
IN DEGREE PROJECT ELECTRICAL ENGINEERING,
SECOND CYCLE, 30 CREDITS

,  STOCKHOLM SWEDEN 2020

Error Injection Study for a 
SpaceFibre In-Orbit 
Demonstrator

CARLOS ABAD GARCÍA

KTH ROYAL INSTITUTE OF TECHNOLOGY
SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE



Error Injection Study for a
SpaceFibre In-Orbit Demonstrator

Master Thesis

Carlos Abad Garćıa
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Abstract

The space electronics sector is shifting towards the New-Space paradigm, in which tradi-
tional space-qualified and expensive components and payloads are replaced by commercial
off-the-shelf (COTS) alternatives. This change in mentality is accompanied by the de-
velopment of inexpensive cubesats, lowering the entry barrie in terms of cost, enabling
an increase in scientific research in space. However, also well-established and resourceful
spacecraft manufacturers are adopting this trend that allows them to become more com-
petitive in the market.

Following this trend, Thales Alenia Space is developing R&D activities using COTS com-
ponents. One example is the SpaceFibre In-Orbit Demonstrator, a digital board inte-
grated in a cubesat payload that aims to test two Intellectual Property blocks implement-
ing the new ECSS standard for high-speed onboard communication.

This thesis presents the necessary steps that were taken to integrate the firmware for the
demonstrator’s Field-Programmable Gate Array (FPGA) that constitutes the main pro-
cessing and control unit for the board. The activity is centered around the development
of a Leon3 System-on-Chip in VHDL used to manage the components in the board and
test the SpaceFibre technology.

Moreover, it also addresses the main problem of using COTS components in the space
environment: their sensitivity to radiation, that, for a FPGA results in Single-Event Up-
sets causing the implementation to malfunction, and a potential failure of the mission if
they are not addressed. To accomplish the task, a SEU-emulation methodology based in
partial reconfiguration and integrating the state of the art techniques is elaborated and
applied to test the reliability of the SpaceFibre technology.

Finally, results show that the mean time between failures of the SpaceFibre Intellectual
Property Block using a COTS FPGA is of 170 days for Low Earth Orbit (LEO) and
2278 days for Geostationary Orbit (GEO) if configuration memory scrubbing is included
in the design, enabling its usage in short LEO missions for data transmission. Moreover,
tailored mitigation techniques based on the information gathered from applying the pro-
posed methodology are presented to improve the figures.
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Sammanfattning

Rymdsektorn börjar luta mot “the New-Space paradigm”, i vilken traditionella och dyra
rymd-kvalificerade komponenter och laster börjar bytas ut kommerciella-fr̊an-hyllan (eng.
Commercial-off-the-Shelf - COTS) alternativ. Denna förändring i mentalitet ackompan-
jeras av utvecklingen av billiga CubeSats som sänker entré-kostnaden för vetenskaplig
forskning i rymden. Även väletablerade och resursstarka rymdfarkost-tillverkare har
anammat denna trend vilket l̊ater dem bli mer konkurrenskraftiga p̊a marknaden.

För att följa trenden s̊a utför Thales Alenia Space R&D utecklingsaktiviteter med COTS
komponenter. Ett exempel är SpaceFibre In-Orbit Demonstrator, a digitalt kort integr-
erat i en CubeSat payload som ämnar testa tv̊a s.k. Intellectual Property (IP) konstruk-
tioner som implementerar den nya ECSS standarde för hög-hastighets kommunikation
ombord.

Denna avhandling presenterar de nödvändiga stegen för att integrera firmware för demon-
stratorns programmerbara FPGA-krets (eng. Field-Programmable Gate Array - FPGA)
som fungerar som kortets huvudsakliga beräknings- och styrenheten. Aktiviteten är cen-
trerad kring utvecklingen av ett Leon3 System-on-Chip i VHDL för att hantera och man-
agera komponenterna p̊a kortet och testa SpaceFibre-teknologin.

Vidare adresserar den ocks̊a huvudproblemet med att använda COTS-komponenter i
rymdmiljö: deras känslighet för str̊alning, vilket i en FPGA kan resultera i s.k. Single-
Event-Upsets, vilket orsakar fel i implementeringen och ett potentiellt misslyckande av
uppdraget om de inte adresseras. För att åstadkomma detta, utarbetas och appliceras en
SEU-emuleringsmetodik baserad p̊a partiell rekonfigurering för att testa tillförlitligheten
hos SpaceFibre-tekniken.

Slutligen visar resultaten att den genomsnittliga tiden mellan fel (eng. Mean-Time Be-
tween Failure - MTBF) för SpaceFibre IP blocken i en COTS FPGA är 170 dagar för l̊ag
omloppsbana och 2278 dagar för Geostationär omloppsbana om scrubbing-tekniker imple-
menteras. Skräddarsydda mitigations-tekniker, baserade p̊a den insamlade informationen
av tillämpningen av den föreslagna metoden, föresl̊as för att förbättra siffrorna.
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Chapter 1

Introduction

Nowadays, the space sector plays a major role in scientific experiments, with ambitious
observation programmes that monitor not only land and sea, but also integrate complex
instruments such as multispectral cameras and synthetic aperture radars, or even more
complex sensors that allow to gather valuable information about our environment. A good
example is that less than one year ago, in Sevilla (Spain), the European Space Agency
(ESA) comitted to the biggest ever budget to be spent in missions to come, that will allow
to improve the understanding of both our planet and the universe.

From the engineering point of view, assembling these missions is not only an extraordinary
effort, which requires a collective endeavor by multiple teams around the world, but also
poses the challenge of developing the necessary technologies. Apart from the instruments
themselves, the elements surrounding them also play a key role in these missions. High
performance processing and communications onboard the payloads are necessary, since
“raw” instrument data is usually too heavy to be sent back to earth directly. There are
two key technologies that allow to overcome this challenge:

• Field-Programmable Gate Arrays: FPGAs are programmable integrated cir-
cuits that allow to create almost any digital circuit by using Lookup Tables (LUTs)
that implement logic functions and programmable interconnections. They offer a
processing performance to power consumption ratio of about one to two orders of
magnitude higher than processors, and, even though they are not as efficient or
powerful as application-specific integrated circuits (ASICs), FPGAs do not incur in
the extremely high non-recurrent engineering costs derived from the verification and
fabrication of an ASIC. For that reason, FPGAs are usually the chosen platform
when high computing power is required and not a significant amount of units will be
manufactured. Along the years, several radiation-hardened FPGAs specific for the
space environment have been developed. However, they are either less performant
than their non radiation-hardened counterparts—due to containing less logic, since
a significant part of the silicon is used to protect the functioning transistors—or
significantly more expensive. That is why, with the “new-space” paradigm, com-
mercial off-the-shelf (COTS) components are starting to be used in shorter less
critical. The protection to the space environment is no longer provided by the com-
ponents themselves, but by additional conceptual layers of protection implemented
at both system level and within the processing elements. This paradigm has not
reached to the most critical scientific missions yet, but it is a matter of time, with
the performance gap between COTS and space-qualified components, as well as the

1



Chapter 1. Introduction 2

biggest FPGA manufacturer—Xilinx—using a COTS non-hardened FPGA as their
latest space-grade FPGA: the RT Kintex Ultrascale, which is essentially a Kintex
Ultrascale KU060 with a ceramic flatpack packaging.

• High-speed onboard communications: with the huge data rate created by the
aforementioned instruments, as well as the processing rate of the multiple computa-
tion units and storage elements, the need for board-to-board communication able to
transfer data at gigabits per second is a common requirement in different space mis-
sions. This demand is partially covered by the latest high-speed serial transceiver
technologies, that use serializer-deserializer circuits—sometimes several of them in
parallel lanes—allowing to achieve the demanded speed. However, there was no
network standard designed for its usage in space until the recent development of
SpaceFibre, which integrates a network architecture specifically designed for space,
and with the same application interface as SpaceWire—a current standard for on-
board communications at lower speeds supported by ESA, NASA and JAXA among
others. SpaceFibre provides Quality of Service (QoS) mechanisms over the physical
layer, allowing for flow-control and error recovery and management among other
more sophisticated capabilities at an extremely high data-rate. The standard was
published in May 2019, by the University of Dundee under ESA funding, and some
Intellectual Property (IP) blocks that implement the protocol have been developed
already.

1.1 Motivation

This work is framed in a collaboration between Thales Alenia Space Spain and a commer-
cial space company motivated by these two factors. The aim of the project is the develop-
ment of an experimental digital card, the SpaceFibre In-Orbit Demonstrator (IOD) that
integrates a current generation COTS FPGA based on Static Random-Access Memory
(SRAM), the kind that is expected to be adopted in the space sector. The FPGA contains
two SpaceFibre IPs developed by Cobham Gaisler/ESA and STAR-Dundee integrated in
a System-on-Chip (SoC) based on the LEON processor that manages all the elements in
the board needed to test and validate the SpaceFibre technology as well as the FPGA.
All stakeholders involved have great interest into testing and accumulating hours of flight
into the different components, constituting a relevant research and development activity.

Apart from testing the components in-flight with the demonstrator, with the new-space
paradigm and the shift to COTS components, it is of capital relevance to characterize their
behavior when subject to radiation before flight, in accelerated campaigns that emulate
the effects of the space environment and allow to gather data expected for the mission. For
particular components, this is done by performing costly accelerated radiation campaigns,
in which a device is exposed to a controlled radiation source, while being monitored for
failures. However, as latest campaigns show, for FPGAs, there is a noticeable difference
on the failure rates depending on the architecture of the circuit subject to radiation.
Apart from the countless implementations that an FPGA allows due to its programmable
nature, the need to test the mitigation techniques used for a particular mission make the
usage of radiation campaigns impractical, since one separate campaign for each of them
would be necessary.
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Hence, a research effort is being carried out to emulate the effects of radiation by injecting
SEUs in the device to substitute radiation campaigns. It is a relatively new field, and
still has not been applied as a validation step in a real implementation, but its poten-
tial in saving costs is immense, and valuable contribution can be made by designing a
methodology that gathers the state-of-the art techniques and applying it to a relevant
implementation.

1.2 Purpose and goals

There are several goals to be achieved for this work:

1. Development of the firmware for the SpaceFibre IOD implemented in the demon-
strator board integrating both IPs with the LEON3 SoC and high-speed transceivers

2. Validation of the firmware and support for the integration of the application software
in charge of running the recursive tests for the different components

3. Performance of a literature review of the state of the art in SEU emulation

4. Development of a state of the art framework and methodology for SEU emulation.
A key step for achieving this goal is to locate a particular design within the FPGA
configuration memory

5. Application of the developed methodology to the SpaceFibre IP to obtain results,
interpret them and obtain reliability metrics as well as propose recommendations
to reduce its SEU vulnerability

The purpose is to contribute to the creation of the SpaceFibre IOD with COTS compo-
nents, as well as to show the effectiveness of SEU emulation by creating and applying a
state of the art injection techniques to the SpaceFibre IP, which will also contribute to the
development of the SpaceFibre technology itself and the adoption of COTS components
in the space sector.

1.3 Research Questions

The aim then, is to answer to the following research questions:

• How to integrate the SpaceFibre technology in a LEON3 SoC?

• Is the combination of SpaceFibre with a COTS FPGA ready for a commercial
mission?

1.4 Research Methodology

To answer these questions, this project follows an inductive approach to carry out the
firmware and integrate it into the demonstrator board as well as for the development of
the injection methodology. Both elements were carefully designed from the theoretical
grounds and calculations, following a qualitative research methodology [5]. However, the
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second part of the project, that constitutes the injection campaign and interpretation of
the results is inherently experimental and deductive. For this part, the designed method-
ology is applied in different experiments, collecting a large dataset and interpreting the
results from the statistical point of view, using a quantitative methodology.



Chapter 2

Background

This chapter introduces the previous research and literature that are the foundations of
this work, as well as the necessary concepts to understand it.

2.1 AMBA bus, GRLIB and LEON3

One of the main contributions from this thesis is the implementation of the firmware
used for the SpaceFibre IOD board developed in Thales Alenia Space. The firmware,
implemented in a COTS Static Random Access Memory (SRAM) FPGA is based on
the LEON3 processor used as a soft-core to execute the control software, along with
several peripheral controllers from the GRLIB IP library that allow the board to perform
its desired functionality. The SoC uses the Advanced Microcontroller Bus Architecture
(AMBA) 2.0 bus to connect to all components of the System on Chip.

2.1.1 AMBA bus

The AMBA bus is an open standard developed by ARM Ltd. for the interconnection of
on-chip units in a SoC. It is currently the de-facto standard interface used for the devel-
opment of hardware IPs in the space sector. There are several interfaces in the AMBA
specification, where the Advanced Extensible Interface (AXI), AMBA High-performance
Bus (AHB) and Advanced Peripheral Bus (APB) are the most widely used. This thesis
uses the two latter for the interconnection of the SoC elements. Both buses are connected
to a controller and arbiter that maps the control and status registers of the peripherals
to the processor’s memory space, with the memory controller also connected to the AHB
bus. Both buses are technology-independent and designed for portability. Since they are
sometimes implemented in FPGAs, where high impedance internal buffers are not avail-
able, they are implemented in the form of a multiplexed bus: each master drives the bus
signals, and the output of the current bus master is selected by the multiplexers and sent
to the slaves input. Similarly, the output of the active slave is selected and sent to the
masters as shown in figure 2.1.

The AHB bus is a high-performance multi-master bus that allows for burst reads and
writes. It is used for peripherals that need to frequently transmit and receive larger
amounts of data, such as the memory controller —managing the transactions between
the processor and the SRAM and flash PROM memories—. The bus is multi-master and
multi-slave, controlled by a global arbiter. The arbiter receives the address information

5
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Figure 2.1: AMBA bus master and slave multiplexing [1]

needed to communicate with each master and, by means of a grant signal, allows one
master at a time to have control over the bus. Similarly, the slaves provide addressing
information, and have one dedicated signal to access them while they are selected.

The APB bus, on the other hand, is controlled through an AHB-to-APB bridge, which
is an AHB slave and the only APB master in the bus. It is a low-cost bus—in terms of
logic— without arbiter used for low-bandwidth and simpler peripherals, such as timers,
serial ports and interrupt controllers.

2.1.2 LEON3

The LEON3 processor [6] was designed and developed by Cobham Gaisler A.B., a Swedish
company founded by Jiri Gaisler, the creator of the Leon architecture. It is based on the
SPARC V8, a Reduced Instruction Set Computer (RISC) architecture, and offered in
GRLIB under a GNU General Public License (GPL) as synthesizable VHDL. It uses an
AMBA AHB 2.0 interface, which is focused towards the development of SoC designs. Be-
sides, it offers advanced features such as a 7-stage pipeline, configurable caches, debugging
support, high performance —1.4 Dhrystone Million Instructions per Second (DMIPS) for
each MHz— and it is highly configurable through means of VHDL generics.

2.1.3 GRLIB

One of the key factors for the success of the LEON3 adoption in the space industry is
that, along with it, Cobham Gaisler provides an extensive open-source IP library. All IPs
come with an AMBA 2.0 compliant interface, and can communicate with a LEON3-based
SoC seamlessly thanks to the included AHB and APB controllers. With the exception of
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the SpaceFibre integrated in this work, the rest of the components used to form the SoC
that composes the firmware for the flight board are directly integrated from GRLIB and
freely available.

In order to integrate a GRLIB IP into a design, it is enough to include the necessary
library into the compilation of the Hardware Description Language (HDL), and to declare
the IP as a component and connect the AMBA signals at the top level of the design.
Customization is completely managed by generics. The IPs are also easily managed from
the software running on the LEON3, since their status and control registers are memory-
mapped in the processor’s address space. Instructions to install and use the library, as
well as documentation on how the AMBA bus works are detailed in [1]. Every IP available
under GPL license is documented in [7].

2.1.4 Additional tools

Besides GRLIB, Cobham Gaisler provides several tools to facilitate the development of
SoCs. The one that was used the most is GRMON2 [8], a debugging tool that communi-
cates the debug-support unit of the processor, providing useful services such as obtaining
system plug-and-play information, displaying memory contents for the whole address-
space and writing to memory in the whole address-space. This allows manual set-up of
peripherals and preliminary testing without the need for any kind of software. Likewise,
support for Common Flash Memory Interface (CFI) commands is included, facilitating
to erase and program the flash rom used to boot the processor. Similarly, it also includes
the capability to load software code to the RAM memory and execute it along with the
GDB tool for debugging.

Finally, a cross-compiler to generate LEON3 binaries as bare-metal software —i.e., that
runs without an operating system— (Bare-C Cross-Compiler) [9] and boot images(MKPROM2)
[10] facilitated the work carried out in this thesis.

2.2 Radiation upsets on SRAM-based FPGAs

The data-processing rate and flexibility that modern space missions require is causing
an increase in the usage of onboard Field Programmable Gate Arrays (FPGAs). They
provide the necessary flexibility, allowing for the implementation of soft-processors and
providing the re-programmable capabilities of the logic fabric. Besides, their development
cost is notably lower than using ASICs because of the low volume of production inherent
to space industry. All onboard components are exposed to the harsh space environment.
That includes strong vibrations, a wide span of temperatures and the impact of ionizing
particles. The latter is the one in which this work will focus. This section provides a
brief introduction to FPGA technologies and the impacts of radiation in such devices,
including previous research in emulating Single Event Upsets (SEUs).

