
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=lsta20

Communications in Statistics - Theory and Methods

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/lsta20

Absolutely continuous copulas with prescribed
support constructed by differential equations,
with an application in toxicology

Oscar Björnham, Niklas Brännström & Leif Persson

To cite this article: Oscar Björnham, Niklas Brännström & Leif Persson (2022) Absolutely
continuous copulas with prescribed support constructed by differential equations, with an
application in toxicology, Communications in Statistics - Theory and Methods, 51:19, 6601-6625,
DOI: 10.1080/03610926.2020.1864825

To link to this article:  https://doi.org/10.1080/03610926.2020.1864825

© 2020 The Author(s). Published with
license by Taylor & Francis Group, LLC

Published online: 28 Dec 2020.

Submit your article to this journal 

Article views: 771

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=lsta20
https://www.tandfonline.com/loi/lsta20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/03610926.2020.1864825
https://doi.org/10.1080/03610926.2020.1864825
https://www.tandfonline.com/action/authorSubmission?journalCode=lsta20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=lsta20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/03610926.2020.1864825
https://www.tandfonline.com/doi/mlt/10.1080/03610926.2020.1864825
http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2020.1864825&domain=pdf&date_stamp=2020-12-28
http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2020.1864825&domain=pdf&date_stamp=2020-12-28


Absolutely continuous copulas with prescribed support
constructed by differential equations, with an application
in toxicology

Oscar Bj€ornhama, Niklas Br€annstr€oma, and Leif Perssonb

aDivision of CBRN Defence and Security, Swedish Defence Research Agency FOI, Umeå, Sweden;
bDepartment of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden

ABSTRACT
A new method for constructing absolutely continuous two-dimen-
sional copulas by differential equations is presented. The copulas are
symmetric with respect to reflection in the opposite diagonal. The
support of the copula density may be prescribed to arbitrary oppos-
ite symmetric hypographs of invertible functions, containing the diag-
onal. The method is applied to toxicological probit modeling, where
new compatibility conditions for the probit parameters are derived.
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1. Introduction and main results

This article is motivated by the following result, which is probably well known, although
we have not been able to find any explicit statement or proof:

Proposition 1.1. Suppose that a,D 2 R, a > 0. Then, there exists random variables X, Y
satisfying

Y � aX þ D and X,Y standard normal (1.1)

if and only if a¼ 1 and D � 0, and then if D > 0, there exists X, Y with absolutely
continuous joint distribution satisfying (1.1), with density p(x, y) that is continuous except
for y ¼ xþ D:
A proof is given at the end of this section. Proposition 1.1 is cast with a generic for-

mulation, presumably allowing it to be utilized in a variety of problems. More specific-
ally, the application that triggered this study originated from toxicology modeling and is
accounted for in Section 7 where we prove new compatibility conditions for toxico-
logical probit models, derived from Proposition 1.1. Briefly, in this application, X and Y
represent random probit value thresholds ci, ciþ1 that represent the transition into con-
secutive injury levels i and iþ 1, e.g., “severe injury” and “death,” for individuals in a
population exposed to toxic airborne substances. The probit values for an individual

exposed to a possibly time-dependent concentration c(t) are of the form CiðtÞ ¼

CONTACT Leif Persson leif.persson@umu.se Department of Mathematics and Mathematical Statistics, Umeå
University, Umeå, Sweden
� 2020 The Author(s). Published with license by Taylor & Francis Group, LLC
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License
(http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium,
provided the original work is properly cited, and is not altered, transformed, or built upon in any way.

COMMUNICATIONS IN STATISTICS—THEORY AND METHODS
2022, VOL. 51, NO. 19, 6601–6625
https://doi.org/10.1080/03610926.2020.1864825

http://crossmark.crossref.org/dialog/?doi=10.1080/03610926.2020.1864825&domain=pdf&date_stamp=2022-08-16
http://orcid.org/0000-0003-0504-6844
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.tandfonline.com


ai þ bi log ð
Ð t
0 cðtÞnidtÞ, where ai, bi, ni are parameters depending on toxic substance and

injury level. In a simulation, as time proceeds, each exposed individual yield increasing
probit values, and when threshold values are reached, individuals are moved to the
subsequent injury level. To guarantee that the injury levels are passed in the correct
order, a condition of the form (1.1) must be satisfied, leading to compatibility
conditions for the probit parameters ai, bi, ni by Proposition 1.1. These conditions are
stated in Theorem 7.2 and Theorem 7.3, which are the main results for the toxicology
part of the article, presented in more details in Section 7. For such simulation and
model purposes, we are also interested in constructing absolute continuous distributions
of Proposition 1.1:

Problem 1.2. Given a number D > 0, construct a pair of standard normal random
variables X, Y with absolutely continuous joint distribution supported on y � x þ D,
with density p(x, y) that is continuous except for y ¼ x þ D:

A solution is provided by our main result Theorem 1.4. Combined with the compati-
bility conditions on the probit parameters in the toxicology part, this article provides a
complete reference for an agent–based probit model.
Problem 1.2 seems to be a very simple and basic problem in probability theory, but

to our surprise we could not find any simple constructions in the literature.
Independent standard normal X, Y have absolutely continuous joint distribution but do
not fulfill the support condition, and truncating to y � xþ D yields non normal
marginals. It is easy to construct singular solutions to the problem, the simplest being
X¼Y. We reduce Problem 1.2 to a problem of the dependence structure, or copula of
(X, Y). Using ordinal sums of independence copulas, cf. Durante and Jaworski (2008,
Lemma 3.1), one can construct absolutely continuous copulas fulfilling the requirements
of Problem 1.2, except the required continuity of the density. Before we state our main
result, let us briefly review the main facts about copulas.

A function C : ½0, 1�2 ! ½0, 1� is said to be a copula if Cðu, 0Þ ¼ Cð0, vÞ ¼ 0,Cðu, 1Þ ¼
u,Cð1, vÞ ¼ v and Cðu2, v2Þ � Cðu2, v1Þ � Cðu1, v2Þ þ Cðu1, v1Þ � 0 for all u, v, u1, v1,
u1, v2 2 ½0, 1� such that u1 � u2, v1 � v2, cf. Nelsen (2006, Definition 2.2.2). By Sklar’s
theorem (Nelsen (2006, Theorem 2.3.3)), the cumulative distribution function (CDF)
FX,Y of any bivariate random variable (X, Y) is representable by the marginal CDF’s FX,
FY, and a copula C as

FX,Yðx, yÞ ¼ CðFXðxÞ, FYðyÞÞ (1.2)

This may be regarded as a change of variables X ¼ F�1
X ðUÞ,Y ¼ F�1

Y ðVÞ such that
(U, V) has uniform marginals, where F�1 denotes the generalized inverse, so called
quantile function. The copula C is uniquely defined on RangeðFXÞ � RangeðFYÞ for all
bivariate random variables (X, Y), and if FX, FY are continuous, C is uniquely defined

on ½0, 1�2: Moreover, the partial derivatives C0
u,C

0
v of a copula C(u, v) are defined almost

everywhere on ½0, 1�2 (Nelsen 2006, Theorem 2.2.7)) and the function (where defined)
u 7!C0

vðu, vÞ and v 7!C0
uðu, vÞ are non decreasing. If the mixed derivative is defined

almost everywhere and
Ð Ð

C00
uvdudv ¼ 1, C is an absolutely continuous copula. Copulas

are common in statistical modeling, in particular mathematical finance. The main bene-
fit of copulas is that by Sklar’s theorem, the marginal statistics and dependence
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structure can be modeled separately. For an introduction to copulas we refer to Nelsen
(2006), for a recent review see Flores et al. (2017).
Returning to Problem 1.2, the half–plane fðx, yÞ : y � xþ Dg is symmetric with

respect to reflection ðx, yÞ 7! ð�y, � xÞ through the line x þ y ¼ 0: Therefore, we
assume that (X, Y) and ð�Y , � XÞ are equal in distribution. Moreover, X, � X,Y , � Y
are all identically distributed so it follows (from Theorem 2.4 below) that the copula
C(u, v) of (X, Y) is opposite symmetric, according to the following definition.

