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Using Crash Databases to Predict Effectiveness
of New Autonomous Vehicle Maneuvers

for Lane-Departure Injury Reduction
Björn Olofsson and Lars Nielsen

Abstract—Autonomous vehicle functions in safety-critical sit-
uations show promise in reducing the risk and saving lives in
accidents compared to existing safety systems. Consequently, it
is from many perspectives advantageous to be able to quantify
the potential benefits of new autonomous systems for vehicle
maneuvers at-the-limit of tire friction. Here, to estimate the
potential in terms of saved lives and reduced degree of injuries
in accidents for new, not yet existing systems, a framework has
been developed by combining available historic data, in the form
of crash databases, and statistical methods with comparative
calculations of vehicle behavior using numerical optimization
rather than simulation. The framework performs effectively,
it gives interesting insights into the relation between more
traditional active yaw control and optimal autonomous lane-
keeping control, and it clearly demonstrates the potential of saved
lives by using autonomous vehicle maneuvers.

Index Terms—Risk analysis, active safety, vehicle stability
control, extended yaw control, vehicle-braking strategies.

I. INTRODUCTION

Autonomous driving has potential to reduce the number of
severe vehicle accidents and to save lives, and it is therefore
of interest to investigate the potential severity reduction in
accidents possible to obtain with new autonomous safety
functions and maneuvers in time-critical at-the-limit situations.
Knowledge about previous actual accidents is available in large
databases (see [1], [2] for examples) that are well structured
regarding type of accident, situation parameters, and outcome
in terms of degree of injuries and fatalities. Such databases
have been used in retrospective studies for quantifying actual
performances of different safety systems such as electronic
stability control (ESC) [3] and lane-departure warning (LDW)
and lane-keeping aid (LKA) [4]. For natural reasons, these
databases only contain the outcome of accidents with vehicle
control systems that already exist, so a major research question
is how such collected and well structured data can be utilized
to estimate the potential benefits of a future autonomous safety
system. Methods based on simulation and statistical methods
have been developed for estimation of potential benefits of
vehicle safety systems in, e.g., [5], [6]. Benefit estimations
established based on crash databases have been presented for
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Fig. 1. Possible situations when entering a left-hand or right-hand turn with
radius R. Cases 2 and 3 can potentially result in accidents, whereas in Cases
1a and 1b the vehicle is able to stay in the desired driving lane.

LDW using statistical comparisons based on simulations of
vehicle behavior with and without the safety system active in
[7], [8], [9], [10]. Injury risk functions (see, e.g., [11]) were
used for prediction of the degree of injury in the simulated
accidents with the investigated safety system active.

Regarding the potential of future autonomous vehicles, a
first observation when analyzing accidents in a crash database
is that if a driver enters a scenario with too high speed it can
be physically impossible to avoid lane departure. Thus, for
each accident, there is a need to find the limiting behavior to
investigate if it would have been possible to stay in lane. If it is
not possible to stay in lane even with optimal steering/braking,
then the interesting question is how much the speed could be
reduced by these maneuvers to mitigate the outcome to milder
than fatal or severe injury. Searching for limiting cases, the
nature of simulation is that inputs are needed for representing
the driver actions, like steering and braking, which may be
difficult and time consuming to find for an optimal maneuver,
potentially requiring trial and error approaches. Here, opti-
mization immediately gives the limiting case and finds the
limit if an accident is possible to resolve or mitigate. This is
a fundamental advantage of using optimization, and thus the
methodological framework developed in the current paper is
based on optimization instead of simulation and it turns out
to be computationally sound and effective.

The optimization-based framework for traffic-safety analysis
presented here is general but is advantageously presented
using an example, and the example chosen is lane-departure
situations (see Fig. 1) where active vehicle stabilization is
required (possibly on the limit of tire friction). Lane departure
is a very critical situation, and this is an area where a
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new line of development is to use more information for the
combined steering and braking strategy, specifically to use
lane borders and possibly additional situation awareness. The
possible situations in the case of lane following and lane
departure are depicted in Fig. 1. Note that leaving the lane can
mean either to departure from the road (called road-departure
accidents) or to enter into the lane of opposing traffic (called
opposing-lane accidents). The union of these sets of accidents
is called lane-departure accidents.

From a perspective of policies and strategies for future
development of autonomy, the outcome of the present study
will provide guidance. If it turns out that few severe or fatal
accidents could be avoided, then the argument for autonomy
would weaken and efforts should be put on other develop-
ments. Further, it is of interest to study if an autonomous safety
system of lower complexity could avoid few severe or fatal
accidents, but a comparably more complex system could avoid
significantly more. These questions will be investigated and the
outcome turns out to be very clear. A remark, in the context of
safety analysis in general, is that the research questions posed
in this paper are along the lines of what can be achieved with
an autonomous system regarding reduced injuries compared to
the outcome of real accidents. Then, there are well established
and formal procedures, such as ISO-26262 [12], on how to
design a system to achieve this potential. Thus, the method
developed here is a valuable complement to existing methods.

II. PROBLEM FORMULATION AND CONTRIBUTIONS

The main research question posed in this paper is to
what extent a new autonomous control principle for vehicle
stabilization using combined optimal braking and steering can
reduce the risk for severe or fatal injuries in traffic, and what
that could mean in terms of reduced degree of injury or saved
lives in lane-departure accidents. To this end, comprehensive
crash databases [1], [2], extensively used, e.g., by researchers
and insurance companies, are available. GIDAS [1] is one
such database, described in more detail in Sec. III. Searches
by means of filtering are easy to perform such that different
types of accidents and their physical characteristics (such as
vehicle speed, road curvature, approach angle, and if certain
driver-assistance systems were available) can be readily found.
For the accident scenarios depicted in Fig. 1, a total of 266
lane-departure accidents have been extracted from GIDAS
with the approach described in Sec. III. These accidents are
plotted in Fig. 2, there characterized by the initial speed of the
vehicle and road curvature. The accidents have been plotted
with different colors based on whether an ESC system was
installed in the vehicle (though not necessarily if it was active
during the particular accident, since that is not known from the
database). From the distribution of the accidents with respect
to radius and velocity, it is clear that, as expected, there are
more accidents with high velocity at low radius and that there
are fewer accidents for large radii especially for low velocities.