This document focuses on SRAM-based FPGAs, particularly in the Kintex-Ultrascale
KU060 FPGA from Xilinx, since the injection testing of the SpaceFibre is done on this
device to provide the capabilities needed to implement high-throughput applications. Be-
sides, Xilinx has recently released the space-grade (radiation-tolerant) version of the same
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architecture [11]. Therefore, it is expected to be the reference FPGA for future high-
throughput applications. Later in this section, the architecture of this FPGA will be
introduced as well as the most relevant results from previous radiation campaigns.

2.2.1 FPGA technologies

FPGAs are electronic circuits that implement a matrix of programmable logic, in the form
of Look-up Tables (LUTs) that implement logic functions, and programmable intercon-
nection blocks conceived to be programmed by the user (not during manufacture) to apply
the desired function. Depending on the technology used to implement the programmable
logic, there are three major technologies of FPGAs:

• Anti-fuse FPGAs: use multiplex-based logic, and need the smallest switch inter-
connection size. They incur the lowest power consumption and area as well. Despite
being only one-time programmable, they are immune to the effects of radiation, and
still commonly used in really harsh environments, such as nuclear installations and
spacecrafts or satellites [12]. However, they usually provide a small amount of equiv-
alent logic gates, thus not being suitable for the most complex implementations and
used only for the most safety-critical operations. Some examples are the RTAX
series from Microsemi.

• Flash-based FPGAs: re-programmable FPGAs for which the configuration mem-
ory is implemented in a flash technology. The contents of the LUTs implementing
logic functions, as well as the values that dictate how the programmable intercon-
nect is wired, are stored in a flash configuration memory. Inherent to this technology
is an almost non-existent susceptibility to single-event effects. On top of that, the
flash memory is non-volatile, and they do not need to be re-programmed after a
re-boot. On the other hand, due to the technology used, re-programming a flash
FPGA is more expensive in terms of power and time, and the technology node used
is older and less efficient than their SRAM counterparts. Besides, their tolerance
to the Total Ionizing Dose (TID) and Single-Event Latchup (SEL) is also an issue
[13]. Some examples are the ProASIC series FPGAs from Microsemi.

• SRAM-based FPGAs: re-programmable FPGAs for which the configuration
memory is implemented in SRAM technology, more precisely, Complementary metal-
oxide-semiconductor (CMOS) Configuration Latches (CCLs) [14]. Even though the
SRAM interconnect switches are the most expensive in terms of area [12], the usage
of newer CMOS nodes fairly compensates it, allowing for higher scale integration,
density and better efficiency than the flash-based FPGAs. Technology advantage
makes their usage grow, since they are able to implement far more complex functions
than their counterparts. Besides, they are less expensive to program, allowing for
dynamic runtime partial reconfiguration (DPR) [15] used to modify the functional-
ity of part of the FPGA while it is functioning. On the other hand, since the CMOS
node they use is smaller, they have proven to be more susceptible to the effects of
radiation, as will be detailed in section 2.2.6. Furthermore, the volatile nature of
SRAM technology cause the necessity of storing the programming bitstream in an
external flash memory, introducing potential security breaches to the bitstream that
are usually overcome with encryption.
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2.2.2 KU060 FPGA structure

This section introduces the basic elements of the KU060 architecture, the SRAM FPGA
used for the injection study. It is relevant to understand the elements that it’s composed
of to better understand the effects that radiation may cause.

The Ultrascale Architecture is focused in high-troughput applications, using a 20 nm tech-
nology. Particularly, the Kintex Ultrascale architecture offers an optimized performance
per watt [16], including high-throughput Serializer-Deserializer (SerDes), dedicated Digi-
tal Signal Processing (DSP) blocks, block ram memory, clock resources and Configurable
Logic Blocks (CLBs), the latter being the main building-block for general-purpose logic
implementation. Each CLB, grouped physically in a slice, is formed by eight 6-input LUT
(each of them configurable as two 5-input LUT), 16 flip-flops, distributed memory and
shift-register logic (allowing to implement distributed RAM in the SLICEM slice) as well
as wide multiplexers to connect the elements of the CLB [14].

The elements within the FPGA are organized in columns. The most common structure
is the one shown in figure 2.4, with one slice on each side of a routing switchbox, used
to interconnect the different elements of the FPGA. One clock region is a tile formed
by several columns of the same resource that span 60 rows of CLB columns, 24 DSP
columns and 12 BRAM columns [17]. Clock regions are divided by horizontal and vertical
clock routing and distribution tracks. Besides, the FPGAs also include a core column—
integrating the System Monitor, configuration and PCIe blocks—as well as dedicated I/O
banks, including high-performance GTH transceivers, I/O logic management and global
clock buffers. The device view offered by Vivado, showing 4 clock regions in the KU060
device is depicted in figure 2.3

Figure 2.2: Two CLBs and one routing switchbox of the KU060 FPGA

2.2.3 FPGA configuration

The configuration of the FPGA for flash and SRAM FPGAs is stored in the configura-
tion memory (CRAM) of the FPGA. It contains the logic tables for all LUTs, routing
resources, interconnects, shift-registers, and flip-flops inside the FPGA, and is stored in a
distributed fashion inside configuration latches or the distributed memory elements them-
selves [18]. The other type of memory conforming a memory space in the FPGA is the
Block RAM (BRAM) that provides the main accessible memory. It is utilized to store
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Figure 2.3: Device view of the KU060 showing clock regions and columns within

user data, and is stored in RAM blocks with several customization parameters.

The types of FPGAs mentioned before are configured using a bitstream, that is, the bi-
nary file that contains the configuration contents, along with all the necessary commands
used to load it into the configuration memory of the device. For volatile SRAM FPGAs,
support circuitry is included externally to launch the configuration automatically when
the board is booted. For all Xilinx devices, including the targeted FPGA for this work,
the minimum addressable unit of configuration is a frame, which in the Ultrascale tech-
nology is composed of 123 words of 32 configuration bits. The total amount of frames
composing the configuration memory is 37651 [19].

Each configuration bit affects the functionality implemented by the FPGA in some way.
Thus, if any value of configuration is changed, its functionality is modified. In order to
obtain the configuration bits that are utilized by the circuit, Xilinx offers the essential
bits technology. The essential bits are defined as the ones used to define the hardware in
the FPGA, and can be automatically reported during the elaboration of the bitstream in
the form of a mask file: the “.ebd” file. This file has the same number of bits—in the
form of characters, one representing each bit—as the configuration memory, excluding
the contents of the BRAM memories. Besides, the dynamic soft values stored in shift-
registers and flip-flops are never marked as essential, since their values may change during
execution. Thus, the ebd file marks the configuration bits that belong to the design and
must remain static for the correct functioning of the circuit. For the sake of simplicity,
these bits are denominated configuration bits for the rest of this work.
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Unlike the BRAM and registered values, configuration bits are not easily accessible for
the user. When the circuit is functioning, there are three ways to access configuration
memory: through JTAG, which is extremely slow, through the SelectMAP port, that
needs an external device connected to the selectMAP pins to manage the communication,
and the Internal Configuration Access Port (ICAP), which can be accessed by the internal
logic. Apart from the JTAG connectivity, which is used to program the FPGA in most
evaluation boards in the initial stages of a design by using a PC, the most used interfaces
are SelectMAP for programming from a flash memory, or using external scrubbing and
ICAP for partial reconfiguration and internal scrubbing applications. Regardless of the
speed and internal or external nature of the ports, similar commands are issued to read
and write configuration memory through them. A major difference is that, when using
the ICAP port, all dynamic values stored in BRAM and registers are masked [19], so their
values cannot be read. Besides, in the ebd file, these bits will never appear as essential.
For more information on the Ultrascale family configuration, the reader is referred to [16].

Frame addressing

There are two ways to locate a particular frame within the configuration memory in Xil-
inx FPGAs: the physical address, which is related to the position in the FPGA, and the
linear address related to the position in the configuration memory. The physical address
is composed by the following fields [19]:
Where the row address refers to the row in clock regions in which the frame is located,

Bits 25:23 22:17 16:7 6:0
Content Block type Row address Column address Minor address

Table 2.1: Physical frame address format

from bottom to top and the column address refers to the major column formed by the
same resource type, ordered from left to right. The minor address is used to select a frame
within a major column. More details are provided in section 4.3.1.

The linear address is composed translating the position of the frame in the bitstream
according to the configuration memory increasing sequentially. Its format is shown in the
following table:

Bits 28-12 11-5 4-0
Content Frame linear address Word address Bit

Table 2.2: Linear address format in the KU060 device

SEM IP

The Soft Error Mitigation (SEM) IP [19] is provided by Xilinx to help the user take advan-
tage of the protection mechanisms integrated in Xilinx FPGAs for configuration memory:
Error Correcting Codes (ECC) and Cyclic Redundancy Check (CRC) codes. They allow
the IP to perform internal configuration scrubbing to correct errors, for example, caused
by radiation. It uses two primitives:
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• ICAP primitive: it automatically manages the ICAP access and commands needed
to read and write configuration frames. The commands needed to write and read
the configuration through ICAP are not documented, and no support is provided
for other usage than integrated with the SEM IP.

• FRAME ECC primitive: manages the automatic checking of the ECC and CRC
codes integrated in the readback CRC mechanism.

Even though little detail is given on how the primitives function or the ports they include,
the general mechanism by which the corrections are performed is known: each configu-
ration frame contains an embedded ECC code able to correct up to 4-bit errors inside
a frame. Unlike previous generations of the SEM IP, such as for the 7th generation of
Xilinx FPGAs, the ECC code used is not just a Single-Error Correction Double-Error
Detection (SECDEC) code, but a more elaborated ECC-based algorithm whose capabili-
ties are not clearly specified. When a frame is read through the ICAP, the ECC check is
automatically done by the FRAME ECC. If the location of the error is detected, it is auto-
matically corrected. Besides, it supports an additional classification capability when used
in combination with an external memory that contains the .ebd file to indicate whether
the affected bits were essential or not. This capability is not used in this work, since the
injected bits are all essential.

There may be failures that are undetected or not corrected properly by using ECC, es-
pecially if the error affects the ECC information itself, or it is a multiple bit error inside
one frame that the ECC does not cover. To detect those cases, the whole configuration
memory is covered by a CRC. The SEM IP repeatedly reads the configuration memory,
calculating the CRC of the read frames one by one until the last frame is read. The calcu-
lated CRC is then compared to the stored golden-CRC, which was previously calculated,
before programming the FPGA. If they differ, the FRAME ECC and SEM IP flag a CRC
error. However, those bits are not corrected by the SEM IP, and require further action
by the user.

To test the scrubbing mechanism of the SEM IP, it includes the capability to inject an
error in a configuration bit selected by the user. To do so, it reads the frame in which the
bit is located, flips its value and writes it back through the ICAP. Besides, a command
interface to connect the IP to a UART and control it externally is included. For more
details about the SEM IP, the reader is referred to [19].

2.2.4 Upset classification and occurrence

The space environment, without the protection of the magnetic field from the earth, is
extremely harsh. Apart from extreme temperatures and void, electronics have to deal
with the undesirable effects produced by radiation. Radiation varies in energy depending
on the elements that produce it, ranging from protons and neutrons to light and heavy
ions coming from the sun, trapped in the earth magnetic field, or outside the solar system
in the form of Galactic Cosmic Rays [20]. Its effects depend on two main factors:

• The Linear Energy Transfer (LET): depends on the particle producing the
radiation. It is defined as the amount of energy deposited as it passes through a
semiconductor, dE

dX
(MeV/mg/cm2) [21]
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• The Fluence: defined as the number of particles per square centimeter that irra-
diate the silicon [21].

The most significant effects that radiation produces can be summarized as:

• Total Ionizing Dose (TID): it is the amount of ionizing radiation that a particular
device can stand until a functional failure, threshold shift, leakage current or timing
change is produced [20]. Measured in krads, it is usually calculated for every mission,
and then components and shielding are chosen so that they will withstand the
expected dose.

• Single Event Effects (SEEs): they are caused by single particles that pass
through the semiconductor material, inducing charge in the substrate that can cre-
ate a current or voltage spike that may produce diverse effects[20]:

– Hard (destructive errors): when the particle produces a spike that creates a
low-impedance path between power rails (latch-up), or a transistor source, a
short-circuit is created, leading to the potential destruction of the device. These
errors are denominated Single-event latch-up (SEL) or Single-event burnout
(SEB). Besides, if the gate oxide is hit by a high-energy ion, it may break in
the so-called Single-event Gate rupture (SEGR) [2]. All the hard errors are
mostly destructive errors, with the exception of SEL, that may be recovered
with a power cycle.

– Soft errors: alterations in a logical value in the device caused by a charged
particle impacting a routing line, interconnection or memory cell. If the com-
binatorial path of a device is affected, the event is called Single-event Transient
(SET). When a SET propagates through the circuit and reaches a memory el-
ement, or directly affects it, it changes the internal state and alter the data
stored in that element. This event is a Single-Event Upset (SEU). Depend-
ing on the amount of bits affected, they are divided between Single-bit Upsets
(SBUs) or Multi-bit Upsets (MBUs) [2]. Some authors [22] distinguish between
MBUs caused by a single particle, and coincident SEUs that effectively act as
a MBU if they accumulate.

Figure 2.4: Types of Single-Event Effects. [2] p. 4
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From a more practical point of view, a SEE is a fault in the circuit that, if propagated
in the form of a SEU can cause the circuit to enter an erroneous state. Moreover, if this
erroneous state alters the nominal behavior of the circuit and is propagated to an output,
it is said that it caused a failure [23].

As CMOS technology is shrinking, new devices operate with reduced electrical margins,
and gate oxide thickness is diminishing. As a consequence, the tolerance to SEL and TID
is improving [20]. However, the SEU sensitivity is increasing, to the extent that they need
to be taken into account for devices operating on the ground and not subject to harsh
environments [24]. Hence, this work focuses in the latter, as SEUs are the most likely
cause of failure due to radiation, as is also proven by the accelerated testing campaigns
introduced below.

2.2.5 Radiation campaigns

In order to obtain the radiation sensitivity figures for a particular device, radiation cam-
paigns are performed. FPGAs are exposed to a controlled source of radiation in terms
of LET and fluence. Specialized installations such as Cyclotrons producing a range of
particles such as neutrons, protons and heavy-ions are used for this purpose [25].

In those campaigns, the devices are loaded with test-implementations such as counters,
shift-registers, and combinatorial elements such as multipliers and adders [26] [27]. How-
ever, as complexity of the design increases, more complex designs are starting to be used
in the FPGA to effectively reflect a more realistic scenario. Some examples are the us-
age of the Soft Error Mitigation core (SEM IP) design from Xilinx, the Multi-Gigabit
transceiver and Phase-Locking Loops (PLLs) in [28] and soft-processors in [25].

Different techniques are used to characterize the errors and effects of radiation. As men-
tioned before, SEUs are the most common and main target of radiation campaigns. Be-
sides, SELs and other destructive events are also observed and recorded. Originally, a
whole device read-back of both configuration and block memory data was commonly used,
which was then compared to the original bitstream [26], [27] [29] [4]. However, this tech-
nique is extremely slow, since it requires disabling the clocks of the circuit—effectively
freezing its state and masking potential errors—during the readback process, that lasts
in the order of seconds [25]. This procedure allows to obtain“snapshots” of the SEU oc-
currence in the configuration memory and to count the amount of occurrences. For the
BRAM, usually a pre-defined pattern is loaded and then read back within the bitstream.
Additionally, the power rails are monitored with current monitors to observe potentially
destructive effects [27]. On top of that, the increase of current is also an effective metric
for the SEU rate that configuration memory is subject to, since it creates spurious con-
sumption sources by altering the device configuration and functionality.

More recently, new monitoring techniques are being used to obtain a finer-grain monitor-
ing in the occurrence of SEUs and shifting the focus towards observation of the functional
behavior of the implementations subject to radiation. In [25], [30], a low-cost digital
tester composed by an FPGA implements an FSM that provides input stimuli to the
DUT-FPGA and checks the outputs and response of the functional units inside it. This
enables monitoring events in the order of ns. The purpose of these implementations is
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not to gather information about the vulnerability of the design itself, but to create DUT
designs that have large and replicable logic structures, with state-spaces easily traversable
that will produce observable SEUs. In [28], the DUT designs integrated self-checking fea-
tures with status values that would be reported to an external monitor, and also remote
monitoring is used to analyze the SEM-IP in [31].

Once results are collected, they are usually summarized in terms of the SEU cross-section
(σ), which is obtained by dividing the total number of upsets by the fluence used in the
test. It is usually reported in cm2/bit. Also the occurrence of SEL for a range of LETs
is reported, and sometimes the TID results. All that information is later used to evalu-
ate the suitability for a particular device integrating certain technology for a given mission.

It is important to consider that the probability of failure is both device-dependent—
obtained in radiation campaigns—and design-dependent, thus, both need to be taken
into account. In section 2.2.7, how to tackle the second factor will be approached.

2.2.6 Upset occurrence for the KU060 FPGA

The Radiation-tolerant Kintex UltraScale FPGA XQRKU060 [11], is the UltraScale KU060
device tested and qualified by Xilinx for it usage in space. With its release, Xilinx pub-
lished results from radiation campaigns performed for its qualification in [32]. According
to the results, it stands a TID of 100 Krad, and is immune to SEL until a LET of 80
Mev − cm2/mg. On the other hand, it has an expected SEU occurrence of 1.0e-8 upsets
per bit per day for the configuration memory, and 2.7e-8 upsets per bit per day for the
embedded block ram memory. Besides, a Single-Event Upset affecting a critical section of
CRAM—such as a control state-machine— that causes loss of functionality, denominated
Single-Event Functional Interrupt (SEFI) happens as often as 4.5e-4 upsets/device/day
for Geostationary orbits.

