It is commonly ap-
proximated by an empirical two-body repulsive potential V rep as follows:

E0[n0] ≈ Erep =
1

2

∑
AB

V rep
AB (rAB) (2.12)

where the indices A and B denote atom indices, rAB=|RA −RB|, and
V rep is called the repulsive potential. The V rep is usually short-raged,
pairwise additive, and should be defined for all pairs of elements in the
system. The parameterization of the repulsive potential is often a labo-
rious and time-consuming task.
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The second order energy (E2nd)
The fluctuations in charge density is written as a superposition of atomic
contributions as:

n(r) =
∑
A

δnA(r) (2.13)

The density fluctuations are approximated by exponentially decaying
spherical charge densities with coefficients τA

δn(r) =
∑
A

δnA(r) ≈ 1√
4π

∑
A

(
τ3A
8π

e−τA|r−RA|
)
ΔqA (2.14)

The following expression with an analytical function γ is obtained after
substituting Eq. 2.14 for E2 in Eq. 2.6 :

E2nd =
1

2

∑
AB

ΔqAΔqBγ(τA, τB, RAB) (2.15)

where Δq is the fluctuation in Mulliken charge on an atom, γ is an analyt-
ical function describing charge-charge interaction. At large interatomic
distances, the γ function behaves as 1

RAB
, i.e., the E2nd corresponds to

the Coulomb energy for the interaction of two point charges ΔqA and
ΔqB. When the charges are located on the same atom (A = B), γ can be
approximated (XC contribution neglected) as the Hubbard parameter U
which is twice the chemical hardness of an atom. The Mulliken charges
qA also depends on the ψi and should be solved in a self-consistent man-
ner.

All SCC-DFTB calculations performed in this thesis were done with
the DFTB+ software38,39.

2.1.2 Atomistic models
Atomistic models describe the motion of the atoms. The omission of
electronic degrees of freedom in atomistic models enable simulations of
larger system sizes and time-scales as compared to electronic models. In
most atomistic models, motion of the atoms are governed by the laws
of Newtonian mechanics, and the forces acting on atoms are obtained
using a force field. Force fields are in principle function of the position
of all the atomic nuclei present in a system. So, the dimensionality of
a force field scales with the system size. However, we can reduce the
dimensionality using a many-body expansion as follows:

V (r1, r2, ...rn) =
N∑
i

V1B(ri)+
N∑
i<j

V2B(rij)+
N∑

i<j<k

V3B(rij , rjk, rik)+ . . .

(2.16)
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where V1B is called the one-body interaction, V2B is called the two-body
interaction between any pair of atoms, V3B(rij , rjk, rik) is the interaction
between any triplet of atoms. In this thesis, the scope is restricted to
two-body force fields. Nevertheless, FFs with varying sophistication have
been developed in the literature, some examples are simple two-body po-
tentials for ionic systems, embedded-atom model (EAM)40 for metals,
Tersoff potentials41 for covalent systems. A major portion of the total
energy can be accounted for through two-body interactions. The most
popular two-body potentials include the Lennard-Jones potential, Buck-
ingham potential, and Morse potential, to name a few. These potentials
have a parametric functional form making them rather inflexible. There-
fore, they are often unable to describe interatomic interactions over the
whole range of possible atom-atom distances. Additionally, these models
are non-linear with respect to the involved parameters, making optimiza-
tion processes tedious and unnecessarily difficult.

Recent research developments in this area focus on developing non-
parametric models42,43, which in principle are much more flexible com-
pared to the parametric counterparts. However, these non-parametric
models lack the in-built physical intuition of the parametric models.
Non-parametric models often require large amounts of data to train the
potential, and extrapolation to regions outside the training-set can be
poor.

2.2 Coupling and linking: electrons-to-atoms
As discussed in the introducion, challenges in materials chemistry are
truly multi-scale in nature, i.e., an array of simulations using different
entities is often required. In particular, the electronic-to-atomistic link-
ing by force fields is of major interest for this thesis.

A major challenge in linking is the transfer of information from one
model to the other. The steps involved in linking, in particular, for force
fields are described below:

1. Collection of reference data, either from experiments or from QM
models

2. Specify choice of representation: two-body, three-body, etc.
3. Specify functional form: parametric (Buckingham, Morse) or non-

parametric (splines, polynomials, etc.)
4. Define the objective function and specify methods for optimisation.
Typically, the reference data in step (i) includes: energies, forces,

structural parameters, charges, etc., which in the multi-scale approach
are derived from QM calculations. The choice of representation in step
(ii), depends on the system under investigation. For example, two-body
potentials are known to well describe ionic systems, but fails for met-
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als and covalent systems were a higher order representation is required
(cf. Eq. 2.16). The choice of functional form in step(iii), significantly
influences the accuracy and transferability of the generated FF model.

Over the years, parametric FFs have become very complex with of-
ten non-intuitive, correlated, and non-linear parameters introduced to
tackle problems in transferability and accuracy, and thereby making the
models usable for a wider range of materials. However, an increased com-
plexity of the FF model neither guarantees an increased transferability
nor increased accuracy. Additionally, non-linear optimisation techniques
needed to determine the parameters (step (iv)) does not guarantee a
globally optimal solution, and often one resorts to manual tweaking of
the parameters based on prior knowledge. The aforementioned problems
are clear bottlenecks in efforts aiming at linking electronic and atomistic
models, and effectively prevents an efficient implementation of multi-
scale workflows. Some strategies and directions on how to improve this
will be given in the following section.

2.3 Mathematical methods
Mathematical optimisation, or mathematical programming problems,
are ubiquitous in all the disciplines of science. Optimisation problems
generally consist of unknown variables (decision variables), an objec-
tive function, and possibly, constraints. Optimisation problems can be
broadly divided into two classes, namely, unconstrained and constrained
optimisation. As the names suggest, there are no constraints on the un-
known variables in unconstrained optimization, while if constraints are
present, it is called constrained optimisation. There are various classes of
constrained optimisation problems, which include convex programming
problems, QP problems, non-linear programming problems, to name but
a few.

In connection to electronic-to-atomic linking, FF parameters are ob-
tained through optimisation towards certain reference values (see step
(i) in the previous section). The quality of a FF naturally depend on the
choice of mathematical expressions used to describe interactions but also
strongly depend on how well the parameters in these expressions have
been optimized (steps (iii) and (iv) in the previous section). So, it is of
utmost importance to obtain the optimal parameters. In general, most
of the FF optimisation problems fall under the class of non-linear least
squares problems, a special case of unconstrained optimisation prob-
lems. The solutions to non-linear problems cannot be expressed in a
closed form format and numerical optimisation procedures are required.
Even though there are numerous efficient algorithms to carry out such
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optimizations, the global minimum is hard to find due to the existence
of multiple local (false) minima.

In contrast, if the FF parameters depended linearly on the FF func-
tional form, the optimal solution could be written down in a closed form
expression. This is the case for the FF formulation developed and used
in this thesis where the FF optimisation problem fall under the class of
convex QP problems, for which a global minimum can be found with cer-
tainty. The definitions and advantages are described in the subsequent
sections.

2.3.1 Convex optimisation
The standard form for a convex optimisation problem can be written
as44:

min f(x)

subject to gi(x) ≤ 0

hj(x) = 0

(2.17)

The above optimisation problem is convex if the objective f is convex,
the inequality constraints gi are all convex functions, and the equality
constraints hj are all affine funtions. Note that the above definition is
an explicit formulation. In a sense, a more implicit definition is that the
objective function is minimised over a convex set. Convex optimisation
has some useful properties:

• local minimisation is equivalent to global minimisation
• For a strictly convex objective function (f), there is at most one

optimal point.

2.3.2 Quadratic programming
In a QP problem, the objective function is quadratic in the decision
variables, with linear equality and inequality constraints. This class
of numerical optimisation problems are common in curve fitting. The
standard form can be written as:

min
x

1

2
xTPx+ qTx

subject to Gx ≤ h

Ax = b

(2.18)

where matrix P and q denotes the quadratic function to minimze, matrix-
vector tuple (G,h) and (A,b) correspond to inequality and equality con-
straints and x is the decision variables. A problem is convex when the
matrix P (Hessian) is at least positive semi-definite.
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2.3.3 Linear least squares
A linear least squares problem is the same as a convex QP problem. A
standard linear least-square can be written down as follows:

J(x) =
1

2
‖Rx− s‖2

=
1

2
x�R�Rx− s�Rx+

1

2
s�s

(2.19)

The last term in Eq. 2.19 is a constant, so minimisation of J(x) is the
same as:

˜J(x) =
1

2
x�R�Rx− s�Rx (2.20)

This is now a standard QP problem with P = R�R and q = −R�s.
A simple inspection reveals that the matrix P is positive semi-definite.
Hence, linear least squares problem are convex QP problem.
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3. Paper I: Development of the CCS method

Purposes:
• To develop a flexible, non-parametric, and parameterization

friendly two-body force field.
• To package the method into user-friendly software.

Methods: DFT, QP
Take-home message: An efficient method called Curvature
Constrained Splines (CCS) was developed to construct two-body
potentials. The two-body potentials are constructed using cubic
splines subjected to constraints on the curvature. The objective
function is convex, and the spline coefficients can be obtained us-
ing a QP approach.

3.1 Motivation
A major challenge in multiscale modelling of materials is the transfer of
information between scales, i.e., linking various levels of theory14. In this
chapter, the focus is on electronic-to-atomistic linking through the use of
force field models, in which electronic degrees of freedom are omitted to
gain computational speed. The following question is addressed — Is it
possible to construct non-parametric two-body potentials with a built-in
chemical intuition, and at the same time, are easy to parameterize?

