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Abstract Metamaterials exhibit materials response deviation from conventional elasticity. This phenomenon
is captured by the generalized elasticity as a result of extending the theory at the expense of introducing
additional parameters. These parameters are linked to internal length scales. Describing on amacroscopic level,
a material possessing a substructure at a microscopic length scale calls for introducing additional constitutive
parameters. Therefore, in principle, an asymptotic homogenization is feasible to determine these parameters
given an accurate knowledge on the substructure. Especially in additive manufacturing, known under the infill
ratio, topology optimization introduces a substructure leading to higher-order terms in mechanical response.
Hence, weight reduction creates a metamaterial with an accurately known substructure. Herein, we develop a
computational scheme using both scales for numerically identifying metamaterials parameters. As a specific
example, we apply it on a honeycomb substructure and discuss the infill ratio. Such a computational approach
is applicable to a wide class substructures and makes use of open-source codes; we make it publicly available
for a transparent scientific exchange.

Keywords Metamaterials · Homogenization · Generalized mechanics · Finite element method (FEM)

1 Introduction

Mechanics of metamaterials is gaining an increased interest owing to additive manufacturing technologies
allowing us to craft sophisticated structures with different length scales. For weight reduction, material is
saved by introducing a substructure. Substructure-related change in materials response is already known [1–
3], studied under different assumptions [4–9], and verified experimentally [10–13]. Substructure-related change
leads to metamaterials, and this phenomenon is explained by theoretical arguments by assuming conventional
elasticity in the smaller length scale (microscale) leading to generalized elasticity in the larger length scale
(macroscale) [14–18].
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For constructing theories, different length scales are often incorporated in science. For example, consider
the microscale being simply the molecular structure or the lattice structure in a crystalline material conferring
anisotropy upon the response at themacroscale [19–22]. Another prominent structure-related anisotropy occurs
in compositematerials, where themicroscale is composed of fibers andmatrix. The alignment of fibers, and how
different plies are stacked up, causes the anisotropy as well as values of effective parameters at the macroscale
[23–27]. Porous materials are frequently modeled as a full material with voids as given inclusions at the
microscale, we refer to [28–33]. Additive manufacturing is capable of building metamaterials as demonstrated
in [34–39]. Also adding texture in 3-D printing introduces a substructure. Especially in metal 3-D printing
technologies, the microscale itself is anisotropic [40–42].We emphasize that at the macroscale, in all examples
above, themicroscale structure is not detectable such that thematerials substructure is smeared out that is called
homogenization.

As applied to generalized mechanics, the use of homogenization techniques is challenging [43,44], since
generalized mechanics is still evolving [45–47]. There exist different homogenization techniques [48–54].
In generalized mechanics [55,56], often a representative volume element (RVE) is exploited as in [57,58],
although the use of an RVE in generalized mechanics is difficult to justify [59,60]. Yet there exist direct
approaches [61,62] by computational homogenizationmethods [63–68] aswell as techniques based on gamma-
convergence [69,70]. By means of asymptotic analysis [71–74] as already applied in [75–78], we decompose
variables into global and local variations [79–81], and this separation makes possible to solve the elasticity
problem analytically, leading to closed form relations between (known) parameters at the microscale and
(sought after) parameters at the macroscale. This approach has been applied in one-dimensional problems for
reinforced composites [82,83] and in two-dimensional continuum [84–87]mostly numerically. From extensive
studies [88–93], we know that this method is adequate for determining metamaterials parameters. We briefly
explain the derivation based on [94] and extend the method to the three-dimensional case by providing a
numerical procedure by means of the finite element method (FEM). Especially in honeycomb type, infill
substructure is our interest [95]. The substructure introduces higher order effects as expected, andwe determine
the parameters by a computational homogenization based on the asymptotic analysis. The code uses open-
source packages under GNU public license [96] from the FEniCS project [97], and we make the code publicly
available in [98] in order to increase the scientific exchange.

2 Asymptotic homogenization

We begin with the assertion that the deformation energy at the microscale is equivalent to the deformation
energy at the macroscale, ∫

�

wm dV =
∫

�

wM dV, (1)

for the same domain, �, occupied by the continuum body. We use the standard continuum mechanics notation
with dV meaning the infinitesimal volume element, expressed in Cartesian coordinates as dV = dx dy dz.
There is only one coordinate system used for both scales. We use a material frame, so the location of material
particles is denoted by X = (X1, X2, X3) = (x, y, z). Furthermore, we use “m” and “M” denoting microscale
and macroscale, respectively. The domains for both scales are equivalent, large enough for allowing homoge-
nization and small enough such that the substructure has a significant effect at the macroscale. We emphasize
that a large enough domain—analogously macroscale with a large enough length scale—converges to the
classical elasticity approach.

Since we model an elastic body, the deformation energy depends solely on space derivatives of displace-
ments. At each length scale, there exists one displacement field, umi , u

M
i . We stress that displacements and their

derivatives are different such that the energy density is different in each position. Nevertheless, for the whole
body, the total energy is equivalent at both scales. This assertion is the key axiom in nearly all homogenization
theories based on the intuition that the energy applied on the body is the same although we observe a different
displacement recorded by a 10 MP camera via digital image correlation (DIC) compared to a displacement
field captured under a microscope.