For the scenarios discussed in the previous paragraph,
two possible vehicle-safety systems are compared. One is a
version of traditional active yaw control (AYC), see, e.g.,
[13], and the other is the emerging new autonomous strategy
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Fig. 2. Illustration of radius and initial velocity for all accidents recorded in
the database GIDAS in a turn (with radius less than 1500 m) that resulted in
departure from the road or into the lane of the opposing traffic and caused
a severe injury or fatality. The colors indicate the type of accident and if an
ESC system was installed in the vehicle.

employing situation awareness combined with optimal braking
and steering, here called optimal lane-keeping control (O-
LKC) [14] (see also [15] for a related approach to optimal
lane keeping), that has been proposed but still does not exist in
production vehicles. The control systems are further described
in Sec. IV. A key idea in this paper is to compute quantitative
characteristics of AYC and O-LKC, such as vehicle state,
optimal driver inputs, and braking strategy during the accident
scenario, by utilizing recent developments in computation of
vehicle behavior at-the-limit of tire friction [16], [17], and
using advances in dynamic optimization and associated tools
[18]. This basis in vehicle dynamics is important in the
analysis of this kind of accidents where the tire forces typically
are at their limits. The vehicle modeling and optimization
approach employed in this paper is discussed in Sec. V. In
Secs. VI–VII, it is described how the so obtained quantitative
characteristics of vehicle behavior (from optimization) are
incorporated and used in the overall computational framework
for benefit estimations. The overall algorithm can be described
as follows. In a first step, the detailed information about the
vehicle and the particular information about the actual accident
is used to determine those accidents that are predicted to be
possible to handle with the autonomous system under study (in
this respect, the method is general since it can utilize a wide
range of detailed information that is available in the database).
Subsequently for the subset of accidents that were estimated
to be unavoidable in the first step, the algorithm computes in
the next step how much the autonomous safety system would
decrease the speed before a potential crash and the conse-
quential mitigation of severe and fatal accidents, while taking
uncertainty into account. This algorithm creates an effective
computational structure and forms a significant contribution in
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the paper, achieved by benefiting from combining extensive
data existing in crash databases with modern optimization
tools. Finally, the total potential of the safety system in
terms of saved lives and injury reductions is summarized in
Sec. VIII. Consequently, that section presents a method that
is able to estimate the potential benefits of a new control
system, already before taking the cost of developing it. The
results from application of the method on the lane-departure
accidents are also presented. The potential implications of the
method and the results from application of it are treated in the
conclusions, Sec. IX.

III. SCENARIOS AND CRASH DATABASES

The first step preceding the analysis of possible benefits of
a new safety system is to describe the scenarios in terms such
that they can be related to accident analysis using accidents
available in databases. In this section, the possible cases for
the example scenario of lane departure are first described in
such a way that they can be extracted from the GIDAS crash
database, and then the specific method of applying appropriate
filtering criteria is described for the lane-departure example.

A. Scenarios Considered

The scenario considered in this paper is lane departure,
which was mentioned previously and is depicted in Fig. 1. As
investigated in [19], it holds that for the accidents in the GI-
DAS database, the number of lane-departure accidents result-
ing in collisions with other traffic participants (multi-vehicle
scenarios) is slightly higher than collision with other objects
(single-vehicle scenarios). However, as shown in Fig. 16 in
[19], the injury outcomes from collisions with other objects
are more severe than multi-vehicle accidents, with at least the
double number of accidents resulting in severe or fatal injuries.
Consequently, choosing the most severe accident type, single-
vehicle accidents caused by lane departure are considered in
the application of the developed method. This scenario of lane
departure in right-hand or left-hand turns is often caused by
entrance into the curve with a velocity that is higher than what
the driver can handle, or even higher than what the vehicle can
perform when combining optimal braking and steering under
consideration of the available interaction friction between the
tires and the road. If right-hand side traffic is assumed and
the road is a left-hand turn, then the risk is to leave the road
out in the terrain, whereas if it is a right-hand turn, then the
risk is to leave the driving lane into the opposing lane. There
are two possible outcomes of using an active safety system
in a particular driving situation. The first possibility is where
the critical situation is handled and the vehicle is able to stay
within its current driving lane (situations denoted 1a and 1b
in Fig. 1). The other two possible cases are when the vehicle
leaves the current driving lane into either the opposing lane
(situation denoted 3 in Fig. 1) or when the vehicle leaves
the road completely (situation denoted 2 in Fig. 1), possibly
colliding. In these two cases, it is of interest to estimate if
the risk of severe injury or fatality can be mitigated or even
completely be avoided with a certain control principle. The
framework developed for the analysis should thus be able

TABLE I
FILTERING CRITERIA USED FOR EXTRACTING THE SOUGHT

ROAD-DEPARTURE ACCIDENTS FROM THE GIDAS DATABASE. THE
RESULTING ACCIDENTS ARE SHOWN IN FIG. 2, THERE DESCRIBED BY THE

RADIUS OF THE TURN AND THE INITIAL VELOCITY.

Filter No.
Participants 50432
Thereof M1 vehicles 32853
Thereof single vehicle accidents 5428
Thereof loss of control accidents 2689
Excluding driver incapacity 2465
Thereof road departure 1594
Thereof in curve 800
Thereof severe or fatal injuries 305
Initial velocity and radius known 233

Thereof with ESC 29
Thereof without ESC 202
Thereof with unknown ESC 2

to handle both the case when the accident is predicted to
be possible to be completely avoided, and the case when
only a reduction of velocity is estimated to be possible, but
this velocity reduction is such that severe or fatal injuries
potentially could be avoided.

B. Crash Databases

Crash databases containing records from previous real ve-
hicle accidents comprise a rich material, where a significant
amount of relevant data about the scenario and the conditions
before and during the crash are stored, see, e.g., [19]. Based
on the information from such databases, a spectrum of dif-
ferent analyses can be performed. Examples are estimation of
functions predicting the probability for risk of injury using
different predictor quantities as input to the model (see, e.g.,
[11]). One example of a database with extensive information
is the German In-Depth Accident Study (GIDAS) [1], which
is the data source employed for the analysis presented in this
paper. Further analysis of a subset of the accidents in GIDAS
is available in the Pre Crash Matrix (PCM) database [6],
where the trajectories of the vehicle pre-accident have been
reconstructed for a subset of the complete database.