Definition 1.3. A copula C is said to be opposite symmetric if

Cðu, vÞ ¼ Cð1� v, 1� uÞ þ uþ v� 1 (1.3)

for all ðu, vÞ 2 ½0, 1�2:
Opposite symmetry means symmetry with respect to reflection ðu, vÞ 7! ð1� v, 1� uÞ

in the opposite diagonal uþ v ¼ 1 and was introduced in De Baets, De Meyer, and
Ubeda-Flores (2009). Applying the copula transformation, using the standard normal
CDF U :

u ¼ UðxÞ, v ¼ UðyÞ, FX,Yðx, yÞ ¼ Cðu, vÞ (1.4)

Problem 1.2 reduces to finding an absolutely continuous opposite symmetric copula

C(u, v) with density supported on fðu, vÞ 2 ½0, 1�2 : v � HðuÞg where

HðuÞ ¼ UðU�1ðuÞ þ DÞ (1.5)

Our main result is the construction of C(u, v) in the following Theorem 1.4. We want
to emphasize its simplicity, involving H and its inverse explicitly. The crucial part is the
evaluation of the integral in (1.10), which is suitable for numerical integration if not
analytically integrable.

Theorem 1.4. Suppose that 0 < u0 < 1=2 and that H is a strictly increasing continuous
function defined on ½0, 1�, continuously differentiable on ð0, u0Þ, satisfying

Hðu0Þ ¼ 1� u0 (1.6)

and the symmetry condition

HðuÞ þH�1ð1� uÞ ¼ 1 (1.7)

Furthermore, suppose that

HðuÞ > u, u 2 ð0, 1Þ (1.8)

and

lim
u%1

ðu
u0

dz
HðzÞ � z

¼ 1 (1.9)

Let

GðvÞ ¼ exp �
ð1�v

u0

dz
HðzÞ � z

 !
, v 2 0, 1� u0½ � (1.10)
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KðuÞ ¼
ðu
u0

H0ðzÞdz
Gð1� zÞ , u 2 u0, 1½ � (1.11)

and

FðuÞ ¼ ð1� 2u0Þð1� Gð1� uÞÞ, u 2 u0, 1½ � (1.12)

Let C(u, v) be given by

Cðu, vÞ ¼
ðu
0

ðv
0
pðw, zÞdwdz (1.13)

where

pðu, vÞ ¼
G0ðvÞ=GðHðuÞÞ if 0 < u � u0, 0 < v � HðuÞ

0 if 0 < u � u0, HðuÞ < v � 1� u
F0ðuÞG0ðvÞ if u0 < u < 1, 0 < v � 1� u

pð1� v, 1� uÞ if 0 < u < 1, 1� u < v < 1

8>><
>>: (1.14)

Then, C(u, v) is an absolutely continuous opposite symmetric copula with probability
density p supported on v � HðuÞ, and

1. If 0 � u � u0 and 0 � v � HðuÞ, then
Cðu, vÞ ¼ H�1ðvÞ þ ðKð1� vÞ � KðH�1ð1� uÞÞÞGðvÞ (1.15)

2. If 0 � u � u0 and HðuÞ � v � 1� u then

Cðu, vÞ ¼ u (1.16)

3. If u0 � u � 1 and 0 � v � 1� u then

Cðu, vÞ ¼ H�1ðvÞ þ ðKð1� vÞ þ FðuÞÞGðvÞ (1.17)

4. If 0 � u � 1 and uþ v > 1 then C(u, v) is given by (1.3).

Note that the hypograph v � HðuÞ is opposite symmetric if and only if (1.7) holds
true. The copula is piecewisely defined, on parts of the unit square depicted in Figure 1.
Theorem 1.4 is proved at the end of Section 5. Before that, we develop a theory for con-
struction of opposite symmetric copulas by differential equations in Sections 3 and 5,
which we believe is of interest in its own right, and gives in fact a much larger class of
copulas than Theorem 1.4. In Section 4, we compare our method to two other methods
in the literature, Durantes and Jaworskis construction of absolutely continuous copulas
with given diagonal section (Durante and Jaworski 2008), and Jaworskis characterization
of copulas using differential equations (Jaworski 2014). In Section 6, we adapt our
differential equation method to sampling from the copula. We conclude the article
with Section 7, an application in toxicological probit modeling, where new compatibility
conditions for the probit coefficients are derived.

Example 1.5. In this example, we construct a solution to Problem 1.2 using Theorem
1.4. Let U be the standard normal CDF, /ðxÞ ¼ U0ðxÞ the standard normal probability
density function (PDF), D > 0 and H given by (1.5). Then, H�1ðvÞ ¼ UðU�1ðvÞ � DÞ
and because of the symmetries UðxÞ þ Uð�xÞ ¼ 1,U�1ðuÞ þ U�1ð1� uÞ ¼ 0, condition
(1.7) is satisfied, and
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u0 ¼ Uð�D=2Þ (1.18)

Moreover, with the change of variables z ¼ UðwÞ and the mean value theorem
we obtainðu

u0

dz
HðzÞ � z

¼
ðU�1ðuÞ

�D=2

/ðwÞdw
Uðwþ DÞ � UðwÞ

¼
ðU�1ðuÞ

�D=2

/ðwÞdw
/ðwþ hðwÞDÞD ¼ 1

D

ðU�1ðuÞ

�D=2
exp wDhðwÞ þ D2hðwÞ2

2

� �
dw

(1.19)

for some function hðwÞ with 0 � hðwÞ � 1: The integrand in the last integral is estimated

from below by exp ð�D2=2Þ for w � �D=2, so integration yieldsðu
u0

dz
HðzÞ � z

� e�D2=2

D
U�1ðuÞ þ D

2

� �
(1.20)

which proves that condition (1.9) is satisfied. The function G defined by Equation
(1.10) cannot be expressed in terms of special functions (to our knowledge), but can be
determined by numerical integration, and C(u, v) is then determined by Equations (1.3)
and (1.15)–(1.17). The density of C is illustrated in Figure 2. The joint PDF of (X, Y) is
given by

pðx, yÞ ¼ C00
uvðUðxÞ,UðyÞÞ/ðxÞ/ðyÞ (1.21)

and is illustrated in Figure 3. Here, G(v) is computed with the MATLABVR function inte-
gral at 400 uniformly distributed grid points on ½�, 1� u0�, and computed at

Figure 1. Parts of the unit square for piecewise definition of the copula in Theorem 1.4.
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intermediate points on ½�, 1� u0� by spline interpolation, where � ¼ 10�11:

Consequently, the copula and its density is computed on ½�, 1� ��2:
Proof of Proposition 1.1. If (1.1) is satisfied then Uððy� DÞ=aÞ ¼ PfaX þ D � yg �
PfY � yg ¼ UðyÞ for all y 2 R, which is possible only if a¼ 1 and D � 0: For D � 0,
we can take X¼Y, which gives a singular distribution supported on x¼ y. If D > 0,
Example 1.5 shows that X, Y with absolutely continuous joint distribution exists. w

2. Symmetries and copulas

Several notions of bivariate symmetries are considered in Nelsen (1993). A pair of
random variables (X, Y) are said to be exchangeable if (X, Y) and (Y, X) are equal in
distribution, and (X, Y) is exchangeable if and only if its copula C(u, v) is a symmetric
function, i.e., Cðu, vÞ ¼ Cðv, uÞ: Moreover, (X, Y) is said to be radially symmetric
about ða, bÞ 2 R

2 if ðX � a,Y � bÞ and ða� X, b� YÞ are equal in distribution, or
equivalently,

Figure 2. Copula density C00uvðu, vÞ for Example 1.5, D¼ 1. The density is discontinuous on the curve
v ¼ HðuÞ and tends to infinity when approaching (0, 0) or (1).