We simplify the analysis by assuming that the system at the microscale is composed of linear elastic
material(s) such that the energy is quadratic in displacement gradients given by strains, εm, with a known
stiffness tensor, Cm, as follows:

wm = 1

2
Cm
i jklε

m
i jε

m
kl , εmi j = 1

2
(umi, j + umj,i + umk,i u

m
k, j ), (2)
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where the comma denotes a space derivative in X , and we understand Einstein’s summation convention over
repeated indices. For the sake of simplicity, we henceforth use linearized strain measure,

εmi j = 1

2
(umi, j + umj,i ), (3)

and the usual (minor) symmetries of the stiffness, Cm
i jkl = Cm

j ikl = Cm
i jlk , we obtain

wm = 1

2
Cm
i jklu

m
i, j u

m
k,l . (4)

The system at the microscale possesses different materials. For the substructure, for example in an additively
manufactured porous structure, wemodel the structure itself with its stiffness tensor and the voids with a nearly
zero stiffness. In other words, the material is heterogeneous at the microscale. At the macroscale, the system is
assumed to be homogeneous and to obey materially and geometrically linear strain gradient elasticity modeled
by the following deformation energy density:

wM = 1

2
CM
i jklu

M
i, j u

M
k,l + 1

2
DM
i jklmnu

M
i, jku

M
l,mn + GM

i jklmu
M
i, j u

M
k,lm, (5)

with analogous symmetries CM
i jkl = CM

j ikl = CM
i jlk as well as DM

i jklmn = DM
i jklmn = DM

ik jlmn = DM
lmni jk and

GM
i jklm = GM

j iklm = GM
i jkml . We stress that GM = 0 if the macroscale is of centro-symmetric substructure

and DM = 0 leads to conventional elasticity with substructure-related anisotropy without higher-order (strain
gradient) terms.

First, we introduce a so-called geometric center:

c
X = 1

V

∫
�

X dV, (6)

and, assuming enough continuity, approximate the macroscale displacement by the Taylor expansion around
the value at the geometric center by truncating after quadratic terms. The choice of quadratic terms is justified
by the nonlocality of the theory; in other words, we aim for the strain gradient theory incorporating second
derivatives. All higher terms than the second derivative will be neglected. The expansion of displacement
gradients reads

uMi (X) = uMi

∣∣∣ c
X

+ uMi, j

∣∣∣ c
X
(X j − c

X j ) + 1

2
uMi, jk

∣∣∣ c
X
(X j − c

X j )(Xk − c
Xk). (7)

Since uMi

∣∣∣ c
X
is a vector evaluated at

c
X , its gradient vanishes leading to

uMi,l(X) = uMi, j

∣∣∣ c
X
δ jl + 1

2
uMi, jk

∣∣∣ c
X
(δ jl(Xk − c

Xk) + (X j − c
X j )δkl),

= uMi,l

∣∣∣ c
X

+ uMi,lk

∣∣∣ c
X
(Xk − c

Xk),

uMi,lm(X) = uMi,lk

∣∣∣ c
X
δkm = uMi,lm

∣∣∣ c
X
.

(8)

Second, we introduce spatial averaging for displacement gradients by using the latter expansions and the fact

that terms evaluated at
c
X are constant within the domain

〈uMi, j 〉 = 1

V

∫
�

uMi, j dV = uMi, j

∣∣∣ c
X

+ uMi, jk

∣∣∣ c
X
Īk,

〈uMi, jk〉 = 1

V

∫
�

uMi, jk dV = uMi, jk

∣∣∣ c
X
,

(9)

with

Īk = 1

V

∫
�

(Xk − c
Xk) dV = 1

V

∫
�

Xk dV − 1

V

∫
�

c
Xk dV = 0, (10)
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since integration is additive and we have inserted Eq. (6). Thus, we obtain

〈uMi, j 〉 = uMi, j

∣∣∣ c
X
, 〈uMi, jk〉 = uMi, jk

∣∣∣ c
X
. (11)

Third, we use the spatial averaged values in the expansions (7) and (8)

uMi (X) = uMi

∣∣∣ c
X

+ 〈uMi, j 〉(X j − c
X j ) + 1

2
〈uMi, jk〉(X j − c

X j )(Xk − c
Xk),

uMi, j (X) = 〈uMi, j 〉 + 〈uMi, jk〉(Xk − c
Xk),

uMi, jk(X) = 〈uMi, jk〉.
(12)

Obviously, we circumvent using any spatial averaging techniques [99–101]. Finally, we insert the latter into
the energy definition and take out spatial averaged terms out of the integral

∫
�

wM dV =
∫

�

(
1

2
CM
i jlmu

M
i, j u

M
l,m + 1

2
DM
i jklmnu

M
i, jku

M
l,mn + GM

i jklmnu
M
i, j u

M
k,lm

)
dV

= 1

2
CM
i jlm

∫
�

uMi, j u
M
l,m dV + 1

2
DM
i jklmn

∫
�

uMi, jku
M
l,mn dV + GM

i jklm

∫
�

uMi, j u
M
k,lm dV

= 1

2
CM
i jlm

∫
�

(
〈uMi, j 〉 + 〈uMi, jk〉(Xk − c

Xk)
)(

〈uMl,m〉 + 〈uMl,mn〉(Xn − c
Xn)