Several additional and independent radiation campaigns have been performed in the reg-
ular KU060 FPGA, and their results are here summarized:

NASA reports their results in [25], [30]. The obtained cross-section is 1.24e-09 cm2/bit
for a LET of 20.4 Mev ·cm2/mg, and 2.3e-15 cm2/bit for proton testing. They also report
the Mean-Fluence to Failure (MFTF) in particles/cm2, which is the inverse of the cross
section, and compare the Triple-Modular-Redundancy version of a counter synthesized
in the KU060 to the same design—without TMR—in the radiation-hardened Virtex5QV,
the current standard for high-throughput implementations. The results show that the
UltraScale FPGA had a lower MFTF. Hence, being more vulnerable for the same LET,
although the results were in the same order of magnitude, it shows potential for the non-
hardened alternative. Besides, they compute the reliability of operation for a year from
the MFTF and the expected particle flux per year. The results are shown for a MicroBlaze
processor without cache, the same processor with cache and a simple counter, offering a
reliability of 0.1, 0.7 and 0.87 for a fluence of 2.5e05 particles/cm2. These facts highlight
the relevance of developing mitigation techniques built in the logic, and the need to per-
form a careful analysis of each design individually, since their vulnerability to radiation
varies greatly even for similar circuits.
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In [4], the cross section for different LETs is presented, and the one for protons is estimated
to be 1.87e-15 cm2/bit for configuration memory, and 4.74e-15 cm2/bit for SRAM memory.
They extrapolate these results to In-Orbit rates using the CREME96 model, summarized
in table 2.3. In [29], neutron and proton cross-sections are obtained, with results of 2.6e-
15 for configuration memory (CRAM) and 4.5e-15 for BRAM in the case of neutrons, and
2.5e-15 and 4.3e-15 for protons, all values expressed in cm2/bit.

Configuration Memory Block RAM

per bit, per day 7.54e-09 2.48e-08
per device, per day 7.19e-01 6.26e-01

Table 2.3: In-Orbit SEU rate for CREME96 [4]

In [31], the cross-section of the SEM IP in the KU060 is analyzed by exposing the device
to a proton flux while the SEM IP is running in the background, correcting any eventual
SBU detected. The cross-section is recorded when an uncorrectable error is produced.
The obtained cross-section is 5.91e-11 cm2/bit for CRAM. Besides, additional data anal-
ysis is performed to show that only 0.07% of the SEUs cause MBUs, with 99.93% causing
SBUs in CRAM. Additionally, the authors state that no MBUs in BRAMs were recorded
in their testing. This fact confirms the statement presented in [33]: to enhance the pro-
tective capabilities of SECDEC codes protecting BRAM and CRAM memory words in
Xilinx FPGAs, the memory frames are physically interleaved.

In [28], the SEM IP is included in testing under proton irradiation, showing that it im-
proves CRAM cross-section by a factor of 1.77, from 2.05e-15 to 3.63e-15 cm2/bit. On the
other hand, the usage of a SECDEC ECC code in BRAM drastically improved BRAM
cross-section by a factor of 3272, from 2.52e-15 to 8.25e-12. These results back the ones
presented in the previous paragraph, showing that the protection of BRAM is noticeably
easier using ECC codes thanks to the low rate of MBUs when compared to CRAM. It is
important to note that these results are based on proton irradiation, more applicable to
Low-Earth Orbit (LEO). As a conclusion, the authors present LEO In-Orbit SEU rates
(including previous results for heavy ions) for a device with 75% utilization excluding the
Multi-Gigabit Transceivers. The results are 0.021 upsets/day, which improves to 0.001
upsets/day with memories using ECC and 0.00086 upsets/day using the SEM IP, rates
that are acceptable for short LEO missions. However, the usage of SEM IP shall still be
studied, since in [27], the only high-current events observed were related to a ScrubSEFI
that would happen when configuration engine and critical registers such as the Frame
Address Register (FAR) used for scrubbing and configuration readback were affected by
a SEU. These events are only caused while scrubbing through configuration memory, as
SEM does, and do not affect FPGA configuration. In the article, the authors present an
alternative scrubbing method that would minimize such events.

To conclude, results presented in this section demonstrate three main facts:

• SEUs are the main source of failure due to radiation, and determine the expected
reliability of a device operating in space. Few MBUs, SEFIs, SELs or destructive
events have been registered, and are not expected in a regular mission.

• Apart from obtaining the expected SEU incidence for a specific device, it is essential
to analyze the vulnerability of a particular design to SEU, since the final error rates
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will vary greatly depending on both factors. This work aims to design a feasible
methodology to do so for any particular implementation, without having to perform
a radiation campaign for each mission.

• While BRAM is easier to protect with an ECC or TMR scheme, effectively reducing
the error rate by several orders of magnitude, the CRAM is harder to protect. With
the current solution offered by Xilinx SEM IP, it is not reliable enough for longer
or more critical missions. The need to analyze the effectivity of other mitigation
techniques, such as distributed TMR, recommended by NASA. The methodology
presented in chapter 4 can also be applied with this goal in mind.

2.2.7 Previous work in SEU injection

Due to the high cost and effort required to perform a radiation campaign, several tech-
niques for SEU emulation have been developed that allow to emulate the occurrence of a
SEU by introducing an undesired change in a value, either in the user memory, registers or
configuration memory. These campaigns allow to obtain a metric of the design sensitivity
by counting the amount of configuration bits in a design that, when affected by an SEU,
cause a functional failure. They are usually called critical bits, and are extremely useful
to compute the reliability of a design. The sensitivity to SEU of a design is summarized
by the Design Vulnerability Factor (DVF), which is obtained by dividing the amount
of critical bits by the total amount of configuration bits used by the design. Multiple
approaches to SEU injection have been presented in recent research:

• Injection circuits (saboteurs): introducing modifications in the component li-
brary of a particular vendor, or using certain commercial tools that modify an initial
netlist, these circuits allow a fast and effective injection for user memory [34]. These
techniques are oriented towards user memory only, not acting in configuration mem-
ory and being more suitable for ASICs. Besides, they need either specific tools or a
great design effort, and add overhead to the logic in the circuit.

• Simulation-based injection: with this technique, errors are simulated rather than
emulated [35]. Hence, the time required to inject enough errors makes this approach
impractical as design complexity increases.

• Reconfiguration-based injection: based either on total or partial reconfigura-
tion. A configuration frame is read, modified by flipping one or more bits to emulate
a SEU and written back to the configuration memory. The approach based on total
reconfiguration allows for more control of the internal states of the circuit and access
both the configuration memory and the user memory through a total readback using
JTAG [36]. However, that operation is noticeably slow, requiring a reported time of
916 seconds for 3000 bit-flips (around 3 bits flipped per second). For that reason,
injection based in partial reconfiguration has become the most popular alternative
[37], especially since the Internal Configuration Access Port (ICAP) was introduced
by Xilinx, allowing for a faster reconfiguration. This work focuses on this last mech-
anism for SEU injection, allowing injection of a whole design in a reasonable time,
with an estimated time per bit of less than 5 ms per injection [38].

The usage of partial reconfiguration for error injection can use any of the configuration
ports provided in Xilinx FPGAs: external ports, i.e., the JTAG configuration port, the
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SelectMAP configuration port and the ICAP. The most suitable choice is ICAP, due to
the speed achievable compared to its counterparts [38]. The main limitation when using
partial reconfiguration to inject errors is that they are only meant to act in configuration
memory: as explained in [38], the information stored in a FF is not modifiable after the
initial programming operation using the configuration memory unless the sequential logic
is reset. Thus, a careful process such as the one detailed in [38] is needed to manage the
individual resets. Another alternative is presented in [21], using injection through partial
reconfiguration, and a structural approach, this is, adding injection inputs manually to
all flip-flops in the design using a parser and the design netlist.

Even though the data that can be collected is limited by the fact that no injections can
be performed in BRAM memory and flip-flops, injection by partial reconfiguration is the
current mechanism used to compute device sensitivity to SEU. The main reason for this
is that it is the most practical mechanism when approaching complex circuits, which does
not require any specific tool or manipulation of the circuit, is being able to assess its
sensitivity as-is, without any additional logic that may alter the results. The obtained
sensitivity will be lower than the real one for devices that have a high utilization of BRAM
memory, but, even in that case, the SEU injection is accurate when used to obtain the
relative sensitivity that results of implementing mitigation techniques in the circuit, and
can be used as a tool to assess the effectivity of these techniques [39].

Apart from the method used to inject errors, it is interesting to reflect on the different
mechanisms used to check for functional failures. These partially depend on the type of
circuit tested:

• Golden-model: consists in running two instances of the same circuit in parallel.
One is the Device Under Test (DUT), in which the injection will be carried out,
and another one is the golden reference or model. This approach is commonly used
combined with a set of test-vectors that are used as the inputs of both circuits.
Then, the outputs are compared, and, if they differ, an error occurred in the DUT.
Its main advantage is that it is not hard to implement, provided that an automatic
tool is used to generate the test vectors with a good internal-state coverage and that
the visibility of errors cannot be affected by the error itself. As a disadvantage, it
only allows a limited understanding of the errors, since they can only be detected in
the output. Hence, it works properly for circuits that perform a bounded calculation,
but not for the case of a module implementing a communication protocol that could
mask a significant amount of failures. It is the approach followed in [40], [21], [41],
[42].

• Stand-alone with internal monitoring: consists in instantiating just one DUT,
and monitoring internal signals or registers and outputs to gather more information
about potential failure modes. It is a suitable approach for circuits that include
Quality-of-service (QoS) mechanisms already integrated that allow for error detec-
tion, or if an automatic mechanism to detect failures by examining the internal
registers of the circuit is feasible and simpler to implement than duplicating it. Its
main advantages are the reduction in the amount of logic needed, allowing for test-
ing bigger DUTs and less intrusive logic that will have less impact on the results.
Besides, it is able to detect failures that would be masked in the output in circuits
that include error correction or QoS mechanisms. On top of that, as explained at
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the end of this section, it is the most suitable approach for verification purposes.
[23]. Its main drawback is that, potentially, some internal errors could be masked
by the errors themselves. This risk can be minimized by continuously recording the
monitored signals and not allowing errors to be introduced in the data generating
and checking blocks, which will still be able to detect the most relevant functional
errors. This approach will be the one used in this work, and was also used in [43].

• Mixed approach: finally, combining both techniques described above is also pos-
sible. It provides the most reliable mechanism when it comes to detecting any error
or deviation from the expected behavior, allowing for high detection granularity.
However, it comes at a very high logic cost, allowing to test DUTs of a constrained
size, and altering the occupation of the device in a significant way, which can also
introduce differences in the behavior of the circuit against SEUs when compared to
a stand-alone implementation. Besides, although uncommon, SEFI events at FPGA
level may still mask some errors and cause failure in both DUT and golden model
by affecting, for example, the global clock routing. This is the approach used in
[39].

Once the mechanism for error injection and correction has been obtained, in literature
there are two main approaches to compute a design’s sensitivity:

• Following the same approach used in radiation campaigns: injecting errors in ran-
dom locations of the configuration memory. This approach, used in [39], [42] allows
to obtain the average amount of injections needed for the device to fail. It is effec-
tive when used with a model of the expected SEUs, and its main advantage is that
it does not need the data from radiation campaigns to estimate the reliability of
a particular circuit. However, this method is not comprehensive, in the sense that
it will leave configuration bits without analyzing them, so potential vulnerability
points will remain unknown.

• Systematically injecting errors in all locations of configuration memory that belong
to the DUT. This approach is used in [21], [43] and [40]. This method allows
for a comprehensive analysis of all potential vulnerabilities related to configuration
memory for any particular implementation, and for a more precise calculation of the
DVF. Its main drawback is that it requires data from radiation campaigns performed
in the same device to draw conclusions about the absolute reliability that can be
expected for a particular mission, and that might be to slow in bigger designs.

Although several differences have been presented, all the works analyzed have a similar
methodology in common. The usage of partial reconfiguration to inject errors in configu-
ration memory is done either through the SEM IP from Xilinx [21, 40] or through means
of a custom reconfiguration controller [41, 39, 42]. The injection consists in flipping one
bit, emulating an SEU, except for the case of [41], which is the only work that focuses on
MBUs. The reason of focusing on SBUs is that those are the most common events—as
shown in section 2.2.6. After the error is injected, the circuit is kept running until it
performs a particular operation and a set of outputs are available. For the sake of veloc-
ity,when errors are observed in the outputs they are corrected by writing back the original
word to configuration memory. Only in [39] and [40] a full device reboot was performed
to ensure the error correction.
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2.3 Space Fibre

This work is closely related with the SpaceFibre technology. In this section, a short
introduction to its basic concepts is shown. For the sake of brevity, most details and
several capabilities of SpaceFibre are omitted. Hence, the reader is referred to the ECSS
standard [3] for more information. SpaceFibre is a high speed serial link based network
standard defined for on board spacecraft usage. SpaceFibre specifies the physical layer
for both electrical and fibre optic medium. In the electrical medium, which is the one
used in this work, Gigabit serial transceivers are used to serialize the data and transmit
it. In particular, GTH transceivers from the KU060 FPGAs are used for the injection
campaign.

2.3.1 Gigabit serial transceivers

The main component that SpaceFibre relies on is a transceiver capable to achieve line
rates in the order of gigabits per second. These transceivers are becoming increasingly
used onboard spacecrafts to transmit the huge data generated by the latest generation of
instruments and sensors. Originally, they were not designed with the space environment
in mind. Hence, additional protocols that ensure QoS such as SpaceFibre are needed.
The basis of this transceivers lies in a SerDes element, which transmits a data word bit by
bit at an extremely high rate. To do so, the SerDes uses a fast reference clock—125 MHz
in this work—and several Phase-Locked Loop (PLL) circuits that are able to generate
clocks whose frequency is a multiple of the reference clock and whose phase varies in
a controlled manner, and transmit the data aligned to the flanks of these faster clocks,
reaching line rates in the order of the gigabits per second. Only two differential lines are
used: the TX and the RX line. At the rates used by gigabit transceivers, transmitting the
reference clock in a separate line is not practical. However, from the values transmitted
through the lines, the phase of the reference clock can be aligned at the far-end, to be
able to appropriately sample the input values at the rigth moment. These values then de-
serialized and provided with a lower clock rate in parallel words. Apart from a reference
clock and high-performance PLLs to align it, there are other elements that allow the
successful transmission of data at such a high rate. Two of the most relevant, and whose
usage is required by SpaceFibre are listed here:

• Differential signaling: the GTH transceiver uses LVDS in current-mode, which
drives two parallel lines that encode the transmitted bits in the differences in voltage
in the line. The lines are terminated with a resistor to maintain a constant value of
current flowing between receiver and transmitter. Therefore, the generated magnetic
fields cancel each other, significantly reducing the emissions. Besides, the noise
affects both voltage values equally, and its effect is cancelled when obtaining the
data encoded by the difference in voltages.

• 8b/10b encoding: in order to be able to recover the clock from the data trans-
mitted in the line, the voltage should resemble a typical digital clock as much as
possible. Hence, data is encoded with 8b/10b aiming to minimize the consecutive
bits that have the same voltage, maximizing its variation. To do so, the encoder
maps every 8-bit symbol to a 10-bit symbol, defining two alternative symbol map-
pings for each 8-bit value. The symbols are selected to ensure that no more than 5
consecutive bits have the same value to facilitate clock recovery, and that the total
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difference of 1s and 0s transmitted is lower or equal than two, to ensure DC bal-
ance, which minimizes noise and bit errors. Besides, the remaining values are used
to define special control characters, the comma character being the most relevant
one. It is a character that cannot be obtained by partially concatenating any other
characters in the serially received bitstream. Hence, when detected, it marks a byte
boundary used to align the received bytes correctly.