Figure 3. Probability density function p(x, y) for Example 1.5, D¼ 1. The wiggles in the level curves
at the upper right and lower left corners of right plot are numerical artifacts.
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FX,Yðaþ x, bþ yÞ ¼ 1� FXða� xÞ � FYðb� yÞ þ FX,Yða� x, b� yÞ (2.1)

Also, (X, Y) is said to be marginally symmetric about ða, bÞ 2 R
2 if

FXðaþ xÞ ¼ 1� FXða� xÞ and FYðbþ yÞ ¼ 1� FYðb� yÞ (2.2)

The following theorem is proved in Nelsen (1993, Theorem 3.2):

Theorem 2.1. Suppose (X, Y) is marginally symmetric about (a, b) with copula C. Then,
(X, Y) is radially symmetric about (a, b) if and only if C satisfies the functional equation

Cðu, vÞ ¼ Cð1� u, 1� vÞ þ uþ v� 1 (2.3)

There is a corresponding class of bivariate random variables associated to opposite
symmetric copulas, which we propose to call opposite radially symmetric variables, in
accordance with the terminology in De Baets, De Meyer, and Ubeda-Flores (2009), and
analogous to the radially symmetric variables of Nelsen (1993).

Definition 2.2. The bivariate random variable (X, Y) is said to be opposite radially sym-
metric about ða, bÞ 2 R

2 if ðaþ X, bþ YÞ and ðb� Y , a� XÞ are equal in distribution,
or, equivalently,

FX,Yðaþ x, bþ yÞ ¼ 1� FXða� yÞ � FYðb� xÞ þ FX,Yða� y, b� xÞ (2.4)

We need to replace marginal symmetry with the following analog of (2.1):

Definition 2.3. The bivariate random variable (X, Y) is said to be opposite marginally
symmetric about ða, bÞ 2 R

2 if FX, FY satisfy

FXðaþ xÞ ¼ 1� FYðb� xÞ and FYðbþ yÞ ¼ 1� FXða� yÞ (2.5)

for all x, y.

Figure 4. Subdivision of the unit square for piecewise definition of p ¼ C00uv in Theorem 5.1.
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Remark. If X, Y are identically distributed and marginally symmetric about ða, aÞ 2 R
2,

then (X, Y) is opposite marginally symmetric about (a, a). There are no identically dis-
tributed opposite marginally symmetric (X, Y) about (a, b) if b 6¼ a, since then the
common CDF FX ¼ FY ¼ F would satisfy FðxÞ ¼ Fðxþ b� aÞ for all x.
We have the following analog of Theorem 2.1:

Theorem 2.4. Suppose that (X, Y) is opposite marginally symmetric about ða, bÞ 2 R
2

with copula C, and suppose that FX, FY are continuous. Then, (X, Y) is opposite radially
symmetric about (a, b) if and only if C is opposite symmetric.

Proof. It follows from Equations (2.4) and (2.5) that (X, Y) is opposite radially symmetric if
and only if

Cð1� FYðb� xÞ, 1� FXða� yÞÞ ¼ CðFXðaþ xÞ, FYðbþ yÞÞ
¼ 1� FXða� yÞ � FYðb� xÞ þ CðFXða� yÞ, FYðb� xÞÞ (2.6)

Since the range of FX and FY is ½0, 1�, this proves the theorem. w

Remark. There is an erroneous statement in De Baets, De Meyer, and Ubeda-Flores (2009,
Remark 1) that if C is opposite symmetric, then (X, Y) and ð1� Y , 1� XÞ are equal in distri-
bution, i.e., (X, Y) is opposite radially symmetric about ð1=2, 1=2Þ, but additional assumptions
like opposite marginal symmetry in Theorem 2.4 is needed to draw that conclusion.

3. Differential equations for copulas with opposite symmetry

The following theorem provides a characterization of absolutely continuous copulas
with opposite symmetry and constitutes the basis for deriving the differential equations.

Theorem 3.1. Assume that p is an integrable function on ½0, 1�2 satisfying
pðu, vÞ ¼ pð1� v, 1� uÞ (3.1)

and let C(u, v) be given by (1.13). Then,

Figure 5. Copula density C00uvðu, vÞ for Example 5.4, D ¼ 1, k ¼ 2: The density is discontinuous on
the curve v ¼ HðuÞ and tends to infinity when approaching (0, 0), (1), or (1, 0).
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Cðu, vÞ ¼ Cð1� v, 1� uÞ þ Cðu, 1Þ þ Cð1, vÞ � Cð1, 1Þ (3.2)

and the following two conditions are equivalent:

1. Cðu, 1Þ ¼ u for all u 2 ½0, 1�:
2. 2. Cð1, vÞ ¼ v for all v 2 ½0, 1�:

Furthermore, if p � 0 these conditions are equivalent to
3. C is an absolutely continuous opposite symmetric copula.

Proof of Theorem 3.1. By the inclusion-exclusion principle for integrals, we haveð1
u

ð1
v
pðw, zÞdzdw ¼ Cðu, vÞ þ Cð1, 1Þ � Cðu, 1Þ � Cð1, vÞ (3.3)

By change of variables and symmetry (3.1), we also haveð1
u

ð1
v
pðw, zÞdzdw ¼

ð1�v

0

ð1�u

0
pð1� z, 1� wÞdzdw

¼
ð1�v

0

ð1�u

0
pðw, zÞdzdw ¼ Cð1� v, 1� uÞ

(3.4)

which proves (3.2). Assume that Cðu, 1Þ ¼ u for u 2 ½0, 1�: Then, (3.2) with u¼ 0 sim-
plifies to 0 ¼ Cð1, vÞ � v: Similarly, Cð1, vÞ � v ) Cðu, 1Þ � u: If these conditions hold,
C is a copula, which is absolutely continuous by Equation (1.13), and Equation (3.2)
implies Equation (1.3), i.e., opposite symmetry. Conversely, if C is a copula, Cðu, 1Þ � u
and Cð1, vÞ � v by definition. w

We will now show that copulas satisfying the assumptions in Theorem 2.4, with the
additional assumption of being conditionally independent on uþ v � 1 can be character-
ized by differential equations. This method is reminiscent of the well-known method of
separation of variables for construction of solutions to partial differential equations.
This will also give a construction method for absolutely continuous copulas with given
opposite diagonal section, a problem considered in De Baets, De Meyer, and Ubeda-
Flores (2009), cf. Theorem 3.7 below. Later, we will modify the construction, restricting
the copula density support to v � HðuÞ, which is required to solve Problem 1.2.

Theorem 3.2. Assume that

pðu, vÞ ¼ F0ðuÞG0ðvÞ if uþ v � 1
F0ð1� vÞG0ð1� uÞ if uþ v > 1

�
(3.5)

where F,G 2 C1ð0, 1Þ, Fð0Þ ¼ Gð0Þ ¼ 0,G0 � 0, and C is given by (1.13). Then,

C0
uðu, vÞ ¼

F0ðuÞGðvÞ if uþ v � 1
Gð1� uÞF0ðuÞ þ G0ð1� uÞðFðuÞ � Fð1� vÞÞ if uþ v > 1

�
(3.6)

and the following are equivalent:

1. F0 � 0 and

Gð1� uÞF0ðuÞ þ G0ð1� uÞFðuÞ ¼ 1, u 2 0, 1½ � (3.7)
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2. C(u, v) is an absolutely continuous copula, and then

Cðu, vÞ ¼ FðuÞGðvÞ if uþ v � 1
Fð1� vÞGð1� uÞ þ uþ v� 1 if uþ v > 1

�
(3.8)

Proof. Integration C0
uðu, vÞ ¼

Ð v
0 C

00
uvðu, zÞdz of the piecewise defined function p ¼ C00

uv
yields C0

uðu, vÞ ¼ F0ðuÞGðvÞ for uþ v � 1 and C0
uðu, vÞ ¼ Gð1� uÞF0ðuÞ þ G0ð1�

uÞðFðuÞ � Fð1� vÞÞ for uþ v > 1, so C0
uðu, 1Þ ¼ Gð1� uÞF0ðuÞ þ G0ð1� uÞFðuÞ:

Suppose that F0 � 0 and (3.7) holds true. Then, p � 0 and C0
uðu, 1Þ � 1 so C is an abso-

lutely continuous copula by Theorem 3.1. Conversely, suppose that C is an absolutely
continuous copula. Then, C00

uv ¼ p � 0 so F0 � 0 by (3.5), and (3.7) holds since
C0
uðu, 1Þ � 1: Moreover, integration Cðu, vÞ ¼ Ð u0 C0

uðz, vÞdz yields (3.8) for uþ v � 1,
and (3.8) for uþ v > 1 follows from Theorem 3.1. w

The differential Equation (3.7) can be solved with the integrating factor method.
Moreover, a condition for F0ðuÞ � 0 can be derived.