)
dV

+1

2
DM
i jklmn

∫
�

〈uMi, jk〉〈uMl,mn〉 dV + GM
i jlmn

∫
�

(
〈uMi, j 〉 + 〈uMi, jk〉(Xk − c

Xk)
)
〈uMl,mn〉 dV

= V

2

(
CM
i jlm〈uMi, j 〉〈uMl,m〉 + (

CM
i jlm Īkn + DM

i jklmn + 2GM
i jlmn(Xk − c

Xk)
)〈uMi, jk〉〈uMl,mn〉

+2GM
i jlmn〈uMi, j 〉〈uMl,mn〉

)
, (13)

by using

Īkn = 1

V

∫
�

(Xk − c
Xk)(Xn − c

Xn) dV . (14)

By following the asymptotic homogenization method, we use a so-called homothetic ratio, ε, for a separation
of length scales and introduce the local coordinates,

y j = 1

ε
(X j − c

X j ). (15)

Therefore, the macroscale relations in Eq. (12) become

uMi (X) = uMi

∣∣∣ c
X

+ εy j 〈uMi, j 〉 + 1

2
ε2y j yk〈uMi, jk〉,

uMi, j (X) = 〈uMi, j 〉 + εyk〈uMi, jk〉,
uMi, jk(X) = 〈uMi, jk〉.

(16)

With the assumption that the displacement field is a smooth function at the macroscale and y-periodic in local
coordinates, the mean local fluctuations vanish within the chosen domain, �. In other words, the effective
property at the macroscale is constant representing the “oscillatory” property at the microscale. The difference
between the effective (macroscale) and oscillatory (microscale) property is the fluctuation to vanish. In this
regard, we decompose the microscale displacement

um(X) = 0
u(X, y) + ε

1
u(X, y) + ε2

2
u(X, y) + O(ε3), (17)

where
n
u(X, y) (n = 0, 1, 2) are y-periodic. In other words, the chosen domain, �, acts as a representative

volume element (RVE) within that we seek the effective property.
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Weuse thewell-known least action principle for solving the displacement by starting offwith theLagrange
function, ρ fi umi −wm, where the gravitational specific (per mass) force, fi , and the mass density, ρ, are given.
For finding the variation of the action functional by the arbitrary test functions, δu, we perform an integration
by part where the domain boundaries, ∂�, are identical to those from neighboring RVEs. Since the normal
vectors, n, of neighboring surfaces, dA, are opposite, all boundaries vanish

0 = δ

∫
�

(
ρ fi u

m
i − wm)

dV,

0 =
∫

�

(
ρ fiδu

m
i − Cm

i jklu
m
k,lδu

m
i, j

)
dV,

0 =
∫

�

(
ρ fi + (

Cm
i jklu

m
k,l

)
, j

)
δumi dV −

∫
∂�

Cm
i jklu

m
k,ln jδu

m
i dA,

0 = ρ fi + (
Cm
i jklu

m
k,l

)
, j .

(18)

Derivative of the microscale displacement from Eq. (17) after inserting Eq. (15) reads

umi, j =
(
0
ui (X, y) + ε

1
ui (X, y) + ε2

2
ui (X, y) + O(ε3)

)
, j

= 0
ui, j + ε

1
ui, j + ε2

2
ui, j + δk j

ε

∂

∂yk

(
0
ui + ε

1
ui + ε2

2
ui

)
+ O(ε3)

= 0
ui, j + ∂

0
ui

∂y j

1

ε
+ ε

1
ui, j + ∂

1
ui

∂y j
+ ε2

2
ui, j + ε

∂
2
ui

∂y j
+ O(ε3).

(19)

Inserting the latter in Eq. (18) and once more using the chain rule in combination with Eq. (15), we obtain

ρ fi +
(
Cm
i jkl

(
0
uk,l + ∂

0
uk

∂yl

1

ε
+ ε

1
uk,l + ∂

1
uk

∂yl
+ ε2

2
uk,l + ε

∂
2
uk

∂yl

))
, j

+ 1

ε

∂

∂y j

(
Cm
i jkl

(
0
uk,l + ∂

0
uk

∂yl

1

ε
+ ε

1
uk,l + ∂

1
uk

∂yl
+ ε2

2
uk,l + ε

∂
2
uk

∂yl

))
= 0

(20)

where separation of coefficients multiplied by the same order in ε and setting every term zero—since ε and ε2

terms are independent—results in

1

ε2

∂

∂y j

(
Cm
i jkl

∂
0
uk

∂yl

)
= 0,

1

ε

((
Cm
i jkl

∂
0
uk

∂yl

)
, j

+ ∂

∂y j

(
Cm
i jkl

0
uk,l

) + ∂

∂y j

(
Cm
i jkl

∂
1
uk

∂yl

))
= 0,

ρ fi + (
Cm
i jkl

0
uk,l

)
, j +

(
Cm
i jkl

∂
1
uk

∂yl

)
, j

+ ∂

∂y j

(
Cm
i jkl

1
uk,l

) + ∂

∂y j

(
Cm
i jkl

∂
2
uk

∂yl

)
= 0,

ε

((
Cm
i jkl

1
uk,l

)
, j +

(
Cm
i jkl

∂
2
uk

∂yl

)
, j

+ ∂

∂y j

(
Cm
i jkl

2
uk,l

)) = 0,

ε2
(
Cm
i jkl

2
uk,l

)
, j = 0. (21)