For the scenario in Fig. 1, the accidents with severe or fatal
injuries in GIDAS have been filtered out based on a number
of criteria. The filtering process is a sequence of extraction
criteria, and the outcome of the filtering, resulting in the set
of road-departure accidents, is shown in Table I. In the table,
it is seen that there are 233 accidents in that group, where the
speed and road curvature are known. The case of opposing lane
is done analogously and that process results in 33 accidents.
These are the in total 266 lane-departure accidents that are
plotted in Fig. 2.

IV. ACTIVE SAFETY SYSTEMS TO COMPARE

Safety systems in vehicles relying on preview information
and knowledge about the ego vehicle have had an enormous
development during the last decades, and autonomy and
autonomous functions hold promise of yet another level of
safety. In connection with this aspect, it should be noted that
introduction of new sensor systems potentially could bring new
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safety challenges, where well-known examples are the risk
of misclassification of obstacles. However, for sensor systems
relevant to lane departure the safety risk is considered low, and
the reason is already available sensor systems in production for
LDW and LKA systems, so the whole area is consolidating.
Further, it is likely that information in maps of the road
network can be used to assist the onboard sensing system, e.g.,
to provide further robustness to online curvature estimation.

For lane departure, two safety strategies called O-LKC and
AYC are evaluated in the analysis. The systems are selected
such that one, O-LKC, represents an advanced system based
on optimal steering in combination with optimal braking
strategies, whereas the other represents a straightforward ex-
tension of AYC (by braking only) with a steering law simply
based on road curvature. The systems will be investigated and
quantified with respect to what potential benefit the suggested
control principle could provide in terms of decrease in severe
injuries or fatalities in the case of lane-departure situations.

A. Active Yaw Control (AYC)

Systems for AYC use interpretation of vehicle state and
driver inputs (such as speed and steering-wheel input) to
deploy a braking strategy to obtain corrective yaw moment
on the vehicle, see, e.g., [13]. Consequently, in conventional
AYC systems, the driver steering input is used in combination
with an automatic braking strategy. Thus, there is a need for
a steering model, and here the traditional wisdom is used that
the driver should be steering in the direction of the road.

Simple Steering Model for AYC: The steering in the AYC
system is thus modeled to be in the direction of the road. For
a turn with constant radius R, this implies a steering angle

δs = L/R, (1)

where L is the length of the vehicle wheelbase. The steering-
angle input according to (1) is low-pass filtered with a first-
order filter with a time constant of Ts = 0.1 s according to

δ =
1

sTs + 1
δs, (2)

to obtain the actual steering angle δ of the front wheels.
Dual Interpretation of Steering Model for AYC: When a

vehicle maneuver is performed by a human driver, the steering
control law in (1) describes what an alert and correctly acting
driver would do. Consequently, the model in the previous
paragraph represents AYC with such a driver. On the other
hand, if the steering control law (1) is implemented as an
additional part of an AYC system relying on braking, the
complete system then becomes an autonomous safety system
that controls both braking and steering, with an intuitive
steering strategy, though not optimal as the steering pattern
in O-LKC that will be detailed in the next subsection. This
modeling of AYC will naturally give inferior performance
compared to a system with also optimal steering.

B. Optimal Lane-Keeping Control (O-LKC)

A new line of development for safety systems is to use
more information, e.g., lane borders and road curvature, which

now is available in modern cars as a result of new sensor
technology and improved computing power. This information
is then used to devise the steering and braking strategy.
Such formulations for optimization-based lane-keeping control
are found in [14], [17], where lane borders were used as
constraints in an optimization of a time-critical turn maneuver.
In contrast to the vehicle equipped with AYC, the vehicle
with O-LKC is allowed to both brake independently on all
wheels and optimally coordinate the steering. Thus, the vehicle
control system is free to select the best possible combination
of braking and steering inputs. Moreover, the vehicle is also
in this case assumed to be operated completely autonomously
in the case when the vehicle enters a critical situation and the
driver needs assistance for keeping the car on the road. This
system is referred to as optimal lane-keeping control (O-LKC).

V. MODELING AND OPTIMIZATION

The driving behaviors for the two different control principles
are computed using numerical solutions of optimal control
problems. The road-geometry parameters and the initial condi-
tions are extracted as far as possible from the crash database,
and are used when the optimization problem is solved for
each of the specific accidents. In this section, the modeling
of the vehicle dynamics and the subsequent optimal motion-
control problems for AYC and O-LKC are treated. The same
model is used for both vehicles with the respective control
system, while the differences in behavior between the two
control principles are established using the formulation of the
objective function in the optimization problem.

A. Modeling of Vehicle Dynamics
A dynamic double-track (DT) chassis model according to

[16] is employed for the computations. The inputs u to the
model are the steering angle δ of the front wheels and the
torques Tu on the respective wheel. The model comprises
both longitudinal and lateral load transfer, which is modeled
using spring-mass-damper dynamics characterized by a spring
constant and a damping coefficient. The tire-force modeling is
essential for an accurate description of the maneuver, since the
tire-friction utilization is typically at its limit in this kind of
maneuver. Based on the methodology and insights presented
in [16], the Pacejka’s Magic Formula model [20] is used for
describing the tire forces under pure longitudinal tire slip κ or
pure lateral tire-slip α. For combined longitudinal and lateral
slip, weighting functions [20] are used. Moreover, wheel
dynamics is included in the model, i.e., the wheel torques are
used as inputs for the vehicle dynamics. The vehicle chassis
and tire models are formulated in the declarative modeling
language Modelica [21] as a differential-algebraic equation
(DAE) with the functions G and h as

G(ẋ, x, z, u) = 0, (3)
h(x, z, u) = 0, (4)

where x are the states, u the inputs, and z the algebraic
variables of the model. The reader is referred to the model
called DT WF in [16] for the complete model equations and
details regarding the vehicle modeling and the specific model
parameters used.
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B. Optimal Control Problem