2.3.2 Space Fibre modules

As a network protocol or standard, SpaceFibre is divided into layers of abstraction that
implement certain functionality as described by the protocol description in [3]. A Space-
Fibre link is composed by one or more physical connections, called “lanes”. SpaceFibre is
capable of transmitting data in parallel through different lanes to increase its throughput.
However, this work focuses in the single-lane mode with a throughput of 2.5 Gbps, which
is enough for most applications. The layers for a single lane are the following: applica-
tion, network, data link, lane and physical. They are shown in figure 2.5 The application
layer is defined by the implemented system. Only its interface with the network layer is
defined, establishing how data and broadcast words shall be transmitted to SpaceFibre.
The physical layer is composed of the SerDes, drivers, cables and connectors, and the IP
that implements the 8b/10b encoder and the synchronization and clock correction buffers
according to the standard. The network layer—describing the routing and transmission
between nodes of packets and broadcast messages—is not fully implemented in the Space-
Fibre IP port, which is designed to receive and send data over a single link. The only
functionality implemented is the conversion of packets and broadcast messages to N-chars
and fills used in the data link layer. Therefore, this section introduces the data link and
lane layers, which are the most relevant for this work. The SpaceFibre IP implementation
divides the functionality of the data link layer in the virtual channel layer and retry layer:

• Virtual channel layer: a SpaceFibre virtual channel is an independent channel
that can carry information across a single link in parallel with other independent,
information carrying channels [3]. It is equivalent to a SpaceWire channel or link
(terms with equal meaning in the SpaceWire protocol), with the term “virtual”
used to highlight that a SpaceFibre link can contain several multiplexed SpaceWire
channels used by different applications to transmit and receive data. One of the aims
of SpaceFibre is to be compatible with SpaceWire. Hence, the virtual channels in
SpaceFibre follow the same packet format as the channel in a SpaceWire link. The
virtual channel layer is in charge of managing the medium access control, deciding
which virtual channel transmits data depending on the allocated bandwidth and the
amount of received flow-control tokens. The flow-control tokens indicate the amount
of free space in the receiving buffer of the far-end, to ensure that no overflow and data
loss occurs—. Other additional capabilities are the capability to define scheduling
and precedence between virtual channels. The input and output buffers, one for
each virtual channel, are located in this layer. On top of that, since several virtual
channels may share a physical link, a virtual-channel de-multiplexer is used in the
receiver part to drive the received data to the appropriate buffer. Data to transmit
is encapsulated in frames, and passed to the lower layer. Finally, next to this layer,
the broadcast layer is implemented, managing broadcast information that is passed
directly to the lower layer.
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• Retry layer: the retry layer is in charge of implementing the error recovery mech-
anisms of SpaceFibre. It receives data and broadcast information from the virtual
channel layer, and passes the received data and Flow-Control Tokens to it. On the
other hand, it exchanges data and control words with the lane layer. In this layer,
the CRC field from each frame is checked, as well as the sequence in which the
frames are received. This order is stored in a field inside each frame. If both checks
are successful, an acknowledgment is sent to the other end, and the frame is written
to the virtual channel buffer waiting for the application to read it. Else, a retry op-
eration is initiated, asking the other end to send the frame again, until a maximum
number of attempts. If a successful reception is not achieved in the determined
number, it is notified to the lane layer to reset it. In the sending side, it implements
an error recovery buffer to keep the frames stored until their acknowledgment, and
the necessary logic to re-transmit them if an error occurred.

• Lane layer: the main purpose of the lane layer is to establish and maintain com-
munication across a SpaceFibre lane [3]. It manages and detects the control words
used for that matter, which are the initialization, signal loss and stand-by words.
The control is integrated in the lane or initialization FSM, in charge of resetting and
establishing the connection with the other end exchanging configuration informa-
tion and performing a complex handshake. It abstracts all the lane control, sending
to the retry layer the state of the connectivity. The lane layer interfaces directly
with the physical layer, enabling the drivers when ready to transmit, and passing
the corresponding symbols. Besides, it receives the parallel data de-serialized and
decoded from the physical layer. Finally, when the 8b/10b decoder in the physical
layer receives a wrong or unexpected symbol, or lane connectivity or synchroniza-
tion cannot be reached, an RXERR word is passed to the lane layer, which contains
a counter that can be used to measure the Bit Error Rate (BER) of the channel.

Figure 2.5: SpaceFibre Protocol Stack. [3] p. 36



Chapter 3

Firmware development for the flight
demonstrator

The SpaceFibre In-Orbit Demonstrator is a digital board developed by Thales Alenia
Space whose main purpose is to control two IP blocks that implement the SpaceFibre
protocol, connected to data generators and checkers running recursive tests to validate
them in orbit. One IP was originally developed by Cobham Gaisler AB for ESA, and the
other one by STAR-Dundee Ltd. This chapter will introduce the SoC that was developed
for the demonstrator board. The contribution from this work was the VHDL firmware
for both SRAM and Flash FPGAs integrated within the board, as well as the support to
develop the software test routines and validation of their functionality.

At the time of writing this thesis, the board is being prepared and integrated in a CubeSat
project from a commercial space company for its launch later this year. The purpose of
the demonstrator is to launch two different SpaceFibre IP cores and repeatedly perform
test routines to validate its behavior in-orbit.

3.1 Board features and baseline

The board used to develop the demonstrator is shown in figure 3.1. The main elements
of the board are: two COTs FPGAs, one SRAM-based and another FLASH-based; the
SpaceFibre E-SATA connectors, routed to the SerDes transceivers of the SRAM FPGA;
the programming SRAM memory for the FPGA firmware; ADCs connected to the power
rail for continuous current monitoring; and the PC-104 connector that includes the UART
and GPIO pins used to interface with the rest of the payload of the cubesat. Since there
are no other SpaceFibre nodes in the payload, the SpaceFibre data connectors are routed
in loopback, so that the two SpaceFibre ports will receive the same data they sent, and
one port will act as both ends of the link. The ADCs are radiation-hardened, and monitor
the FPGA power rails, in case radiation upsets induce high current events in the FPGA.

The flash FPGA is used to connect and multiplex signals from the ADC and PC-104
connector and drive them into the SRAM FPGA. Apart from that, all the firmware that
was developed was for the SRAM FPGA, containing the LEON3 SoC with the SpaceFibre
IPs. The SoC is used to run the necessary software to perform test runs, housekeeping
monitoring for both IPs and reporting the telemetries them to the OBC.

23
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Figure 3.1: SpaceFibre In-Orbit Demonstrator board

3.2 Developments carried out

The developed System on Chip is presented in figure 3.2. The central elements are the
LEON3 processor connected to 4 AMBA buses:

• The main AHB bus: this high-performance bus is connecting the elements with
the highest bandwidth. In this case, those elements are the memory controller for
both SRAM and ROM containing the user memory and the boot image for the
software respectively, the Debug Support Uit, and the three controllers for the APB
buses.

• The peripheral APB bus: the slower APB bus is used to manage peripherals
that do not require a high-bandwidth, such as low-speed communication devices
(UART and SPI) and managing control signals (interrupt controller and GPIO).

• The SpaceFibre APB buses: each SpaceFibre IP uses the generated user clock
provided from the SerDes transceiver. This is due to the transceiver sampling and
providing the parallel data at its input using the user clock, generated by dividing the
main reference serial clock. Since the line rates for both transceivers are different, the
generated user clocks are also different, hence the need for two separate APB buses
that work at different clock frequency. The SpaceFibre APB buses are controlled
from an AHB to APB bridge, that converts the signals from an AHB RMAP to APB
signals. There is no need for a full APB controller since the bus is only connected
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Figure 3.2: developed SoC

to one data source and sink. However, since the system frequency used for the SoC
is different from both user clock frequencies, an appropriate clock-domain-crossing
must be implemented inside this module. For that, handshaking along with double
flip-flops to avoid metastability were included in the AHB to APB interface.

The SoC was implemented following the instantiation of each GRLIB component, and
interconnecting them to the appropriate bus along with providing an index, address and
mask compatible with the state-space of each peripheral. To facilitate the process, one
of the baseline SoCs provided by Gaisler in the GRLIB was used as an example on how
to put together the different components in the SoC. It is important to comment that,
to facilitate configuration of the SoC, usually all cores are configured by using VHDL
generics, that can be modified in the file config.vhd file. Apart from including the GRLIB
elements shown in figure 3.2, after each important piece was introduced in the SoC,
a validation in the board was performed to make sure that the behavior was correct.
Since the detailed technical characteristics and specifications of the SpaceFibre IPs and
hardware components such as ADCs and memories cannot be disclosed due to commercial
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reasons, a short and general summary of the activities is presented here.

3.2.1 DSU validation

The first step was to instantiate the LEON3 system with the AHB bus and the APB bus
along with all elements of the Debug Support Unit (DSU). A first bitstream was generated
to check the capability of the FPGA to be programmed from the flash memory, as well
as setting up the debug communication via UART connected to a PC running GRMON,
which would allow to verify all elements within the SoC. To set-up the bitstream gener-
ation for programming from a flash device, a tutorial can be found in [44]. To validate
this step, the ROM flash for the SRAM FPGA was programmed with the bitstream, and
GRMON launched connected to the UART with the following command written in the
windows command line:
grmon -uart \.\\comport
Once it recognizes the LEON3 processor with the DSU, a summary of the elements in-
cluded in the SoC is displayed upon connection. More detailed information, including the
address ranges and the obtained sizes of connected memory can be obtained by issuing
the info sys command in the GRMON prompt.

3.2.2 Memory controllers validation

Before being able to run code in the LEON3 processor, it was necessary to instantiate the
memory controller with the appropriate address space and word size parameters. Like
most peripherals, its configuration can be accessed in runtime. However, since memory
should be correctly configured at implementation time, an input port to the memory is
provided where configuration parameters can be written as VHDL constants. Once inte-
grated into a new bitstream, both SRAM and ROM memories could be validated. For
the SRAM memory, the BCC compiler was used to compile the dhrystone benchmark for
a LEON3 SoC, which would also verify that the LEON3 processor worked correctly. The
command used to compile with bcc from the Windows command line is:
./sparc-gaisler-elf-gcc dhry.c -o dhry.elf -lm -mcpu=leon3 -msoft-float

The added flags are important to obtain correct behavior. The binary file was be loaded
in the SRAM memory from GRMON using the load command. Then, using the run

command, the testbench was executed. After that, to verify the ROM memory and con-
troller, a boot image was created from the binary file using MKPROM2 with the following
command:
mkprom2 -leon3 -rmw -ramsize 8192 -ramdwidth 16 -ramws 1 -romsize 8192 -romwidth

16 -romws 5 -msoft-float dhry.elf

It is important to specify correctly all memory parameters and waitstates. The waitstates
are used to introduce no-operation (NOP) instructions to wait for a memory access in case
the memory is not fast enough to provide data in time. Before programming the ROM
memory, a preliminary check on its communication with the processor shall be done by
sending the command flash in the GRMON prompt, that will use the Common Flash
Memory Interface (CFI) if supported by the ROM memory to send the characteristics
of the memory. If the information is retrieved correctly, the flash memory can be erased
with flash erase all and then programmed with the boot image with flash program

dhry.prom, both commands issued in the GRMON prompt.
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3.2.3 SPI controller and multiplexing validation

The next step was to set-up the SPI controller to communicate with the ADCs connected
to the power rails. After adding the SPI controller connected to the APB bus in the
SoC, it shall be configured in runtime as stated in GRLIP IP catalog [7], so that each
SPI transaction is compatible with the waveforms as specified in the ADCs datasheet. To
configure the ADC, GRMON’s DMA was used to write to the configuration registers of
the SPI controller in the address offsets shown in the GRLIB IP catalog. Then, reads to
the different channels of the ADC were issued following the same procedure by writing
the address of the SPI channel in the SPI transmit data register, and the received data
was checked in the SPI received data register. To validate the measurements from the
SPI, a multimeter was used to measure the voltages at the input pins of the ADC, and
that value compared to the one read from GRMON.

3.2.4 SerDes transceivers validation

Before integrating the SpaceFibre IP cores, the loopback routing used in the board to
emulate both ends of the SpaceFibre link with a single port, and reference clock from an
independent oscillator used to reach 2.5 Gbps were tested. Simple designs configured to
work with a reference clock of 125 MHz and set-up for the high-speed transceivers were
integrated in the SRAM FPGA. The design includes several status signals that indicate
that the transceiver’s Phase Locked Loops (PLLs) were correctly locked to the reference
clock and are ready to send and receive data. Those status signals were mapped to
test-points in the board, and checked that after a reset the transceiver would initialize
correctly and be ready to transmit data at the desired rate.

3.2.5 ESA SpaceFibre IP integration and validation

The first SpaceFibre IP to be integrated was ESA’s. It includes the necessary elements to
be connected to the AHB bus using the AHB to APB bridge with clock-domain crossing.
The control interface and data generator and checker already included the APB interface.
Hence, these two elements that use different indexes for the APB communication were
connected to the AHB to APB bridge and to the SpaceFibre IP itself. The IP was then
connected to the SerDes transceiver, appropriately configured to provide the necessary
interfaces with the IP as well as use the data rate for which the IP is configured (2.5 Gbps
on this case, with a reference clock of 125 MHz for an input data width of 32 bits, and
configured to generate 8b/10b output). The clock used for all the SpaceFibre IP blocks
shall be the output user clock from the transceiver, since it is the clock that the data is
aligned to. The transceiver must be set up to be reset either from the main board reset or
from a software reset coming from the AHB bus. The SpaceFibre IP reset must be issued
from the transceiver, since it can only exit the reset state when the transceiver has been
successfully locked to the reference and is providing a stable output clock signal. Hence,
the IP was connected to the reset done signal from the transceiver.

When it comes to its validation, it was firstly done manually by using GRMON to write
to the configuration registers of the IP, that are detailed in its user manual. Details
about the registers cannot be shared in this report. Hence, the validation is summarized
as enabling the IP, waiting until the lane is set-up after a sucessful handshake between
transceiver and receiver and enabling the data generator/checker, starting to transmit
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data. Status signals are checked for the correct lane state and absence of errors.

After the IP was verified and integrated, the driver written in the C language and provided
by ESA was adapted to the address space of the SoC, compiled and a repetitive test that
would check for errors and deviations in the normal operation as well as a check for the
transmitted bandwidth was run to confirm the correct behavior of the IP. This code would
be the baseline used to develop the final software of the demonstrator.

3.2.6 STAR-Dundee SpaceFibre IP integration and validation

After the successful integration of ESA’s IP, the last step in the process was the integra-
tion of STAR-Dundee’s SpaceFibre IP. The IP was provided in the form of an encrypted
netlist, without access to the VHDL code. Besides, a control block to manage the reset
of the transceiver was provided. The reset block is connected to the board reset, and,
similarly to ESA’s block, it will wait for a stable clock input to the IP to release the reset.
The control interface of the IP had to be adapted to manage the APB transactions and
addressing to have access to all configuration and status parameters, which was done with
the help of STAR-Dundee. Besides, the AHB to APB bridge had to be modified to fully
comply with the AMBA 2.0 standard, since, originally, the signal psel was only compliant
to the AMBA3.0 standard. The IP also integrated a data generator and checker internally.
After that, the transceiver was instantiated and configured to work at a line rate of 1.25
Gbps, this time with input data of 40 bits, since the 8b/10b coder was already integrated
into STAR-Dundee’s IP. The IP was connected to the transceiver, and the APB interface
to the AHB to APB bridge which, in turn, was connected directly to the AHB bus.

Once finished the development of the firmware, the last validation was performed following
the same steps as for ESA’s IP: starting with GRMON manually setting-up the parameters
for the core, and following with the final software validation using C code to configure the
transceiver and set it up to transmit and check test-data, gathering all metrics of errors
or potential problems.

3.2.7 Final validation

A final validation with the Thales software responsible for the project was performed,
running all final routines and emulating the commands that would be sent from the OBC
to the board during the mission. It was also relevant to use the oscilloscope to inspect
the signals and transactions, to make sure that the electrical levels and timings were ac-
cording to the specification.

As a final remark, the demonstrator did not implement any SEU prevention or mitigation
techniques. However, it is re-programmed every time a test is run, clearing all possible
errors caused by radiation effects. Besides, one of the goals of the demonstrator is to
observe potential SEU occurence in LEO for the SRAM FPGA, and tests can fail without
causing any harm to the system.



Chapter 4

SEU injection in the SpaceFibre IP
core

This chapter presents the methodology elaborated to perform a SEU injection campaign
in the SpaceFibre IP port. The applied methodology is described in detail, since it pro-
vides valuable guidelines for future injection campaigns, and the author proposes its usage
as an additional step in the verification phase, allowing to assess the reliability of a par-
ticular design for a determined mission, and observe the failure modes of the circuit in
order to propose and evaluate different mitigation techniques. It is applicable to any
implementation which includes a soft-processor—a majority currently in the sector, and
does not introduce a significant amount of additional logic in the design.

4.1 Design choices

Before introducing the methodology, the design choices that were taken during its elabo-
ration are presented:

• The SEM IP was chosen as the injection engine, since it is a convenient and already
tested tool for injection through partial reconfiguration that does not imply any
drawback compared with custom solutions if the injection speed is not critical.

• For the correction, the automatic mechanism of the SEM IP was chosen. It uses the
ECC code calculated for each frame combined with the CRC for the whole CRAM
to detect errors. Even though writing back the corrected bit through the ICAP is
possible and slightly faster, the automatic mode was chosen to observe potential
functional failures in the SEM IP that would risk the correctness of the experiment
and that would not be caught by the alternative. In the results section, these failures
are explained in more detail.

• The integrated LEON3 processor was selected to monitor the internal signals of
the SpaceFibre IP through the APB interface. This alternative was preferred over
the development of a custom and faster hardware-FSM, since, due to the amount
of signals to monitor, it incurred a high cost in logic occupation that would not
be used for the mission and would introduce additional vulnerabilities. Besides,
it reduces the cost of developing the injection campaign, since having to design a
custom interface for every circuit to be tested would be too costly. Moreover, the
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usage of the APB bus as an interface with the DUT is fast enough to monitor the
change in any of the signals, with a transaction latency of just 4 clock cycles for
each status register, or less than 1.8 µs for all the monitored signals.

• The UART interface of the SEM IP was chosen for controlling the injection and
correction. Again, avoiding a custom internal interface with the LEON3 processor
has the same advantages discussed above. Besides, having an external monitor for
the injection allows automatically rebooting and reprogramming the FPGA upon
the occurrence of uncorrectable errors or functional failures of the SEM IP, hence
completely automatizing the process and removing the need for human interven-
tion. On top of that, the UART was also chosen as the interface with the internal
supervisor, the LEON3 processor, and the test controller, the PC, allowing for a
simple synchronization between both of them.

• ESA’s SpaceFibre IP was selected for the injection. Due to time constraints, only
one injection campaign was planned, and ESA’s IP was chosen over StarDundee’s
because the full VHDL source was available, allowing for a distinction on the differ-
ent layers of the IP, and performing separate runs into each of them. Besides, ESA’s
IP was available from the beginning of the project, allowing to start the integration
and development of the drivers faster when compared to the alternative.