In Paper I, a methodology based on the use of curvature constrained
splines (CCS) was developed to facilitate the generation of flexible, ac-
curate, and parameterization friendly two-body potentials. The central
tenet of the CCS method is to stipulate the cubic splines as a function
of curvature (second derivative) and impose constraints to mimic key
features of the parametric two-body potentials. The constraints, in a
manner, impart the "chemistry" into the CCS model. The methodol-
ogy was implemented as a python package, freely available at https:
//github.com/aksam432/CCS

3.2 CCS in a nutshell
Consider a pair of interacting atoms, with interatomic distances varying
over a range [rmin, rcut]. The interval is subdivided into N equal sub-
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intervals with In = [xn−1, xn], for n = 1, . . . N . Cubic spline functions
are defined on each sub-interval as follows:

fn(x) = an + bn(x− xn) +
cn
2
(x− xn)

2 +
dn
6
(x− xn)

3. (3.1)

The xn are called knots and there are N+1 knots in total with xn =
rmin + nΔx, where n = 0, . . . N , and Δx = (rcut − rmin)/N . In a stan-
dard cubic spline approach interpolation conditions are imposed on the
the spline function and continuity conditions on the first and second
derivative functions. Here, interpolation conditions are imposed on the
second derivative functions to get the following 2N conditions:

f ′′n (xn−1) = cn−1, for n = 1, . . . , N,

f ′′n (xn) = cn, for n = 1, . . . , N.
(3.2)

The curvature values (c) are later optimised to get the best potential.
However, before doing following 2N−2 continuity conditions are imposed
as shown below:

fn(xn) = fn+1(xn), for n = 1, . . . , N − 1,

f ′n(xn) = f ′n+1(xn), for n = 1, . . . , N − 1,
(3.3)

There are 4N unknowns but only 4N − 2 conditions. To uniquely deter-
mine f , the following 2 boundary conditions as imposed:

fN (xN ) = f ′N (xN ) = 0. (3.4)

Using the above relations, we can show that coefficients a = [a1, a2, . . . , aN ]T

b = [b1, b2, . . . , bN ]T and d = [d1, d2, . . . , dN ]T are linearly dependent on
the curvatures c.

3.2.1 Optimization problem
The energy of a system can be written down as follows:

ECCS = v�c+w�ε, (3.5)

where v is a feature vector containing structural information (pairwise
distances), c is a vector with curvature value at the endpoint of each
subinterval, w is the number of atoms of each chemical species in the
system, and ε is a vector containing the one-body energy of each chemical
species.

Consider K number of chemical configurations. Then, the objective
function is optimized over a diverse set of such configurations k=1. . .K,

20



a so-called training-set, in a least-square sense and can be written as
follows:

J =
1

2

K∑
k=1

(
ECCS

k − E0
k

)2
,

=
1

2

K∑
k=1

(
v�k c+w�k ε− E0

k

)2
=

1

2
‖V c+Wε− e0‖22.

(3.6)

where V ∈ R
K×N+1 has rows vk, the K-vectors of energies e0, and W

contains rows wk. As shown in section 2.3.3, least-square problems can
be cast into a standard QP problem. The python package CVXOPT45,
was used to solve the QP problem.

3.2.2 Constraints
The CCS method can be used to tune the shape of the fitted potential
using constraints on the curvature value at the endpoint of each subinter-
val. The user can construct a set of constraints required for a particular
system based on prior knowledge. Some important examples of the so
far implemented constraints are illustrated in Fig. 3.1, and are discussed
in some detail in the list below.

Repulsive constraint
This set of constraints ensure that the fitted spline potential is com-
pletely repulsive, cf. Fig. 3.1(a). This is ensured by having positive
values for all c coefficients, and the corresponding constraint matrix is
shown in Eq. 3.7. In Paper III these constraints were used to fit the
repulsive potentials in the SCC-DFTB method. The interaction between
two atoms is purely repulsive when they are close to each other (Pauli
repulsion). Therefore, the repulsive constraint can also be used to model
short-ranged interactions.

Grepulsive = −IN+1 and h = 0(N+1)×1. (3.7)

Monotonous constraint
The repulsive constraint only ensures that the c coefficients are positive.
However, the c coefficients can vary too rapidly between knots, lead-
ing to poor frequencies and forces. The noise in c coefficients for spline
potentials was also reported by Gaus et al. 46 . The monotonous con-
straint curbs such effects by having a tighter constraint on c coefficients
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as shown in Eq. 3.8 and illustrated in cf. Fig. 3.1(b).

Gmonotonous =

⎡
⎢⎢⎢⎣
−1 1 0 . . . 0
0 −1 1 . . . 0
...

. . .
...

0 0 0 −1 1

⎤
⎥⎥⎥⎦ and h = 0N×1. (3.8)

Switch constraint
In general, most parametric two-body potentials has two regions: a con-
vex region from (rmin to rswitch) and a concave region from (rswitch

to rcut). To capture this functional form, the following constraints are
employed:

ci ≥ 0 for i < Nswitch,

ci ≤ 0 for i ≥ Nswitch.
(3.9)

This constraint was used in Paper I to generate a two-body potential
for neon and is schematically illustrated in Fig. 3.1(c).

G =

[ −IN1
0N1×N2

0N2×N1 IN2

]
and h = 0(N+2)×1, (3.10)

Sparse constraint
The spline grid is assumed to be equally spaced over an interval in the
CCS method. However, when a fine grid is used, there might be regions
in the interval that lacks data. The curvature values at such grid points
are ambiguous. There are several methods to remove this ambiguity.
One approach is to remove the redundant knots with sub-interval merg-
ing, as illustrated in Fig. 3.1(d), to minimize the curve (arc) length for
curvatures over the ambiguous sub-interval domain.

Mixed constraint
It is often useful to combine the aforementioned constraints to get a reli-
able potential. For example, in Paper III the repulsive and monotonous
constraints were combined to curb the oscillations in curvature values.
Similarly, the switch and monotonous constraints were combined in Pa-
per II. Essentially, the user has full freedom to design custom constraints
and combine them with the CCS machinery.

3.3 Validation on neon ab initio data
As an initial test, to validate the CCS method, two-body interatomic
potentials were developed for bulk solid neon. A data set that included
both isotropic bulk scans and scrambled bulk neon structures was cre-
ated. The training-set comprised of 90 % of the data, and the rest were
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Figure 3.1. An illustration of the various constraints used in the CCS method.
The black dots and red dots indicate positive and negative curvature values,
respectively.

used in the test-set to validate the quality of the potential. The extent of
over-fitting in a model can be qualitatively understood by comparing the
error in the fitting and validation data. The unconstrained cubic splines
and CCS were used to fit the data, and the results are shown in Fig. 3.2.
The unconstrained cubic splines show clear signs of overfitting, i.e., the
training-set error decreases while the test-set error increases with an in-
crease in the number of knots (parameters), as seen in Fig. 3.2. On the
contrary, no sign of overfitting is seen for CCS, where the test-set error
and training-set error converge as we increase the number of knots. The
constraints in the CCS method ensures that noise in the training-set is
not captured by the model. Fig. 3.3 shows the comparison between two-
body potentials for both the methods using 10 knots. Small oscillations
in the unconstrained cubic spline potential are seen even at 10 knots.
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Figure 3.2. The error in the training-set (blue) and the test-set (red) data are
shown for both the CCS and unconstrained cubic spline. The x-axis shows the
number of knots in the spline interval. The y-axis shows the logarithm of mean
squared error (MSE).

Figure 3.3. A comparison between two-body potentials generated using the
CCS method and unconstrained cubic splines using 10 knots.
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4. Paper II: CCS+Q method for ionic materials

Purposes:
• To extend the CCS method for multicomponent fitting and

ionic systems with the inclusion of long-range Coulomb in-
teractions.

• Analyse performance of the extended method for bulk ZnO
and CeO2 nanoparticles.

Methods: DFT, Buckingham and CCS+Q
Calculated properties: energy-volume curves, lattice parame-
ters, bulk modulus, charges, and nanoparticle formation energies.
Take-home message: We showed that the CCS+Q model, an
extension of CCS, is a better alternative than commonly used
Buckingham/Born Mayer models for ionic systems. The CCS+Q
method is superior in terms of flexibility, accuracy, and ease of
optimisation. We demonstrated that all the parameters, includ-
ing charges, could be solved using a standard QP approach. The
transferability of the CCS+Q model is well illustrated with the
accurate prediction of change in morphology in CeO2 nanoparti-
cles.

4.1 Why extend the CCS method?
In Paper I, the theory and software package for the CCS method was
developed, and the key features of the method were demonstrated. It
is, however, recognised that two limiting assumptions were used while
deriving the formalism for the CCS method that hinders effective use of
the method: i) it was made for single-component systems, and ii) long-
ranged electrostatic interactions are neglected. In the following work,
both these issues are dealt with.

Chemical systems are often complex, with two or more atomic species,
and usually involve charge transfer between the different chemical species.
In such systems, electrostatic interactions play a crucial role, which can-
not be captured by the CCS method. Moreover, a system with N different
atomic species has

(
N
2

)
pairs and hence require us to determine equally

many two-body potentials. Consequently, the optimisation process be-
comes tedious, even for simple non-linear Lennard-Jones or Buckingham
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models, and at times require computationally heavy and resource-hungry
evolutionary algorithms.47,48

In Paper II, the CCS+Q method was introduced as an extension of
the CCS methodology, with scaled charges (Q) to include electrostatic
interactions and the possibility to handle multi-component systems. The
multi-component problem retained both the linearity of the model and
the convexity of the objective function, similar to the single component
case.