The computational approach for obtaining optimal vehicle
behaviors in the respective accident scenario is based on the
optimization platform presented in [16]. That platform was
also employed in [14] to quantify the performance increase in
technical terms possible to achieve with optimal lane-keeping
control compared to conventional AYC. In order to compare
the two different vehicle-safety systems in different scenarios,
a series of optimization problems are solved, both for comput-
ing the maximum manageable velocity curves (see Sec. VI-B)
and for predicting departure velocities (see Sec. VII). The
method for solving the problems is described in detail in [17],
and is therefore only shortly recapitulated here. In [17], it was
found that the driving behaviors corresponding to the control
principles of AYC and O-LKC can be obtained by optimization
of the exit velocity vf and the initial velocity v0 of the
manuever, respectively. Consequently, these variables are used
as optimization objectives here. Further, certain constraints
are enforced in the optimization. More specifically, the wheel
torques Tu are constrained because of braking limitations and
the steering angle δ and its corresponding change rate are
constrained since the wheels cannot instantaneously change
their heading direction. The optimal control problem to be
solved over [0, tf ] is stated as (see [17] for further details):

minimize − v0 or − vf (5)
subject to Tu,i,min ≤ Tu,i ≤ 0, i ∈ {1, 2, 3, 4}, (6)

|δ| ≤ δmax, |δ̇| ≤ δ̇max, (7)
f(Xp, Yp) ≤ 0, g(x(tf )) ≤ 0, (8)
Fcx(0) = x̃0, Gcx(tf ) = x̃f , (9)
G(ẋ, x, z, u) = 0, h(x, z, u) = 0, (10)

where f defines the path constraints on the global vehicle
position (Xp, Yp), g defines the terminal inequality constraint,
and Fc, Gc determine the initial and final constraints. The two
optimal control problems to solve for AYC and O-LKC are
thus obtained by minimizing −vf or −v0, respectively.

C. Solution of Optimal Control Problem

For solving the optimization problem (5)–(10) numerically,
the optimization software JModelica.org [18] is used. This
platform provides algorithms for numerical optimization based
on dynamic systems implemented using the Modelica mod-
eling language as a DAE system on the format (3)–(4).
For a fair comparison of AYC and O-LKC, all vehicle and
tire parameters are equal for both cases. This also holds
for all initial and operational conditions. Since O-LKC has
more information about the driving situation available, it can
potentially be aware of a critical situation sooner than AYC
that relies on detection of a critical situation based on sensor
data [22], so called triggering events. This particular potential
advantage for O-LKC is not exploited in the comparison.

VI. FRAMEWORK FOR PREDICTION OF POTENTIALLY
AVOIDED SEVERE ACCIDENTS

The approach used to predict the potential benefits of a
new safety system has two components, both building on the

optimization framework in Sec. V. First, there is a need to
estimate the capability of the vehicle to stay in lane for each
of the accidents in the crash database, and if it is not possible to
stay in lane to estimate a crash velocity in an impact situation.
For the latter group of accidents, information from the crash
database is used to estimate the mitigation of risk, i.e., the
potentially reduced severity of injuries and reduced number
of fatalities in the accidents.

To analyze the potential benefits of a specific active-safety
system, the following phases are considered in the computa-
tional framework developed:

• Estimate the number of situations where the vehicle
equipped with a certain autonomous safety system can
stay in lane, given the available tire friction. This com-
putational procedure is described in Sec. VI-B.

• The second estimation to be performed is for the subset
of situations where the vehicle leaves the road into the
terrain or into the opposing driving lane, despite that
the active-safety system is in operation. It is clear that
a reduction of velocity before impact should decrease
the probability of a severe injury or even fatality in an
accident. It is therefore in these cases of interest to study
the reduction of vehicle velocity that is obtained with
the specific safety system active, before the crash occurs.
Consequently, there is a need to estimate the departure
velocity vD in these cases. The computational approach
for this purpose is described in Sec. VII-C.

• With the predicted departure velocities, computed for the
accidents where the car is not able to stay on the road, the
obtained data are used in a statistical method to compute
a distribution of the number of severe accidents that are
mitigated with the considered safety system, where injury
risk functions are used to predict the outcome of an
accident, given the predicted impact velocity. The com-
putational approach for this is described in Sec. VII-D.

• Finally, the computational framework gives an estimate
of how many accidents with severe of fatal injuries in the
selected set of accidents the investigated control principle
potentially could avoid, either by complete avoidance or
mitigation. The complete algorithm is given in Sec. VIII.

A. Terminology and Definitions

To formulate the method, certain terminology is introduced
and a set of definitions is established. Let A denote the set of
all accidents ai, i = 1, . . . , N , in a database containing

N = card(A), (11)

entries fulfilling the desired filtering criteria (concerning, e.g.,
type of accident and driver conditions such as in Table I). For
each accident i, the initial velocity of the vehicle is vi0. It is of
interest to study the subset of the complete set A that can be
managed using a new control principle to be investigated. To
this purpose, the maximum initial velocity vM that could be
handled with a certain control system is defined. This quantity,
called the manageable velocity, is assumed to be a function of
the following critical parameters:

vM = vM(R; γµ, d), (12)
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where R is the radius of the turn, γµ is the scaling constant of
the friction coefficients, and d is the lane width (corresponding
to the maximum maneuvering limit for the vehicle center-of-
geometry, see further details in [17]). The subset of A with
accidents that are predicted to be possible to handle with
the evaluated control strategy is called the manageable (M)
accident set and is defined as

AM =
{
ai | vi0 ≤ vM(R; γµ, d)

}
. (13)

Further, introduce the notation

NM = card(AM). (14)

The accidents not contained in AM, i.e., the accidents that
are predicted not to be possible to handle with the evaluated
control strategy, is consequently contained in the complement

AnM = A \ AM (15)

being the non-manageable (nM) accidents. For the accidents
in this set with size

NnM = card(AnM), (16)

it is of interest to estimate what the velocity in the impact
situation would be, if the new control principle would have
been active and then probably has reduced the velocity by
braking. Hence, this is the predicted departure velocity vD.