Since Cm
i jkl depends on y, for example consider two distinct materials at the microscale, from the first rela-

tion, we immediately conclude that
0
ui = 0

ui (X). By using this dependency, we introduce the multiplicative
decomposition

1
ui = 0

ua,b(X)ϕabi ( y),
2
ui = 0

ua,bc(X)ψabci ( y), (22)
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with the unknown tensors ϕabc and ψabcd . The latter decomposition is a general procedure in tensor calculus
and the unknown tensors, ϕ, ψ , have no underlying assumptions. As a consequence, for um, we have the
following expression:

umi = 0
ui (X) + ε

0
ua,b(X)ϕabi ( y) + ε2

0
ua,bc(X)ψabci ( y) + O(ε3), (23)

with the first term—the sole term depending only on X , all the other terms depend on y as well—corresponding
to the macroscale displacement,

uM = 0
u(X). (24)

By using Eq. (24) in Eq. (23), we obtain the displacement gradient,

umi, j =
(
uMi + εuMa,bϕabi + ε2uMa,bcψabci

)
, j

+ O(ε3)

= uMi, j + ∂ϕabi

∂y j
uMa,b + εϕabi u

M
a,bj + ε

∂ψabci

∂y j
uMa,bc + ε2ψabci u

M
a,bcj + O(ε3)

=
(
δiaδ jb + ∂ϕabi

∂y j

)
︸ ︷︷ ︸

Labi j

uMa,b + εuMa,bc

(
ϕabiδ jc + ∂ψabci

∂y j

)
︸ ︷︷ ︸

Nabci j

+ε2ψabci u
M
a,bcj + O(ε3),

(25)

and, after inserting Eq. (16), we acquire

umi, j = Labi j 〈uMa,b〉 + ε〈uMa,bc〉ycLabi j + ε〈uMa,bc〉Nabci j , (26)

since we incorporate up to the second gradients in Eq. (7). By using Mabci j = ycLabi j + Nabci j , we calculate
the energy at the microscale

∫
�

wm dV = 1

2

∫
�P

(
Cm
i jkl Labi j Lcdkl〈uMa,b〉〈uMc,d〉 + 2εCm

i jkl Labi j Mcdekl〈uMa,b〉〈uMc,de〉

+ ε2Cm
i jkl Mabci j Mdef kl〈uMa,bc〉〈uMd,e f 〉

)
dV

= V

2

(
C̄abcd〈uMa,b〉〈uMc,d〉 + 2Ḡabcde〈uMa,b〉〈uMc,de〉 + D̄abcde f 〈uMa,bc〉〈uMd,e f 〉

)
.

(27)

with

C̄abcd = 1

V

∫
�

Cm
i jkl Labi j Lcdkl dV,

Ḡabcde = ε

V

∫
�

Cm
i jkl Labi j Mcdekl dV,

D̄abcde f = ε2

V

∫
�

Cm
i jkl Mabci j Mdef kl dV . (28)

Immediately we observe by comparing with Eq. (13),

CM
i jlm = C̄i jlm,

GM
i jlmn = Ḡabcde,

CM
i jlm Īkn + DM

i jklmn + 2εykG
M
i jlmn = D̄i jklmn, (29)

where

Īkn =
∫

�P
(Xk − c

Xk)(Xn − c
Xn) dV = ε2

∫
�P

yk yn dV . (30)

Therefore, CM, DM, GM are determined once ϕ and ψ are calculated by using the substructure. For these
variables, we will obtain corresponding field equations in the following.



Additive manufacturing introduced substructure and computational

By inserting Eq. (23) in Eq. (21)2 and using
0
u = 0

u(X), we obtain

∂

∂y j

(
Cm
i jkl

0
uk,l

) + ∂

∂y j

(
Cm
i jkl

∂
0
ua,bϕabk

∂yl

)
= 0,

∂Cm
i jkl

∂y j
δakδbl

0
ua,b + ∂

∂y j

(
Cm
i jkl

∂ϕabk

∂yl

)
0
ua,b = 0,

∂

∂y j

(
Cm
i jkl

(
δakδbl + ∂ϕabk

∂yl

)
︸ ︷︷ ︸

Labkl

)
= 0.

(31)

Analogously, by exploiting Eq. (21)3 and inserting the latter, we acquire

ρ fi + (
Cm
i jkl

0
uk,l

)
, j +

(
Cm
i jkl

∂
0
ua,bϕabk

∂yl

)
, j

+ ∂

∂y j

(
Cm
i jkl

0
ua,blϕabk

) + ∂

∂y j

(
Cm
i jkl

∂
0
ua,bcψabck

∂yl

)
= 0,

ρ fi + Cm
i jkl

0
uk,l j + Cm

i jkl
0
ua,bj

∂ϕabk

∂yl
+ ∂

∂y j

(
Cm
i jklϕabk

)0
ua,bl + ∂

∂y j

(
Cm
i jkl

∂ψabck

∂yl

)
0
ua,bc = 0,

ρ fi + Cm
ickl

0
ua,bc

(
δakδbl + ∂ϕabk

∂yl

)

︸ ︷︷ ︸
Labkl

+0
ua,bc

∂

∂y j

(
Cm
i jkl

(
ϕabkδcl + ∂ψabck

∂yl

)
︸ ︷︷ ︸

Nabckl

)
= 0

(32)