• Python was the programming language of choice for the test controller. It was
chosen over the alternatives for the simplicity of managing the serial port—with
the PySerial library [45]—and processing the data managing different files, while
providing more than enough performance to control the experiment in a timely
manner.

• Due to accessibility limitations to the demonstrator board related with Covid-19,
the design was ported to the SSDP board developed by Thales Alenia Space. This
board is commercially available through Cobham Gaisler as the GR-XCKU board,
and includes a KU060 FPGA, flash, RAM and ROM memory with very similar
characteristics to the the demonstrator board. However, the loopback e-SATA con-
nector used in the demonstrator is not present in the Thales board. To substitute
it, a loopback FPGA Mezzanine Card (FMC) was connected to loop-back the high-
performance pins from the FMC interface to the SpaceFibre lane. Besides, the
FMC card provides a 125 MHz oscillator that was used as the reference clock for
the SpaceFibre IP.

• To detect failures in the IP upon fault injection, a continuous inspection of the status
registers of the IP was done. Apart for the general reasons justified in section 2.2.7,
the other main reason to choose this mechanism with respect to using two IPs—one
of them as a golden-model—was the difficulty to synchronize two SpaceFibre IPs
functioning identically, specially upon the occurrence of any failure, which would be
impractical.

4.1.1 Limitations

There are three main limitations to this methodology:

• It can only be applied to Xilinx FPGAs due to the usage of elements inherent to
their architecture
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• It cannot act on registers or BRAM memories, only in the rest of the configuration
memory not composed of storage elements

• It can only be used with designs that integrate either a soft or hard processor, since
it is the element used to inspect the signals for the occurrence of failures

4.2 Architecture of the injection experiment

There are 4 main components of the architecture that need to be present in this method-
ology:

1. The devide under test: SpaceFibre IP port.

2. The internal supervisor: LEON3 processor.

3. The test controller: a PC.

4. The injector: Xilinx SEM IP.

This section details the functionality and purpose of each element from the architecture
presented in figure 4.1.

KU060

JTAG pins

USB (SEM IP UART interface)

USB (Leon STD output)FTDI
mini

board

UART
pins

URT 1
URT 2

FMC loopbackSpFi lane tx/rx

125 MHz oscillatorSpFi ref clk

GTH

Test Controller (PC)USB (KU060 JTAG)

JTAG to
USB

SpFi
demonstrator

board

Figure 4.1: Hardware Architecture for the injection experiments

4.2.1 DUT

As mentioned before, the Gaisler/ESA’s SpaceFibre IP Port was chosen to perform the
injection. It is composed by the IP core itself, along with one control APB block used
to read the status signals and write the control signals of the IP and a data generator
and checker, also including the APB interface to monitor eventual errors that may not
be addressed by the QoS measures of the IP. As explained in section 3.2.5, managing the
reset from the APB interface allows to recover the state of the IP after an error is injected
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and proceeding to the next one, making each injection independent from the previous
one, since all soft values and registers are reset.

The IP is configured to work with two simultaneous Virtual Channels. The first virtual
channel would produce packets of 1000 words of 32 bits, and the second virtual channel
would produce packets of 5000 words of 31 bits. All that information is sliced in frames in
the lane layer, with length of 64 words of 32 bits. Both of them are set to use a bandwith
of 47% each, with the remaining 6% reserved for broadcast messages.

4.2.2 Internal supervisor

The LEON3 processor working at 50 MHz is used to control all APB signals of the core.
Having the combination of a soft-core plus any AMBA-based peripheral, the standard in
the space sector, allows to easily monitor all internal signals in a fast and convenient way.
Thus, the LEON3 is continuously running a bare-metal C code that includes:

• A UART driver to communicate with the test controller. It uses the UART code
provided with the BCC compiler, adapted to implement a simple protocol in which
every transaction waits for an ACK, the character ’a’ sent from the test controller,
before continuing the execution. This simple protocol implements a sofware bar-
rier, allowing to synchronize both threads running in the LEON3 and in the test-
controller respectively.

• A SpaceFibre driver to communicate with the DUT. Adapted from the code pro-
vided by ESA, it implements functions to read and write to any status or control
register, as well as initialization and reset routines to set up the lane connectivity
and configuration.

• The FSM controller used during the injection process. It monitors all status signals,
looks for deviations from the nominal values and synchronizes with the injection
thread to collect all failures, report them and prepare the SpaceFibre IP for the
next injection. It is presented with more detail in section 4.4.

4.2.3 Test controller

A Personal Computer (PC) running Python code acts as the test controller. It supervises
the experiment, commanding both the internal supervisor and the injector and coordi-
nating them. Besides, it is programmed to obtain information about the status of the
internal supervisor and injector and automatically reboot and reprogram the FPGA in
case any of them fail during the injection. On top of that, it stores the results from every
injection into a log file for further processing. Thus, the Python code is continuously
running during the experiment, being the main component of the software architecture.
It is presented with more detail in section 4.4.

The test controller is connected to the board with a USB cable that is plugged into the
USB interface of a miniboard containing an FTDI chip, which is soldered to transmit two
UART connections with one TX and one RX pin each through the USB cable. Another
USB cable is connected to the KU060 USB JTAG device. It allows to reboot the FPGA.
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4.2.4 Injector

As mentioned before, Xilinx SEM IP is used to inject faults in the configuration memory
emulating SEUs. It uses partial reconfiguration, writing values to the configuration mem-
ory through the ICAP interface in idle mode, and looking for errors and automatically
correcting them in observation mode. It is capable of addressing multiple single-bit errors,
as long as they are located in different frames, and to detect the presence of an error in
an unknown position thanks to the CRC mechanism. It is configured in the mitigation
and testing mode, which allows to inject and repair errors, using both ECC and CRC.
The IP was generated to run at the system clock frequency (50 MHz), with the ICAP and
FRAME ECC placed in the example design and with error classification disabled. since
the injections will be done in the addresses of the essential bits, the classification mode
would only be useful for random injection. The example design was generated with the
Vivado tool, and the VHDL sources included in the firmware, instantiating the top level
of the example design in the SoC connected to the system clock. The UART interface
was connected to the board UART pins.

During the experiment, the automatic reports generated in the observation state when
attempting a correction are used to gather information about whether the injection and
correction were successful, or if there was any anomaly, such as two or more errors appear-
ing in one injection. The test controller is configured to recognize the different reports
offered by the SEM IP upon any circumstance. These example reports are extremely
useful, containing the information of the amount of errors corrected, their location, and
whether an injection was successfully performed or not, indicated by the transition from
the idle state to the injection state. The example reports can be found in appendix D of
[19].

4.3 Testing framework

Before proceeding with the injection, there is a number of steps that need to be performed:
preparing the injection addresses for the test, the amount of time the DUT will run
between each injection and the recovery mechanism. These topics are presented in this
section.

4.3.1 Addresses for the injections

As explained in section 2.2.3, the configuration memory is stored in a distributed manner
inside the FPGA, programming the functionality of the CLBs, BRAM memories, DSPs
and routing interconnections, among others, within the FPGA. It is organized in frames
arranged in rows and columns of the same configurable resource, with several frames per
column, forming clock regions inside the FPGA. To perform the injection, the frame ad-
dresses, and words and bits within those frames, that belong to the DUT must be obtained.

For that matter, Xilinx offers the essential bits technology [19] that provides, along with
the bitstream, a mask that indicates whether that configuration bit is used in the de-
sign or not, stored in the “.ebd” file. To generate the ebd file, the following line must
be added to the constraints file: set property BITSTREAM.SEU.ESSENTIALBITS YES

[current design]. The mapping from the file to the configuration memory is straight-
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forward: each line of the file represents a configuration word, and each character in a line
a configuration bit, the line starting with the LSB and finishing with the MSB. For the
Ultrascale technology, each frame is composed of 123 words. The first frame, which corre-
sponds to the first 123 lines, is a dummy frame, and then each frame is located according
to their linear address. This is, starting from the frame with linear address 0, increasing
one by one without interruption until the last frame of the configuration memory. Then,
the problem is reduced to locating the bits within the ebd file that belong to the DUT in
which the injection is to be performed.

To do so, the first step is to constrain the DUT in a known region of the device. That can
be done using the Xilinx Vivado tool, opening the synthesized design in the device view—
after synthesis has been successfully completed— and clicking the button for creating a
new pblock in the toolbar. In this work, the maximum granularity obtained to translate
a region of the device to its location in the configuration memory was one configuration
column within a clock region, i.e., a column that comprises the height of a full clock re-
gion, and contains several frames. Each column is composed of one kind of configuration
blocks [19]: CLBs, BRAM blocks, DSPs, etc. Therefore, the DUT must be constrained
in a pblock that contains one or more complete columns. An example of a clock region
with two pblocks is shown in figure 4.2. For that case, the pblock in the left contains 6
columns of CLBs and one of BRAM blocks—in purple— and the pblock in the right is
formed by 3 CLB columns and one BRAM column.

For the case of this work, two designs were analyzed with the injection: one in which
each of the main layers of the SpaceFibre protocol—lane, broadcast, interface, virtual
channel and retry—was contained in a separated pblock, used to analyze the vulnerability
of each layer, and another one in which the whole IP was contained within a single pblock.
After drawing the pblocks, entities from the design’s netlist can be assigned to them by
left-clicking on them and selecting “floorplanning → assign to pblock”. Before saving the
design with the pblocks, it is important to check that each of them has enough resources to
implement the logic inside. It can be confirmed by clicking on each of them, and checking
in the “Pblock Properties” tab the physical resource estimates given by Vivado.

Once the synthesized design is saved, one option must be set in Vivado before generating
the bitstream. From the toolbar, navigating to “Tools → settings → project settings →
bitstream, the box “logic location file” shall be checked. This file contains the location of
the distributed memory elements—shift registers, BRAMs and regular registers—that are
masked by Vivado during a configuration readback, but can be accessed with the readback
capture through JTAG. In this work, it is used to help obtain the physical address related
to a particular pblock.

After the bitstream has been generated, there are two ways of obtaining the addresses of
the columns in which the logic was implemented:

• Using the implemented design: the location of a particular column and row
to obtain the physical address can be visualized by opening the device view in the
implemented design. The row directly corresponds to the Y coordinate of the clock
region, shown directly in this view. The column address can be obtained by counting
the major columns formed by blocks of the same function, excluding the columns of
laguna tiles, the terminal columns— whose tile name begins with “INT TERM”—
the DSP columns, the gap columns—whose name starts with “FSR GAP”—and the
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Figure 4.2: Pblocks drawn inside a clock region

gaps that can be appreciated visually, and whose name starts with “CFRM CBRK”.
Thus, starting from 0 and counting upwards to the right, row by row, excluding the
aforementioned columns it is possible to obtain the column address range for any
implementation. Besides, using the device view from the implemented design is
recommended to inspect the interconnection blocks that each pblock contains, key
elements that affect the injection and are a cause of failure within the configuration
memory but are not visible in the synthesized design when drawing the pblocks.
In some cases, such as for the interface layer shown in figure 4.4, the interconnect
elements that contain routed signals within the layer—and hence, should be used
in the injection—are not included in the pblock. For this case, some additional
inspection is recommended to identify the columns that should be included in the
injection list, and not just including the pblock columns.

• Using the logic location file: the method presented above can be tedious and
more prone to failure for bigger designs that span a large range of configuration
columns. In order to help as a guide locating the row and column address of a
particular element in the design, the logic location (“.ll”) file can be used. It only
covers memory elements within a design, but it is enough to locate a sub-module
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Figure 4.3: Pblocks that contains the broadcast layer, in columns 2 to 6

Figure 4.4: Interconnect and CLB columns in the interface layer

that contains some sequential elements. To do so, the name that the sub-module
has in the netlist can be used to locate it in the logic location file. That can easily
be done by using the integrated search of any text editor. After that, as explained
in the header of the file, the physical frame address is located in the third column
of the file, in hexadecimal format. From that address, the row and column can be
extracted, and used as an indication to where the sub-module is located within the
device. With that information, using the device view of the implemented design,
the rest of the columns contained in the sub-module can be obtained by manually
counting from the reference column obtained. In general, the logic location file will
allow to locate most of the CLB and BRAM columns for any design.

Once the set of columns containing the logic for the DUT has been determined, the final
step is to obtain the addresses of the frames related to them. Obtaining the physical ad-
dress from the row and column within the FPGA is straightforward, with the exception
of the bits that indicate the frame within a column, since not all columns have a fixed
number of frames. Besides, the ebd file contains the essential bits located according to
their linear address, with the physical address not being specified. Then, a translation
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between physical and linear addresses solves both issues at the same time, since the linear
address is incremented frame by frame, with no missing values. To do so, again the SEM
IP was utilized. It includes a very useful command to translate a linear address to its
corresponding physical address. By sending the character ’T’ along with a space, and the
linear address in the same format as specified in table 4.4.1, the IP will answer with the
physical address for that parcitular frame. Thus, writing a script that repeats the process
for the 37651 frames that are contained in the configuration memory of the KU060 FPGA,
and recording the answer allows to obtain a table that contains both addresses for the
same frame.

Finally, with the range of columns where a particular sub-module or design is implemented
within the FPGA, and the translation table between linear and physical address, the
process of obtaining the essential bits inside a design that belong to the DUT can be
automatized. The first step is to translate the row and column to a range of physical
frame addresses. Then, with this range, and using the translation table from physical to
linear frame address, a list of all linear frame addresses of interest is elaborated. This list
can be used to locate the frames inside the essential bits mask, and obtain the essential bits
for all the frames that belong to the DUT. Finally, with the frame address and including
the word and bit index, the linear configuration address for each essential bit is written
to a file in the form of a list of addresses in which injection should be performed.

4.3.2 Time between each injection

A value that should be carefully chosen—especially when the experiment is done in a
circuit that does not perform a bounded operation, but a continuous one—is the amount
of time in which the circuit is functioning after the injection. This is the amount of time
in which the error can propagate and cause potential failures before being corrected. To
calculate it, the size of both packets and frames, as well as the line rate were used.

The SpaceFibre Port IP is configured with a frame size of 64x32 bits, that are in charge of
encapsulating and sending the content of packets whose biggest size is 5000x32 bits. The
line rate used is 2.5 Gbps. Taking into account the 8b/10b encoding, it leaves an effective
rate of 2 Gbps. Leaving a time of 1 ms between injections leads to 2 million bits being
transmitted, which corresponds to almost a thousand SpaceFibre frames containing more
than 12 complete SpaceFibre packets.

The IP is configured for a data bandwidth of 94% splitted in two virtual channels. The
remaining bandwidth is used for broadcast messages to control and maintain the con-
nectivity. Since only a 6% of time broadcast information is transmitted, the initially
estimated time of 1 ms, corresponding to 12 packets of 5000 bits is not enough. The
case in which only 12 packets of 5000 bits occupy the lane and no broadcast packets
were sent was possible. Thus, the time selected was 5 ms, statistically ensuring that at
least three broadcast packets would be sent, for a total minimum of more than 62 packets
transmitted, and almost 5000 frames. This time allows to ensure that all functional states
are reached for each injection, maximizing the probability of a configuration error being
detected as a functional failure.

The time between injections fixed in this section is the absolute minimum. As mentioned
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in section 4.4, the circuit will be kept running while new failures are being produced,
thus, in many cases, it lets configuration errors propagate at least one polling loop more
than the 5 ms, continuing in case any new error appears during that polling loop, which
allows to showcase the behavior of the circuit upon a cascaded error scenario, in which
previous configuration errors cause the circuit to enter failure-recovery states—such as a
re-transmission—in which, in turn, new errors can be produced. To validate the approach,
several independent injection runs were performed, in which the IP would be in different
states between each of them, but the amount of failures produced was similar. Therefore,
the configuration errors propagated to the states causing almost the same failures in all
different runs. The results from these independent runs are presented in chapter 5, and
used to estimate the confidence interval of the amount of failures for the complete injection
of a module.

4.4 Software architecture

In this section the software architecture is presented. It is composed by two main threads
running simultaneously in the LEON3 processor and the test controller. Since both
threads work as FSMs with synchronization through barriers, the architecture is pre-
sented as an FSM diagram with both threads in parallel. It is then straightforward to
convert the diagram to code. Besides, a few indications on how to implement the serial
communication drivers are given.

4.4.1 Software FSM

The FSMs are shown in figure 4.5. The left FSM corresponds to the thread running on
the test controller, and the right one to the internal supervisor. It can be divided into
three main steps:

Initialization

First of all, the FPGA is rebooted to ensure a correct and known state. Then, the serial
links are set up in the test controller. The code automatically recognizes the logical serial
ports in which the UART connection is mapped by scanning the names shown by the OS.
Then, the PySerial API is configured with the parameters shown above, and prepared to
transmit data.

In the LEON3 processor, after the reprogramming is done, the UART driver is set up
and enabled. Then, the IP is reset, initializing in order the GTH transceivers and the
DUT , once the reference clock is locked. After that, the data generator and checker is
configured through the APB interface, and the IP is enabled to establish lane connectivity.

Once both threads are configured to transmit, an initial synchronization that consists of
a handshake with double acknowledgment to make sure that both threads are ready to
start the experiment is done.

Injection

In this phase, the test controller send the injection command to the SEM IP. It is done by
writing an ’N’ character, followed by a space and the linear address of the bit to inject,
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Figure 4.5: Software Architecture for the injection methodology
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written in the format specified in table 4.4.1.

