
DevOps for IoT Applications using Cellular
Networks and Cloud

Athanasios Karapantelakis∗†, Hongxin Liang∗, Keven Wang∗, Konstantinos Vandikas∗,
Rafia Inam∗, Elena Fersman∗, Ignacio Mulas-Viela∗, Nicolas Seyvet∗, Vasileios Giannokostas†

∗Ericsson Research, Stockholm, Sweden
{firstname.lastname}@ericsson.com

†Royal Institute of Technology (KTH), Stockholm, Sweden
{athkar, vasgia}@kth.se

Abstract—The Internet of Things (IoT) is a vision of a
future society where an ever-increasing number of heterogeneous
physical devices (“things”) obtain Internet connectivity, thus
enabling a large number of applications for a broad range
of industries and society at large. Mobile network operators,
expected to provide the network infrastructure for many of
these applications, face an unprecedented level of complexity.
This complexity not only relates to the number of applications
that share the network infrastructure, but also to the different
network Quality of Service (QoS) requirements these applications
have. To achieve economies of scale, automation in management
of those applications throughout their lifecycle is essential. In
this paper, we propose an architecture that automates allocation,
monitoring and deallocation of both cloud and cellular network
resources to ensure QoS for applications that involve connected
devices communicating with cloud-hosted software. We describe
an implementation of this architecture using a combination of
open source, commercial, and custom components and evaluate
it through a series of measurements. Results show that our
implementation can simultaneously support mobile broadband
and low latency, high availability mission-critical applications.

Index Terms—5G, Cloud, Internet of Things, Network Slicing,
DevOps, Resource Orchestration, Automation.

I. INTRODUCTION

Internet of Things (IoT), envisions billions of Internet-
addressable, heterogeneous devices which will enable de-
velopment of a new generation of applications for a wide
range of industries including transportation, healthcare but also
residential and workspace environments [1]. The upcoming,
fifth generation of mobile networks (5G) is set to play
an important role for supporting these applications. While
mobile-broadband applications continue to drive demand for
higher data traffic capacity and higher end-user data rates, a
new generation of “mission critical” applications that require
reliable connectivity and high availability emerges [2].

As “applications” in the context of this paper, we consider
the subgroup of all IoT applications that require cellular
network connectivity, and consist of software (hosted in a
cloud), communicating with devices through a mobile net-
work1. Examples of mission-critical applications are those

1Note that for some IoT applications, cellular connectivity may not be
applicable or needed, e.g. for those deployed in remote locations and covering
small geographical areas with low-power, short-range networks [3].

that require remote operation of equipment such as vehicles,
surgical equipment, cranes etc. and applications monitoring the
surrounding environment for unexpected events (e.g. monitor-
ing for forest fires, road accidents, etc.).

In previous work, we have identified Quality of Ser-
vice (QoS) differentiation, and complexity in management
of heterogeneous applications that share the same network
infrastructure, as key challenges that 5G operators will face
in the IoT market [4]. We have proposed a high-level, logical
architecture of a system for automated application lifecycle
management. This architecture is based on automated allo-
cation and deallocation of network resources to and from
applications. These network resources include both cloud
and mobile network (consisting of Core Network and Radio
Access Network, or simply “Core and RAN”). We consider
the aggregate of network resources allocated to support an
application as a “network slice” and formally define the
term as a logical network serving a defined business purpose
or customer, consisting of all required network resources
configured together [4].

In this paper, the authors present a realisation of the system
envisioned in previous work. The contributions are as follows:

• An evolution of the previous logical architecture into a
more detailed functional architecture. The architecture
supports current technologies, but can also be used with
5G technologies as they become available.

• Implementation of a system for automated lifecycle
management of applications, designed to support De-
velopment and Operations (DevOps) environments. The
system automatically creates, monitors and eventually
decomissions network slices for applications.

• Evaluation of the implemented system. Results show
that the system can concurrently manage best-effort and
mission-critical, QoS-demanding applications throughout
their lifetime and without human supervision.

Paper Outline: Section II presents related work. Section III
describes the architecture of the system and our implemen-
tation. Evaluation results of the implemented system are
presented in Section IV, and finally, Section V concludes the
paper with an overview of the key points presented and a



description of future work.