Theorem 3.3. Assume that G satisfies the assumptions of Theorem 3.2. Then, F(u) satisfy
(3.7) and Fð0Þ ¼ 0 if and only if

FðuÞ ¼ Gð1� uÞ
ðu
0

dz

Gð1� zÞ2 , u 2 ð0, 1Þ (3.9)

Moreover, if F(u) is given by (3.9), and G is twice differentiable, leftside derivative G0ð1�Þ
exists and is positive, G0ðuÞ > 0 for u 2 ð0, 1Þ then

F0ðuÞ ¼ G0ð1� uÞ Lð0Þ
Gð1Þ2 þ

ðu
0

1þ L0ðzÞ
Gð1� zÞ2 dz

 !
, u 2 ð0, 1Þ (3.10)

where

LðuÞ ¼ Gð1� uÞ
G0ð1� uÞ , u 2 ð0, 1Þ, and Lð0Þ ¼ Gð1Þ

G0ð1�Þ (3.11)

Finally, if there exists u� 2 ½0, 1� such that L0ðuÞ � �1 for u 2 ð0, u�Þ and L0ðuÞ � �1 for
u 2 ðu�, 1Þ, and if

�
ðu�
0

1þ L0ðzÞ
Gð1� zÞ2 dz �

Lð0Þ
Gð1Þ2 (3.12)

then F0ðuÞ � 0 for u 2 ð0, 1Þ:

Proof. Equation (3.9) is obtained by multiplying (3.7) with the integrating factor

1=Gð1� uÞ2: Equation (3.7) yields

F0ðuÞ ¼ 1
Gð1� uÞ �

1
LðuÞ FðuÞ (3.13)

and substituting (3.9) in (3.13) using (3.11) yields

F0ðuÞ ¼ G0ð1� uÞ LðuÞ
Gð1� uÞ2 �

ðu
0

dz

Gð1� zÞ2
 !

(3.14)

and the identity
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d
du

LðuÞ
Gð1� uÞ2
 !

¼ 2þ L0ðuÞ
Gð1� uÞ2 (3.15)

yields

LðuÞ
Gð1� uÞ2 ¼

Lð0Þ
Gð1Þ2 þ

ðu
0

2þ L0ðzÞ
Gð1� zÞ2 dz (3.16)

which proves (3.10). Moreover, by the assumptions, u 7! � Ð u0 ð1þ L0ðzÞÞ=Gð1� zÞ2dz
has its maximum for u ¼ u�, so it follows from (3.12) that F0ðuÞ � F0ðu�Þ � 0 for
u 2 ½0, 1�: w

Example 3.4. G(v) ¼ v, LðuÞ ¼ 1� u, 1þ L0ðuÞ ¼ 0, F0ðuÞ ¼ G0ð1� uÞ=Gð1Þ, yields the
independence copula Cðu, vÞ ¼ uv:

Example 3.5. If k � 1 and GðvÞ ¼ vk, then (3.7) has solution

FðuÞ ¼ ð1� uÞ1�k � ð1� uÞk
2k� 1

(3.17)

and F0ðuÞ � 0 for u 2 ½0, 1�, so

Cðu, vÞ ¼ ðð1� uÞ1�k � ð1� uÞkÞvk=ð2k� 1Þ if uþ v � 1
ð1� uÞkðv1�k � vkÞ=ð2k� 1Þ þ uþ v� 1 if uþ v > 1

(
(3.18)

is a one–parameter family of absolutely continuous copulas. In particular, for k¼ 1 we
obtain the independence copula uv. For k> 1, limu%1 FðuÞ ¼ 1:

Example 3.6. If GðvÞ ¼ sin ðpv=2Þ, then (3.7) has solution

FðuÞ ¼ 2 sin ðpu=2Þ=p (3.19)

and F0ðuÞ � 0 for u 2 ½0, 1�, so

Cðu, vÞ ¼ 2 sin ðpu=2Þ sin ðpv=2Þ=p if uþ v � 1
2 cos ðpu=2Þ cos ðpv=2Þ=pþ uþ v� 1 if uþ v > 1

�
(3.20)

is an absolutely continuous copula.

Since the positivity conditions in Theorem 3.3 is formulated in terms of the function L,
it is natural to start by specifying L satisfying (3.12). This is also related to the problem
of constructing copulas with prescribed opposite diagonal section xðuÞ ¼ Cðu, 1� uÞ
considered in De Baets, De Meyer, and Ubeda-Flores (2009). In fact, given x, the func-
tion L is given by the explicit formula (3.25) below. This is formulated in Theorem 3.7.

Theorem 3.7. Suppose that L is a positive real–valued function defined on ½0, 1� such thatðu
0

dz
LðzÞ < 1 (3.21)

for u 2 ½0, 1Þ and
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lim
u!1�

ðu
0

dz
LðzÞ ¼ 1 (3.22)

Let

GðvÞ ¼ exp �
ð1�v

0

dz
LðzÞ

 !
(3.23)

and suppose that (3.12) holds true. Moreover, let F(u) be given by (3.9). Then, C given by
(3.8) is an absolutely continuous copula. Moreover, the opposite diagonal section

xðuÞ � Cðu, 1� uÞ (3.24)

satisfies

LðuÞ ¼ 2xðuÞ
1� x0ðuÞ (3.25)

Proof. Clearly, because L is positive and satisfies (3.21) and (3.22), G defined by (3.23)
is positive, G is increasing (in fact strictly increasing) and Gð0Þ ¼ 0: Moreover, it fol-
lows from (3.23) that (3.11) holds true. By Theorem 3.3, F0ðuÞ � 0 and by Theorem 3.2,
C is an absolutely continuous copula. Differentiation of FðuÞGð1� uÞ ¼ xðuÞ yields
F0ðuÞGð1� uÞ � FðuÞG0ð1� uÞ ¼ x0ðuÞ, so in view of (3.7) we get

F0ðuÞGð1� uÞ ¼ 1þ x0ðuÞ
2

(3.26)

and

FðuÞG0ð1� uÞ ¼ 1� x0ðuÞ
2

(3.27)

Solving for F(u) in (3.27), differentiating and substituting F0ðuÞ in the left-hand side of
(3.26) yields

ð1� x0ðuÞÞG
00ð1� uÞGð1� uÞ

G0ð1� uÞ2 � x00ðuÞ Gð1� uÞ
G0ð1� uÞ ¼ 1þ x0ðuÞ: (3.28)

Using (3.11) and the identity

G00ð1� uÞGð1� uÞ
G0ð1� uÞ2 ¼ 1þ L0ðuÞ (3.29)

we get

ð1� x0ðuÞÞL0ðuÞ � x00ðuÞLðuÞ ¼ 2x0ðuÞ (3.30)

which is integrated to ð1� x0ðuÞÞLðuÞ ¼ 2xðuÞþ constant. Since xð1Þ ¼ Cð1, 0Þ ¼ 0
and Lð1Þ ¼ 0 in view of (3.22), the integration constant is zero, which proves (3.25). w