B. Maximum Manageable Velocity Curves

The maximum manageable velocity curve for a certain
control principle is naturally dependent on the friction between
the tire and the road. The nominal case, corresponding to
driving on dry asphalt, is obtained when γµ = 1. The
maximum manageable velocity curve vM was computed for
O-LKC as function of the radius of the turn using the method
described in Sec. V, i.e., by solving the optimization problem
(5)–(10) for a given set of radius values R. Thereby, dry
asphalt conditions were assumed for the road. In Fig. 3, the
maximum manageable velocity curve, computed for a number
of radii in the interval R ∈ [0, 300] m, and the accidents
extracted from the GIDAS database are plotted as functions of
the turn radius R in the case that the lane width is d = 1 m.
Accidents below the curve, i.e., in the set AM, thus have the
potential to be handled by O-LKC under the given conditions.

The maximum manageable velocity curves vM were also
computed for both O-LKC and AYC for different values of
the scaling constant for the friction coefficients. The results
for the values γµ ∈ {0.75, 1} and the lane width d = 1 m are
collected in Fig. 4.

C. Results for AYC and O-LKC

The accidents employed in the analysis are shown in Fig. 5,
where the maximum manageable velocity curves vM are shown
for AYC and O-LKC in the case when all friction coefficients
are scaled with γµ = 0.75. These values of the tire-friction
coefficients correspond to a slightly slippery road surface, such
as after rain on an asphalt road. This is the value of γµ used
for the subsequent analysis of the respective vehicle control
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Fig. 3. Maximum manageable velocity vM as function of the turn radius R
for O-LKC in the case that the lane width d = 1 m, plotted together with
the road-departure and opposing-lane accidents from GIDAS in the interval
R ∈ [0, 550] m for γµ = 1.

system. For the road-departure accidents, there are NnM = 43
accidents above the maximum manageable velocity curve vM

for O-LKC and NM = 177 accidents are below the maximum
manageable velocity curve for AYC. A total number of 13
accidents are in the grey shaded area between the maximum
manageable velocity curves for O-LKC and AYC. For the
opposing-lane accidents, there are NnM = 3 accidents above
the maximum manageable velocity curve vM for O-LKC and
NM = 30 accidents are below the maximum manageable
velocity curve for AYC. No accidents are in the grey shaded
area between the maximum manageable velocity curves for
O-LKC and AYC.

VII. PREDICTION OF DEPARTURE VELOCITY AND
MITIGATION ESTIMATION

In this section, the computational procedure for prediction
of the departure velocity and the potential injury reduction
possible to obtain is described. First, maximum manageable
velocity curves vM (see Sec. VI-B) for the considered safety
system are used for determining if an accident belongs to
AM or AnM. For the accidents in AnM, a prediction of
what the departure velocity vD would have been, if the new
safety system were active, is computed for each individual
accident. Based on the departure velocity predicted using
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Fig. 4. Maximum manageable velocity vM as function of the turn radius R for
different values of the friction coefficients in the tire-force model (described by
the scaling factor γµ, implying that all tire-friction coefficients are downscaled
equally) and the lane width d = 1 m, using the control principles of AYC
and O-LKC, respectively.

the optimization framework in Sec. V, injury risk functions
are subsequently used in a statistical method to predict the
outcome of the accident in terms of severity of injuries.

A. Manageable Accidents

Initially, all accidents ai in the set A are iterated over. If the
initial velocity vi0 for accident ai is lower than the maximum
manageable velocity according to vM for the considered safety
system and the turn radius for the accident, then the accident
belongs to the set AM. If not, the accident is in the set AnM.

B. Injury Risk Functions

In Fig. 2, it can be noted that there is a significant spread in
velocities and road curvatures, and that severe or fatal injuries
can occur also at relatively low speeds. The significance of
velocity is different for different types of accident analysis
depending on scenario, and in some cases it is an open research
question, e.g., in dense freeway traffic [23], [24]. However,
when it comes to lane departure, velocity is critical as a
significant indicator of the crash energy and thus of injury risk.
A well-founded statistical approach to model risk of injury is
to use injury risk functions [11] (also known as injury risk
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Fig. 5. Maximum manageable velocity vM as function of the turn radius for
AYC and O-LKC for the case when γµ = 0.75 and the lane width d = 1 m.
The grey shaded areas indicate the velocity interval where AYC and O-LKC
differ in terms of what maximum initial velocity they can manage for a certain
turn radius.

curves), i.e., functions that predict the probability pr(ξ) of a
certain degree of injury in an accident, given input variables
ξ, as conceptually described by

pr(ξ) = P(fatal or severe injury | predictors ξ). (17)

Regarding the choice of predictors ξ, it is noted that there
is a high correlation between the kinetic energy involved in
the crash and the resulting degrees of human injuries, where
change of velocity ∆v is a main indicator for severe or fatal
accidents [11], [19], and thus ∆v is the natural choice as
predictor in the injury risk function. To find such an injury
risk function based on ∆v, the accidents from GIDAS could
in principle be used. However, injury risk functions based on a
much larger data set proposed in [11] are used in the analysis
in this paper. They are estimated based on information in
data extracted from an extensive database with broad classes
of accidents. That database is maintained by the Swedish
insurance company Folksam and contains analysis of accidents
in the Swedish Traffic Accident Data Acquisition (STRADA)
[2] database, which comprises information about previous car
accidents in Sweden. Thus, the following injury risk function
pr from [11] is used

pr(∆v) =
1

1 + e−α−β∆v
, (18)
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Fig. 6. Injury risk function from [11] for computation of the probability of
an MAIS 2+ injury in an accident, given the change of velocity ∆v in the
crash. The confidence interval has been computed based on the covariance
matrix for the regression parameters α and β stated in [11].

where α and β are the parameters of the function (which are
inferred from data using logistic regression [25]). Such an
injury risk function with parameters from [11], estimating the
risk of an MAIS 2+ injury (corresponding to that the maximum
injury was 2 or higher on the abbreviated injury scale (AIS)
[26]) in an accident is shown in Fig. 6. The numbers for
the covariance matrix for the parameters α and β stated in
[11] were used for computing the confidence interval and
later when sampling the parameters of the function. In the
following, it is assumed that the departure velocity vD equals
the total change of velocity ∆v, i.e., ∆v = vD, when using
the injury risk functions, meaning that a complete standstill of
the vehicle is assumed after the impact.