Bits 39-36 35-29 28-12 11-5 4-0
Content 0xC 0s Frame linear address Word address Bit

Table 4.1: Linear address format for an injection using the SEM IP in the KU060 device

The frames to inject are written in the same format in a file that contains a list of all con-
figuration bits that belong to the design. Then, the test controller waits for the response
of the SEM IP, indicating that the injection was performed successfully by a transition
to the injection state and then back to the idle state. After that, the test controller waits
for 5 ms before sending an ’I’ character to the LEON3 processor, confirming the injection.

In the meantime, the SpaceFibre IP is continuously running in a loop, checking the values
for all status registers. If any deviation from nominal behavior or a failure is detected, it
is registered in an array of flags, with one position for each potential error. The internal
supervisor keeps polling the registers until it has been confirmed that the injection was
performed, 5 ms passed after its confirmation and there are no new errors registered in the
status registers—i.e., if 5 ms passed, but after each new polling loop new errors appear in
parameters that had a nominal value, the polling will continue—. This technique prevents
the duration of the polling loop to hide potential errors that may appear, making sure
that all errors are registered.

Correction, report, status check and recovery

Once the injection phase is over, the LEON3 processor sends a message to the test con-
troller indicating that it exited from the polling loop. If any failure was detected, then a
’C’ character is sent and the FSM proceeds to report the failures by sending one by one a
short command indicating the occurrence for each of them. If no deviations from nominal
behavior were registered, then the ’N’ character is sent, and no failures will be reported.

The test controller waits until either an ’N’ or ’C’ character is received. Then, it com-
mands the SEM IP to transition to the observation state, where it will detect the injected
error and automatically attempt to correct it. If any anomaly on the SEM IP’s behavior—
a double error is found, it does not respond to the command, or an uncorrectable error
happens—a reboot is performed after the report has been collected. After that, if an ’N’
character was received before, the report is collected, writing to a log file the short codes
received for each failure.

Before collecting all failures, an additional check is done in the LEON3 processor, ob-
taining the value of the lane state. This check is done to make sure that the correction
has happened before it, and to gather further information about the impact of the con-
figuration fault that was injected. If the lane state was not active, it means that the IP
could not recover the connectivity, even after the correction of the error, and it is notified
and logged in the test controller. In any case, after the lane state check, a software reset
is attempted, with a re-initialization of the IP. If this re-initialization is not successful,
it is also notified, and the FPGA is rebooted and initialized. If the re-initialization is
successful, it is indicated by a command. This means that the IP recovered its internal
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state and is running with a configuration clear from errors. Then, both threads repeat
the injection process.

To reboot the FPGA, Vivado is launched as a sub-process in batch mode from the python
logic to run a tcl script that reboots the FPGA using the JTAG connection with the
following command:
vivado -mode batch -nojournal -nolog -notrace -source reboot.tcl

4.4.2 Serial Communication

The serial communication between the PC and the LEON3 processor and the SEM IP in
the KU060 FPGA use both the same protocol with acknowledgment for each command.
Both are set up to run at 115200 bauds per second, a byte size of 8 bits, no parity check and
one stop bit. These settings were chosen to maximize performance and minimize latency.
The PySerial API is used to write driver functions that manage the communication for
both serial interfaces, creating a driver that is used to directly send and receive commands
through both channels. Special care is taken to manage the input buffers from each
channel, using the API functions that read character by character from the buffer and
regular-expressions implemented to recognize the different commands and reports. Using
this implementation allows to also reduce the latency to the minimum, and avoid potential
buffer overflow scenarios.

4.5 Evaluated parameters

In this section, the status parameters from the SpaceFibre Port IP that are collected
during the injection are presented along with their severity. Except the re-initialization
parameters, all status parameters are monitored in the polling loop during the injection.
It is important to remark that only the occurrence in the deviation from the nominal
value of these parameters is collected, but not the amount of times this happens. It
is expected that, when the configuration memory is affected and the logic operation of
any circuit is changed, the occurrence of these failures will be recurrent unless they are
corrected. The goal is to compute the amount of configuration bits sensitive to an error
in the configuration memory, and to characterize the kinds of failures that a configuration
bit will cause.

4.5.1 Severity of the failures

Before describing the parameters, it is useful to classify the severity of the failure de-
tected by each of them. Each parameter was assigned a severity depending on whether a
deviation was expected under nominal behavior, or if recovery from the failure was con-
templated in the SpaceFibre protocol. Besides, three other levels of severity were given
to failures to recover lane connectivity after the configuration error was corrected. When
analyzing the results, each essential bit causing a failure will be assigned the severity of
the deviation with the biggest severity caused by the error in that particular address. The
levels of severity for this work are then:

• Severity 0: failures expected during nominal operation, related mostly with po-
tential noise in the channel. Completely transparent to the rest of the system.
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• Severity 1: failures not expected during nominal operation. However, the Space-
Fibre protocol contemplates recovery measures to correct them in a transparent
manner for the application. They may affect the functionality on system level if
not addressed immediately, since they may be recurrent and cause the recovery
mechanisms to fail.

• Severity 2: failures not expected during nominal operation, not transparent to the
application layer or without a recovery mechanism. These failures are critical for the
operation and the functionality of the device, and will propagate into other failures
in more elements of the system, potentially causing harmful failures at higher levels.
The reception of erroneous data in the application level, or a fatal protocol error
overriding data in the buffers are examples of failures categorized with this severity.

• Severity 3: related to the state of the circuit upon error correction, a failure of
severity 3 is caused when the circuit is not able to recover the connectivity even af-
ter the correction, causing a need for an explicit reset of the IP and the transceiver
managed from the system level. This is, either from the software (internal super-
visor) or external to the FPGA. It is recoverable if, and only if, this scenario is
contemplated in the system application.

• Severity 4: this level was originally not contemplated. However, after the first
injection runs, it arose as highly critical. The scenario in which a manual reset from
higher a level, i.e., application software, is not necessary but, if issued, or upon other
eventual error that causes the lane to disconnect or reset, will cause a severity 5
failure, requiring the reboot of the whole FPGA to recover, is categorized with this
severity. This scenario was found when, after an error was injected and corrected,
the IP was reset to begin the next injection in a safe state, but this reset would fail
and the DUT would not reach a functional state unless an FPGA reboot was issued.

• Severity 5: the most critical failure, happens when the SpaceFibre IP is not able to
recover functionality by any other mechanism than rebooting and reprogramming
the FPGA. In a mission scenario, this would mean a forced interruption of the
system-level functionality, which could be extremely harmful.

4.5.2 Application layer

These parameters are obtained by the application layer, checking the outputs from the
SpaceFibre IP and comparing them to the inputs in the data generator and checker block:

• Error Counter: number of received words (32-bit words for this configuration)
that differ from the value sent by the data generator. For this test, a 32-bit counter
generates the values to be sent through each virtual channel and broadcast channel,
and, on the reception side, the values are checked comparing them to the previous
received value and ensuring that they are consecutive. Else, one message was lost
or modified, and the error counter is increased. An error counter different from zero
is a failure with severity 2.

• Error End of Packet Counter: number of packets that were interrupted during
transmission—for example, by a lane disconnection is marked by the reception of
an Error End of Packet (EEP) word. An EEP counter bigger than zero is a failure
with severity 1.
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• Late Frame Counter: number of frames that were unusually delayed, or a retry
was needed to transmit them due to a link error. If they are a broadcast frame—
with some control information—they should be ignored by the application. A late
frame counter bigger than zero is a failure with severity 1.

4.5.3 Virtual channel layer

The Virtual channel layer is in charge of managing the flow control for each channel, in
relation to the allocated bandwidth and the reception of Flow-Control Tokens (FCTs)
that indicate the amount of free space in the reception buffer of the far-end:

• Bandwidth Overuse: a virtual channel is using more bandwidth than allocated.
Severity 0.

• Bandwidth Under-use: the maximum idle time in the channel is reached, and
thus, the channel is not currently transmitting data. Severity 1.

• Input buffer overflow: fatal protocol error that is caused when data was received
with a full buffer. It indicates an error in the management of the FCT tokens.
Severity 2.

4.5.4 Retry layer

The retry layer is in charge of addressing CRC errors by keeping the frames in a buffer
until they are acknowledged and re-sending them if necessary:

• CRC-16 error: frames arriving with more than one erroneous bit through the lane.
Severity 1.

• CRC-8 error: frames arriving with a single-bit error through the lane. Severity 0.

• Frame error: invalid frame received. E.g., a different type of frame from the one
indicated with the start of frame word. Severity 1.

• Sequence error: after checking the sequence numbers, data arrives to the receiver
out of order or repeated. Severity 0.

• Retry counter overflow: too many errors were produced, and the counter for
the amount of retry attempts overflows. The link is reset automatically after the
overflow. Severity 1.

• Protocol error: an ACK or NACK were received with an inconsistent sequence
counter, resulting in a link reset. Severity 1.

4.5.5 Lane layer

The lane layer is in charge of managing the connectivity from both ends of the link,
including establishing it and re-initializing it upon signal loss. During initialization, sev-
eral configuration parameters such as the lane capabilities and polarity are exchanged to
ensure a correct communication:
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• Far-end link reset: the far-end has reset the link, and sent lane capabilities,
causing the near-end to reset the link initialization FSM. Severity 1.

• Far-end standby: the far-end sends stand-by words, causing the lane state to
move to standby. Severity 1.

• Timeout: set when the link initialization FSM fails to reach connectivity and the
process timed out. Severity 1.

• Far-end loss: loss of signal words received, sent by the far-end after losing connec-
tivity with the near-end. Triggers a new handshake and initialization of the link.
Severity 1.

• RXERR words received: the lane layer automatically substitutes words that are
not recognized by the IP—for example, because their 8b/10b encoding or disparity
is not valid, or a signal loss, standby or init word are received unexpectedly—by the
RXERR words. Most of the time, their occurrence is related to noise in the channel,
and can be used to estimate the Bit Error Rate (BER). The IP also integrates a
counter of RXERR words received, and when it overflows, a reset of the lane FSM
is triggered. Severity 0.

• Lane state: the state for the lane FSM—also called initialization FSM—is an
indicator of the current state of the IP, and whether it established connectivity with
the far-end successfully. Since the injection and polling loop are issued after the
lane is initialized and in active state, any deviation from this state is considered a
failure with severity 1.



Chapter 5

Results and discussion

In this chapter, results for the different injection runs are presented, reasoning about the
potential causes and consequences of the obtained vulnerabilities, as well as about mea-
sures to overcome them. For each experiment, results on the amount of configuration
bits causing a failure, the amount of bits segregated by their severity and the DVF are
presented.

First, the implementation results in terms of resources and configuration bits are presented
along with a statistical analysis to validate the rest of the results. After that, results from
every significant layer of the SpaceFibre IP are shown, to finalize with the results from
the whole SpaceFibre IP, as well as several comments on limitations shown by the SEM
IP during the analysis.

5.1 Implementation results in the KU060

First of all, it is obvious that the vulnerability of a particular design depends on the
amount of logic that it uses, because the more configuration memory used, the most
likely an SEU is to affect it. Therefore, as first results, occupation of the SpaceFibre
Port IP, and each individual layer in which an injection study is carried out, are reported.
It is important to highlight that these reports only include the part of the design that
is being injected, with the APB clock-domain-crossing, GTH transceiver logic and data
generator and checkers being omitted. Results of implementing the Port in the Kintex
KU060 FPGA, divided by functionality layer or block and for the whole IP are presented
in table 5.1.

Module CLUTs MLUTs FFs RAMB18 RAMB36 Configuration Bits

Broadcast Layer 55 0 28 0 0 11543
Interface Layer 752 24 574 0 0 180487

Lane Layer 496 0 182 0 0 101246
Retry Layer 1146 16 820 1 2 244887
VC Channel 2439 0 1848 16 0 601725
SpFi IP Port 3105 40 2172 6 1 719108

Table 5.1: Resource utilization in the KU060 FPGA for each layer of the SpaceFibre IP
Port

45



Chapter 5. Results and discussion 46

5.2 Results for the lane layer

5.2.1 Statistical validation

Before showing the results of the work, a short statistical validation will be presented. For
that, a series of 10 runs repeating the same injection procedure with identical addresses
and DUT was performed. Ideally, 100 or more runs would provide a more solid result.
However, due to the time-constrains in the project only 10 could be performed, which was
decided were enough given the similarity of the results among different runs. The mean
and variance during the 10 runs are extracted for each parameter measured during the
injection to monitor the deviations from the expected behavior. Finally, the absolute and
relative confidence intervals are presented for each parameter.

This series of injection runs were not performed for the whole SpaceFibre IP due to time
constraints. Instead, the Lane Layer section of the IP was chosen, since it counts with
enough resource count and diversity to be representative—with 101,246 configuration
bits—while being small enough to allow 10 injection runs to complete in a short amount
of time.

The first step is to obtain the amount of occurrences in deviation of the nominal behavior
for each parameter in each run. Since these were the first set of injection runs performed,
bandwidth overuse and underuse were not measured at the time, and they are omitted.
After that, the average value (µ) for each parameter is computed and use to calculate the
standard deviation (σ) using its expression, where N is the number of runs:

σ =

√√√√ 1

N
·
N∑
i=1

(xi − µ)2 (5.1)

By inspection of the values that a parameter takes for different runs and their deviations
from the average, results for each parameter were modeled as a gaussian distribution
around their mean. Then, the 95% confidence interval (CI) can be obtained as:

(x̄− zα/2 ·
σ√
n
, x̄+ zα/2 ·

σ√
n

) (5.2)

Where zα/2 = 1.96 [46]. Finally, also the relative confidence interval (CIR) is obtained
by dividing the confidence interval by the average value for each parameter. Results are
presented in table 5.2.
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Parameter 1 2 3 4 5 6 7 8 9 10 Average σ CI CIR

Sequence error 8196 8177 8173 8190 8170 8154 8131 8163 8191 8203 8186 9.51 ±13.18 ±0.16%
CRC-8 error 6050 6032 6053 6029 6002 6043 6025 6029 6061 6068 6041 9.0 ±12.47 ±0.21%
CRC-16 error 3141 3154 3159 3113 3112 3143 3117 3105 3135 3145 3147 6.49 ±8.98 ±0.29%
Frame error 2751 2778 2752 2747 2753 2741 2737 2774 2776 2754 2764 13.49 ±18.69 ±0.68%
Link reset 9 10 10 16 10 12 10 7 15 15 9 0.71 ±0.98 ±10.89%

Protocol error 34 31 30 37 37 34 34 30 32 32 32 1.58 ±2.19 ±6.85%
Channel error 743 742 727 735 701 728 706 724 690 721 742 0.71 ±0.98 ±0.13%

Signal lost 371 369 368 371 352 363 364 358 353 368 370 1.0 ±1.39 ±0.37%
Lane not active 428 427 428 424 431 419 421 428 428 421 427 0.71 ±0.98 ±0.23%

Stand-by 127 129 131 131 128 128 130 126 132 131 128 1.0 ±1.38 ±1.08%
Init. timeout 114 117 110 111 117 119 110 115 106 104 115 1.58 ±2.19 ±1.91%

Input overflow VC1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Input overflow VC2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Error received VC 1 197 185 198 188 201 197 191 202 193 188 191 6.0 ±8.32 ±4.35%
Error received VC 2 198 191 190 182 198 199 202 200 190 191 194 3.54 ±4.9 ±2.52%
Error received BC 46 41 44 45 40 41 44 44 44 46 43 2.54 ±3.53 ±8.22%

Interrupted packet VC 1 30 26 28 36 33 32 27 23 37 34 28 2.0 ±2.77 ±9.89%
Interrupted packet VC 2 28 27 26 38 28 35 32 31 33 33 27 0.71 ±0.98 ±3.62%

Late broadcast frame 3939 3947 3929 3943 3917 3883 3952 3940 3965 3949 3943 4.0 ±5.54 ±0.14%
Too many CRC errors 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Manual reset needed 17 22 18 17 19 6 9 21 14 10 19 2.54 ±3.53 ±18.59%
Manual reset failed 6 8 7 8 6 5 7 8 8 7 7 1.0 ±1.39 ±19.79%

Manual reset would fail 269 244 294 257 262 264 282 276 264 244 256 12.49 ±17.31 ±6.76%

Table 5.2: Parameter measurements for 10 injections in the Lane Layer and its average, standard deviation and confidence interval
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Severity Amount of bits % Essential bits

0 3523 3.48%
1 6056 5.98%
2 227 0.22%
3 11 0.01%
4 269 0.27%
5 6 0.006%

Table 5.3: Amount of critical bits distributed by severity for the lane layer

5.2.2 Other results

One of the goals of the injection analysis is to derive the DVF (see section 2.2.7). For
that, first, the amount of critical bits must be obtained. The critical bits are defined as
those bits that, when affected by an SEU, will cause a functional failure. As introduced
in section 4.5, for this study, a functional failure will be a deviation in a parameter with
severity of 1 or more, since it is not expected under nominal operation. It is important
to note that the values for each parameter presented in table 5.2 count the amount of
configuration bits in which a particular parameter experiences a deviation throughout the
injection. Still, it is common that more than 1 parameter is affected by an error in the
same configuration bit. Hence, the critical bits are not obtained by summing values from
the aforementioned table, but from counting the amount of bits in the injection that have
at least one deviation in a parameter with severity 1 or higher. The obtained amount of
critical bits in the lane layer are 6572. The amount of essential bits—configuration bits
that belong to the Lane Layer— is 101246. Then, the DVF can be obtained as:

DV F =
NBcritical

NBessential

=
6572

101246
= 0.065 = 6.5% (5.3)

Those critical bits can be divided by the severity of the worst failure that a SEU would
cause if it affected that particular bit. Results for the first run are shown in table 5.3

5.2.3 Discussion of the results for the lane layer

Statistical validation

The results for the confidence interval show that the values obtained for just an injection
run accurately reflect the critical bits, with a low variance and small 95% confidence in-
terval, indicating that most of the values of successive runs would have low dispersion.
This result allows to just use one injection run for the rest of the layers, and take the
obtained values as statistically significant, saving a substantial amount of time for the
injection campaign.