II. RELATED WORK

A. DevOps Introduction and Relevance to IoT

DevOps promotes an agile relationship between software
developers and mobile network operators [5]. In contra-
diction to traditional software development, where software
is developed in isolation from its operational environment,
DevOps includes operational requirements in the development
process. DevOps in context of IoT application development is
challenging, due to the complex operational requirements that
include interoperability between cloud infrastructure, mobile
network and devices. To achieve effective DevOps in IoT,
a platform that can flexibly allocate, deallocate network
resources for repeated, automated application redeployment is
essential. Central to DevOps concept is application lifecycle
management. As DevOps is an iterative process, it is likely
that applications will be redeployed repeatedly both externally
for use and feedback from users but also internally for testing
by the development team. To achieve low lead times, shorten
internal and external feedback loops and ensure quality testing
and user feedback, automation and QoS in application lifecycle
management are essential [6].

B. DevOps and Resource Allocation

Systems supporting DevOps software development have
been well-explored, particularly through use of cloud com-
puting and “as-a-service” models [7]. However, work on use
of cloud computing for Core and RAN resource allocation
has only recently started. In Core network, Network Functions
Virtualisation (NFV), which virtualises core network functions
so they can run on top of third-party infrastructure, has
been defined by the European Standards Telecommunication
Institute (ETSI) [8], and prototypes are currently being devel-
oped [9]. In RAN, approaches such as Cloud-RAN (C-RAN)
[10] and RAN as a Service (RANaaS) [11], are based on
virtualising part of, or complete baseband signal processing
now locally done at base stations with dedicated hardware. In
both cases, high data transfer rates from the antenna to the
cluster where the processing takes place are required.

While our architecture as presented in section III does not
exclude the use of any of the aforementioned technologies
for Core and RAN resource allocation, our suggested imple-
mentation currently focuses on end-to-end QoS. As such the
novelty lies in orchestrating cloud resources (in the form of
Virtual Machines), as well as RAN and Core resources (in
the form of policy functions to guarantee QoS). We expect to
integrate Core and RAN virtualisation in subsequent years,
as technologies become available. The rest of this section
presents related work in QoS for Core and RAN, that forms
the foundation of our work.

C. Quality of Service for Mobile Networks

5G standardisation work in third generation partnership
project started in early 2016, and first results are expected to
be part of “Release 14”, with 5G standards not expected before

the end of this release, currently tentatively set to June 2017
[12]. However, even if 5G standards are not yet available, QoS
specifications already exist as part of current, fourth generation
mobile networks (4G)2 standards.

4G is designed as as an All-IP Network (AIPN) in order to
provide mobile subscribers with a range of IP-based services,
many of which have QoS requirements [13]. Bearers are
logical transmission paths on top of physical network, which
channel data traffic through the Core and RAN and are used
for QoS control[14]. In this study we focus on the Evolved
Packet System (EPS) bearer, which tunnels traffic from the
mobile device (also known as “User Equipment”, or “UE” in
LTE terminology), through the RAN to the core network’s
Packed Data Network (PDN) Gateway (PGW). Bearers are
parametrised by Quality of Service Class Identifiers (QCIs),
which contain a set of QoS characteristics [15]. Table I shows
the 3 QCI classes we have used in our paper3.

TABLE I
QCIS USED IN THIS PAPER

QCI Resource
Type

Priority
Level

Packet Delay
Budget

Packet Error
Loss Rate

4 GBR 5 300 ms 10−6

5 Non-GBR 1 100 ms 10−2

9 Non-GBR 9 300 ms 10−6

According to the specification, applications using a QCI
class with Guaranteed Bit Rate (GBR) can assume that
congestion-related packet drops will not occur as long as the
data transmission rate is smaller or equal to the GBR [15].
Priority indicates the sequence in which the Core and RAN
data traffic schedulers will meet the Packed Delay Budget
(PDB) of an application. Highest priority is inversely related to
the number assigned, therefore QCI 9 has the lowest priority
of all classes and is the one used by bearers of “best effort”
applications.

III. SYSTEM OVERVIEW

A. Introduction: Core Concepts and Terminology

We have implemented a prototype system for automated
lifecycle management of applications. This process of lifecycle
management includes allocation and deallocation of network
resources based on an application description document.
An “application description document” contains a machine-
readable description of the QoS requirements of the appli-
cation as well as the software to be deployed on the cloud
infrastructure and the mobile devices (also known as User
Equipment or UE). The concept of “network resources” en-
capsulates network infrastructure resources, including cloud,
core and RAN and transport resources, as a cellular radio

2Note that “4G” includes the “Long Term Evolution” (LTE) and LTE-
Advanced (LTE-A) technologies.

3Note that as of Release 13, there exist 13 QCI classes in total (see
table 6.1.7 of [15]). Even though for our experiments we chose 3 QCIs to
highlight the difference between applications requiring QoS and those that
use best-effort traffic, supporting more QCI classes in our implementation is
straightforward.



network would be required for communication between UEs
and the part of the application instance running in the cloud
and vice versa (see also application description in section I).