Equations (21)4,5 are identically fulfilled

(
Cm
i jkl

1
uk,l

)
, j +

(
Cm
i jkl

∂
2
uk

∂yl

)
, j

+ ∂

∂y j

(
Cm
i jkl

2
uk,l

)
= 0,

Cm
i jkl

0
ua,bl jϕabk + Cm

i jkl
∂
0
ua,bcjψabck

∂yl
+ ∂

∂y j

(
Cm
i jkl

0
ua,bclψabck

)
= 0,

Cm
i jkl

2
uk,l j = 0,

Cm
i jkl

0
ua,bcl jψabck = 0,

(33)

since we incorporate only up to the second derivative in Eq. (7).
In the case of the macroscale, with the least action principle by means of the Lagrange function, ρ fi uMi −

wM, we obtain after using integration by parts twice and letting the domain boundaries vanish

0 = δ

∫
�

(
ρ fi u

M
i − wM)

dV,

0 =
∫

�

(
ρ fiδu

M
i − CM

i jklu
M
k,lδu

M
i, j − DM

i jklmnu
M
l,mnδu

M
i, jk − GM

i jklmδuMi, j u
M
k,lm − GM

i jklmu
M
i, jδu

M
k,lm

)
dV,

0 = ρ fi + CM
i jklu

M
k,l j − DM

i jklmnu
M
l,mnjk + GM

i jklmu
M
k,lm j − GM

k jilmu
M
k, jlm,

0 = ρ fi + CM
i jklu

M
k,l j ,

(34)

since the stiffness tensors are constant at the macroscale, as well as we incorporate only up to the second
derivative in Eq. (7). By using this relation in Eq. (32), we get

−CM
icabu

M
a,bc + Cm

ickl
0
ua,bcLabkl + 0

ua,bc
∂

∂y j

(
Cm
i jkl Nabckl

)
= 0,

−CM
icab + Cm

ickl Labkl + ∂

∂y j

(
Cm
i jkl Nabckl

)
= 0.

(35)

By solving Eqs. (31) and (35)2, we calculate ϕ and ψ .



B. E. Abali, E. Barchiesi

3 Method of solution

We sum up the methodology proposed herein. Consider a metamaterial with a given substructure at the
microscale, y. Modeling the substructure with the given Cm by means of the finite element method leads to a
numerical solution of ϕ by satisfying Eq. (31):

∂

∂y j

(
Cm
i jkl Labkl

)
= 0, Labkl = δakδbl + ∂ϕabk

∂yl
. (36)

By using the solution, from Eqs. (28), (29), we determine

CM
abcd = C̄abcd = 1

V

∫
�

Cm
i jkl Labi j Lcdkl dV . (37)

The macroscale stiffness tensor, CM, is used in Eq. (35)2 in order to acquire ψ by fulfilling

−CM
icab + Cm

ickl Labkl + ∂

∂y j

(
Cm
i jkl Nabckl

)
= 0, Nabckl = ϕabkδcl + ∂ψabck

∂yl
. (38)

With this solution, we construct

Mabci j = ycLabi j + Nabci j , Īkn = ε2
∫

�P
yk yn dV . (39)

and determine

GM
abcde = Ḡabcde = ε

V

∫
�

Cm
i jkl Labi j Mcdekl dV,

D̄abcde f = ε2

V

∫
�

Cm
i jkl Mabci j Mdef kl dV,

DM
i jklmn = D̄i jklmn − CM

i jlm Īkn − 2εykG
M
i jlmn .

(40)

The outcome is determining the components of CM tensor of rank four, GM tensor of rank five, and DM tensor
of rank six.

In particular, for the numerical solution of Eq. (36) as well as Eq. (38), we follow the standard procedure of
the finite element method [102] and utilize a finite dimensionalHilbertian Sobolev space for trial functions.
The same space is used for the test functions as well, called the Galerkin procedure. The triangulation of
the structure in y is established by using tetrahedrons, and we solve the discrete problem by minimizing the
weak form. In order to get the weak forms, Eqs. (36), (38) are multiplied by arbitrary test functions of their
ranks for reducing to a scalar integrated over the volume of the structure, �. For fulfilling the y periodicity,
all boundaries are modeled as periodic boundaries by tying the nodes on corresponding surfaces. In other
words, for a cube from left to right along X1-axis, each node, say, on the left surface has to have the same
displacement as its counterpart with the same X2, X3 coordinates on the right surface. Hence, technically, all
boundaries are of Dirichlet type and the test functions vanish on all boundaries, for an alternative approach
of weak periodicity, we refer to [103]. We use herein a strong coupling with the same mesh on corresponding
boundaries, since we use the RVE only at the level of parameter determination.