Example 3.8. Assume that k � 1 and let LðuÞ ¼ ð1� uÞ=k: Then, we get Gð1� uÞ ¼
ð1� uÞk so we recover Example 3.5. Also, L0ðuÞ ¼ �1=k � �1 so u� ¼ 0 and since 0 �
Lð0Þ ¼ 1=k we infer from Theorem 3.3 that an absolutely continuous copula is obtained.
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Example 3.9. Assume that a 2 ½0, 1Þ and let LðuÞ ¼ ð1� uÞð1� auÞ: Then,

Gð1� uÞ ¼ 1� u
1� au

� �1=ð1�aÞ

and u� ¼ 1=2 : L0ðuÞ ¼ �1þ að�1þ 2uÞ � �1 if u � 1=2, L0ðuÞ � �1 if u � 1=2: We
obtain ðu�

0

1þ L0ðzÞ
Gð1� zÞ2 dz ¼

ð1=2
0

1� au
1� u

� �2=ð1�aÞ
að1� 2uÞdu

¼ 1
2
F1 1,

2
1� a

, � 2
1� a

; 3;
1
2
,
a
2

� �

Here, F1 is the Appell series (see Gradshteyn and Ryzhik (2014, 1027) for a defin-
ition), which may be represented by Picard’s integral formula, cf. Cuyt et al. (1999):

F1ða, b, b0; c; x, yÞ

¼ CðcÞ
CðaÞCðc� aÞ

ð1
0
ta�1ð1� tÞc�a�1ð1� txÞ�bð1� tyÞ�b0dt

Here, C denotes Euler’s gamma function (Gradshteyn and Ryzhik 2014, 901). The func-
tion F1 is available in computer algebra systems like MapleVR and MathematicaVR , and
numerical investigation reveals that the right-hand side is an increasing function of a
and approaches the value 0.861485 as a ! 1� : Therefore, condition (3.12) is satisfied,
so Theorem 3.3 yields an absolutely continuous copula, and (3.9) can be evaluated to

FðuÞ ¼ uGð1� uÞF1 1,
2

1� a
, � 2

1� a
; 2; au, u

� �
:

When 2=ð1� aÞ is integer, this expression can be simplified to a finite sum of powers
and logarithms, cf. Cuyt et al. (1999).

4. Comparison with other methods

A method by Durante and Jaworski is found in Durante and Jaworski (2008), where
absolutely continuous copulas C(u, v) with given diagonal section C(t, t) are constructed,
in terms of convex combinations of singular diagonal copulas

Cdðu, vÞ ¼ min u, v,
dðuÞ þ dðvÞ

2

� �
(4.1)

(satisfying Cdðt, tÞ ¼ dðtÞ). The problem with this approach for our purposes is that the
constraint v � HðuÞ imposes functional inequalities dðHðuÞÞ þ dðuÞ � 2u that must be
fulfilled for the d’s used in the construction. In comparison, the advantage of our differ-
ential equation method is that H is used explicitly, using only elementary calculus.
Regarding copulas and differential equations, there is a characterization of all copulas

by Jaworski, in terms of a certain type of weak solutions to differential equations in
Jaworski (2014). For comparison, we give here a simplified account of his method in
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the special case of absolutely continuous copulas with differentiable density and sec-

tional inverse. For fixed u 2 ½0, 1�, let Cðu, 	Þ�1ðzÞ denote the assumed unique solution v

to the equation Cðu, vÞ ¼ z, i.e., Cðu,Cðu, 	Þ�1ðzÞÞ ¼ z for all z 2 ½0, 1�, and define

C u½ �ðt, zÞ ¼ u�1Cðut,Cðu, 	Þ�1ðuzÞÞ (4.2)

Moreover, define

FCðu, zÞ ¼ @

@t
C u½ �ðt, zÞ t¼1 � z ¼ C0

uðu,Cðu, 	Þ�1ðuzÞÞ � z
�� (4.3)

Now suppose that for each v 2 ½0, 1�, gvðuÞ is solution to the terminal value problem

ug 0vðuÞ ¼ FCðu, gvðuÞÞ, u 2 ð0, 1Þ (4.4)

gvð1Þ ¼ v (4.5)

Then, C can be characterized in terms of gvðuÞ as
Cðu, vÞ ¼ uguðvÞ (4.6)

To see this, note that by the definition of FC and the product rule of differentiation,
(4.4) is equivalent to

d
du

ðugvðuÞÞ ¼ C0
uðu,Cðu, 	Þ�1ðugvðuÞÞÞ (4.7)

and this ODE for gvðuÞ is satisfied for gvðuÞ ¼ Cðu, vÞ=u, so by uniqueness of solution
to (4.4)–(4.5), (4.6) must hold. The general result (valid for all copulas) can be found in
Jaworski (2014, Theorems 3.1 and 3.2). Now, applying Jaworski’s characterization the-

orem to a copula of the form (3.8), we need to compute Cðu, 	Þ�1ðzÞ to obtain FC. For

z � 1� u, we get FðuÞGðvÞ ¼ z, which can be solved explicitly, yielding v ¼
Cðu, 	Þ�1ðzÞ ¼ G�1ðz=FðuÞÞ: However, for z > 1� u, v ¼ Cðu, 	Þ�1ðzÞ is implicitly
defined by Fð1� vÞGð1� uÞ þ uþ v� 1 ¼ z, which cannot be solved for v in terms of
F, G, and their inverses. Therefore, we have not been able to use Jaworski’s method to
obtain equations for F, G for copulas of the type (3.8).

5. Absolutely continuous copulas with prescribed support

Here, we construct absolutely continuous opposite symmetric copulas with the support
of the probability measure prescribed by a constraint v � HðvÞ: The construction is
simple, using elementary calculus and a piecewise definition of the copula density, simi-
lar to Theorem 3.2.

Theorem 5.1. Suppose that 0 < u0 < 1=2 and that H is a strictly increasing continuous
function defined on ½0, 1�, continuously differentiable on ð0, u0Þ, satisfying (1.6) and (1.7).
Furthermore, suppose that F is a differentiable function defined on ½u0, 1Þ such that
Fðu0Þ ¼ 0, G is a differentiable function defined on ½0, 1� u0� such that Gð0Þ ¼ 0,G0 � 0
and C(u, v) given by (1.13), (1.14). Furthermore, let K be defined by (1.11). Then, the fol-
lowing are equivalent:
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 F0 � 0 and

F0ðuÞGð1� uÞ þ G0ð1� uÞðFðuÞ þ KðuÞÞ ¼ 1 (5.1)

for u 2 ½u0, 1Þ:

 C(u, v) is an absolutely continuous copula, fulfilling (1.3) and (1.15)–(1.17).