“Applications” in the context of this paper, include both
software deployed in the cloud infrastructure, but also software
deployed locally in mobile devices. We therefore view mobile
devices as part of the application. This concept bodes well
with IoT, where many applications are expected to use both
centrally-deployed cloud software, but also have software on
the devices (i.e. on the edge). An example of this class of
application can be found in Intelligent Transport Systems
(ITS), where applications include vehicles making autonomous
operational decisions and centralised software making strategic
decisions and sending this information to vehicles through
cellular network infrastructure (e.g. fleet management). We
also consider “application instances” as applications that are
deployed in the network infrastructure, following allocation
of network resources, according to the requirements set by
application description documents.

Fig. 1. This figure shows the concept of the application lifecycle management
function, which creates new network slice instances using transport, radio
access and cloud network resources. The flexibility of this function to manage
application lifecycle, makes it ideal for use in DevOps environments, where
short feedback loops between development and operation of applications is a
requirement. This example shows two deployed applications, a mission-critical
“Machine Type Communication” (MTC) application instance and a best-effort
mobile broadband application instance. Data traffic between the software part
of the mission-critical application instance which is hosted in the cloud (e.g.
as a topology of Virtual Machines or containers) and UE1, UE2 is prioritized
over data traffic between UE3, UE4 and the cloud-hosted software of the
best-effort “Mobile Broadband” (MBB) application. More applications can
be deployed, application instances can be monitored accessed and eventually
terminated by using APIs offered by the system.

Figure 1 illustrates the aforementioned concept in greater
detail. We introduce an “Application Lifecycle Management
System”, which deploys, monitors, provides access to and
decommissions application instances. The “southbound” in-
terface towards the network infrastructure, orchestrates cloud
resources and includes a policy control function in the Core
and RAN to trigger creation of EPS bearers between the UEs
and the Core network endpoint. The “northbound” interface
exposes a set of Application Program Interfaces (APIs) to De-
vOps actors for application lifecycle management operations.
Different APIs are accessed by different actors. For example,
developers may use the application design API to create a new
application description document, whereas Quality Assurance
(QA) “acceptance” testers and IT operators may use APIs

for deploying applications and monitoring their performance.
Finally customers can use access APIs to use and/or evaluate
an application instance.

B. Architecture

Fig. 2. Functional architecture of the proposed system, see section III-B for
a detailed description.

Figure 2 illustrates the block components of the system
architecture. Based on authors’ previous work, the components
are logically separated in five layers [4].

The “User Interface Layer” contains a set of APIs that
are used by external actors and expose functionality for
application management (deployment of applications and mon-
itoring, decommissioning and access of application instances),
application design and monitoring of system operation. They
can interface with actors directly, or through external systems
such as Graphical User Interfaces (GUIs).

We define three actors for our system. The Developers
role refers to application developers. Note that the system
does not offer integrated development environments (IDEs)
for the developers to write their applications on, but instead,
developers are required to provide an “application description
document”, which contains information about how to build
an application4, as well as this application’s QoS require-
ments from the network infrastructure (see section III-A).

4Note that the building process of an application during its deployment
may reuse software components already present in the system, for example
databases or application servers. A reusable repository of software, or “tools”
in the context of this paper, can save considerable amounts of time during
deployment, as tools that are part of the application are retrieved from
local repositories, instead of developers having to provide this software from
external sources.



The “Application Description, Creation, Update and Remove”
component offers CRUD (Create, Read, Update and Delete)
functionality to developers to create their own application
descriptions.

The User role uses the “Application Instance Access, De-
ployment and Teardown” API to CRUD application instances.
The API also offers access functionality to running application
instances. Finally, the Operator role monitors the operation of
each application instance in real time, and issues alerts when
a violation of the QoS requirements of an application service
is detected5.

Note that the distinction between actor roles is logical, and
multiple roles may be assumed by the same physical entity.
For example DevOps teams have both developer and operator
roles. A customer may have the user role, and can create
application instances of the latest build developers release
through the developer role.

The “Lifecycle Management” layer consists of the “Tools
Repository” component, which stores reusable software com-
ponents. These components provide generic functionality such
as storage (e.g. relational, document, graph databases), net-
working (e.g. virtual routers, firewalls, traffic shapers), billing,
etc. and are referenced from application description documents
(see section III-A) stored in the “Application Repository”. The
role of the “Application Manager” component is threefold.

• Application instance access: Provides secure access to
running application instances.

• Storage of applications and tools: Provides a secure
interface for Developers to register new application de-
scription documents or update/remove existing ones. In
addition, developers can add new reusable tools that
can be referenced from other application description
documents.