C. Prediction of Departure Velocity

In this subsection, the method for predicting the departure
velocity vD for the accidents in the set AnM is described
(cf. Fig. 7). The computations are based on solving the
optimization problem (5)–(10) in Sec. V for each of the
accidents, thus taking the full dynamic model and the specific
road geometry for each accident into account.

1) For accident ai ∈ AnM, extract the initial velocity vi0
and the curve radius Ria from the database. If known
values of the friction coefficient µ = µ0 and the lane
width d = d0 of the road exist, use the actual values.
Otherwise, estimates of these values are used.

2) Find the minimum lane width d such that the maximum
manageable velocity for the considered safety system
is vi0 (i.e., the actual initial velocity from the accident
database). This computation is performed using opti-
mization, either by fixing the initial velocity to the actual
vi0 and solving an optimization problem where d is a
free variable and the objective is to minimize d, or
by successively increasing d and then solving for the
maximum manageable initial velocity for the sequence

Ra

d0
dM

v0

vD

Fig. 7. Schematic illustration of the computation of the departure velocity vD
based on solving a series of optimization problems (see (5)–(10) in Sec. V).
The lane width d0 (road with black curves) is successively increased (road
with red curves) until a solution is found where the computed maximum
manageable velocity vM of the maneuver is sufficiently close to v0 for the
current accident. The departure velocity is then estimated to be the velocity
where the vehicle path (blue curve) intersects with the actual road with lane
width d0.

of fixed lane widths. Here, the latter approach is used as
follows. Successively increase the lane width d of the
road according to the iteration

dk+1 = dk + dε,

starting with the initial value d0. For each step with
increased lane width dε, find the value of the maximum
manageable velocity vM(Ria;µ0, dk) according to the
optimization procedure (5)–(10) in Sec. V. The iterations
are terminated when a solution is found in the optimiza-
tion such that the maximum velocity vM is sufficiently
close to vi0. Denote the corresponding lane width diM. In
the case that the turn radius Ria is very low and the initial
accident velocity vi0 is very high, or that no solution to
the optimization problem fulfilling that vM is sufficiently
close to vi0 for any dk is found, the departure velocity
is set to the initial accident velocity, viD = vi0, and the
procedure is continued with the next accident in Step 1.

3) Determine the departure velocity viD of the solution of
the optimization obtained for solving the problem (5)–
(10) in Sec. V with R = Ria and d = diM at the point
where the outer boundary of the road with lane width
d = d0 intersects with the computed path. This part of
the computational procedure is schematically illustrated
in Fig. 7. Return to Step 1 and continue with the next
accident.

4) The preceding Steps 1–3 can then be repeated for the
complete set of accidents for a set of parameters, where
the friction-scaling constant γµ and the lane width d0

are varied, to investigate influence of such variations.

The outcome from this computational algorithm is then predic-
tions of the departure velocity viD for each accident ai ∈ AnM,
i.e., a prediction of what the departure velocity would have
been with the considered safety system active.
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D. Estimation of Mitigation

In this section, the computational method used for estimat-
ing the predicted possible mitigations of the injuries resulting
from the accidents in the non-manageable set AnM is defined.
Denote the number of accidents in AnM that are predicted
not to result in severe or fatal injuries with application of the
considered safety system (as a result of the obtained reduction
of velocity) by NB and the distribution of this variable by PNB

.
The method for estimating this number and the corresponding
distribution is based on the injury risk functions described
in Sec. VII-B. A Monte Carlo simulation approach is used to
compute the distribution PNB

for the considered safety system,
under the inherent uncertainty in the injury risk functions.
The Steps 1–6 in the following computational procedure are
repeated for k = 1, . . . ,K, where K is a large number,
in order to compute the approximate distribution PNB . The
approach relies on the optimization method for prediction of
the departure velocity vD defined in Sec. VII-C.

Estimation of Mitigation Effect—NB and PNB

1) To capture the inherent uncertainty in the injury risk
functions, the parameters α and β in (18) are drawn
according to the probability density function for a
Normal distribution N (µ,Σ), where the mean µ and
covariance matrix Σ are obtained from the logistic-
regression estimation procedure for α and β of the
particular injury risk function employed, here from [11].

2) Iterate over the accidents ai ∈ AnM for all i =
1, . . . , NnM.

3) Compute pr(∆v) for accident ai using the injury risk
function with parameters according to the first step,
but with the velocity vi0 from the accident database for
that particular accident ai replaced with the predicted
departure velocity viD.

4) Draw a number from the uniform distribution U(0, 1)
to predict if a severe or fatal accident would happen
with the safety system under consideration active in
the accident (i.e., if the sampled number is less than
or greater than the probability computed by the risk
function in the previous step).

5) Store the total number Nk
B of accidents predicted not to

result in severe or fatal injuries for the safety system,
i.e., those accidents contained in the set AnM that could
be mitigated by the decrease of velocity as a result of
the braking obtained by the safety system considered.

6) Return to Step 2 and continue with the next accident.
The result of this computational procedure is an estimate of the
expected mitigation value NB, and its estimated distribution
PNB , based on all non-manageable accidents in AnM.

E. Results for AYC and O-LKC in Road-Departure Accidents

The road-departure accidents from GIDAS are used in the
subsequent analysis presented in this and the next sections.
To establish an approximate distribution for NB, the compu-
tational procedure in Sec. VII-D was repeated K = 20000
times. The values of the computed Nk

B for k = 1, . . . ,K, can
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Fig. 8. Histogram showing an approximation of the distribution PNB
for

the number NB in the case of AYC for road-departure accidents, out of the
NnM = 56 accidents that are above the maximum manageable velocity curve.
The histogram was computed for K = 20000 Monte Carlo iterations.

0 5 10 15

0

1000

2000

3000

4000

Number of Accidents

Fr
eq

ue
nc

y

Distribution of NB, O-LKC (NnM = 43)

Fig. 9. Histogram showing an approximation of the distribution PNB
for

the number NB in the case of O-LKC for road-departure accidents, out of
the NnM = 43 accidents that are above the maximum manageable velocity
curve. The histogram was computed for K = 20000 Monte Carlo iterations.

be visualized in a histogram to give an approximation of the
underlying distribution PNB .