Having almost the same amount of errors being presented in the status interface for 10
different injections shows that, no matter the state of the circuit when the error was
injected—the injection time for each bit and the particular state of the circuit for that
time is unpredictable given the time variability introduced by the UART injection through
the SEM core—running during 5 ms is enough to propagate an error through the circuit
and showing in the status register all errors that a particular SEU would cause.
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Injection results

Taking as an example the first run, results presented are the amount of bits in which the
deviation of the parameter in the column “parameter” differed from its nominal value.
The lane layer is in charge of managing the connection at Lane layer. It contains the logic
that manages the different connection states: from the initial handshake to establishing a
connection to managing an interruption in the connectivity and re-connecting or changing
to the stand-by state. It obtains data to transmit from the virtual channel layer and de-
tects lane-level control words used to keep the physical link synchronized. In a fault-free
case, the lane should remain in active state after initialization. Thus, a significant amount
of critical bits cause failures related to the lane state FSM—lane not active, link reset,
signal lost, stand-by and initialization timeout. This is due to the fact that the logic of the
lane FSM is affected by the injection. This undesired interruption in the communication
causes data errors in a remarkable amount of cases—detected by the retry layer as CRC,
sequence and frame errors—. However, most of them are recovered thanks to the retry
capabilities, and indicated by the high occurrence of late frames along with the aforemen-
tioned errors for the same injection, and only in a reduced number of injections they were
propagated to the application level (the data checker) as interrupted frames or data errors.

These results highlight the relevance of inspecting internal signals and error counters
rather than just the output of a circuit to check for failures during the injection process.
For the case of the lane layer, most of the errors would have been masked by the retry
layer, hiding a faulty behavior of the circuit to the application level. This also shows
that the SpaceFibre port is capable of effectively handling errors that may occur in the
channel, as well as a sudden connection loss.

It is important to stress that only 19 bits caused the need for a manual reset—coming
from the application controlling the port, not managed by the port itself—and only in
7 bits would this manual reset fail, meaning that reprogramming the FPGA is the only
mechanism to recover the functionality. Moreover, the amount of injections in which a
manual reset would fail—i.e., it was not needed to recover functionality, but when at-
tempting to reset the SpaceFibre Port for the next error injection, the lane would not be
able to recover connectivity—was 256. Again, the only way to recover the functionality
of the circuit was to reboot the FPGA.

Finally, thanks to the approach followed, dividing the critical bits by their severity allows
for a more accurate view of the vulnerability of a particular layer. For the case of the
lane layer, it can be seen that there is a relatively low vulnerability to high-severity
failures, with just around 500 critical bits causing a failure that SpaceFibre is unable to
address—i.e. severity 2 or greater—while most of the critical bits will produce failures
with a severity of 1, which the QoS capabilities of SpaceFibre will address. However, as
mentioned before, if configuration errors are not corrected with scrubbing, errors with
less severity interrupting the communication may compromise the system. Nevertheless,
scrubbing alone should be enough to protect this layer effectively.

5.3 Results for the retry layer

The results for the injection in the retry layer are covered in table 5.4.
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Parameter Value

Sequence error 19081
CRC-8 error 6418
CRC-16 error 7723
Frame error 4440
Link reset 4

Protocol error 1962
Channel error 2056

Signal lost 1611
Lane not active 1312

Stand-by 6
Init. timeout 40

Input overflow VC1 9
Input overflow VC2 32
Error received VC 1 7024
Error received VC 2 7040
Error received BC 6243

Interrupted packet VC 1 65
Interrupted packet VC 2 61

Late broadcast frame 13323
Too many CRC errors 6273

Bandwidth Overuse VC0 3
Bandwidth Overuse VC1 3

Bandiwdth Underuse VC0 2
Bandiwdth Underuse VC1 2

Manual reset needed 17
Manual reset failed 0

Manual reset would fail 3

Table 5.4: Parameter measurements for the injections in the retry layer

5.3.1 Other results

The amount of critical bits with severity 1 or higher obtained for the retry layer are 28804,
and then, the DVF is:

DV F =
NBcritical

NBessential

=
28804

244887
= 0.1176 = 11.76% (5.4)

Those critical bits can be divided by the severity of the worst failure that a SEU would
cause if it affected that particular bit. Results for the first run are shown in table 5.5

5.3.2 Discussion

The retry layer is in charge of detecting CRC and frame errors and managing the re-
transmission of the corresponding packets to mask the occurrence of errors to higher
layers such as the virtual channel layer and the application layer. Compared to the lane
layer, it is more vulnerable to errors in configuration memory, as shown by its higher
DVF. This is due to the fact that an error in the logic, in charge of managing the error
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Severity Amount of bits % Essential bits

0 7194 2.94%
1 16488 6.73%
2 12296 5.02%
3 17 0.07%
4 3 0.01%
5 0 0%

Table 5.5: Amount of critical bits distributed by severity for the retry layer

recovery in the link, can easily cause an undesired or wrong re-transmission, in turn caus-
ing additional errors. Besides, it fails to prevent the errors from reaching the application
layer. As it can be seen, with a similar amount of injections in which CRC errors occurred
as compared with the lane layer, critical bits that would cause these errors to arrive to
the application layer were around 30 times higher.

On the other hand, the failures related to the lane FSM and reset mechanism are less
common than in the case of the lane layer. Even though the critical bits in which the lane
was not in the active state were more than in the lane layer, most of them were due to
protocol errors—inconsistent acks or nacks coming from the faulty recovery layer or data
errors—that cause the lane to be reset. However, no events in which the manual reset of
the lane would fail were recorded.

It can be concluded then, that this layer is highly vulnerable to errors in configuration
memory, with an SEU in this layer causing errors to go undetected and arrive to the
application layer, since all error detection and correction mechanisms fail. An interesting
failure mode that shows its vulnerability is that the retry buffer overflows—a very critical
error that should happen when there are too many CRC errors to handle—with a similar
occurrence in CRC errors compared to the lane layer, where this overflow does not happen
since the error handling is not affected by the injection.

This is also reflected by the severity of the critical bits, with a great amount of critical
bits having a severity of 2 or higher. Nonetheless, most of them are constituted by data
errors that arrive to the application layer and not by errors in the lane FSM as was the
case for the lane layer.

5.4 Results for the virtual channel layer

For the injection campaign, the IP was configured to handle two lanes simultaneously.
Results for the injection to this layer are reported in table 5.6.

5.4.1 Other results

The amount of critical bits with severity 1 or higher obtained for the virtual channel layer
are 18914. Then, the DVF is:

DV F =
NBcritical

NBessential

=
18914

601725
= 0.0314 = 3.14% (5.5)
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Parameter Value

Sequence error 3821
CRC-8 error 215
CRC-16 error 886
Frame error 1911
Link reset 3

Protocol error 10
Channel error 2700

Signal lost 2673
Lane not active 2296

Stand-by 0
Init. timeout 0

Input overflow VC1 94
Input overflow VC2 138
Error received VC 1 13544
Error received VC 2 13855
Error received BC 9786

Interrupted packet VC 1 6651
Interrupted packet VC 2 490

Late broadcast frame 80
Too many CRC errors 104

Bandwidth Overuse VC0 114
Bandwidth Overuse VC1 298

Bandiwdth Underuse VC0 2
Bandiwdth Underuse VC1 1

Manual reset needed 16
Manual reset failed 0

Manual reset would fail 0

Table 5.6: Parameter measurements for the injections in the virtual channel layer

Those critical bits can be divided by the worst severity of the failure that would be caused
if a SEU affected that particular bit. Results are in table 5.7

5.4.2 Discussion of the results

The virtual channel layer is in charge of managing the buffers and flow-control for all
different virtual channels. Hence, the main source of critical errors is related with the
failure of the flow control, which leads to an overflow of the input and output data buffers
of the virtual channels. This is a critical failure, since data that has not been sent to the
TX buffer or received in the RX buffer is overwritten by new data, causing its loss. This is
reflected by the huge amount of configuration bits that cause the reception of wrong data
in both virtual channels—Error received VC 1 and 2, flagged by the data checker at the
application level—and, simultaneously, triggering the lane reset after the communication
protocol fails due to the data in the virtual channel having been overwritten. Besides, it is
also reflected with the bandwidth overuse for both virtual channels caused by the failure
of the flow-control mechanism. On the other hand, no errors that would make rebooting
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Severity Amount of bits % Essential bits

0 6703 1.11%
1 2721 0.4%
2 16177 2.66%
3 16 0%
4 0 0%
5 0 0%

Table 5.7: Amount of critical bits distributed by severity for the virtual channel layer

the FPGA registered, neither any error when resetting the core manually.

As a conclusion, even though the vulnerability of the virtual channel layer is, in proportion
to its size of the FPGA’s used resources, small, a failure in one of the critical bits is likely
to end-up causing errors that cannot be addressed by the retry layer, since that layer
lies “under” the virtual channel layer and therefore, those errors will reach the final
application, with the SpaceFibre communication channel failing to deliver correct data
with potential harmful effects. This fact is again indicated by the big amount of critical
bits that, when affected, would cause a failure with severity 2 or greater. In absolute
terms, it introduces a similar vulnerability to the IP with respect to the retry layer.

5.5 Results for the interface layer

Results for the injection to this layer are reported in table 5.8.

5.5.1 Other results

The amount of critical bits with severity 1 or higher obtained for the interface layer are
29239, and then, the DVF is:

DV F =
NBcritical

NBessential

=
29239

180487
= 0.1628 = 16.28% (5.6)

Those critical bits can be divided by the worst severity of the failure that would be caused
if a SEU affected that particular bit. Results are in table 5.9

5.5.2 Discussion of the results

The interface layer lies under the lane layer, and is connected directly to the high-speed
transceiver. It is in charge of decoding the 8b/10b words, word synchronization and in-
cludes an elastic buffer to fix clock alignment and skew. As the results show, most failures
produced from the injected errors in the configuration memory can be fixed by the upper
layers of SpaceFibre. The most common failure was related to invalid values received from
the channel, most likely caused by an error with word synchronization. Besides, other
errors such as frame, sequence and CRC errors were mostly corrected, resulting only in a
few configuration errors arriving to the data checker with wrong values.

However, the loss of word synchronization also generated more relevant failures: since an
error in this layer affects all kinds of received data, it caused the biggest occurrence of
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Parameter Value

Sequence error 25850
CRC-8 error 12489
CRC-16 error 7706
Frame error 17705
Link reset 0

Protocol error 35
Channel error 20589

Signal lost 15764
Lane not active 19840

Stand-by 75
Init. timeout 6331

Input overflow VC1 0
Input overflow VC2 0
Error received VC 1 463
Error received VC 2 464
Error received BC 122

Interrupted packet VC 1 108
Interrupted packet VC 2 95

Late broadcast frame 18447
Too many CRC errors 14647

Bandwidth Overuse VC0 0
Bandwidth Overuse VC1 0

Bandiwdth Underuse VC0 0
Bandiwdth Underuse VC1 0

Manual reset needed 120
Manual reset failed 36

Manual reset would fail 27

Table 5.8: Parameter measurements for the injections in the interface layer

CRC errors detected in the retry layer, creating overflows in the error recovery buffer,
triggering the reset of the lane in as many as 20000 different configuration bits during the
injection. Since they can be handled by the SpaceFibre QoS mechanisms, most of these
failures are classified as severity 1 failures. Again, if failures are addressed with scrubbing,
this is not a highly vulnerable layer, since most failures can be automatically recovered.
Nonetheless, the interface layer is the most sensitive layer in absolute terms with respect
to failures of severity 3 and 5.

5.6 Results for the broadcast layer

The broadcast layer is the smallest analyzed layer, and also the least vulnerable to SEUs.
The injection process produced only a few errors, being only significant the arrival with
errors of broadcast messages, occurring in 35 configuration bits.
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Severity Amount of bits % Essential bits

0 1166 0.64%
1 28481 15.7%
2 611 0.34%
3 84 0.047%
4 27 0.015%
5 36 0.019%

Table 5.9: Amount of critical bits distributed by severity for the interface layer

Severity Amount of bits % Essential bits

0 23 0.19%
1 4 0.035%
2 38 0.33%
3 0 0%
4 0 0%
5 0 0%

Table 5.10: Amount of critical bits divided by severity for the broadcast layer

The amount of critical bits obtained for the broadcast layer are 42, and then, the DVF is:

DV F =
NBcritical

NBessential

=
42

11543
= 0.0036 = 0.36% (5.7)

Those critical bits can be divided by the worst severity of the failure that would be caused
if a SEU affected that particular bit. Results are in table 5.10

5.7 Results for the SpaceFibre IP core

Finally, an injection run for the top level of the SpaceFibre IP core was performed. This
includes all previously shown layers, as well as all the additional glue logic and control
integrated in the top level. The errors produced by SEUs for the injection of the IP are
shown in table 5.11.

5.7.1 Vulnerability factor

The amount of critical bits with severity 1 or higher obtained for the SpaceFibre IP are
87258, and then, the DVF is:

DV F =
NBcritical

NBessential

=
87258

719108
= 0.1213 = 12.13% (5.8)

Those critical bits can be divided by the worst severity of the failure that would be caused
if a SEU affected that particular bit. Results are in table 5.12

5.7.2 Discussion

The most important factor to take into account when interpreting the data is that, unlike
for all previous runs, this time the IP is not forced to be separated in the FPGA layout,
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Parameter Value

Sequence error 63963
CRC-8 error 27137
CRC-16 error 28936
Frame error 23170
Link reset 14

Protocol error 2386
Channel error 19945

Signal lost 15497
Lane not active 14735

Stand-by 223
Init. timeout 4739

Input overflow VC1 51
Input overflow VC2 119
Error received VC 1 11270
Error received VC 2 10919
Error received BC 8595

Interrupted packet VC 1 251
Interrupted packet VC 2 346

Late broadcast frame 45947
Too many CRC errors 24984

Bandwidth Overuse VC0 26053
Bandwidth Overuse VC1 26219

Bandiwdth Underuse VC0 0
Bandiwdth Underuse VC1 0

Manual reset needed 172
Manual reset failed 28

Manual reset would fail 26

Table 5.11: Parameter measurements for the injections in the SpaceFibre IP

but implemented inside a region that contains the whole logic, as done in a regular design
without restrictions. This allows for an optimization from the synthesis and place and
route tools, producing a significantly smaller circuit.

It is easy to see that the vulnerability of the whole IP offers results that are close to the
sum of vulnerabilities for each layer, after taking into account certain reductions in the
total number due to the optimization. This optimization also causes a drastic reduction
in the configuration bits used by the design, which, with a comparable amount of fail-
ures as in the separated design, accounts for a slightly higher DVF value than expected.
Apart from that, no new information can be extracted about the failure modes and their
cause than the ones introduced individually for each layer. This highlights the usefulness
of performing separate injections, since they allow to obtain more detailed information
about the different failure modes accountable for each layer, and design a more effective
mitigation strategy. On the other hand, the overall injection in the implemented design
as-is allows to derive more accurate results for the expected reliability of the design dur-
ing any projected mission. These two later points are discussed in the section 5.9.
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Severity Amount of bits % Essential bits

0 39192 5.45%
1 63545 8.84%
2 23465 3.26%
3 144 0.02%
4 26 0.003%
5 28 0.003%

Table 5.12: Amount of critical bits divided by severity for the SpaceFibre IP

Finally, according to Xilinx, between 2 to 10% of configuration memory bits are critical
to the function of a circuit. The slightly higher figure obtained (12%) is attributed to the
fact that the methodology followed allows to observe more failures than most common
methodologies. As an example, if only the observable failures were inspected, the resulting
DVF would have been 3.29%. In order to obtain a more accurate result from external
observation, a careful bandwidth measurement would have been needed, deriving the
masked failures as reductions in the effective bandwidth due to the re-transmission, but
without obtaining any information about its cause.

5.8 Special events and limitations when using the

SEM IP

During the injection experiments performed as part of the work, three anomalies in the
SEM IP were observed and are presented in this section, along with hypotheses about
their cause.

5.8.1 ECC bits

The usage of the SEM IP has one additional limitation that is not listed in the user man-
ual. Apart from not being able to inject into BRAM memories and registers—they are
masked for both read and write operations into configuration memory—this work found
out that the ECC bits embedded into every frame of configuration memory, and used to
detect and correct errors were also masked for write operations from the SEM IP. This was
detected by analyzing a list of the frame addresses in which the injected errors were not
corrected, i.e., no error was detected by the ECC or CRC mechanisms after an injection
to that particular bit—.