• Application instance lifecycle management: Given an
application description document, a user action (create,
update, delete) and user action parameters, it creates a
resource allocation plan and distributes it to the orches-
trator components in the network resource orchestration
layer below.

The “Resource Orchestration and Control Layer” contains a
number of network resource orchestrators. Network resources
include cloud, Core and RAN as well as UE. Each orches-
trator can allocate, provide access to and deallocate network
resources. The nature of resource allocation/deallocation is
different depending on the type of network resource6. The
“Network Resource Layer” contains the physical network
resources.

Finally, the “Authorisation and Authentication” (A/A) layer
provides cross-layer security for all 4 aforementioned layers.

5Depending on the type of the error, recovery may be automated, e.g. by
use of “Application Update API” to allocate more resources to the application
instance, or it may require manual intervention.

6As an example, as discussed in section II, in our implementation al-
location/deallocation of resources in the cloud means creation/deletion of
virtual machines or containers to host application software. On the contrary,
allocation/deallocation of resources in core and access network currently
translates to establishment/teardown of EPS bearers with different priority.

This layer interfaces with a user directory provides for user
role management, user authentication, as well as user and
software component action authentication. Note that the user
directory may be internal to the component, or it can also be
external (for example company-wide corporate directories are
commonplace and already present in large organizations).

C. Implementation

Fig. 3. Implementation of the proposed system. Note the the dashed interfaces
(lines) and software components with dashed border illustrate third-party
network resources that were not implemented by the authors, but were setup
for testing the system. Bracketed text in component description shows the
software used as basis for implementing the component.

Figure 3 shows the implemented system, deployed in Kista
suburb of Stockholm, Sweden. The system, based on the
architecture presented in section III-B, is a combination of
open-source and commercial components. The rest of this
section describes the implemented components from bottom
to top layer.

The Core network is based on LTE standard and contains
a set of nodes known as Evolved Packet Core (EPC)7. In
addition to standard EPC nodes, the “Service-Aware Policy
Controller” (SAPC) node is used for policy control of EPS
bearers. The SAPC is Ericsson’s implementation of the “Policy

7EPC has four basic nodes. The Home Subscriber Server (HSS), a database
containing subscriber information, the Serving Gateway (S-GW), which
transports data traffic between UEs and external networks, the Packed Data
Network Gateway (PDN-GW), which connects the Core network to external
networks and the Mobility Management Entity (MME), which deals with
control-plane signalling (note that in figure 3 PDN-GW and S-GW are
aggregated together as a S&P GW component). In the best interest of space,
this paper will not describe functionality of these nodes in detail, but will
instead refer interested readers to the corresponding 3GPP webpage [16].



and Charging Rules Function” (PCRF), which enforces QoS
policies in LTE Core and RAN [17]. RAN is currently single-
cell, operating in LTE Frequency Band 40 (2.3 - 2.4 GHz).

The cloud infrastructure, managed by Openstack version
“IceHouse” [18], consists of 32 servers (348 cores and
3072GB of RAM in total), over a 10 GBps network infras-
tructure. This network connects the cloud infrastructure to the
PDN-GW of the LTE core network. UEs are Raspberry PI
computers with USB modems operating in LTE Frequency
Band 40 [19]. In the current implementation, USB modems
are pre-provisioned with SIM cards and can attach to the
LTE network directly, however we have plans for remote
provisioning of devices in the future (see section V).

Cloudify is used as the resource orchestrator for the
Openstack-managed cloud infrastructure [20]. Cloudify inter-
faces with Openstack to deploy or decommission “topologies”,
i.e. formal descriptions specifying software nodes and their
interconnections. Cloud topology descriptions, widely known
as “blueprints” are expressed in TOSCA language[21]. For
Core and RAN resource orchestration, we use a software
component developed in-house, called Rx Application Func-
tion (RxAF). This component exposes a REST API to the
application manager for triggering creation of EPS bearers, and
uses the Rx interface of the SAPC node of the Core network
for policy control of EPS bearers [17]. Finally, UEController
uploads any software required from the application description
document to the UEs. Similar to RxAF, UEController also
exposes a REST API to the application manager.

The “Application Manager” is implemented in Java and
is used to coordinate deployment of application instances,
based on application description documents, which are also
described in TOSCA [21]. Upon a request from a user
to create an application instance with a given application
description document, the “Application Manager” deconstructs
this document into a set of EPS bearer creation requests
towards the RxAF, a set of software upload requests towards
the UEController, as well as a single request to deploy
a blueprint describing the cloud software topology of the
application, to the Cloudify orchestrator. Actions other than
create (e.g. update or remove) also contain similar requests
sent to the affected orchestrators. The application manager
also accepts requests from developers for registering new
application description documents, relaying those requests
together with the descriptions to the “Application Repository”,
which is implemented using OrientDB graph database [22].