Proof. The basic idea of the proof is similar to Theorem 3.2: integrate the given piece-
wise defined ansatz for the copula density C00

uv to derive C0
u and use Theorem 3.1. By

definition, pðu, vÞ ¼ C00
uvðu, vÞ and piecewisely defined on the regions 1–7 depicted in

Figure 4 as follows; region 1: C00
uv ¼ G0ðvÞ=GðHðuÞÞ, region 2, 3, 7: C00

uv ¼ 0, region 4:
C00

uv ¼ F0ðuÞG0ðvÞ, region 5: C00
uv ¼ F0ð1� vÞG0ð1� uÞ, and region 6: C00

uv ¼ G0ð1�
uÞ=GðHð1� vÞÞ: Integration yields C0

uðu, vÞ ¼
Ð v
0 C

00
uvðu, zÞdz, piecewisely defined as

follows; region 1: C0
u ¼ GðvÞ=GðHðuÞÞ, region 2, 3: C0

u ¼ 1, region 4: C0
u ¼ F0ðuÞGðvÞ,

region 5: C0
u ¼ F0ðuÞGð1� uÞ þ ðFðuÞ � Fð1� vÞÞG0ð1� uÞ, region 6: C0

u ¼ F0ðuÞGð1�
uÞ þ ðFðuÞ þ KðH�1ðvÞÞÞG0ð1� uÞ, and region 7: C0

u ¼ F0ðuÞGð1� uÞ þ ðFðuÞ þ
KðuÞÞG0ð1� uÞ: To derive the expression in region 6, write K on the alternate form

KðuÞ ¼
ðu0
H�1ð1�uÞ

dw
GðHðwÞÞ (5.2)

(derived by the change of variables z ¼ 1� HðwÞ ¼ H�1ð1� wÞ) and note thatðv
1�u0

dz
GðHð1� zÞÞ ¼

ðu0
1�v

dw
GðHðwÞÞ ¼

ðu0
H�1ð1�H�1ðvÞÞ

dw
GðHðwÞÞ ¼ KðH�1ðvÞÞ

in view of (1.7). If F0 � 0 and (5.1) holds true, then p � 0 by (1.14) and C0
uðu, 1Þ � 1 by

(5.1) since the left-hand side of (5.1) is the expression for C0
u in region 7. Thus, by the-

orem 3.1, C is an absolutely continuous copula. Conversely, if C is an absolutely con-
tinuous copula, then p ¼ C00

uv � 0 so F0 � 0 and by (1.14), and C0
uðu, 1Þ ¼ 1 which

proves (5.1). The conditions C0
uðu, 1Þ � 1 and C0

vð1, vÞ � 1 are equivalent by Theorem
3.1. Assume now that C is an absolutely continuous copula, then C0

u ¼ 1 in region 7 by
(5.1). Integration Cðu, vÞ ¼ Ð u0 C0

uðz, vÞdz yields the following piecewise defined function

C(u, v); region 2, 3, 7: C¼ u which proves (1.16), region 1: C ¼ H�1ðvÞ þ ðKð1� vÞ �
KðH�1ð1� uÞÞÞGðvÞ which proves (1.15), and region 4: C ¼ H�1ðvÞ þ ðKð1� vÞ þ
FðuÞÞGðvÞ which proves (1.17). The final statement for uþ v > 1 follows from
Theorem 3.1. w

Remark. Note that the symmetry condition (1.7) and the continuity and strict monot-
onity of H implies that Hð0Þ ¼ 0 and Hð1Þ ¼ 1: Indeed, if Hð0Þ ¼ a > 0 then H(u) ¼ 1
for u 2 ð1� a, 1Þ, which contradicts the strict monotonicity of H. Note also that H(u) ¼
u is not allowed since Hðu0Þ ¼ 1� u0 and u0 2 ð0, 1=2Þ:
Equation (5.1) can be solved with the integrating factor method, and a positivity con-

dition can be derived, analogous to Theorem 3.3:

Theorem 5.2. Assume that H, G, K, and F satisfy the assumptions in Theorem 5.1. Then,
F(u) satisfies (5.1) if and only if
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FðuÞ ¼ �KðuÞ þ Gð1� uÞ
ðu
u0

1þ H0ðzÞ
Gð1� zÞ2 dz (5.3)

Moreover, if F(u) is given by (5.3), then

F0ðuÞ ¼ G0ð1� uÞ Lðu0Þ
Gð1� u0Þ2

þ
ðu
u0

1þ L0ðzÞ �H0ðzÞ
Gð1� zÞ2 dz

 !
(5.4)

where L is given by (3.11). Finally, if there exists u� 2 ½u0, 1� such that L0ðuÞ �H0ðuÞ � �1
for u 2 ðu0, u�Þ and L0ðuÞ � H0ðuÞ � �1 for u 2 ðu�, 1Þ, and if

�
ðu�
u0

1þ L0ðzÞ � H0ðzÞ
Gð1� zÞ2 dz � Lðu0Þ

Gð1� u0Þ2
(5.5)

then F0ðuÞ � 0 for u 2 ðu0, 1Þ:

Proof. Multiplying (5.1) with the integrating factor 1=Gð1� uÞ2 and integrating by parts
(using Kðu0Þ ¼ 0) yields

FðuÞ ¼ Gð1� uÞ
ðu
u0

1� G0ð1� zÞKðzÞ
Gð1� zÞ2 dz

¼ Gð1� uÞ
ðu
u0

dz

Gð1� zÞ2 �
KðuÞ

Gð1� uÞ þ
ðu
u0

K 0ðzÞdz
Gð1� zÞ

 !

so substituting

K 0ðzÞ ¼ H0ðzÞ
Gð1� zÞ (5.6)

according to (1.11) yields (5.3). Solving for F0 in (5.1):

F0ðuÞ ¼ 1
Gð1� uÞ �

1
LðuÞ ðKðuÞ þ FðuÞÞ (5.7)

and substituting

KðuÞ þ FðuÞ ¼
ðu
u0

1þ H0ðzÞ
Gð1� zÞ2 (5.8)

according to (5.3) yields

F0ðuÞ ¼ G0ð1� uÞ LðuÞ
Gð1� uÞ2 �

ðu
u0

1þ H0ðzÞ
Gð1� zÞ2 dz

 !
(5.9)

The identity (3.15) yields

LðuÞ
Gð1� uÞ2 ¼

Lðu0Þ
Gð1� u0Þ2

þ
ðu
u0

2þ L0ðzÞ
Gð1� zÞ2 dz (5.10)

which proves (5.4). Finally, by the assumptions, u 7! � Ð uu0ð1þ L0ðzÞ �H0ðzÞÞ=
Gð1� zÞ2dz has its maximum for u ¼ u�, so it follows from (5.5) that F0ðuÞ �
F0ðu�Þ � 0 for u 2 ½u0, 1�: w
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Example 5.3. If

HðuÞ ¼ ð1� u0Þu=u0 if u � u0
1� u0ð1� uÞ=ð1� u0Þ if u > u0

�
(5.11)

GðvÞ ¼ vk and k � ð1� u0Þ=ð1� 2u0Þ, then (1.11) yields

KðuÞ ¼ ðð1� uÞ1�k � ð1� u0Þ1�kÞu0
ð1� u0Þðk� 1Þ (5.12)

(5.3) evaluates to

FðuÞ ¼ ð1� 2u0Þk� ð1� u0Þ
ð2k� 1Þðk� 1Þð1� u0Þ ð1� uÞ1�k

� ð1� u0Þ1�2k

ð2k� 1Þð1� u0Þ ð1� uÞk þ ð1� u0Þ1�ku0
ðk� 1Þð1� u0Þ

(5.13)

Moreover, LðuÞ ¼ ð1� uÞ=k, so L0ðuÞ � H0ðuÞ ¼ �1=k� u0=ð1� u0Þ � �1 if and
only if k � ð1� u0Þ=ð1� 2u0Þ, in which case F0ðuÞ is positive. By Theorem 5.1 we
obtain a two-parameter family of absolutely continuous copulas (with parameters 0 <

u0 < 1=2 and k � ð1� u0Þ=ð1� 2u0Þ), with probability density supported on v � HðuÞ:
Indeed, in this example F0ðuÞ can be computed explicitly:

F0ðuÞ ¼ ðð1� 2u0Þk� ð1� u0ÞÞð1� uÞ�k þ kð1� u0Þ1�2kð1� uÞk�1

ð2k� 1Þð1� u0Þ (5.14)

and is strictly positive on ½u0, 1Þ if and only if the coefficient for ð1� uÞ�k is positive,
which is equivalent to k � ð1� u0Þ=ð1� 2u0Þ:
Example 5.4. In this example, we construct more solutions to Problem 1.2, using

Theorem 5.2. Let k 2 R, k > 1 and LðuÞ ¼ ð1� uÞ=k: Then, we obtain GðvÞ ¼
vk=ð1� u0Þk and