4.2 How to optimise the charges?
We chose metal oxides (ZnO and CeO2) as candidate systems to validate
the CCS+Q method. In metal oxides, the interatomic interactions are
dominated by electrostatic interactions between the anions and cations.
The inclusion of a simple point charge model has been shown to pro-
vide a qualitative understanding of the underlying chemistry of such
systems49–51. However, a question still pertains—How to determine the
value of the point charges?

The electron density in solids can be measured from diffraction experi-
ments or be computed theoretically from QM calculations. Since charge,
unlike electron density, is not an observable, there is no unambiguous
way to assign the charge, and the value depends on the model we choose
to derive it. There are broadly two ways to determine charges for metal
oxides: i) from experimental data52,53 ii) from QM data54–58. There are
several QM based methods, which include: Mulliken, and Löwdin popu-
lation analyses54 55, Hirshfeld decomposition56, density derived electro-
static and chemical (DDEC) charges59, the electrostatic potential (ESP)
derived charges57,58, to name a few. However, there is little clarity when
picking a model to derive charges for a force field. Nevertheless, we used
the DDEC approach in Paper II.

We proposed two ways to fit the charges under the CCS+Q scheme: i)
CCS with DDEC charges (denoted as CCS+DDEC), and ii) CCS with
scaled charges (denoted as CCS+SQ). In the latter approach, charges
are considered as parameters and are optimised to get the correct DFT
energies. Initially, formal charges are assigned to the ions and are scaled
using an optimal scaling factor (α =

√
γ). The scaling factor is optimised

with other spline coefficients in a linear fashion. The expression for the
objective function is as follows:

J =
1

2
‖Mc+Wε︸ ︷︷ ︸

CCS

+Qfγ − eref‖22 (4.1)

where M is the feature matrix containing structural information, W is
the stoichiometry matrix, Qf contains electrostatic energy using formal
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charges, and eref is the reference energy values. The spline coefficients
c, one-body energy ε, and γ are the unknowns in Eq. 4.1. A detailed
derivation and the constraints used can be found in Paper II. The opti-
mised charges are then used to evaluate electrostatic energy contribution
via Ewald summation.60

4.3 Multicomponent fitting using CCS+Q
4.3.1 ZnO
The initial step to parameterize a force field is the construction of a
training-set. In this work, we have chosen to include Energy-Volume (E-
V) scans for the following 4-coordinated polymorphs of ZnO — wurtzite
(WZ), zincblende(ZB), cubane, and body-centered tetragonal (BCT). We
evaluated the performance of the CCS+DDEC and Buckingham models
combined with charges derived from QM-calculations using the DDEC
method, as well as the CCS+SQ model with optimized charges, for the
structures included in the training-set. The DDEC charges were de-
rived from the GGA optimised wurtzite structure, being ±1.31e. The
optimised charges in the CCS+SQ model were optimized for the whole
training set to ±1.14e. The resulting Zn-O, Zn-Zn, and O-O potentials
are shown in Fig. 4.1. The corresponding E-V curves for the structures in
the training-set using all three models are shown in Fig. 4.2. Despite the
dissimilar short-range potential forms, the E-V curves are well captured
by all three models when compared to the reference DFT data, which is
consistent with the fact that the Coulomb interaction is the primary con-
tributor to the total energy (about an order of magnitude at a distance of
4Å). However, as the devil is often in the details, the data could also sug-
gest that there is overlap in the short-ranged interaction description, i.e.,
repulsion in the Zn-O bond can be compensated by spurious attraction
in the O-O and Zn-Zn, and constitutes a problem with multi-component
fitting procedures. However, within linear models such as CCS+Q, such
overlaps can be quantified and avoided by using a clever training-set de-
sign or by the use of smart constraints. In fact, a closer inspection of the
boxplots presented in Fig. 4.3a reveal that the average training-set error
is in the following order: ECCS+SQ < ECCS+DDEC < EBuckingham.
This illustrates the benefit of the increased flexibility of the CCS+Q
functional form over one of the more rigid Buckingham model.

To test the transferability of the generated models, we additionally
considered two extra polymorphs, namely the Rock-Salt (RS) and CsCl
structural forms of ZnO. These structures are denser compared to the
structures included in the training set, and consequently, the Zn ion
coordination is increased (6 and 8 for RS and CsCl, respectively).
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Figure 4.1. The interatomic potentials (excluding the 1-body and Coulomb
contributions) for ZnO using both CCS+Q (orange) and Buckingham (blue)
are shown above. The left panel shows Zn-O potential, the middle panel shows
O-O potential, and the right panel shows Zn-Zn potential.

The table 4.1 contains the calculated lattice parameters, total en-
ergy, and bulk moduli for all considered ZnO polymorphs. The lat-
tice parameters and bulk moduli of polymorphs in the training-set were
well reproduced by both the CCS+Q and Buckingham models. How-
ever, we found the accuracy of CCS+DDEC better for structural prop-
erties than CCS+SQ (see Fig. 4.3b). For the test-set structures, all
three models gave poor quantitative predictions for energy and struc-
tural properties. However, in terms of the relative stability trend for the
various polymorphs, the CCS+Q models reproduced the correct order
EWZ < EZB < EBCT < ERS < ECsCl when compared to the reference
DFT data. Here, the Buckingham potential, trained on the same struc-
tures gave the following order: EWZ ∼ ERS < EZB ∼ EBCT < ECsCl.
The origin of the discrepancies found here (both quantitative and quali-
tative) lies in that the structures in the test-set are, as mentioned above,
quite different from the structures in the training-set. Consequently,

Figure 4.2. A comparison of E-V curves between CCS+Q (left) and Bucking-
ham model (right) are shown for Zincblende (green), Cubane (red), Wurtzite
(orange), and BCT (blue). The corresponding DFT values are shown in black.
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extrapolation to regions that are neither explored by CCS+Q nor the
Buckingham potential. These results highlight the need to emphasize
on the importance of diversity among the training-set structures, not
only its size, i.e., number of structures. Currently, the construction of a
reliable training-set is more of an art than science. However, properties
of linear models, like the ones presented herein, could be utilized in the
future to make the process more robust.

Figure 4.3. Comparison of the quality of the fit for the three ZnO models. The
boxplot to the left shows the error in energies per formula unit for the structures
in the training-set for both Buckingham (blue), CCS+DDEC (orange) and
CCS+SQ (green) potential. The boxplot to the right compares the error in
lattice parameters in the training-set (black dots). The whiskers of the boxplot
indicate the minimum and maximum error, and the median is shown in purple.

4.3.2 CeO2
We further tested the CCS+Q methodology on CeO2 nanoparticles. Ce-
ria nanoparticles are known to have different morphologies based on their
size. In particular, small ceria nanoparticles (CenO2n) < 2 nm prefer a
tetrahedral shape compared to larger nanoparticles, which are octahe-
dral61. A schematic illustration of the CeO2 nanoparticles is shown in
Fig.4.4.

In general, nanoparticles are more challenging to model using force
fields than bulk structures due to the variations in coordination num-
ber of atoms (bulk vs. surface vs nanospecific motifs). Consequently, a
more structurally diversified training-set than the one used for the ZnO
parameterization presented above is needed. The training-set used here
includes scrambled bulk fluorite CeO2 structures (111 in total), isotropic
scans of thin [111] surface slabs (11 in total), and 2 small nanoparticles
of different shapes.
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Table 4.1. The total energies, lattice parameters, and bulk modulii for stud-
ied ZnO polymorphs computed using the reference method DFT-PBE and the
CCS+DDEC, CCS+SQ and Buckhingam potentials.

PBE CCS+DDEC CCS+SQ Buckingham

Wurtzite

a[Å] 3.29 3.32 3.33 3.30
c[Å] 5.30 5.23 5.18 5.20
E[eV] -9.10 -9.12 -9.12 -9.09
B[GPa] 129 136 146 123

Zincblende

a[Å] 4.63 4.64 4.64 4.62
E[eV] -9.09 -9.09 -9.09 -9.06
B[GPa] 129 131 134 124

BCT

a[Å] 5.63 5.62 5.59 5.58
c[Å] 3.29 3.32 3.33 3.30
E[eV] -9.05 -9.06 -9.06 -9.06
B[GPa] 105 112 116 111

Cubane

a[Å] 6.29 6.33 6.32 6.28
E[eV] -8.88 -8.93 -8.91 -8.89
B[GPa] 97 89 86 91

RS

a[Å] 4.34 4.40 4.53 4.28
E[eV] -8.81 -8.43 -8.22 -9.09
B[GPa] 166 41 53 163

CsCl

a[Å] 2.69 2.69 2.77 2.68
E[eV] -7.68 -6.95 -6.48 -7.78
B[GPa] 160 102 48 140
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a) Ce113O226 tetrahedra  b) Ce140O280 octahedra  

Figure 4.4. (a) Tetrahedral and (b) octahedral CeO2 nanoparticles. Cerium
and oxygen atoms are depicted in gray and red colors, respectively.

(a) (b)

Figure 4.5. Comparison of total energies per formula unit for nanoparticles of
tetrahedral and octahedral shape using CCS+Q. (a) Plot covering the whole
range of nanoparticles considered in the current work. (b) Plot showing the
region where the crossing from tetrahedral to octahedral stability takes place.