To make sure that these events were not functional failures of the SEM IP, manual queries
to the locations in which errors were not corrected were performed both before and after
injection. Queries showed that these errors were not being detected and corrected by the
ECC mechanism because they were not being injected. Then, by obtaining the word ad-
dress within the frame for all bits in which errors had not been injected, it was found out
that they belong to the ECC words within the frame, that, in the Ultrascale technology
are located in words 60, 61 and 62 if the assumption that the errors not injected belong
to these words. Xilinx states that the ECC words for the Ultrascale family are located in
words 61 and 122 in [47] and 60 and 61 in [19]. Hence, it is not clear that all the errors
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not injected are ECC bits.

The other hypothesis is that they belong to distributed memory elements or FFs. How-
ever, the location in the bitstream of those elements is detailed in the logic location (.ll)
file. After comparing the locations of both storage elements and essential bits file there
was no overlapping. Therefore, the most suitable hypothesis is that those locations in
words 60, 61 and 62 are actually ECC bits, since they are marked as essential bits in all
frames, and, for some reason, Xilinx decided not to disclose its location.

Finally, ECC bits are correctly marked as essential in all frames in spite of the logic of
the circuit not being changed if any of them is affected by a SEU for the following reason:
if an error happens in the ECC bits, and the user relies on them to perform scrubbing, or
is using the SEM IP for that purpose, it will appear disguised as a single or multiple bit
error inside a frame, in the words and bits that, if flipped, would change the ECC to that
value. Consequently, the user should combine the CRC error detection with the ECC
correction and detect this case if, after correcting several errors detected as an ECC error,
the CRC error remains. For this work, ECC errors were not counted as critical, since no
scrubbing is implemented in the demonstrator and it is user-dependent. However, they
should be accounted for if scrubbing is used. The amount of ECC bits marked was of
11435 out of 719108 (1.5%) for the whole IP.

5.8.2 Uncorrectable errors

Sometimes during the injection, the SEM IP would report multiple errors in a location
that did not correspond to where the injection had been performed. Besides, it would get
stuck in this undesired state, repeatedly attempting to correct errors in different locations
and automatically going back to the idle state. These events are reported in [19] as un-
correctable errors, occurring in around 0.3% of the errors injected. However, no further
explanation is given for its cause.

The fact that the errors appear to the SEM IP as errors in completely different frames
indicates that, most likely, they affected some logic external to the SEM IP, but necessary
for its correct behavior, such as a global routing or interconnection. When observing
the location of the injections that cause these double errors, all of them happened in
the same frames, even when injecting in completely different runs, and even in different
bitstreams—for both the IP with and without separation by layers. The linear addresses
for the frames that would cause these errors are: 78, 102, 103, 258, 259, 332, 333, 570, 571,
1270, 1271, 1352, 1353, 1508, 1509, 1820 and 1821. Those linear addresses correspond to
the physical addresses 0x134, 0x206, 0x207, 0x506, 0x507, 0x686, 0x687, 0xb06, 0xb07,
0x1886, 0x1887, 0x1a06, 0x1d06, 0x1d07, 0x2306 and 0x2307.

As it can be seen, frame addresses present certain regularity, always grouped in pairs.
When it comes to the particular bit and word, it appears that this event could happen in
any word within those frames, but always in bits 2, 3, 7, 21, 22 or 25.

No further indication on the cause for these errors was found. As indicated in [19], after
one of these events, the FPGA was re-programmed, and the injection continued normally.
It is of interest to show the amount of times this event was present during the injection,
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being of 726 during the injection of the whole IP, which accounts for 0.1% of the injec-
tions. The proportion is maintained for all injections performed, and this figure lies in
the same order of magnitude as indicated by Xilinx.

Depending on the real cause and mission, these bits should be considered critical or not.
It is important to remark that none of these errors caused errors to the SpaceFibre IP
logic, and only the SEM IP was affected by them. Then, if the mission includes the usage
of SEM IP or scrubbing through the configuration engine, it is most likely that an SEU
in these addresses would cause the protection mechanism to fail, hence being classified
as critical bits with the maximum severity. Otherwise, if no scrubbing or reconfiguration
are used, and these events did not cause failures in other parts of the system, then they
should not be taken into account as vulnerable configuration bits.

5.8.3 Two errors caused by a single injection

During the injection process, a particular event was observed in which a single error in-
jection, when attempting to correct it, would appear to the SEM IP as two errors in
different configuration words. This behavior was already observed in [40] and attributed
to the possibility of a slice register not being masked, since it would not appear listed as
a memory element. When this unmasked memory element is modified, the change in con-
figuration is captured by the SEM IP as a configuration error. However, this explanation
seems unlikely, since it would mean that there is a bug in the masking capability of the
SEM IP, and this kind of event should arise—notified as an error—whenever the value of
that register is changed by the user logic.

This event was also recorded as many as 215 times happening during the injection for
the whole IP. As it was the case for the uncorrectable errors, they all happened in frames
102, 103, 258, 259, 332, 333, 570 and 571, again with no correlation between the words it
would occur on, but also affecting most often the same bits mentioned before.

The most likely explanation for this event is that it has the same nature as the uncor-
rectable errors, and a SEFI-like event in the SEM IP or configuration engine provoked
by an injection to a global clocking route causes them. Nonetheless, unlike uncorrectable
errors, these two errors can be corrected by SEM IP because they occur in different config-
uration words. There are two mechanisms that could be used for testing the hypothesis:
either reverse-engineering the bitstream of the UltraScale architecture and figuring out the
elements that are related to the frame addresses in which these event occur, or performing
the injection and correction following another method that does not involve partial re-
configuration or the SEM IP to discard them as the cause of the failure. Both approaches
are outside the scope of this work.

5.9 Reliability of the SpaceFibre IP

Once data has been collected, and a figure for the DVF obtained, it can be used to calculate
the overall reliability that is expected from the IP. As stated in [25], the probability of
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failure in a particular design due to SEU can be written as follows:

P (f) = P (fconfiguration) + P (fBRAM) + P (fFFs) + P (fSEFI) (5.9)

With the results from this work, only the first term can be obtained. Data from memories
is easily protected by using ECC codes at a relatively low cost [19]. As for the proba-
bility of a SEFI error happening, it is mostly architecture-dependent, and no data for
its likelihood was found. However, for most designs, configuration memory is the biggest
contributor to functional failures when affected by an SEU [19], and, for the case of
SpaceFibre, this is especially true. As the injection shows, most data “soft” errors can be
corrected, without user intervention, with the QoS and recovery mechanisms integrated in
the IP. Hence, only with applying TMR to the reception buffers (above the retry layer) and
critical registers as well as using safe state machines, the probability of failure can be ap-
proximated by the probability of a failure caused by an error in the configuration memory.

As shown in [32], the upset occurences for both LEO and GEO for the KU060 FPGA are:

• LEO: 2.4e-07 upsets/bit/day

• GEO: 1.8e-08 upsets/bit/day

Using these data, the expected failure rate (µ) for the SpaceFibre IP is:

Failure occurence = Upset occurence · Number of essential bits ·DV F (5.10)

And, thus, the failure rates for both orbits are:

• LEO: µ = 2.4e− 07 · 719108 · 0.1213 = 0.0209 failures/day

• GEO: µ = 1.8e− 08 · 719108 · 0.1213 = 0.00157 failures/day

From that, the Mean Time Between Failures (MTBF) can be obtained:

• LEO: MTBF = 1/µ = 1/0.0209 = 47.77 days

• GEO: MTBF = 1/µ = 1/0.00157 = 636.9 days

Therefore, it is expected that after around 48 days of mission, an error in configuration
memory would affect the behavior of the circuit. If no corrective measure is implemented,
it is highly likely that this failure will persist in time, interrupting the communication
through SpaceFibre.

The classification of failures according to their severity allows to estimate the MTBF for
the case of some preventive or corrective measures being implemented. It is clear that in
a mission using COTS FPGA, a scrubber (e.g., SEM IP) should be used. The reduced
failure rate allows to assume that, in practice, all SEU-induced errors in configuration
memory can be corrected by the SEM IP. Taking into account that failures with a severity
of 1, if not persistent (that is, if they are corrected shortly after their occurrence, as done
during the injection), can be recovered and will not be presented in the application level,
only errors with severity 2 or higher, as well as uncorrectable errors should be counted
as critical errors. This approximation can be done because temporary errors with lower
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severity will only delay the information reaching the application layer, but will not affect
to its correctness. The new DVF can be calculated as:

DV F =
NBcritical2 +NBuncorrectable

NBessential

=
23663 + 726

719108
= 0.0339 (5.11)

Then, the failure rates and MTBF would be:

• LEO: µ = 2.4e − 07 · 719108 · 0.0339 = 0.0059 failures/day. MTBF = 1/0.0059 =
170.92 days

• GEO: µ = 1.8e−08 ·719108 ·0.0339 = 4.38e−04 failures/day. MTBF = 1/4.38e−
04 = 2278.9 days

Those results refer to the failure rates if correctness is needed in the data transmitted
through the channel. However, if the SpaceFibre link is used to transmit just raw data
from an instrument, these failures are not critical, and can be addressed by further data
processing layers. Besides, if scheduled resets of the IP are performed between data trans-
actions, which may be feasible depending on the overall payload architecture, the MTBF
figure would improve slightly, since failures with severity 3 would not contribute to the
overall reliability. Therefore, a careful management of the lane reset and timeout from
the software layers are recommended.

To improve the reliability further, enabling its usage to transmit critical control data in
a longer mission, including a layer of light forward-error correction (FEC) code over the
data transmitted, as done in [48], would allow to drastically reduce the probability of
failure, discarding data errors. This measure would reduce the critical bits that cause
severity 2 errors. Additionally, the usage of distributed TMR in, at least, the most vul-
nerable layers, such as the retry layer or virtual channel layer, would significantly improve
the reliability of the circuit. If it is not possible to schedule resets of the IP regularly,
also the implementation of distributed TMR is recommended for the interface layer, to
prevent potential failures of severities 3 and 5.

Concerning the availability of the system, which is a metric that is more useful in a prac-
tical scenario in which recovery measures are implemented, drawing a figure is out of the
scope of this work since it depends on the higher level architecture of the payload and
data acquisition strategy. In [13], a scheme to obtain the availability of an FPGA im-
plementation is presented, and could be used to calculate the availability for a particular
payload architecture and mission. However, it is clear that with a scrubber and periodic
reset that allows to completely recover the state of the IP in a short lapse, the figure
would be really close to a 100%, hence making its usage suitable for transmitting large
amounts of data.
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Conclusion

In this work, the firmware for the SpaceFibre in-orbit demonstrator was developed. The
demonstrator integrates a COTS SRAM FPGA, on a board with all the necessary periph-
erals to carry out the testing of the SpaceFibre Port IP as well as the COTS FPGA itself
when launched into LEO. The developed firmware enabled the successful integration and
control of all elements within the board necessary to carry out the tests in orbit. At the
time of writing this report, it is has already been integrated in the 3U cubesat that will
host the experiment, to be launched later this year.

This mission is relevant to provide insights of both SpaceFibre and COTS FPGAs, which
are expected to become the de-facto standard for onboard high-data rate communications
and for missions requiring great processing power respectively. Apart from the relevance
of the mission, this work allowed Thales Alenia Space to gather practical know-how and
guidelines on how to integrate and work with SpaceFibre.

Apart from the firmware, an injection campaign methodology for testing the reliability
of any implementation including a processor in a Xilinx FPGA under the occurrence
of configuration errors caused by SEUs was developed. The injection was performed
in the KU060 FPGA, expected to become the next standard in space FPGAs for high-
throughput applications. After performing a detailed literature research, the methodology
was designed following the state-of-the-art techniques and applied to the SpaceFibre IP,
taking into account the particularities of testing an IP that implements a communications
protocol. Results were extracted and processed, obtaining the reliability of the IP as well
as extracting information about its vulnerabilities. Since SpaceFibre is a technology that
will be repeatedly used for many missions to come, it is of great relevance to draw figures of
its reliability and improve the SpaceFibre IP to increase its tolerance to SEUs, enhancing
its usage in COTS FPGAs. There are several important advantages of the methodology
followed that prove really useful when applied to the SpaceFibre IP, and that show their
value when applied to other modules as well:

• The usage of internal signals and parameters to monitor them from deviations on
their nominal values offers a more complete and accurate figure on how vulnerable to
SEU the design is. If only the correctness of the outputs of the circuit was observed,
as done for other injection campaigns in the literature, a great deal of potentially
harmful failures would have been missed, and only a reduction in effective bandwidth
(if monitored) would have been observed.

• Performing separate injections to the different layers allows to gather more focused
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and detailed information about the cause of the different vulnerabilities and propose
mitigation techniques for each case.

• Separating the errors according to their severity divides them depending on the nec-
essary techniques that shall be used for their mitigation, and offers more information
on the potential of such mitigation.

• Obtaining the design vulnerability factor allows to draw direct reliability figures if
the expected SEU incidence is known. This is extremely useful when combined with
data from the architectural vulnerability factor (vulnerability of a particular device
to radiation), since the reliability of the design for any mission can be obtained from
this data.

These advantages allow to draw several conclusions:

• When used in a non-hardened FPGA, SpaceFibre requires additional measurements
to ensure its reliability. As shown in section 5.9, protecting the SpaceFibre IP Port
with TMR’d memories and registers, as well as the usage of Xilinx SEM IP is enough
to obtain a good MTBF, that guarantees a good availability figure. However, if the
SpaceFibre link is used in a critical or longer mission, the methodology allows to
enhance the protection of the different layers in a more efficient manner.

• Analyzing the failure modes for different layers, the recommendations are as follows:

– Lane layer: the critical failures observed in the lane layer are related mostly
to the initialization FSM. Hence, protecting the FSM logic would be enough
to drastically increase its reliability. Data failures caused by this lane can
be temporarily addressed by the retry layer until the failure is corrected by
scrubbing.

– Retry layer: as a layer which is highly vulnerable to configuration memory
errors, but small in size, it should be protected with distributed TMR in its
totality.

– Virtual channel layer: since this layer is above the retry layer, data errors will
not be corrected if caused by a configuration error in this layer. A good measure
of protection would be provided by using FEC codification as an “outer-code”
in the transmission, and also by protecting the logic and registers in charge of
implementing flow-control.

– Interface layer: with the presence of scrubbing, it is not a critical layer, since
the upper layers will address the errors caused by loss of synchronization. Nev-
ertheless, it shall be protected by distributed TMR if the SpaceFibre operation
cannot be interrupted by resetting the IP regularly.

– Broadcast layer: it is the least vulnerable layer. Hence, no additional protection
needs to be implemented for a short mission.

Therefore, the presented modifications shall be added to the port in missions in which the
correctness of the data transmitted through SpaceFibre is critical. That would enable the
integration of such a powerful technology in missions following the “new-space” paradigm,
with cheaper components and smaller qualification effort but great capacities, leading to
a more competitive position in the market.
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Coming back to the research questions posed in the introduction, as well as the objectives
set for the project, the answers are as follows:

• The necessary steps for the integration of the SpaceFibre technology in a LEON3
SoC have been presented in chapter 3.

• SpaceFibre is ready for its use in a COTS FPGA if it is combined with scrubbing
and periodic scheduled resets of the IP. Besides, techniques to reduce the sensitivity
to radiation have been proposed, optimizing the additional logic cost leveraging the
designed methodology.

6.1 Contributions

The contribution to the topic of error injection done by this methodology is:

• To the best of the author’s knowledge, it is the first error injection campaign pub-
lished for the Ultrascale technology, providing guidelines to locate the design in
configuration memory for error injection with the granularity of one configuration
column for this new architecture.

• To the best of the author’s knowledge, it is the first error injection campaign per-
formed in a SpaceFibre port, allowing to gather knowledge about the sensitivity
and vulnerabilities of this future technology. Besides, it presents a methodology to
perform error injection that can be utilized as a verification step, since the stand-
alone approach followed minimizes the amount of additional logic. It is important to
remark that, for verification purposes, a circuit cannot be altered, and all additional
logic introduced must stay afterwards. Hence, this methodology is applicable for all
blocks that are part of a SoC.

• Apart from [40], it is the only work that uses the automatic correction mode of the
SEM IP to correct errors, allowing to monitor SEFIs in the configuration engine of
the FPGA that would produce wrong results if it is not re-programmed.

• To the best of the author’s knowledge, it is the first error injection campaign to
present a finer-grain analysis, not only monitoring functional failures, but including
other metrics and potentially harmful side-effects of deviation from nominal values
in status parameters.

• Apart from [39], it is the only work to monitor signals other than the outputs,
and to use a non-benchmark complex circuit that does not just perform a bounded
operation, but runs continuously while the injection is performed.

It is relevant to highlight that, apart from [43] and [39], this is the only one of the
analyzed works that performs an error injection campaign in a device that is not an
educational example or benchmark.

6.2 Future work

Finally, there are two key aspects that were out of the scope of this work, but would be
interesting to address in future research to overcome its limitations:



Chapter 6. Conclusion 65

• Including registers and BRAM memories in the injection strategy: using some tech-
niques mentioned in the literature, it should be possible to include these structures
in the injection analysis. BRAM memories are usually protected by EDAC or TMR,
and the effects of an SEU can be mostly reduced to data errors. However, it would
be interesting to take registers into account, especially those that are used in the
control logic, to obtain a more accurate representation of the global reliability. It
is important to remark that the reliability figures presented in this work represent
only the failures produced by SEUs in the configuration memory. Hence,

• Implementing the proposed protection recommendations: including the measure-
ments shown to improve the SEU tolerance and applying the methodology again to
re-assess the improvement in the DVF would validate the methodology and improve
the SpaceFibre IP Port.

• Expanding the analysis to a system-level scenario, including a more complex archi-
tecture and use-case able to obtain availability figures.
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