All the implementation is carried out in the FEniCS platform; we refer to [104] for an introduction with
examples. The weak form is obtained after integrating by parts; we stress that the periodic boundary condition
causes that boundary integrals vanish. Moreover, we omit distinguishing between the functions and their
discrete representations, since they never occur in the same equation. In order to calculate ϕ and ψ , by
utilizing Eqs. (31) and (35)2, we obtain the following weak forms:

∫
�

Cm
i jkl Labkl

∂δϕabi

∂y j
dV = 0,

∫
�

(
− CM

icabδψabci + Cm
ickl Labklδψabci −

(
Cm
i jkl Nabckl

)∂δψabci

∂y j

)
dV = 0, (41)
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are solved separately by setting a, b, c indices. This fact is of importance so we write out explicitly, how it is
meant to do. Because of the minor symmetry, CM

i jkl = CM
i jlk , we know that Labkl = Lbakl and ϕabi = ϕbai

such that we solve six weak forms∫
�

Cm
i jkl L11kl

∂δϕ11i

∂y j
dV = 0,

∫
�

Cm
i jkl L22kl

∂δϕ22i

∂y j
dV = 0,

∫
�

Cm
i jkl L33kl

∂δϕ33i

∂y j
dV = 0,

∫
�

Cm
i jkl L23kl

∂δϕ23i

∂y j
dV = 0,

∫
�

Cm
i jkl L13kl

∂δϕ13i

∂y j
dV = 0,

∫
�

Cm
i jkl L12kl

∂δϕ12i

∂y j
dV = 0,

(42)

in order to obtain ϕ11i , ϕ22i , ϕ33i , ϕ23i , ϕ13i , ϕ12i , respectively. We use these values in Eq. (37). This method
is admissible under the assumption that for each ab in Voigt’s notation indices, ϕ components are per se
independent. Also the use in Eq. (37) is justified since we obtain 21 components of the stiffness tensor as
follows:

CM
1111 = 1

V

∫
�

Cm
i jkl L11i j L11kl dV, L11kl = δ1kδ1l + ∂ϕ11k

∂yl
,

CM
1122 = 1

V

∫
�

Cm
i jkl L11i j L22kl dV, L22kl = δ2kδ2l + ∂ϕ22k

∂yl
,

. . .

CM
1212 = 1

V

∫
�

Cm
i jkl L12i j L12kl dV, L12kl = δ1kδ2l + ∂ϕ12k

∂yl
.

(43)

Of course, depending on the substructure, it may be the case that some of ϕ components are equivalent;
however, this symmetry is metamaterial specific. In the same manner, from Eq. (41), we use ψabci = ψbaci
and for i = 1 we solve∫

�

(
− CM

1c11δψ11c1 + Cm
1ckl L11klδψ11c1 −

(
Cm
1 jkl N11ckl

)∂δψ11c1

∂y j

)
dV = 0,

∫
�

(
− CM

1c22δψ22c1 + Cm
1ckl L22klδψ22c1 −

(
Cm
1 jkl N22ckl

)∂δψ22c1

∂y j

)
dV = 0,

∫
�

(
− CM

1c33δψ33c1 + Cm
1ckl L33klδψ33c1 −

(
Cm
1 jkl N33ckl

)∂δψ33c1

∂y j

)
dV = 0,

∫
�

(
− CM

1c23δψ23c1 + Cm
1ckl L23klδψ23c1 −

(
Cm
1 jkl N23ckl

)∂δψ23c1

∂y j

)
dV = 0,

∫
�

(
− CM

1c13δψ13c1 + Cm
1ckl L13klδψ13c1 −

(
Cm
1 jkl N13ckl

)∂δψ13c1

∂y j

)
dV = 0,

∫
�

(
− CM

1c12δψ12c1 + Cm
1ckl L12klδψ12c1 −

(
Cm
1 jkl N12ckl

)∂δψ12c1

∂y j

)
dV = 0,

(44)

for i = 2 ∫
�

(
− CM

2c11δψ11c2 + Cm
2ckl L11klδψ11c2 −

(
Cm
2 jkl N11ckl

)∂δψ11c2

∂y j

)
dV = 0,

. . .∫
�

(
− CM

2c12δψ12c2 + Cm
2ckl L12klδψ12c2 −

(
Cm
2 jkl N12ckl

)∂δψ12c2

∂y j

)
dV = 0,

(45)

for i = 3 ∫
�

(
− CM

3c11δψ11c3 + Cm
3ckl L11klδψ11c3 −

(
Cm
3 jkl N11ckl

)∂δψ11c3

∂y j

)
dV = 0,

. . .∫
�

(
− CM

3c12δψ12c3 + Cm
3ckl L12klδψ12c3 −

(
Cm
3 jkl N12ckl

)∂δψ12c3

∂y j

)
dV = 0.

(46)

In this way, we solve for ψ11c1 . . . ψ12c3 separately and use them to obtain GM and DM by means of Eq. (40).
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Fig. 1 Honeycomb structure in Salome and a possible representative volume element (RVE) are shown opaque within the
transparent structure, orange denotes the 3-D printed material and gray is void (air) modeled with a significantly low modulus

Fig. 2 Used mesh of 68,371 tetrahedrons for the RVE, leading to 15,618 nodes, triangulation is obtained in Salome by using
NetGen and Mephisto algorithms