Information are collected by probes installed in the network
infrastructure: Upon deployment of a new application instance,
probes measuring performance of the cloud infrastructure as
well as associated UEs are installed by their respective orches-
trator. The probes consist of collectd [23] and logstash [24]
daemons that measure the network, memory and CPU status
and send these measurements for storage and visulization by
the ELK stack [25].

Finally, the identity module is implemented in Java and
uses Lightweight Directory Access Protocol (LDAP) [26] over
Secure Sockets Layer (SSL)/Transport Layer Security(TLS)

[27] to securely connect to an external Active Directory (AD),
which is a directory service that contains user information
such as username, password, user role and contact details.
Based on the information contained in the AD, the identity
module can authenticate users logging in from one of the user
interfaces but also authorise application manager actions (see
section III-B).

IV. EVALUATION

A. Introduction

This section describes an evaluation of the implemented
architecture, as described in section III. The goals of this
section are twofold:

• To measure the impact of background load in the network
infrastructure during deployment of a new application,
identify potential bottlenecks in the deployment process,
and suggest improvements. Additionally, to identify the
time needed for a typical application to be deployed and
decommissioned.

• To identify whether network QoS guarantees can be main-
tained for mission-critical application instances sharing
network resources with mobile broadband application
instances.

In the context of this study, we consider a typical application
to consist of a number of connected devices, sending data to
software deployed in the cloud. This software consists of a
data aggregation entity, which collects data from all devices
and stores them to a database. Concurrently, data from these
devices are used to make a decision which is sent back to the
device.

Based on the above description and as part of the evaluation
process, we have implemented an “automotive application” for
remote vehicle fleet management. This application involves
vehicles with LTE connectivity sending status data to software
in the cloud over the LTE RAN and EPC core network
(see section III-C). This software aggregates received data,
stores and uses this data in order to make decisions affecting
the vehicles. These decisions are subsequently sent back to
affected vehicles. A typical scenario for this application would
be remote fleet management for a goods transport company.
Vehicle status data such as location, speed, direction of travel
and current vehicle capacity can be used in conjunction with
data from goods available for pickup from various locations,
to task vehicles to pickup goods from locations that are close
to the direction of travel. The decision to pickup goods from a
location could be done by cloud-hosted software, thus negating
the need for manual vehicle dispatch from a human operator.

The application description document consists of two parts.
The first part is a “blueprint”, i.e. topology of software nodes
and their interconnections, which is deployed in the cloud
infrastructure. This topology consists of software components
as well as a description of interfaces between these software
components, and is described in OASIS TOSCA [21]. The
second part of the document contains a description of the QoS
required from this application, which in technical terms, is a



description of type of EPS bearers to be created in the core
and access network (see section II-C). We have developed two
different configurations of the application topology. The first
configuration is “single-node”, with cloud-hosted software that
is deployed in one virtual machine (VM), and the second is
“multi-node”, consisting of four VMs (see figures 4 and 5).

Fig. 4. Deployed automotive application instance, single-node configuration.

Fig. 5. Deployed automotive application instance, multi-node configurationra-
tion.

The advantage of the multi-node deployment is its scal-
ability, as data aggregation, storage and decision functions
can be isolated in dedicated VMs and even distributed across
multiple VMs using load balancers. The disadvantage of such
a deployment is the consumption of more cloud resources.
The rest of this section presents the aforementioned two sets of
measurements for both multi-node and single-node application
configurations in greater detail.

In our experiments, we used two sets of data streams
originating from a UE, one transmitting mission-critical TCP
traffic, and one transmitting background UDP traffic. Both

data streams were transmitted through the Core and RAN
to the data aggregation component of the cloud service and
subsequently stored in a database. A gateway forwarding data
received from and sent to the UEs towards and from the cloud-
hosted part of the application instance, was setup at the edge
of the cloud.

Data from the TCP stream was used by a decision module
to make a decision and send this decision back to the UE
originating the TCP stream. Data traffic from the UEs, through
the RAN and Core to the cloud used different bearers,
depending whether the traffic was mission critical or not.
For mission-critical data traffic we chose QCI 4, whereas for
background traffic QCI 9. For sending decisions back to the
UE originating mission-critical traffic we chose QCI 5. In this
way, we prioritised mission-critical uplink and downlink traffic
over background traffic (see also section II-C).