The histogram for the computed Nk
B for k = 1, . . . ,K, in

the case of road-departure accidents and AYC is shown in
Fig. 8. From the data shown in the histogram, the arithmetic
mean of the distribution is computed to be NB = 6 accidents.
Thus, out of the total NnM = 56 accidents considered, six are
predicted to be possible to mitigate such that they do not result
in severe or fatal injuries (i.e., 11 % of the NnM accidents).

A corresponding histogram for the resulting Nk
B in the case

of road-departure accidents and O-LKC is shown in Fig. 9.
From the data in that histogram, the arithmetic mean of the
distribution is computed to be NB = 7 accidents. Thus, out of
the total NnM = 43 accidents considered, seven are predicted
to be possible to mitigate such that they do not result in severe
or fatal injuries (i.e., 16 % of the NnM accidents).

VIII. TOTAL INJURY REDUCTIONS

In this section, the complete algorithm for computing the
potential of the safety system in terms of avoided accidents and
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Algorithm 1 Complete Algorithm for Estimation of NS

1: Compute the maximum manageable velocity curve vM for
the investigated control system (see Sec. VI-B).

2: NM = 0, NnM = 0, AM = ∅, AnM = ∅
3: for ai ∈ A, i = 1, . . . , N do
4: if vi0 ≤ vM then . vi0 initial velocity for ai.
5: NM ← NM + 1
6: AM ← {AM ∪ ai}
7: else
8: NnM ← NnM + 1
9: AnM ← {AnM ∪ ai}

10: end if
11: end for . NM and NnM computed.
12: for ai ∈ AnM, i = 1, . . . , NnM do
13: Compute viD with procedure in Sec. VII-C.
14: end for
15: for k = 1, . . . ,K do
16: Compute Nk

B with procedure in Sec. VII-D.
17: end for . Approximation of PNB computed.
18: Compute NB = 1

K

∑K
k=1N

k
B. . NB computed.

19: Compute NS = NM +NB.

reduced effect of impact is summarized in a formal algorithm.
Subsequently, the results from application of the method on
the road-departure accidents from GIDAS are presented.

A. Complete Algorithm

The developed approaches for computation of maximum
manageable velocity curves, prediction of departure veloc-
ity, and estimation of mitigation presented in Sec. VI-B,
Sec. VII-C, and Sec. VII-D, respectively, comprise the com-
plete algorithm for estimating the potential of the new safety
system in terms of avoided accidents or reduction of severity in
an unavoidable accident. The complete computational proce-
dure is given in Algorithm 1. The total number NS of accidents
from the database that resulted in severe injuries or fatalities,
which potentially could be avoided based on the analysis of the
new autonomous control system is then obtained by addition
of the number NM of manageable accidents and the number
NB of mitigated accidents according to

NS = NM +NB. (19)

This complete algorithm is general in the sense that it can
handle any scenario that can be formulated using the cost
function and constraints (5)–(10), including parameter vari-
ations. Examples of other scenarios described in this form can
be found in, e.g., [16], [17].

B. Results for the Road-Departure Accidents in GIDAS

The quantitative results obtained by applying Algorithm 1
on the road-departure accidents in Fig. 2 are presented in
this section. The number of severe road-departure accidents
filtered out from GIDAS is 233, and thus N = 233. The
number of manageable accidents, i.e., those accidents below
the maximum manageable velocity curve vM in Fig. 5 is
177 for AYC and 190 for O-LKC, and thus NM = 177 for

TABLE II
COLLECTION OF RESULTS OBTAINED BY ANALYZING THE

ROAD-DEPARTURE ACCIDENTS IN GIDAS (WITH FILTERING ACCORDING
TO TABLE I) USING THE METHOD IN ALGORITHM 1.

N NM NB NS NS/N (%)
AYC 233 177 6 183 79

O-LKC 233 190 7 197 85

AYC and NM = 190 for O-LKC as obtained in Sec. VI-C.
It is also the result in Step 11 in Algorithm 1 for the
respective control principle, AYC and O-LKC. Recall that all
these accidents could potentially be avoided by the use of
the autonomous control principle according to the analysis,
which means that the associated severe or fatal injuries are
also avoided. In addition to these accidents predicted to be
manageable, there are the possible mitigations obtained by
the fact that these control systems decrease the velocity by
braking, and thus mitigate the collision in the cases where
the entry velocity was non-manageable. These results were
presented in Sec. VII-E and are the outcome at Step 18
in Algorithm 1. For AYC, the number of non-manageable
accidents are NnM = N − NM = 233 − 177 = 56, and of
these mitigation by braking could potentially avoid NB = 6.
For O-LKC, the number of non-manageable accidents are
NnM = N−NM = 233−190 = 43, and of these mitigation by
braking could potentially avoid NB = 7. The following total
predicted number of accidents with reduced degree of injury
or avoided fatalities are thus obtained

AYC: NS = NM +NB = 177 + 6 = 183, (20)
O-LKC: NS = NM +NB = 190 + 7 = 197. (21)

The resulting numbers for the control principles AYC and O-
LKC are collected in Table II.

1) Value of Autonomy: The resulting numbers for the road-
departure accidents collected in Table II can now, in relation
to the total number N = 233 of severe road-departure
accidents extracted from GIDAS, be used for comparisons.
As described in Sec. IV, the control principle AYC can be
considered in two ways, either as an autonomous system of
lower complexity than O-LKC or as an AYC system with an
alert driver that reacts as good as can be hoped for in the
critical situation. A first approach to draw conclusions is to
consider that autonomous lane-keeping control with O-LKC
could potentially avoid NS/N = 85 % of the severe accidents
and the corresponding number for AYC is NS/N = 79 %. The
overall conclusion is consequently that autonomy has a very
high potential in future safety systems, considering that even
an autonomous control system of lower complexity potentially
could avoid 79 % of the road-departure accidents with severe
injuries or fatalities.