4 Results and discussion

By virtue of 3-D printers, it is possible to manufacture complex structures with voids inside. Voids result in
a porous structure at the microscale. We stress that the voids are introduced on purpose, and we assume that
the microscale material is full. For example in fused deposition modeling (FDM), the filaments are made
of non-porous material and the porosity is caused by design. This layer-by-layer manufacturing technique is
coded by a software called slicer. Slicer converts the structure from the CAD design into a G-code providing
the motion of the nozzle laying the melt material, i.e., print the material as a thick viscous fluid located at
the given positions. For the purpose of weight reduction, all slicer software programs introduce an infill ratio,
exchanging the full material with a pre-configured periodic lattice structure. Decreasing the infill ratio increases
the porosity at the macroscale. One such typical honeycomb structure is a hexagonal lattice configuration as
seen in Fig. 1, the CAD is utilized in Salome, the open-source integration platform for numerical simulation.
The full material is replaced with this configuration, for which we compute the higher order terms for any
homothetic ratio, ε, with the assumption that the linear isotropic material at the microscale might be linear
anisotropic strain gradient at the macroscale. For the particular RVE as seen in Fig. 1, the homothetic ratio is
unity, i.e., the infill ratio is around 50% meaning that the half of the space is filled with the (orange) material.
The homothetic ratio is inversely related to the infill ratio, for decreasing ε the infill ratio increases, where
ε = 0 reads 100% infill ratio meaning that the material is full and no substructure emerges. Obviously, for
100% infill ratio, the higher-order terms, GM, DM vanish in Eq. (40).
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Fig. 3 Demonstration of the periodic boundary conditions along X -axis, the same mesh is used such that the Y and Z coordinates
are matching for nodes to be defined as the same degree of freedom

By using the RVE, the mesh is generated in Salome by using NetGen and Mephisto algorithms as seen in
Fig. 2. We emphasize that the periodic boundary conditions need corresponding meshes on the “neighboring”
surfaces. An example is demonstrated in Fig. 3, where along the X1 = X axis, the boundary surfaces are
visible. All nodes on both surfaces have the same X2 = Y and X3 = Z coordinates such that the degrees
of freedom on each node are set equivalent to the corresponding node on the neighboring surface. As the
periodic boundaries reflect the given solution, they are Dirichlet boundary conditions, which means that
the macroscale and microscale solutions match along the boundaries as well. Although this condition is not a
priori set into the formulation, the use of RVE enforces matching boundaries. From the computational point of
view, using Dirichlet boundary conditions on all surfaces makes the problem well-defined. Hence, there are
no emerging numerical problems, where we used multifrontal massively parallel sparse direct solver (mumps)
for solving the weak forms and Gaussian quadrature for integration.

As usual, we write out the stiffness tensor in Voigt’s notation with A, B standing for combination of two
indices in the order: 11, 22, 33, 23, 13, 12 such that the rank four tensor, CM

i jkl , is represented in a matrix
notation,

CM
AB =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CM
1111 C

M
1122 CM

1133 C
M
1123 C

M
1113 C

M
1112

CM
2211 C

M
2222 CM

2233 C
M
2223 C

M
2213 C

M
2212

CM
3311 C

M
3322 CM

3333 C
M
3323 C

M
3313 C

M
3312

CM
2311 C

M
2322 CM

2333 C
M
2323 C

M
2313 C

M
2312

CM
1311 C

M
1322 CM

1333 C
M
1323 C

M
1313 C

M
1312

CM
1211 C

M
1222 CM

1233 C
M
1223 C

M
1213 C

M
1212

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (47)

where obviously the major symmetry holds true, CM
AB = CM

BA, although this identity is not explicitly stated in
the notation. Analogously we use α, β for three indices in the order: 111, 221, 331, 231, 131, 121, 112, 222,
332, 232, 132, 122, 113, 223, 333, 233, 133, 123 in order to be able to represent higher order terms in a matrix
form as well. Specifically, for GM

i jklm we have

GM
Aα =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

GM
11111 GM

11221 GM
11331 GM

11231 GM
11131 GM

11121 GM
11112 GM

11222 GM
11332 GM

11232 GM
11132 GM

11122 GM
11113 GM

11223 GM
11333 GM

11233 GM
11133 GM

11123

GM
22111 GM

22221 GM
22331 GM

22231 GM
22131 GM

22121 GM
22112 GM

22222 GM
22332 GM

22232 GM
22132 GM

22122 GM
22113 GM

22223 GM
22333 GM

22233 GM
22133 GM

22123

GM
33111 GM

33221 GM
33331 GM

33231 GM
33131 GM

33121 GM
33112 GM

33222 GM
33332 GM

33232 GM
33132 GM

33122 GM
33113 GM

33223 GM
33333 GM

33233 GM
33133 GM

33123

GM
23111 GM

23221 GM
23331 GM

23231 GM
23131 GM

23121 GM
23112 GM

23222 GM
23332 GM

23232 GM
23132 GM

23122 GM
23113 GM

23223 GM
23333 GM

23233 GM
23133 GM

23123

GM
13111 GM

13221 GM
13331 GM

13231 GM
13131 GM

13121 GM
13112 GM

13222 GM
13332 GM

13232 GM
13132 GM

13122 GM
13113 GM

13223 GM
13333 GM

13233 GM
13133 GM

13123

GM
12111 GM

12221 GM
12331 GM

12231 GM
12131 GM

12121 GM
12112 GM

12222 GM
12332 GM

12232 GM
12132 GM

12122 GM
12113 GM

12223 GM
12333 GM

12233 GM
12133 GM

12123

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (48)
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and for DM
i jklmn we obtain