B. Application instance deployment and teardown measure-
ments

In this section, we present measurements on application
deployment and teardown time. In “continuous delivery”
environments such as DevOps, automation and short lead-
time between application deployment, use, teardown are of
significant importance. As part of the goal for doing the
measurements was to investigate application deployment and
teardown times for different background load, we used “stress-
ng” tool [28] to enforce artificial CPU use. We perform two
sets of measurements using the single-node and multi-node
application configuration, under different levels of CPU load.

The deployment of an application, includes deployment of
software in the cloud, communication with SAPC and setup
of EPS bearers in the Core and RAN, as well as deployment
of software in the devices. In the case of our application as
presented in section IV-A there was no software deployed
on the device other than the traffic generators used for QoS
measurements (see IV-C). Teardown of an application includes
deletion of the virtual machines in the cloud, reset of all
bearers to default (QCI 9) for all UEs, as well as removal
of any software in UEs themselves. Table II shows applica-
tion deployment and teardown measurements under different
CPU load, for single-node and multi-node configurations. For
every application deployment or teardown case, we did 5
experiments and computed the average. Standard deviation (σ)
indicates small variations of time for all experiments.

In general, we have observed small fluctuations in both
deployment and teardown times when comparing between
cases of different background CPU load for both single-host
and multi-host configurations. We traced the cause for these
fluctuations to various external software package dependencies
required during cloud software deployment. Those packages
are downloaded from repositories hosted on the Internet, where
there can be no network delay guarantees. Local software
repositories contained within the cloud should reduce the
observed time deltas, and we plan to investigate this in the
future.



TABLE II
APPLICATION INSTANCE DEPLOYMENT AND TEARDOWN TIME

Scenario 1: Application Instance Deployment Measurements
CPU Load Single-node Scenario Multi-node Scenario

Time (mm:ss) σ (sec) Time (mm:ss) σ (sec)
No CPU Load 06:40 7.778 09:53 11.213
25% CPU Load 06:41 6.753 09:46 10.043
50% CPU Load 06:44 5.543 10:55 11.443
75% CPU Load 07:22 7.321 11:13 12.419
Scenario 2: Application Instance Teardown Measurements
CPU Load Single-node Scenario Multi-node Scenario

Time (mm:ss) σ (sec) Time (mm:ss) σ (sec)
No CPU Load 00:44 0.707 01:09 2.828
25% CPU Load 00:44 0.711 01:05 1,41
50% CPU Load 00:43 1.081 01:07 2.206
75% CPU Load 00:45 2.121 01:14 0.707

When comparing single-host and multi-host application
configurations, we observe an increase in the amount of time
both for application deployment and teardown. This is gen-
erally attributed to the additional time required by Openstack
cloud resource management to reserve and release additional
cloud resources in the case of multi-host configuration. On the
other hand, the time for EPS bearer creation remains relatively
same across all experiments, with small impact on the total
deployment or teardown time (around 2 seconds).

C. QoS Measurements During Runtime

In this scenario we measure two basic network QoS pa-
rameters. The first, “end-to-end latency”, measures latency
from the moment a mission-critical request is transmitted to
the cloud-hosted software, until the moment the UE receives
a response. When the request is received in the cloud, a
“decision” is made based on current and historical UEs status,
and this decision is sent back to the UE that generated the
request. The second measurement concerns throughput. Here,
we investigate whether the guaranteed throughput of mission-
critical traffic is unaffected from the background throughput
generated from the best effort datastream.

For the purposes of these measurements, we created a
series of scenarios where we increasingly loaded the “UE to
cloud” uplink interface with background traffic. Given that
we had limited number of UEs in our disposal, we limited
the bandwidth of the RAN to 5 MHz, which gave us a total
capacity of approximately 3.55 Mbps on the uplink interface.
Therefore, we could easily load the network to the full of its
capacity just by using one UE transmitting at 3.55 Mbps. For
both end-to-end latency and throughput scenarios we used the
single-node configuration of the application, as we focused
on investigating QoS of the network links and the intra-cloud
latency was less then 1ms for both configurations.

Figure 6 shows end-to-end latency measurements for dif-
ferent levels of background traffic. We observe that when
the network is not overloaded, both QCIs can give good
result; however when the network is overloaded (from 4
Mbps background data traffic), the data stream with best-effort
bearer (QCI 9) shows significant increase of end-to-end delay
while QCI 4 still gives good result. The reason is due to, as

previously described, guaranteed delay budget for QCI 4 (see
section II).

Fig. 6. End-to-end delay (latency) measurements.