2) Comparing two Autonomous Control Strategies: A sec-
ond type of conclusion to draw from the obtained results is
interesting as a guidance to investigate the potential effects
of developing a system of lower complexity or a comparably
more complex autonomous safety system. In the example
considered here, the O-LKC principle requires an optimal
steering solution for lane keeping whereas for AYC it suf-
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fices to implement the straightforward steering law (1). It is
plausible that the development costs (and also the required
hardware costs in each vehicle) for O-LKC are larger than
the corresponding costs for AYC. This should be weighted
against the fact that O-LKC is (197 − 183)/183 = 7.7 %
better in performance according to the analysis. There is a
large number of severe road-departure accidents world-wide,
and in that perspective 7.7 % represent many mitigated severe
injuries or even avoided fatalities.

3) Comparing O-LKC to AYC with a Human Driver: A
third type of analysis is to compare a potential new system,
here O-LKC, with an existing system, here AYC. Such a
comparison highly depends on the assumptions on the driver. If
the driver is highly alert, reacts immediately and correctly, then
the maximum velocity curve vM for AYC would be the same
as for the idealized AYC considered in the analysis here, and
the result in terms of improvement obtainable with O-LKC,
7.7 %, would also be the same. Any other assumption on the
driver would be straightforward to include as follows. Assume
that the car is driven autonomously and suddenly a critical
situation appears, where the driver is expected to retake control
of the vehicle. It then has to be assumed that a certain reaction
time is required for the driver, and in addition a spectrum of
possible behaviors, including the steering law (1), but also
more critical like an over-reaction. Then a new maximum
manageable velocity curve should be computed based on the
actual driver model (DM). The new maximum manageable
velocity curve vDM

M and the predicted departure velocities
vD are computed with respect to delays and other expected
behaviors, and Algorithm 1 can then be used in the same way
as in the presented analysis.

C. Discussion—Velocity Reduction

It is of interest to study in what velocity intervals, reduction
of velocity could significantly decrease the risk of a severe or
fatal injury. To this purpose, the injury risk function shown
in Fig. 6 is considered. For low or very high velocities,
the possible effect of the control system is weak, since the
risk function is comparably flat in these regions. In between,
approximately in the interval 30–70 km/h, the derivative of
the risk function with respect to velocity is large and velocity
reduction could have a significant effect on the risk of an
accident. Therefore, O-LKC provides an additional benefit in
that it reduces the velocity more before an inevitable impact
than AYC. For the road-departure accidents in AnM in the
analysis, the average velocity reduction for AYC is 4.4 % and
for O-LKC the corresponding number is 13.7 %.

D. Discussion—Policy and Strategy Aspects

Referring to the research question raised in Sec. I regarding
complexity of systems for vehicle autonomy, it is of interest
to investigate what conclusions can be drawn when it comes
to potentially reduced number of severe or fatal accidents, and
what that could mean in terms of future policies and strategies
for autonomy development. Out of the 233 road-departure
accidents in the filtered selection from the database GIDAS,
the optimal autonomous strategy O-LKC could potentially

avoid 197 severe accidents, which is 14 more than AYC with
a correctly acting driver, also interpreted as autonomous AYC
with a steering controller as in (1). The latter control strategy
could consequently potentially avoid 183 accidents with severe
injuries or fatalities. This result means that the vast majority of
potentially avoided severe or fatal accidents, 183, is a result of
vehicle autonomy, and that optimal autonomous steering and
braking could increase this number with 14 additional severe
accidents to 197. Thus, an autonomous strategy of comparably
lower complexity could avoid a majority (183), whereas a
much more complex system could avoid even more (197). If
the study would have shown that the autonomous safety system
of lower complexity could avoid few severe or fatal accidents
but the more complex system could avoid significantly more,
then the research and development for autonomy should strive
for realization of the more complex ones already in the short
perspective. Instead, the overall conclusion is that autonomy
by itself makes the most significant change for increasing
traffic safety and that there is a high potential also in a system
with lower complexity. This is an encouraging result for con-
tinuing the step-wise introduction of new autonomy features
in passenger vehicles towards the goal of full autonomy.

IX. CONCLUSIONS

A method has been developed to predict the potential value
of future autonomous vehicle maneuvers at-the-limit of tire
friction in safety-critical situations, and lane departure has
been used as the example scenario. A key component is
how data from crash databases with actual previous accidents
are utilized in the algorithm to predict the value of future,
not yet existing systems. Another enabling fact has been the
developments in readily available tools for numerical optimiza-
tion, which now makes it possible to perform optimization of
different variations of parameters in accident scenarios. For the
tool used here, JModelica.org, the development in performance
and usability where computations now take seconds or minutes
compared to hours some years ago, is also a key enabler.
This has the consequence that it is tractable to compute the
maximum manageable velocity vM and predict the departure
velocity vD several times in the algorithm (given the param-
eters for the specific scenario from the database). It is also a
contribution in the paper that the computation of the departure
velocity can be performed with the same optimization method
by using the strategy of successively increasing the lane width
d. Thus, the method handles analysis of both manageable
accidents and mitigation of non-manageable accidents when
complete avoidance is predicted not to be possible. Overall,
the presented approach works effectively and makes it possible
to use large data sets from real crash databases together with
numerical optimization of vehicle behavior.

The method was used on a set of 233 road-departure
accidents, with fatal or severe injuries, from the GIDAS crash
database. Two control strategies, AYC and O-LKC, were
evaluated, and they were selected so that one, AYC, repre-
sents a straightforward extension of ESC with a steering law
simply based on road curvature whereas the second, O-LKC,
represents an advanced system based on optimal steering in
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combination with optimal braking strategies. The main result
is that an autonomous lane-keeping system in critical situations
could potentially avoid the vast majority of severe accidents,
here 79 % and 85 % for AYC and O-LKC, respectively. This
effect is achieved by either managing to keep the vehicle in
the driving lane, or by reducing the velocity before an impact
such that the resulting injuries are not severe or fatal. From
a perspective of strategies for future development, the final
overall conclusion is that autonomy in itself is a key enabler
and therefore, when it comes to reducing the number of severe
or fatal accidents, it is important to strive for the realization
of autonomous vehicle-safety systems.
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