After the fitting of CCS+Q Ce-O, Ce-Ce, and O-O potentials, we used
the model to compute the geometry and total energy for a series of tedra-
hedrally and octahedrally shaped ceria nanoparticles. Fig. 4.5a compares
the total energy per formula unit as a function of its size. To validate
the model, we compare it with the tetrahedral-to-octahedral transition,
which in the literature has been reported to occur for sizes of ∼70-80 for-
mula units61. The result of the CCS+Q method is in very good agree-
ment with this prediction, cf. Fig. 4.5b. This example demonstrates
that the CCS+Q model indeed is flexible enough to capture the diver-
sity that is expected to be encountered when studying complex chemical
problems. Adding the relatively simple parameterization process to this,
we anticipate that the CCS+Q model can become an increasingly useful
tool in many aspects of multiscale materials modeling.
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5. Paper III: CCS as repulsive potential in the

SCC-DFTB method

Purposes:
• To use the CCS methodology to fit repulsive potentials in

the SCC-DFTB method.
• Highlight the transferability issues due to a two-body repul-

sive potential in the SCC-DFTB method.
• Present neural networks as a possible solution for a transfer-

able repulsive potential.
Methods: DFT, DFTB, CCS, BPNN
Take-home message: The CCS methodology was used to fit
two-body repulsive potentials in the SCC-DFTB method. How-
ever, due to the approximations in the SCC-DFTB method, the
transferability of the two-body repulsive potentials is limited. In
regard to transferability, the repulsive potentials should include
many-body effects, possibly in the form of local coordination num-
bers of the atoms. In this context, the Behler-Parinello Neural
Networks (BPNN) could be a possible solution in the future.

5.1 Motivation
Though atomistic models (force field methods) like CCS+Q are quite
useful, a large part of the chemistry, for example, in describing reducible
oxides, requires knowledge about the electronic structure, which is only
implicitly treated in atomistic models. In the multiscale modelling ap-
proach, there is indeed a need also for an intermediate level of theory
that is computationally cheaper than DFT but still capable of providing
accurate electronic structures. The SCC-DFTB method is one such tool,
which strikes the right balance between computational speed and accu-
racy when compared to DFT and FF approaches. However, the parame-
terization, i.e., the generation of Slater-Koster tables with corresponding
accurate two-body repulsive potentials, can be very time-consuming.

The repulsive potentials used in the SCC-DFTB method are generally
short-range two-body potentials that approximate core-core interaction.
However, all the complicated physics and approximation errors that are
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explicitly treated in the reference method (usually semi-local DFT) are
hidden in the repulsive potentials. As such, it resembles the exchange-
correlation term in DFT (see section 2.1.1), but at another scale. Con-
sequently, the repulsive potential does not have a physically motivated
shape, making it hard to parameterize. The transferability and reliabil-
ity of the SCC-DFTB method are heavily dependent on the quality of
the underlying two-body repulsive potentials.

Several semi-automated methods have been developed in the literature
for fitting repulsive potentials,37,46,62–68 but each has its own drawbacks
or require some form of manual intervention. The currently used meth-
ods can be classified into two types: i) functions with a rigid functional
form (e.g., Buckingham, exponential functions, etc.) ii) functions with-
out functional form (e.g., using splines46,62). The former methods are
not flexible enough, and the latter methods are too flexible and can result
in overfitting. Therefore, in Paper III the extended CCS methodology
introduced in Paper II was used, but without the long-ranged electro-
statics, for repulsive potentials in the SCC-DFTB method.

5.2 A repulsive fitting for Si using CCS
To demonstrate how the CCS methodology can be used in conjunction
with the SCC-DFTB formalism, repulsive potentials were fitted for the
following polymorphs of Si: Graphene (3 coordinated), Diamond (4 co-
ordinated), simple cubic (SC, 6 coordinated), and Body-Centered Cubic
(BCC, 8 coordinated). The training-set consisted of Energy-Volume (E-
V) scans of all polymorphs, with nearest-neighbor Si distances varying
between 2.1 to 3.3 Å (see Fig. 5.1). The electronic part of the SCC-
DFTB energy for Si was obtained using the siband Slater-Koster ta-
bles69,70. The repulsive potential in SCC-DFTB is usually assumed to
be short-ranged (including the first nearest neighbor); however, the use
of long-ranged potentials have been reported in the literature71. The
CCS methodology can be used to actually determine the optimal cut-off
required for the repulsive potential given a particular training set. The
results from such an optimization is shown in Fig. 5.1. The results indi-
cate that the optimal cut-off indeed is short-ranged for the used training-
set. A cut-off value of 3.4 Å—including all the first nearest-neighbors —
was sufficient for the repulsive potential (see Fig. 5.1).
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Figure 5.1. The range of first and second nearest-neighbour distances for the
Si polymorphs, namely, graphene (orange), diamond (blue), SC (red), and
BCC (green) are shown in the top panel. The middle panel depicts the root-
mean-squared-error (RMSE) as a function of cut-off radius for diamond (blue)
and all polymorphs (black). The bottom panel shows the same for individual
polymorphs. The vertical line (dashed) at 3.3 Å indicates the largest nearest-
neighbour distance in the training-set.

Unlike what the name suggests, the repulsive potential in SCC-DFTB
need not always be a purely repulsive function. The potential can have
attractive regions as well46,71. Therefore, we used both repulsive and
switch constraints in the CCS method to fit the repulsive potentials (see
Fig. 5.2). We observed that the shape of the ideal repulsive potential
varies for each polymorph. The high-coordinated structures (BCC and
SC) require an attractive function in the repulsive potential, whereas
purely repulsive functions were obtained for the diamond and graphene
polymorphs. We could not obtain a one-fits-all repulsive potential that
gave a universal agreement of DFT and SCC-DFTB across all poly-
morphs. This further highlights the known transferability problems in
SCC-DFTB65.
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Figure 5.2. The left panel in a) compares DFT energies (black dotted lines)
with SCC-DFTB energies using repulsive constraints for all structures in the
training-set. The right panel in a) shows the corresponding repulsive poten-
tials. Panel b) shows a similar comparison to that of panel a) for the switch
constraint. Panels c) and d) show the repulsive potential obtained using repul-
sive and switch constraint, respectively, when all Si polymorphs are included
in the training-set
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5.3 Exploring the limits of two-body potentials
In the previous section, it was shown that it is indeed possible to fit indi-
vidual two-body repulsive potentials for each and every polymorph that
accurately reproduces the corresponding reference DFT data. However,
the lack of a one-fits-all solution for the various Si polymorphs clearly
demonstrates the problem of transferability associated with repulsive po-
tentials in the SCC-DFTB method. To gain further insight on how to in
the end enable the generation of a one-fits-all universal repulsive poten-
tial, we analyzed the one- and two-body contributions in more detail for
selected pairs of polymorphs.

Let the sets PCN1 and PCN2 be a class of polymorphs with distinct
coordination number (CN). Then, ∀ p ∈ PCN1 ∪ PCN2 in a possible one-
fits-all procedure can be written as:

Erep = εPCN1∪PCN2
+ VPCN1∪PCN2

(r) (5.1)

where ε refers to the one-body energy term, and V refers to the two-body
potential. Next, we can write the individual fits as:

Erep = εPCN1
+ εPCN2

+ VPCN1
(r) + VPCN2

(r). (5.2)

The remaining combination of ε’s and V ’s can be written as :

Erep = εPCN1
+ εPCN2

+ VPCN1∪PCN2
(r) (5.3)

Erep = εPCN1∪PCN2
+ VPCN1

(r) + VPCN2
(r). (5.4)

The above equations were used to study the following combinations:
Pdiamond ∪ PSC , PSC ∪ PBCC , Pgraphene ∪ Pdiamond. The results are
shown in Fig. 5.3 and show that a simple two-body potential can not
even describe a pair of polymorphs simultaneously. Adding multiple ε’s
(one-body terms) improve the overall quality of the fit, albeit only by a
small amount. The above analysis indicates that the use of a simple two-
body repulsive potential limits the transferability of SCC-DFTB, and to
make improvements, many-body characteristics should be included in
the repulsive potential.

5.4 Many-body effects in repulsive potentials for
SCC-DFTB

As a possible solution to the problem demonstrated in the previous sec-
tion, the possibility to use Behler-Parinello Neural Networks (BPNN)72

as repulsive potentials in SCC-DFTB has been investigated. The BPNN
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networks are many body neural networks that consider explicit two-body
and three-body effects via radial and angular symmetry functions. In
Paper III, it is shown that a minimal BPNN architecture, with only 2
nodes and 2 hidden layers and a small 4 Å cut-off, is sufficient to accu-
rately reproduce the E-V curves for all Si polymorphs in the training-set
(see Fig. 5.4).

Figure 5.3. The boxplots depict the variation of absolute-errors (y-axis) in
the training-set with respect to different models (x-axis) presented in section
5.3. The black dot indicates the mean absolute error, and the whiskers of the
boxplot indicate the minimum error and maximum error.

It stands clear that the BPNN approach, owing to the inclusion of
many-body effects, is superior to the CCS method when it comes to the
accuracy of a one-fits-all general repulsive potential. However, for sparse
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Figure 5.4. Comparison between DFT and SCC-DFTB computed E-V curves
for different Si polymorphs using the BPNN one-fits-all general repulsive po-
tential.

data sets, the BPNN approach can result in overfitting. This would not
happen using the CCS method owing to the built-in constraints. Thus,
the use of BPNN potentials, or other similar formulations, might be
problematic for structures that are quite different from the ones included
in the training-set. Presently, the only way to ensure the reliability of
a BPNN repulsive potential is to train on a vast amount of data. This
becomes, however, infeasible when the system contains many different
chemical species. In cases where limited transferability is not a significant
concern, simple two-body potentials using the CCS methodology would
be a better alternative.
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6. Paper IV:Electronic properties of correlated

electronic states in reduced ceria from

SCC-DFTB+U calculations

Purposes:
• To develop an “f in-core" scheme, where Ce 4f states are

moved into the core, to improve the convergence of the SCC-
DFTB+U method.