KðuÞ ¼ ð1� u0Þk
ðu
u0

H0ðzÞ
ð1� zÞk dz (5.15)

and

FðuÞ ¼ �KðuÞ þ ð1� u0Þkð1� uÞk
ðu
u0

1þH0ðzÞ
ð1� zÞ2k

dz (5.16)

where H is given by (1.5) and

H0ðzÞ ¼ 1ffiffiffiffiffi
2p

p exp �D U�1ðuÞ þ D
2

� �� �
(5.17)

Since L0ðuÞ ¼ �1=k and H0 decreasing we have u� satisfying the assumptions in
Theorem 5.2 and determined by H0ðu�Þ ¼ 1� 1=k: Solving this equation yields
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u� ¼ U �
ffiffiffiffiffi
2p

p

D
1� 1

k

� �
� D

2

 !
(5.18)

Thus, 1� u� ¼ Uð ffiffiffiffiffi
2p

p ð1� 1=kÞ=Dþ D=2Þ, and also 1� u0 ¼ UðD=2Þ, and one can
show that condition (5.5) is equivalent toðu�

u0

H0ðzÞ
ð1� zÞ2k

dz � ð1� u0Þ1�2k

2k� 1
þ 1� 1

k

� �
ð1� u�Þ1�2k (5.19)

so if k satisfies this condition, an absolutely continuous copula is obtained. The joint
PDF of (U,V) is illustrated in Figure 5, and the joint PDF of (X,Y) is illustrated in
Figure 6.
We have the following analogue of Theorem 3.7. Here, given the opposite diagonal sec-
tion x, the function L is given by an integral Equation (5.23), (5.24) below.

Theorem 5.5. Suppose that H, u0 satisfies (1.7) and (1.6). Suppose also that L is a positive
real–valued function defined on ½u0, 1� such thatðu

u0

dz
LðzÞ < 1 (5.20)

for u 2 ½u0, 1Þ and
lim
u!1�

ðu
u0

dz
LðzÞ ¼ 1 (5.21)

Let

GðvÞ ¼ exp �
ð1�v

u0

dz
LðzÞ

 !
(5.22)

Moreover, let K(u) and F(u) be given by (1.11) and (5.3) and suppose that (5.5) holds
true. Then, C given by (1.3) and (1.15)–(1.17) is an absolutely continuous copula.
Moreover, the opposite diagonal section (3.24) satisfies xðuÞ ¼ u for u 2 ½0, u0� and

LðuÞ ¼ 2xðuÞ þ Gð1� uÞKðuÞ
1� x0ðuÞ (5.23)

Figure 6. Probability density function p(x, y) for Example 5.4, D ¼ 1, k ¼ 2: The wiggles in the level
curves at the upper right and lower left corners of right plot are numerical artifacts.
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for u 2 ½u0, 1�, where
Gð1� uÞKðuÞ ¼

ðu
u0

exp �
ðu
z

dw
LðwÞ

� �
H0ðzÞdz (5.24)

Proof. The proof is similar to the proof of Theorem 3.7, with some additional terms
involving K. More precisely, (3.26) and (3.27) are replaced by

Gð1� uÞF0ðuÞ ¼ 1þ x0ðuÞ � G0ð1� uÞKðuÞ
2

(5.25)

and

G0ð1� uÞFðuÞ ¼ 1� x0ðuÞ � G0ð1� uÞKðuÞ
2

(5.26)

Solving for F in (5.26), differentiating and substituting for F0 in the left-hand side of
(5.25) yields

ð1� x0ðuÞÞð1þ L0ðuÞÞ � x00ðuÞLðuÞ
¼ 1þ x0ðuÞ þ K 0ðuÞGð1� uÞ � KðuÞG0ð1� uÞ (5.27)

which is integrated to ð1� x0ðuÞÞLðuÞ ¼ 2xðuÞ þ Gð1� uÞKðuÞþ constant. The
Equation (5.24) follows from (1.11) and (5.22). For each fixed z, the integrand in (5.24)
is decreasing toward 0 as u ! 1� in view of (5.20) and (5.21), so by the mononotone
convergence theorem, limu!1� Gð1� uÞKðuÞ ¼ 0: Hence, the constant of integration is
zero, which proves (5.23). w

Proof of Theorem 1.4. Clearly H, G, K, and F satisfy the assumptions of Theorem 5.1.
Differentiation of (1.12) yields F0ðuÞ ¼ ð1� 2u0ÞG0ð1� uÞ, which shows that (5.4) is sat-
isfied, since 1þ L0ðzÞ �H0ðzÞ � 0, Lðu0Þ ¼ Hðu0Þ � u0 ¼ 1� 2u0, and Gð1� u0Þ ¼ 1:
Thus, F(u) satisfies F0 � 0 and (5.1) by Theorem 5.2. By Theorem 5.1, C is an absolutely
continuous copula with density p, having the stated form according to Theorem 5.1. w

6. Sampling

To sample from a two-dimensional copula C(u, v), we use the conditional density C0
u of

Corollary 6.1 in the following way (cf. Nelsen (2006, Chap. 2.9)): First sample U, T,
independently from U(0, 1). Then for each Ti, Ti let Vi satisfy Ti ¼ C0

uðUi,ViÞ: Then,
(Ui, V i) is distributed according to C(u, v). For sampling from the copula, the following
corollary is useful:

Corollary 6.1. Suppose that C(u, v) is an absolutely continuous copula given by Theorem 5.1
and F, G, K defined accordingly. Then, C0

uðu, vÞ is given by the following formulas:

1. If 0 � u � u0 and 0 < v < HðuÞ then
C0
uðu, vÞ ¼ GðvÞ=GðHðuÞÞ (6.1)
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2. If 0 � u � 1 and HðuÞ � v � 1 then

C0
uðu, vÞ ¼ 1 (6.2)

3. If u0 < u < 1 and 0 < v � 1� u then

C0
uðu, vÞ ¼ ð1� G0ð1� uÞðKðuÞ þ FðuÞÞÞGðvÞ=Gð1� uÞ (6.3)

4. If u0 < u < 1 and 1� u < v � 1� u0 then

C0
uðu, vÞ ¼ 1� G0ð1� uÞðKðuÞ þ Fð1� vÞÞ (6.4)

5. If u0 < u < 1 and 1� u0 < v � HðuÞ then
C0
uðu, vÞ ¼ 1� G0ð1� uÞðKðuÞ � Fð1�Hð1� vÞÞÞ (6.5)

6. If u0 < u < 1 and HðuÞ < v < 1 then C0
uðu, vÞ ¼ 1:

Proof. Follows from the equations for C0
u in the proof of Theorem 5.1, and Equations

(1.7), (5.1). w

Figure 7 illustrates sampling in Example 1.5.

7. Application to toxicological probit models

The probit model is the standard statistical method for estimating the injury outcome
of a population exposed to a toxic substance. It originates from an analysis on the effect
of pesticides conducted by Bliss in 1934 (Bliss 1934). The methodology was later cast in
a more rigid mathematic formulation by Finney and Tattersfield (1952). It has since
then been used frequently in toxicological assessments of the injury outcome when a
population has been exposed to dangerous chemicals (Bj€ornham et al. 2017; Burman
and Jonsson 2015; Hauptmanns 2005; Lovreglio et al. 2016; Stage 2004). In short, the
probit model operates as follows. The exposure concentration c(t) is integrated over
time to yield probit values

CiðtÞ ¼ ai þ bi log
ðt
0
cðtÞnidt

 !
(7.1)

Figure 7. Samples from distributions in Example 1.5, sample size 105.
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The fraction of the population that has attained the injury at time t is then estimated by