Figure 7 shows throughput measurements conducted on the
uplink interface of the single-node configuration (see figure
4). In this scenario, we used traffic generators to generate
prioritised (QCI 4) and best-effort (QCI 9) traffic. In the “Data
Aggregator” module, we installed traffic sinks and observed
the data reception rate. We preset the transmission rate of
prioritised data traffic to 1 Mbps, and experimented with
different levels of background data traffic transmission rate
(from 0 to 4.5 Mbps).

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Bakcground Traffic (Mbps)

0

0,5

1

1.5

2

2.5

3

3.5

4

4.5

T
h

ro
u

g
h

p
u

t 
(M

b
p

s
)

Throughput for multi-bearer data streams between UE and Cloud

Observed Throughput on prioritized EPS bearer (QCI 4)

Generated Throughput on UE for best-effort EPS bearer (QCI 9)

Observed Throughput on best-effort EPS bearer (QCI 9)

Fig. 7. Throughput measurements for multiple bearers on the uplink interface
between UE and cloud gateway.

Given a network capacity of 3.55 Mbps, we observed that
when the aggregate of generated throughput for both types
of traffic exceeded this amount, Core and RAN would drop
packets from best-effort data traffic, in order to still guarantee
the 1Mbps of mission-critical traffic. This is evident in figure



7 from the point where background traffic is 2.5 Mbps or
greater, wherein we see a mismatch between the generated
background traffic at the source (UE) and the observable rate
at the sink (cloud VM). In conclusion, we observed that for
both cases of end-to-end latency and throughput, guarantees
of network QoS for mission-critical application instances are
kept, even to the expense of best-effort application instances.

V. CONCLUSIONS

In this paper, we have developed a system for supporting de-
velopment and operation of IoT applications requiring cellular
network access. The system automatically deploys, monitors
and decommissions applications that include cloud software
interacting with mobile devices over cellular network. We in-
tegrate a policy control mechanism on the RAN together with
cloud orchestration, in order to provide end-to-end network
QoS guarantees to mission-critical applications. In addition to
presenting a functional architecture, we implement a prototype
system and measure its performance.

We observed that the time for deployment and teardown
of applications remained stable irrespective of network load.
Additionally, during application operation, prioritised EPS
bearers were able to guarantee network QoS for mission-
critical applications. Finally, we identified dependencies of
cloud software on external repositories as one of the points
contributing the most to deployment time and is something
we plan to address in the next iteration of the system.

Future plans include implementation of transport resource
orchestration between the cloud and the core network, using
the 3GPP standard for internetworking between Core/RAN
and Fixed Broadband Access [29]. We also plan to measure
application scalability to thousands of UEs, as the current
set of measurements were conducted with the few UEs
we had at our disposal. Finally, we intend to deploy and
test more applications from automotive and other industry
domains, that may have more diverse network resource and
QoS requirements.

Moreover, it is interesting to challenge resource orchestra-
tion one step further from an edge computing perspective to
benefit from computational availability and data proximity as
previously studied in [30].

REFERENCES

[1] L. Atzori, A. Iera, and G. Morabito, “The Internet of Things: A Survey,”
Computer Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[2] E. Dahlman, G. Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selén,
and J. Sköld, “5G Wireless Access: Requirements and Realization,”
Communications Magazine, IEEE, vol. 52, no. 12, pp. 42–47, December
2014.

[3] P. Pereira, J. Eliasson, R. Kyusakov, J. Delsing, A. Raayatinezhad, and
M. Johansson, “Enabling Cloud Connectivity for Mobile Internet of
Things Applications,” in Service Oriented System Engineering (SOSE),
2013 IEEE 7th International Symposium on, March 2013, pp. 518–526.

[4] R. Inam, A. Karapantelakis, K. Vandikas, L. Mokrushin, A. Feljan,
and E. Fersman, “Towards automated service-oriented lifecycle manage-
ment for 5G networks,” in Emerging Technologies Factory Automation
(ETFA), 2015 IEEE 20th Conference on, Sept 2015, pp. 1–8.

[5] DevOps Definition. Ernest Mueller, James Wickett, Karthik
Gaekwad, and Peco Karayanev. [Online]. Available:
http://theagileadmin.com/what-is-devops/

[6] J. Humble and M. Molesky, “Why Enterprises Must Adopt Devops to
Enable Continuous Delivery,” Cutter IT Journal, vol. 24, no. 8, pp. 6–12,
August 2011.

[7] M. J. Kavis, Architecting the Cloud: Design Decisions for Cloud
Computing Service Models (SaaS, PaaS, and IaaS). Hoboken, New
Jersey: Wiley, 2014.