• Use CCS to have consistent and homogenized repulsive po-
tentials for both explicit and implicit f -electron descriptions.

Methods: DFT, SCC-DFTB, and CCS
Calculated properties: Lattice parameters, the relative stabil-
ity of vacancies, and electronic properties.
Take-home message: Problems in SCC-DFTB for treat-
ing strongly correlated electronic states could be circumvented
through the use of a "f in-core" scheme. This was achieved by
developing a consistent and harmonized set of SK-tables with cor-
responding repulsive potentials parameterized using CCS. The de-
veloped scheme was able to qualitatively capture the trends as seen
in PBE+U, and in the future, might aid exploration of structure-
activity relationships in large redox-active nanoparticles.

6.1 Motivation
Reducible metal oxides with strongly correlated d and f electrons are
often challenging to study with semi-local DFT. This is due to the self-
interaction error (SIE) present in the commonly used DFT function-
als24,73. We often resort to computationally expensive hybrid functionals
or extensions like DFT+U to treat the SIE. So, within the scope of DFT,
our understanding is limited to systems of smaller sizes and for shorter
timescales. To give some perspective, in chapter 4 section 4.3.2, we stud-
ied the relative stability of tetrahedral and octahedral nanoparticles (up
to 800 formula units of CeO2) as a function of size using the CCS+Q
method (see Fig. 4.5). It would be nearly impossible to reproduce Fig.
4.5 using DFT. So, we need computationally less demanding alternatives
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to DFT to compute electronic structure, and SCC-DFTB is one popular
alternative.

The SCC-DFTB method, derived from DFT, inherits many drawbacks
from the parent DFT method. Systems with strongly correlated d and
f electrons are overdelocalized due to the SIE, which leads to incor-
rect electronic structure description. An extension similar to DFT+U
was derived for SCC-DFTB by Hourahine et al. 74 to treat strongly cor-
related electronic states, and this method, SCC-DFTB+U, has earlier
been shown to give a qualitatively good description for various forms of
reduced ceria28. However, using the SK parameterization developed in
Ref.28 for large systems, with many electronic states leads to problems
with the convergence of the SCC cycle. It has been identified that the
Ce 4f states in CeO2 are one reason for these convergence problems.
This limits large scale simulations for strongly correlated materials using
SCC-DFTB.
In Paper IV, we suggest a possible solution to this problem using an
"f in-core" approach. The method has two clear benefits: i) it min-
imises the convergence issues in SCC-DFTB when dealing with strongly
correlated electrons, and ii) aids the identification of defect localization
patterns in reducible oxides.

6.2 The "f in-core" approach in a nutshell
The key idea behind the "f in-core" approach is to have a consistent (and
harmonized) description to switch on and off the Ce 4f states. The Ce
4f states are moved to the core for an implicit (off) description, while for
an explicit (on) description, the Ce 4f states are treated as part of the
valence. The implicit and explicit description of Ce 4f states needs to
be harmonized such that we can have both kinds of treatment for Ce 4f
states concurrently within the same system. This consistency between
implicit and explicit description was achieved with repulsive potentials
parameterized using the CCS methodology. As an initial test to validate
our "f in-core" approach, we apply it to CeO2 as an example.

Table 6.1. Connection table for SK-tables.

O Ce Ce3+fin−core Ce4+fin−core

O mio-1.025 Ref.28 x x
Ce Ref.28 Ref.28 x x

Ce3+fin−core x x x x
Ce4+fin−core x x x x
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Figure 6.1. a) An illustrative representation of the bulk CeO2 unit cell. b) The
local surrounding of an oxygen vacancy is viewed along the [111] direction. The
red circles are oxygen, and the black circles are cerium.

In Paper IV, we have developed 12 new sets of SK tables as shown in
Table 6.1, apart from the already existing ones from Ref.28, to account for
the two possible charge states of Ce ions in partially reduced ceria. The
new ones generated are marked by "x" in the table. The steps involved
to generate the SK tables can be summarized as follows: Firstly, we op-
timized the electronic parameters of the new SK table with Ce 4f states
in-core towards the electronic structure of the bulk CeO2 (see Fig. 6.1a).
We get a good description for the density of states (DOS) using an SK
table with 4f states in-core compared to the reference PBE+U data (see
Fig. 6.2). Secondly, we turned to partially reduced ceria systems to tune
the Hubbard U parameter such that the occupied f -state position rel-
ative to the bulk ceria valence band edge matches to that of PBE+U
data. For this purpose, we used bulk ceria with oxygen vacancies and
a nearest-neighbor (NN) and next-nearest-neighbour (NNN) localization
of the existing Ce3+ ions. The NN and NNN configurations correspond
to having the two Ce3+ associated with vacancy located at the inner tri-
angle (NN) or outer triangle (NNN) on Fig. 6.1b. The optimal U-value
to reproduce the PBE+U data for the Ce 4f occupied state was 1.99 eV.
The intention of the above procedure is to ensure that we get the correct
description of the localized f electron states when occupied. Lastly, we
used the CCS methodology to optimize the respective repulsive poten-
tials to make sure that we got the correct relative energies and structural
properties.
The optimization of the repulsive potential plays a crucial part in har-
monizing the SK tables, i.e., allows us to use them interchangeably in
a system. We have to ensure that both explicit and implicit treatment
of Ce 4f states gives rise to similar structural properties and relative
energies. A more detailed description of the repulsive parametrization
can be found in Paper IV.
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Figure 6.2. Comparison of the DOS computed using PBE+U (U = 5 eV) and
SCC-DFTB+U (f in-core) for bulk CeO2.

6.3 Can the SK tables be used interchangeably?
Table 6.2 summarizes the various settings used for harmonization tests.
We either used a approach where the 4f states are in-core for all Ce
atoms, or a mixed approach where all Ce4+ were treated with 4f states
in-core, and the 4f states for expected charge localization centers explic-
itly treated as valence. The harmonization tests were conducted on VNN
and VNNN bulk oxygen vacancies. The results are given in Table 6.3.
We qualitatively predicted the correct relative stabilities for VNN and
VNNN when compared PBE+U data for all the different harmonization
tests. We also got a good agreement for the O 2p - Ce 4f band gaps.
However, the relative energies are all slightly overestimated, but overall
we concluded that the SK tables were indeed harmonized and could be
used interchangeably.

Table 6.2. The different settings for harmonization tests.
Description

i) single point with the f in-core potential
ii) single point using the mixed approach
iii) full geometry optimization using f in-core
iv) single point from f in-core optimisation (iii) with the mixed approach
v) full optimization with the mixed approach
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Table 6.3. Results from the harmonization tests i-v (see. table 6.2). We used
a U-value of 1.99 eV for SCC-DFTB+U calculations, and all energies are in
eV.

ΔE(VNN − VNNN ) E
O2p−→Ceocc4f
gap (NN) E

O2p−→Ceocc4f
gap (NNN)

PBE+U 0.07 1.22 1.29
i) 0.15 - -
ii) 0.12 1.19 1.31
iii) 0.20 - -
iv) 0.19 1.19 1.24
v) 0.18 1.23 1.20

6.4 Transferability
Are the harmonized SK tables with CCS repulsive potentials transferable
to also be used for oxygen vacancies on CeO2 surfaces? We know from
Paper III that two-body repulsive potentials in DFTB often have a lim-
ited transferability. How transferable is the "f in-core" approach to other
CeO2 systems given that the harmonization depends on the repulsive po-
tential? To address the above questions, we tested the transferability of
the "f in-core" approach to study oxygen vacancies on the (111) and
(110) CeO2 surfaces. The stability pattern of the oxygen vacancies on
(111) and (110) CeO2 surfaces are known from the literature75–77. For
the (111) surface, sub-surface oxygen vacancies (SSV) are more stable as
compared to surface vacancies (SV), and electron localization is preferred
on the NNN Ce ions (see Fig. 6.3). Similarly, for the (110) surface, NNN
Ce3+ localization is preferred (see Fig. 6.4). We studied the relative sta-
bility of oxygen vacancy formation in the NN and NNN configurations
for the CeO2 (111) and (110) surfaces. We employed three tests: a full
geometry optimization with the f in-core approach, a single point (SP)
calculation using the mixed approach, and a full relaxation using the
mixed approach. We remark that these tests are equivalent to those
described in Table 6.3 (see rows ii, iii, and v). The results are given in
Table 6.4 and 6.5.

Figure 6.3. a) A schematic representation of a (111) surface slab of CeO2

(side view). b) Top-view with a surface vacancy (SV) and sub-surface vacancy
(SSV). The numbers in b) indicate special oxygen ions surrounding the SV.
The turquoise and purple color depicts precise location of Ce3+ in the NN and
NNN configuration, respectively. Legend is the same as in Fig. 6.1.
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Figure 6.4. a) A schematic representation of a (110) surface slab of CeO2

(side view). b) Top-view with a surface vacancy (SV) and sub-surface vacancy
(SSV). The turquoise and purple color depicts precise location of Ce3+ in the
NN and NNN configuration, respectively. Legend is the same as in Fig. 6.1.

Table 6.4. The table shows the relative formation energies in eV for defect
formation in bulk ceria and ceria low-index surfaces. The DFTB results are
labeled according to Table 6.2. The bulk data for the PBE+U (U = 5 eV) and
HSE06 were obtained from Ref. 78. The surface data for PBE+U and HSE06
are taken from Refs. 28 and 79 .