UðCiðtÞÞ (7.2)

where ai, bi, ni are model parameters associated with the substance, and U is the CDF
for a standard normal variable. There are often several levels of injury outcome used in
toxicology, e.g., light injury, severe injury, and death. These different injury levels are
indexed by i ¼ 1, 2, ::: in Equations (7.1)–(7.2). The fraction of the population that
obtains an injury increases continuously with growing exposure due to the individual
variation of the toxic susceptibility within the population. It is believed that modeling
this variation improves the quantitative toxicological risk assessment, cf. Hattis, Banati,
and Goble (1999).
A population that is not resolved on an individual level is referred to as a macroscopic

population and can be described as a density field. In contrast, a population can be
described as a set of discrete individuals, referred to as agents. A model that uses this
type of population representation is called a microscale model or an agent–based model.
In an agent–based toxicological model, see for example Lovreglio et al. (2016), the over-
all population statistics is obtained from the set of agents that are exposed to the toxic
substance. In such a setting, individual probit values CiðtÞ, acquired by exposure to
individual model concentrations c(t), are computed for each agent. In the transition
from a macroscopic population to an agent–based population, it is convenient to dis-
tribute individual threshold values, ci, for the probit values to all agents representing
their susceptibilities. Thus, when an agent has been exposed to a concentration yielding
a probit value exceeding the corresponding threshold value, the agent has acquired that
injury. Every agent is attributed one threshold value for each injury level. These thresh-
old values are drawn from a standard normal distribution to maintain the overall prob-
ability distribution for the entire population. This method implies that the injury
outcome of the agent–based population approaches asymptotically that of the macro-
scopic population (with static populations) when the number of agents increases. An
advantage with an agent–based population is that the agents may have individual prop-
erties including their movement patterns. In a dynamic simulation, each agent follows
its individual spacetime path, passing through concentration fields, and thereby pro-
ceeds through some or all of the injury stages, transiting successive injury stages when
the agent’s increasing probit functions CiðtÞ pass their threshold values ci. As men-
tioned, the individual toxic susceptibility thresholds ci are random variables and must
obey the requirement

Pðci � CÞ ¼ UðCÞ (7.3)

We propose that the c1, c2, ::: are modeled as a discrete time Markov process with absolutely
continuous transition densities piþ1ji, so by the Markov property, the joint density p is

pðc1, :::, cnÞ ¼ p1ðc1Þp2j1ðc2jc1Þp3j2ðc3jc2Þ:::pnjn�1ðcnjcn�1Þ (7.4)

However, there is a potential pitfall: the injury stages must be passed in the correct
order. Therefore, it must be true with probability one that if an injury level is acquired,
then also the previous injury level is acquired, i.e.,
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ciþ1 � Ciþ1ðtÞ ) ci � CiðtÞ (7.5)

Therefore, the transition densities piþ1ji must satisfy

piþ1jiðciþ1jciÞ ¼ 0 if ciþ1 � Ciþ1ðtÞ and ci > CiðtÞ (7.6)

This imposes a restriction on the support of the joint probability density of ðci, ciþ1Þ,
which we need to investigate in order to ensure that the model is consistent. To this
end, we need to relate possible values of CiðtÞ,Ciþ1ðtÞ for all possible exposures c(t),
t � 0: This can be done in terms of

CiðtÞ � ai
bi

¼ log
ðt
0
cnidt

 !
(7.7)

according to the following lemma:

Lemma 7.1. Assume that n � m > 0 and c � 0, t > 0. Then,

log
ðt
0
cmdt

 !
� m

n
log

ðt
0
cndt

 !
þ 1�m

n

� �
log ðtÞ (7.8)

and

log
ðt
0
cndt

 !
� log

ðt
0
cmdt

 !
þ ðn�mÞ log max

0, t½ �
c

� �
(7.9)

Moreover, the inequalities are sharp: if cðtÞ ¼constant, then equalities holds in the
inequalities above.

Proof. Apply H€older’s inequality
Ð
fgdt � ðf pdtÞ1=pðgqdtÞ1=q and the elementary estimateÐ

f pdt � ðmaxf Þp�1 Ð fdt with f ¼ cm, g¼ 1 and p ¼ n=m: w

The following theorems provide sufficient conditions for (7.5), and necessary com-
patibility conditions for the probit parameters a, b, n:

Theorem 7.2. Assume that CiðtÞ,Ciþ1ðtÞ are probit functions defined by (7.1), and
niþ1 � ni. Also assume that ðci, ciþ1Þ is a bivariate random variable such that

ciþ1 � aiþ1

biþ1
� niþ1

ni

ci � ai
bi

þ 1� niþ1

ni

� �
log ðtÞ (7.10)

almost surely. Then, ciþ1 � Ciþ1ðtÞ ) ci � CiðtÞ almost surely. Moreover, there exists
standard normal ci, ciþ1 satisfying (7.10) if and only if

niþ1biþ1 ¼ nibi (7.11)

and

Di � ai � aiþ1 � biþ1 1� niþ1

ni

� �
log t � 0 (7.12)

and then if Di > 0 there exists ðci, ciþ1Þ with absolutely continuous joint density.
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Proof. Assume that ciþ1 � Ciþ1ðtÞ: Then, we get by (7.7), (7.8) with m ¼ niþ1, n ¼ ni,
and (7.10) that

niþ1

ni

CiðtÞ � ai
bi

þ 1� niþ1

ni

� �
log ðtÞ

� Ciþ1ðtÞ � aiþ1

biþ1
� ciþ1 � aiþ1

biþ1

� niþ1

ni

ci � ai
bi

þ 1� niþ1

ni

� �
log ðtÞ

(7.13)

i.e., CiðtÞ � ci, which proves the first part. The second part follows from Proposition
1.1, since Equation (7.10) is equivalent to Equation (1.1) with X ¼ �ci,Y ¼ �ciþ1, a ¼
ðbiþ1niþ1Þ=ðbiniÞ and

D ¼ biþ1niþ1

bini
ai � aiþ1 � biþ1 1� niþ1

ni

� �
log ðtÞ,

and a ¼ 1,D � 0 is equivalent to Equations (7.11), (7.12). w

Theorem 7.3. Assume that CiðtÞ,Ciþ1ðtÞ are probit functions defined by (7.1), and
niþ1 � ni. Also assume that ðci, ciþ1Þ is a bivariate random variable such that

ciþ1 � aiþ1

biþ1
� ci � ai

bi
þ ðniþ1 � niÞ log max

0, t½ �
c

� �
(7.14)

almost surely. Then, ciþ1 � Ciþ1ðtÞ ) ci � CiðtÞ almost surely. Moreover, there exist
standard normal ci, ciþ1 satisfying (7.14) if and only if

biþ1 ¼ bi (7.15)

and

Di � ai � aiþ1 � biðniþ1 � niÞ log max
0, t½ �

c
� � � 0 (7.16)

and then if Di > 0 there exists ðci, ciþ1Þ with absolutely continuous joint density.

Proof of Theorem 7.3. Assume that ciþ1 � Ciþ1ðtÞ: Then, we get by (7.7), (7.9) with
m ¼ ni, n ¼ niþ1, and (7.14) that

CiðtÞ � ai
bi

þ ðniþ1 � niÞ log max
0, t½ �

c
� �

� Ciþ1ðtÞ � aiþ1

biþ1
� ciþ1 � aiþ1

biþ1

� ci � ai
bi

þ ðniþ1 � niÞ log max
0, t½ �

c
� �

(7.17)

i.e., CiðtÞ � ci, which proves the first part. The second part follows from Proposition
1.1, since Equation (7.14) is equivalent to Equation (1.1) with X ¼ �ci,Y ¼ �ciþ1, a ¼
biþ1=bi and
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D ¼ biþ1

bi
ai � aiþ1 � biþ1 niþ1 � nið Þ log max

0, t½ �
cðtÞ� �

,

and a ¼ 1,D � 0 is equivalent to Equations (7.15), (7.16). w

Remark. Note that if niþ1 ¼ ni, then the compatibility conditions (7.11), (7.12) and
(7.15), (7.16) in the preceding theorems involve only the probit coefficients a, b, n, not t
or maxc:
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