[8] ETSI. ETSI GS NFV 002 V1.2.1 (2014-12): Network Functions
Virtualisation (NFV);Architectural Framework. [Online]. Available:
http://www.etsi.org/deliver/etsi gs/NFV/001 099/002/01.02.01 60/
gs NFV002v010201p.pdf

[9] ——. ETSI NFV Proofs of Concept. [Online]. Available:
http://www.etsi.org/technologies-clusters/technologies/nfv/nfv-poc

[10] M. Hadzialic, B. Dosenovic, M. Dzaferagic, and J. Musovic, “Cloud-
RAN: Innovative radio access network architecture,” in ELMAR, 2013
55th International Symposium, Sept 2013, pp. 115–120.

[11] D. Sabella, P. Rost, Y. Sheng, E. Pateromichelakis, U. Salim, P. Guitton-
Ouhamou, M. Di Girolamo, and G. Giuliani, “Ran as a service:
Challenges of designing a flexible RAN architecture in a cloud-based
heterogeneous mobile network,” in Future Network and Mobile Summit
(FutureNetworkSummit), 2013, July 2013, pp. 1–8.

[12] 3GPP. Release Timeline. [Online]. Available:
http://www.3gpp.org/specifications/67-releases

[13] ——. Specification series 36: LTE (Evolved UTRA), LTE-
Advanced, LTE-Advanced Pro radio technology. [Online]. Available:
http://www.3gpp.org/DynaReport/36-series.htm

[14] ——. 3GPP TS 23.107 V13.0.0 (2015-12): 3rd Generation Partnership
Project; Technical Specification Group Services and System Aspects;
Quality of Service (QoS) concept and architecture (release 13).
[Online]. Available: http://www.3gpp.org/DynaReport/23107.htm

[15] ——. 3GPP TS 23.203 V13.6.0 (2015-12): Technical
specification group services and system aspects; policy and
charging control architecture (release 13). [Online]. Available:
http://www.3gpp.org/DynaReport/23203.htm

[16] F. Firmin. The Evolved Packet Core. [Online]. Avail-
able: http://www.3gpp.org/technologies/keywords-acronyms/100-the-
evolved-packet-core

[17] 3GPP. 3GPP TS 29.214 V13.4.0 (2015-12): Universal
Mobile Telecommunications System (UMTS); Policy and
charging control over Rx reference point. [Online]. Available:
http://www.3gpp.org/DynaReport/29214.htm

[18] Openstack. Openstack. [Online]. Available: https://www.openstack.org
[19] Raspberry Pi homepage. Raspberry Pi Foundation. [Online]. Available:

https://www.raspberrypi.org
[20] Cloudify. GigaSpaces Technologies. [Online]. Available:

http://getcloudify.org
[21] (2013, November) Topology and orchestration specification for cloud

applications version 1.0. OASIS. [Online]. Available: http://docs.oasis-
open.org/tosca/TOSCA/v1.0/os/TOSCA-v1.0-os.html

[22] OrientDB homepage. OrientDB. [Online]. Available:
http://orientdb.com/orientdb/

[23] Collectd - The system statistics collection daemon. Collectd. [Online].
Available: https://collectd.org

[24] Logstash homepage. Elastic. [Online]. Available:
https://www.elastic.co/products/logstash

[25] The elastic stack — make sense of your data. elastic.co. [Online].
Available: https://www.elastic.co/products

[26] J. Sermersheim, “Lightweight Directory Access Protocol (LDAP): The
Protocol,” RFC 4511 (Proposed Standard), Internet Engineering Task
Force, Jun. 2006. [Online]. Available: http://www.ietf.org/rfc/rfc4511.txt

[27] T. Dierks and E. Rescorla, “The Transport Layer Security (TLS)
Protocol Version 1.2,” RFC 5246 (Proposed Standard), Internet
Engineering Task Force, Aug. 2008, updated by RFCs 5746,
5878, 6176, 7465, 7507, 7568, 7627, 7685. [Online]. Available:
http://www.ietf.org/rfc/rfc5246.txt

[28] Stress-ng utility. [Online]. Available:
http://kernel.ubuntu.com/˜cking/stress-ng/

[29] 3GPP. 3GPP TS 29.139 V13.0.0 (2015-12): Universal Mobile
Telecommunications System (UMTS);LTE; 3GPP System - Fixed
Broadband Access Network Interworking; Home (e)Node B -
Security Gateway Interface (Release 13). [Online]. Available:
http://www.3gpp.org/DynaReport/29139.htm

[30] A. M. Haubenwaller and K. Vandikas, “Computations on the edge in
the internet of things,” Procedia Computer Science, vol. 52, pp. 29–34,
2015.