ΔE f in-core mixed (SP) mixed PBE+U HSE06(15%)
bulk VNN - VNNN 0.20 0.19 0.18 0.07 0.10

(111) SSVNN -SSVNNN 0.35 0.68 0.71 0.31 0.44
(111) SVNNN -SSVNNN 0.25 0.38 0.40 0.22 0.18
(111) SVNN -SSVNNN 0.61 0.50 0.54 0.46 0.48
(110) SVNN - SVNNN 0.08 -0.10 -0.16 0.38 -

Our results indicate that the "f in-core" approach correctly predicts
the most stable electron localization patterns to be of the NNN type for
(111) and (110) CeO2 surfaces. However, the mixed and mixed (SP)
calculation —where 4f states are in valence for the reduced ion— in-
correctly predicted the vacancy to be more stable in a NN configuration
for the (110) surface. We remark that unlike the (111) surface, the
(110) surface was not included in the training-set used to fit the repul-
sive potential. Nevertheless, we got qualitatively good agreement for
the relative stability of the vacancies for the bulk and (111) surface for
the mixed approach. The structural relaxation around the (111) surface
oxygen vacancies are also in good agreement with PBE+U for all three
approaches (see Table 6.5).

In the paper, it is shown that a qualitatively correct description of the
structure and relative stabilities of oxygen vacancies in bulk ceria and at
the low-index surfaces using the f in-core approach is obtained. Includ-
ing an explicit treatment of the Ce 4f electrons, as is done in the mixed
approach, reduces the energy and structure transferability. However, we
haven not yet established the transferability in electronic properties. For
this purpose, we computed the electron DOS (see Fig. 6.5) for the most
stable vacancies using a single point mixed approach on the f in-core op-
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Figure 6.5. Electron DOS for VNNN (top), SSV111
NNN (middle) and SV110

NNN (bot-
tom). The dashed red lines indicate DOS from mixed(SP) on the "f in-core"
optimized structure, and solid black lines indicate DOS from full optimization
using the mixed approach.

timized structures, and after a full relaxation using the mixed approach
(with an explicit treatment of f electrons). We found that the DOS
obtained using both cases were very similar, which implies that the elec-
tronic structure is more transferable than the energetic properties. It also
implies that the SK tables are completely interchangeable (harmonized)
when it comes to this property. In principle, we can substitute geometry
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Table 6.5. O-O distances (in Å) around the (111) surface oxygen vacancy
Method f in-core mixed PBE+U

NN
r(O1 −O2) 3.81 3.82 3.83
r(O2 −O3) 3.96 3.95 3.95
r(O3 −O4) 4.11 4.08 4.14
r(O4 −O5) 3.97 3.96 3.96

NNN
r(O1 −O2) 3.60 3.59 3.61
r(O2 −O3) 4.21 4.23 4.25
r(O3 −O4) 3.69 3.68 3.67
r(O4 −O5) 3.95 3.97 4.01

optimisation with 4f states in valence (mixed approach) by a single point
calculation on a structure optimized with an implicit description of the
4f states. The latter method provides us a faster alternative to find the
position of 4f states in relation to the bulk valence band (mainly O 2p
states), which is particularly useful for large systems with problematic
SCC convergence.
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7. Future outlook

This thesis primarily focused on the development of the CCS methodol-
ogy and its application as a tool for linking and coupling in multiscale
modelling schemes. The advantage of using the CCS method has been
mentioned in this thesis. Here, I discuss about the possible improvements
that can be made in future versions of the CCS methodology.

When used in the SCC-DFTB framework, it was found that a two-
body repulsive potential is not sufficient to attain transferability and to
solve this, a many-body approacy such as the BPNN is needed. Another
route along the same direction would be to include a short-ranged three-
body contribution which has earlier been shown to improve the accuracy
of SCC-DFTB.66 The three-body energy expression can be written as
follows:

E3−body(ri, rj , rk) =
∑

i<j<k

f(rij , rjk, rik) (7.1)

where f(rij , rjk, rik) is a three dimensional function and i, j, k run
over all atoms in the system. Within the current formalism of the CCS
method, such terms could be described by tri-cubic splines or B-splines
taking three distances of a triangle of atoms as input. Furthermore, con-
straints similar to those used in our 2-body expression could be applied
also here, but the appropriate form of them would need to be deter-
mined. Sparse data could be handled by merging sub-cubes on the 3D
spline grid using a similar technique as that presented in section 3.2.2.
The advantage of this approach would be that its freed from additional
meta-parameters (apart from cut-off radius) and that the method would
remain linear in the parameters needed to be determined. A very similar
extension was suggested by Goldman et al. 66 using Chebyshev polyno-
mials, albeit without the constraints.

The quality of a CCS potential depends on the quality of the training-
set used. Like any other ML model, CCS potentials can be poor in
regions on the PES where it has not been trained. The constraints re-
duce this error significantly. Nevertheless, constructing, or, choosing, a
good training-set is not a trivial problem. A brute force way out is to
perform millions of QM calculations on the PES. This is, however, com-
putationally very expensive and impractical. A more practical solution
would be to implement a train on the fly approach.
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Active learning based on a D-optimality criterion as proposed by
Podryabinkin and Shapeev 80 can be used as a tool to identify config-
urations on which the ML potential extrapolates. This is applicable to
linearly parameterized interatomic potentials like CCS, moment tensor
potetntial (MTP) etc. This could be used to reduce the training-set size
and provide a better way to construct the training-set for CCS model in
the future.

50



8. Concluding remarks

In 1929, the Nobel laureate and famous quantum physicist Paul Dirac
stated:

"The underlying physical laws necessary for the mathematical theory
of a large part of physics and the whole of chemistry are thus completely
known, and the difficulty is only that the exact application of these laws
leads to equations much too complicated to be soluble. It therefore be-
comes desirable that approximate practical methods of applying quantum
mechanics should be developed, which can lead to an explanation of the
main features of complex atomic systems without too much computa-
tion."

It is clear from the discussions and results presented in this thesis that
this quote is as relevant now as when it was stated. Still, approximate
QM models and methods are being developed with the aim to overcome
the practical difficulties associated with solving the basic QM equations.
Today, however, the mathematical models used to approximate the com-
plicated QM relations are becoming almost as complex as the original
ones. For example, models that has become popular today are often
highly non-linear and with an increasing number of parameters, thereby
becoming extremely tedious to parameterise, and tedious to solve. Most
often, supercomputer facilities are required since the parameterisation
relies on resource-hungry heuristic and meta-heuristic algorithms.

The main result of this thesis is the development of the CCS method-
ology (Paper I), which uses linear models to improve the quality and
parametrisation processes of two-body potentials for linking between and
within electronic and atomistic levels in Fig. 1.1. As such, an alternative
route to the computer extensive data driven approaches is provided with
the intention to be more computationally effective by the use of simple
interaction models, both in terms mathematical form and when it comes
to the parameterization process.

The CCS model is linear, which implies that parameters can be eas-
ily solved in a least-square sense using a QP approach. Moreover, the
objective function is convex, which ensures that any found minimum is
a global minimum. This makes the optimisation process easy to handle
and requires little to no human effort. Initial tests to validate the method
were performed on molecular and bulk neon structures. In Paper II,
the CCS methodology was extended to also incorporate long-range in-
teractions by including atomic charges. Within the same philosophy,
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also the magnitude of the atomic charges (Q) could be optimised in a
linear fashion simultaneously with the other CCS parameters, making
the whole process of fitting combined long-range and short-range inter-
actions easier. The capabilities of the method, abbreviated CCS+Q, was
demonstrated for ZnO polymorphs, and at the same time bench-marked
towards use of the conventional approach using Buckingham potentials
for the same problem. The results indicate that the CCS+Q method
performs on par with the Buckingham approach, but is much faster and
easier to parameterise. The method is further demonstrated for a more
chemically diverse problem, size dependent shapes of CeO2 nanoparti-
cles.

The CCS method was further employed to develop repulsive potentials
in SCC-DFTB (Paper III). The parametrisation of the two-body re-
pulsive potentials is the major bottleneck in development of SCC-DFTB
parameters. The use of CCS made this process simpler, and further pro-
vided new opportunities to explore the limits of the SCC-DFTB method.
The results suggest that the repulsive potentials should have many-body
characteristics to achieve transferability, which was corroborated by the
many body BPNN based repulsive potentials for Si polymorphs. The ver-
satile CCS method was used to develop interchangeable Slater-Koster
tables for Ce ions of various oxidation states, referred to as the har-
monization process, thus improving the scalability of the SCC-DFTB
simulations for highly correlated electron systems (Paper IV).

In summary, this thesis highlights the importance, usefulness, and
applicability of linear models to solve some of the existing problems in
computational material science.
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10. Swedish summary

Avancerade material har revolutionerat vår vardag. Apparater som pek-
skärmstelefoner och eldrivna fordon har blivit centrala i vårt samhälle.
Dessa tekniska bedrifter möjliggjordes av de fascinerande egenskaperna,
på olika längdskalor, hos avancerade material. Till exempel är egenska-
perna hos kopparnanopartiklar (ett material som är mindre än 50 nm)
mycket olika från bulkkoppars egenskaper. Bulkkoppar används i ledande
kablar på grund av sin mjukhet. I kontrast formar kopparnanopartiklar
ett mycket hårt material. Ända sedan forskare observerade dessa egen-
skaper har de brottats med frågan: Varför ändras egenskaper hos ett
material med storlek och form? Richard Feynman sa i sina föreläsningar
om fysik att mycket av världen skulle kunna förstås med atomhypote-
sen: ”att alla saker är gjorda av atomer — små partiklar som rör sig i
eviga rörelser, dessa attraherar varandra när de befinner sig på ett litet
avstånd från varandra, men är repulsiva när de pressas in i varandra”.
Han föreslår att ”med bara lite fantasi och tänkande” skulle man kun-
na berätta enormt mycket om världen. Faktum är att hans argument är
korrekta och disciplinen ”Materialvetenskap” handlar om att identifiera
och förstå förhållandet mellan materialets struktur och dess egenskaper.
Men hur bestämmer vi strukturen hos ett material som är osynligt för
blotta ögat?

Nyligen skedde ett stort genombrott inom materialvetenskap, för förs-
ta gången uppnåddes supraledning (elektroner som flödar utan friktion)
i ett material vid rumstemperatur. Materialet bestod av kol, väte och
svavel. Supraledning uppnåddes vid temperaturer runt 288 K vid ett
tryck på 155GPa – motsvarande 1,55 miljoner gånger trycket från jor-
dens atmosfär. Experimenten som utfördes kunde dock inte identifiera
atomernas exakta positioner och datormodeller användes för att ge en
gissning av den troliga strukturen. Även om kemi ofta anses vara en ex-
perimentell vetenskap krävs ofta teoretiska modeller för att komplettera
experimenten. I själva verket tilldelades Nobelpriset 2013 i kemi till Mar-
tin Karplus från Harvard University, USA, Michael Levitt från Stanford
University, US och Arieh Warshel från University of Southern Califor-
nia, US, för "utveckling av flerskaliga modeller för komplexa kemiska
system".

Elektronerna rör sig med mycket hög hastighet i dessa material, och
deras rörelse följer kvantmekanikens lagar. I princip kan vi använda dessa
lagar och beräkna elektronernas framtida position på penna och papper.

55



Denna process är dock mycket komplicerad och ibland praktiskt omöjlig,
vilket tvingar oss att söka hjälp från datorer. Genom åren har en snabb
utveckling inom beräkningsteknik låtit oss bli bättre på modellering av
kemi. Men det finns fortfarande flera utmaningar. Till exempel innehål-
ler en mol (måttenhet i kemi) av ett ämne 1023 partiklar. Att använda
kvantmekaniska metoder för att beskriva så stora system är inte ens
möjligt för toppmoderna superdatorer. Emellertid kan atomernas rörelse
beskrivas med Newtons ekvationer, vilket är betydligt enklare att beräk-
na än ekvationerna för elektronerna. En naturlig fråga som uppstår är om
elektronernas rörelse är kopplad till atomernas rörelse. I allmänhet kan
detta antas vara falskt. Detta beror på att elektroner är mycket lättare
än atomer, vilket innebär att de rör sig betydligt snabbare än atomerna.
Därför kan vi frånkoppla elektronernas rörelse från atomernas. På lik-
nande sätt kan en serie approximationer göras för att ytterligare minska
modellernas komplexitet. Således kan material modelleras i olika längd-
och tidsskalor.

Mycket av forskningen på små skalor fokuserar antingen på atomni-
vå eller elektronnivå. På elektronnivå är modellerna mycket exakta men
långsamma och på atomnivå är modellerna snabba men mer osäkra. Helst
vill vi ha ett arbetsflöde där vi kan gå från att beskriva elektroner till att
beskriva atomer, utan betydande förlust av noggrannhet och samtidigt
kunna utföra beräkningen snabbt. För närvarande finns det två klasser
av modeller som används för att överföra information mellan elektron-
och atombeskrivningarna. Den första klassen av metoder kallas fysik-
baserade metoder och den andra klassen av metoder kallas datadrivna
metoder. Nyligen har datadrivna metoder vunnit popularitet i beräk-
ningsmaterialvetenskapen. De är mycket noggranna, men en stor brist är
att de är kräver en långrandig utvecklingsprocess. En stor mängd data
(vanligtvis i miljontals datapunkter) krävs för att konstruera datadrivna
modeller. De fysik härledda metoderna kräver mycket mindre data men
är mindre korrekta. I artikel I utvecklade vi en metod som kallas Cur-
vature Constrained Splines (CCS) som ger en bra kompromiss mellan
datadrivna och fysikbaserade modeller. Här testade vi denna modellen
på enkla ädelgaser för att göra en prestandajämförelse. Vidare utvidgade
vi i artikel II CCS-modellen att inkludera kvanteffekter (CCS+Q) för
att fånga en större klass av material. Den utökade metoden användes för
att studera ZnO och CeO2. Vi fann att CCS+Q-metoden var bättre än
vanligt använda fysikbaserade modeller.

Efter att ha fastställt ramverket för CCS-metoden användes den vi-
dare för att länka två olika elektronmodeller som heter DFT och DFTB
i artikel III. Parametriseringen av repulsiva potentialer är normalt en
långdragen och tidskrävande process. Användningen av CCS gjorde den-
na process betydligt effektivare och gav ytterligare möjligheter att ut-
forska gränserna för modellen. Utvecklingen av repulsiva potentialer för
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Si-polymorfer i bulk visade att det är möjligt att generera en bra be-
skrivning av varje enskild polymorf, men omöjligt erhålla en samtidig
acceptabel beskrivning av alla polymorfer. Vi visar att en överförbar re-
pulsiv potential behöver ha ett koordinationssberoende. Användandet av
ett artificiellt neuralt nätverk för att representera den repulsiva potentia-
len resulterar i en bättre överförbarhet. I artikel IV använde vi CCS för
att övervinna konvergensproblemen i SCC-DFTB för starkt korrelerade
system. Sammanfattningsvis, CCS-metoden visar sig vara ett mångsidigt
verktyg för effektiv koppling mellan (och inom) elektroniska och atomis-
tiska modeller

57





References

[1] R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman lectures on
physics, Vol. I: The new millennium edition: mainly mechanics,
radiation, and heat, Vol. 1 (Basic books, 2011).

[2] S. Auvinen, M. Alatalo, H. Haario, J. P. Jalava, and R. J. Lamminmäki,
J. Phys. Chem. C 115, 8484 (2011).

[3] B. D. Chithrani, A. A. Ghazani, and W. C. Chan, Nano Lett. 6, 662
(2006).

[4] A. Trovarelli, Catal. Rev. - Sci. Eng. 38, 439 (1996).
[5] A. S. Aricò, P. Bruce, B. Scrosati, J. M. Tarascon, and W. Van

Schalkwijk, Nat. Mater. 4, 366 (2005).
[6] Z. W. She, J. Kibsgaard, C. F. Dickens, I. Chorkendorff, J. K. Nørskov,

and T. F. Jaramillo, “Combining theory and experiment in
electrocatalysis: Insights into materials design,” (2017).

[7] S. Y. Huang, L. Kavan, I. Exnar, and M. Grätzel, J. Electrochem. Soc.
142, L142 (1995).

[8] R. Rousseau, V. A. Glezakou, and A. Selloni, Nat. Rev. Mater. 5, 460
(2020).

[9] A. Trovarelli and P. Fornasiero, Catalysis by ceria and related materials;
2nd ed., Catalytic Science Series (World Scientific, Singapore, 2013).

[10] A. Bruix, J. T. Margraf, M. Andersen, and K. Reuter, Nat. Catal. 2, 659
(2019).

[11] A. A. Franco, RSC Adv. 3, 13027 (2013).
[12] A. A. Franco, A. Rucci, D. Brandell, C. Frayret, M. Gaberscek,

P. Jankowski, and P. Johansson, Chem. Rev. 119, 4569 (2019).
[13] N. M. Ghoniem†, E. P. Busso, N. Kioussis, and H. Huang, Philos. Mag.

83, 3475 (2003).
[14] A. F. de Baas, What makes a material function? - Publications Office of

the EU (Publications Office of the European Union, 2017).
[15] V. Fock, Zeitschrift für Phys. 61, 126 (1930).
[16] P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964).
[17] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965).
[18] J. Townsend, J. K. Kirkland, and K. D. Vogiatzis, in Math. Phys. Theor.

Chem. (Elsevier, 2018) pp. 63–117.
[19] W. Thiel, Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 145 (2014).
[20] A. Jain, Y. Shin, and K. A. Persson, Nat. Rev. Mater. 1, 1 (2016).
[21] A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Challenges for density

functional theory,” (2012).
[22] K. Burke, J. Chem. Phys. 136, 150901 (2012), arXiv:1201.3679 .
[23] J. P. Perdew, W. Yang, K. Burke, Z. Yang, E. K. Gross, M. Scheffler,

G. E. Scuseria, T. M. Henderson, I. Y. Zhang, A. Ruzsinszky, H. Peng,

59



J. Sun, E. Trushin, and A. Görling, Proc. Natl. Acad. Sci. U. S. A. 114,
2801 (2017).

[24] G. Pacchioni, J. Chem. Phys. 128, 182505 (2008).
[25] M. Elstner, D. Porezag, G. Jungnickel, J. Elsner, M. Haugk, and

T. Frauenheim, Phys. Rev. B - Condens. Matter Mater. Phys. 58, 7260
(1998).

[26] T. Frauenheim, G. Seifert, M. Elstner, Z. Hajnal, G. Jungnickel,
D. Porezag, S. Suhai, and R. Scholz, Phys. Status Solidi Basic Res. 217,
41 (2000).

[27] M. Elstner, Theor. Chem. Acc. 116, 316 (2006).
[28] J. Kullgren, M. J. Wolf, K. Hermansson, C. Köhler, B. Aradi,

T. Frauenheim, and P. Broqvist, J. Phys. Chem. C 121, 4593 (2017).
[29] E. Erdogan, I. H. Popov, A. N. Enyashin, and G. Seifert, Eur. Phys. J.

B 85, 33 (2012).
[30] R. G. Parr, in Horizons Quantum Chem. (Springer Netherlands, 1980)

pp. 5–15.
[31] W. Koch and M. C. Holthausen, A Chem. Guid. to Density Funct.

Theory (Wiley, 2001).
[32] J. P. Perdew and K. Schmidt, AIP Conf. Proc. 577, 1 (2001).
[33] G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).
[34] G. Kresse and J. Hafner, Phys. Rev. B 49, 14251 (1994).
[35] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).
[36] G. Kresse and J. Furthmüller, Phys. Rev. B - Condens. Matter Mater.

Phys. 54, 11169 (1996).
[37] P. Koskinen and V. Mäkinen, Comput. Mater. Sci. 47, 237 (2009),

arXiv:arXiv:0910.5861v1 .
[38] B. Aradi, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111,

5678 (2007).
[39] B. Hourahine, B. Aradi, V. Blum, F. Bonafé, A. Buccheri, C. Camacho,

C. Cevallos, M. Y. Deshaye, T. Dumitric, A. Dominguez, S. Ehlert,
M. Elstner, T. Van Der Heide, J. Hermann, S. Irle, J. J. Kranz,
C. Köhler, T. Kowalczyk, T. Kubař, I. S. Lee, V. Lutsker, R. J. Maurer,
S. K. Min, I. Mitchell, C. Negre, T. A. Niehaus, A. M. Niklasson, A. J.
Page, A. Pecchia, G. Penazzi, M. P. Persson, J. Å&tild;ezáč, C. G.
Sánchez, M. Sternberg, M. Stöhr, F. Stuckenberg, A. Tkatchenko, V. W.
Yu, and T. Frauenheim, J. Chem. Phys. 152, 124101 (2020).

[40] M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).
[41] J. Tersoff, Phys. Rev. B 37, 6991 (1988).
[42] J. Behler, J. Chem. Phys. 145, 170901 (2016).
[43] T. Mueller, A. Hernandez, and C. Wang, “Machine learning for

interatomic potential models,” (2020).
[44] S. Vavasis (1998).
[45] S. Diamond and S. Boyd, J. Mach. Learn. Res. 17, 1 (2016),

arXiv:1603.00943 .
[46] M. Gaus, C. P. Chou, H. Witek, and M. Elstner, J. Phys. Chem. A 113,

11866 (2009).

60



[47] A. Mondal, J. M. Young, T. A. Barckholtz, G. Kiss, L. Koziol, and A. Z.
Panagiotopoulos, J. Chem. Theory Comput. 16, 5736 (2020).

[48] G. L. Rech, A. L. Martinotto, N. M. Balzaretti, and C. A. Perottoni,
Comput. Mater. Sci. 187, 109929 (2021).

[49] M. Matsui and M. Akaogi, Mol. Simul. 6, 239 (1991).
[50] B. Luan, T. Huynh, and R. Zhou, J. Chem. Phys. 142, 234102 (2015).
[51] S. Wang, Z. Fan, R. S. Koster, C. Fang, M. A. Van Huis, A. O. Yalcin,

F. D. Tichelaar, H. W. Zandbergen, and T. J. H. Vlugt, (2014),
10.1021/jp411308z.

[52] J. D. Gale, Philos. Mag. B Phys. Condens. Matter; Stat. Mech. Electron.
Opt. Magn. Prop. 73, 3 (1996).

[53] C. R. Catlow, C. M. Freeman, M. S. Islam, R. A. Jackson, M. Leslie,
and S. M. Tomlinson, Philos. Mag. A Phys. Condens. Matter, Struct.
Defects Mech. Prop. 58, 123 (1988).

[54] R. S. Mulliken, J. Chem. Phys. 23, 1833 (1955).
[55] P. O. Löwdin, J. Chem. Phys. 18, 365 (1950).
[56] F. L. Hirshfeld, Theor. Chim. Acta 44, 129 (1977).
[57] F. A. Momany, J. Phys. Chem. 82, 592 (1978).
[58] S. R. Cox and D. E. Williams, J. Comput. Chem. 2, 304 (1981).
[59] T. A. Manz and D. S. Sholl, J. Chem. Theory Comput. 6, 2455 (2010).
[60] P. P. Ewald, Ann. Phys. 369, 253 (1921).
[61] A. Migani, K. M. Neyman, and S. T. Bromley, Chem. Commun. 48,

4199 (2012).
[62] J. M. Knaup, B. Hourahine, and T. Frauenheim, J. Phys. Chem. A 111,

5637 (2007).
[63] Z. Bodrog, B. Aradi, and T. Frauenheim, J. Chem. Theory Comput. 7,

2654 (2011).
[64] M. Doemer, E. Liberatore, J. M. Knaup, I. Tavernelli, and

U. Rothlisberger, Mol. Phys. 111, 3595 (2013).
[65] M. Hellström, K. Jorner, M. Bryngelsson, S. E. Huber, J. Kullgren,

T. Frauenheim, and P. Broqvist, J. Phys. Chem. C 117, 17004 (2013).
[66] N. Goldman, L. E. Fried, and L. Koziol, J. Chem. Theory Comput. 11,

4530 (2015).
[67] C. Panosetti, A. Engelmann, L. Nemec, K. Reuter, and J. T. Margraf, J.

Chem. Theory Comput. 16, 2181 (2020).
[68] M. Stöhr, L. Medrano Sandonas, A. Tkatchenko, L. M. Sandonas,

A. Tkatchenko, L. Medrano Sandonas, and A. Tkatchenko, J. Phys.
Chem. Lett. 11, 6835 (2020), arXiv:2006.10429 .

[69] S. Markov, G. Penazzi, Y. Kwok, A. Pecchia, B. Aradi, T. Frauenheim,
and G. Chen, IEEE Electron Device Lett. 36, 1076 (2015).

[70] S. Markov, B. Aradi, C. Y. Yam, H. Xie, T. Frauenheim, and G. Chen,
IEEE Trans. Electron Devices 62, 696 (2015).

[71] C. P. Chou, Y. Nishimura, C. C. Fan, G. Mazur, S. Irle, and H. A.
Witek, J. Chem. Theory Comput. 12, 53 (2016).

[72] J. Behler and M. Parrinello, Phys. Rev. Lett. 98, 146401 (2007).
[73] V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B 44, 943

(1991).

61



[74] B. Hourahine, S. Sanna, B. Aradi, C. Köhler, T. Niehaus, and
T. Frauenheim, in J. Phys. Chem. A, Vol. 111 (2007) pp. 5671–5677.

[75] M. Nolan, S. Grigoleit, D. C. Sayle, S. C. Parker, and G. W. Watson,
Surf. Sci. 576, 217 (2005).

[76] M. Nolan, J. E. Fearon, and G. W. Watson, Solid State Ionics 177, 3069
(2006).

[77] M. V. Ganduglia-Pirovano, J. L. Da Silva, and J. Sauer, Phys. Rev.
Lett. 102, 026101 (2009).

[78] D. Du, M. J. Wolf, K. Hermansson, and P. Broqvist, Phys. Rev. B 97,
235203 (2018).

[79] J. Paier, C. Penschke, and J. Sauer, Chemical reviews 113, 3949 (2013).
[80] E. V. Podryabinkin and A. V. Shapeev, Comput. Mater. Sci. 140, 171

(2017), arXiv:1611.09346 .

62





Acta Universitatis Upsaliensis
Digital Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology 2017

Editor: The Dean of the Faculty of Science and Technology

A doctoral dissertation from the Faculty of Science and
Technology, Uppsala University, is usually a summary of a
number of papers. A few copies of the complete dissertation
are kept at major Swedish research libraries, while the
summary alone is distributed internationally through
the series Digital Comprehensive Summaries of Uppsala
Dissertations from the Faculty of Science and Technology.
(Prior to January, 2005, the series was published under the
title “Comprehensive Summaries of Uppsala Dissertations
from the Faculty of Science and Technology”.)

Distribution: publications.uu.se
urn:nbn:se:uu:diva-434283

ACTA
UNIVERSITATIS

UPSALIENSIS
UPPSALA

2021


	Abstract
	List of papers
	Author Contribution
	Contents
	1. Introduction
	1.1 Materials chemistry
	1.2 Modelling in materials chemistry
	1.3 Scope of the thesis

	2. Theory and methods
	2.1 The multiscale modelling approach
	2.2 Coupling and linking: electrons-to-atoms
	2.3 Mathematical methods

	3. Paper I: Development of the CCS method
	3.1 Motivation
	3.2 CCS in a nutshell
	3.3 Validation on neon ab initio data

	4. Paper II: CCS+Q method for ionic materials
	4.1 Why extend the CCS method?
	4.2 How to optimise the charges?
	4.3 Multicomponent fitting using CCS+Q

	5. Paper III: CCS as repulsive potential in the SCC-DFTB method
	5.1 Motivation
	5.2 A repulsive fitting for Si using CCS
	5.3 Exploring the limits of two-body potentials
	5.4 Many-body effects in repulsive potentials for SCC-DFTB

	6. Paper IV:Electronic properties of correlated electronic states in reduced ceria from SCC-DFTB+U calculations
	6.1 Motivation
	6.2 The " f in-core" approach in a nutshell
	6.3 Can the SK tables be used interchangeably?
	6.4 Transferability

	7. Future outlook
	8. Concluding remarks
	9. Acknowledgement
	10. Swedish summary
	References