DM
αβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

DM
111111 DM

111221 DM
111331 DM

111231 DM
111131 DM

111121 DM
111112 DM

111222 DM
111332 DM

111232 DM
111132 DM

111122 DM
111113 DM

111223 DM
111333 DM

111233 DM
111133 DM

111123

DM
221111 DM

221221 DM
221331 DM

221231 DM
221131 DM

221121 DM
221112 DM

221222 DM
221332 DM

221232 DM
221132 DM

221122 DM
221113 DM

221223 DM
221333 DM

221233 DM
221133 DM

221123

DM
331111 DM

331221 DM
331331 DM

331231 DM
331131 DM

331121 DM
331112 DM

331222 DM
331332 DM

331232 DM
331132 DM

331122 DM
331113 DM

331223 DM
331333 DM

331233 DM
331133 DM

331123

DM
231111 DM

231221 DM
231331 DM

231231 DM
231131 DM

231121 DM
231112 DM

231222 DM
231332 DM

231232 DM
231132 DM

231122 DM
231113 DM

231223 DM
231333 DM

231233 DM
231133 DM

231123

DM
131111 DM

131221 DM
131331 DM

131231 DM
131131 DM

131121 DM
131112 DM

131222 DM
131332 DM

131232 DM
131132 DM

131122 DM
131113 DM

131223 DM
131333 DM

131233 DM
131133 DM

131123

DM
121111 DM

121221 DM
121331 DM

121231 DM
121131 DM

121121 DM
121112 DM

121222 DM
121332 DM

121232 DM
121132 DM

121122 DM
121113 DM

121223 DM
121333 DM

121233 DM
121133 DM

121123

DM
112111 DM

112221 DM
112331 DM

112231 DM
112131 DM

112121 DM
112112 DM

112222 DM
112332 DM

112232 DM
112132 DM

112122 DM
112113 DM

112223 DM
112333 DM

112233 DM
112133 DM

112123

DM
222111 DM

222221 DM
222331 DM

222231 DM
222131 DM

222121 DM
222112 DM

222222 DM
222332 DM

222232 DM
222132 DM

222122 DM
222113 DM

222223 DM
222333 DM

222233 DM
222133 DM

222123

DM
332111 DM

332221 DM
332331 DM

332231 DM
332131 DM

332121 DM
332112 DM

332222 DM
332332 DM

332232 DM
332132 DM

332122 DM
332113 DM

332223 DM
332333 DM

332233 DM
332133 DM

332123

DM
232111 DM

232221 DM
232331 DM

232231 DM
232131 DM

232121 DM
232112 DM

232222 DM
232332 DM

232232 DM
232132 DM

232122 DM
232113 DM

232223 DM
232333 DM

232233 DM
232133 DM

232123

DM
132111 DM

132221 DM
132331 DM

132231 DM
132131 DM

132121 DM
132112 DM

132222 DM
132332 DM

132232 DM
132132 DM

132122 DM
132113 DM

132223 DM
132333 DM

132233 DM
132133 DM

132123

DM
122111 DM

122221 DM
122331 DM

122231 DM
122131 DM

122121 DM
122112 DM

122222 DM
122332 DM

122232 DM
122132 DM

122122 DM
122113 DM

122223 DM
122333 DM

122233 DM
122133 DM

122123

DM
113111 DM

113221 DM
113331 DM

113231 DM
113131 DM

113121 DM
113112 DM

113222 DM
113332 DM

113232 DM
113132 DM

113122 DM
113113 DM

113223 DM
113333 DM

113233 DM
113133 DM

113123

DM
223111 DM

223221 DM
223331 DM

223231 DM
223131 DM

223121 DM
223112 DM

223222 DM
223332 DM

223232 DM
223132 DM

223122 DM
223113 DM

223223 DM
223333 DM

223233 DM
223133 DM

223123

DM
333111 DM

333221 DM
333331 DM

333231 DM
333131 DM

333121 DM
333112 DM

333222 DM
333332 DM

333232 DM
333132 DM

333122 DM
333113 DM

333223 DM
333333 DM

333233 DM
333133 DM

333123

DM
233111 DM

233221 DM
233331 DM

233231 DM
233131 DM

233121 DM
233112 DM

233222 DM
233332 DM

233232 DM
233132 DM

233122 DM
233113 DM

233223 DM
233333 DM

233233 DM
233133 DM

233123

DM
133111 DM

133221 DM
133331 DM

133231 DM
133131 DM

133121 DM
133112 DM

133222 DM
133332 DM

133232 DM
133132 DM

133122 DM
133113 DM

133223 DM
133333 DM

133233 DM
133133 DM

133123

DM
123111 DM

123221 DM
123331 DM

123231 DM
123131 DM

123121 DM
123112 DM

123222 DM
123332 DM

123232 DM
123132 DM

123122 DM
123113 DM

123223 DM
123333 DM

123233 DM
123133 DM

123123

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (49)

where the symmetry holds true, DM
αβ = DM

αβ . Therefore,wedetermine 21 components forCM
AB , 108 components

for GM
Aα , and 171 components for DM

αβ in this work for the honeycomb structure by means of the approach
explained in Eqs. (36)–(40).

Computed for an RVE of 240mm× 277.12mm× 20mm along X , Y , Z axes, respectively, made of an
isotropic material with the Young’s modulus of 110GPa and Poisson’s ratio of 0.35, we demonstrate the
results in Voigt-like notation introduced above. For the stiffness tensor, we obtain

CM
AB =

⎛
⎜⎜⎜⎜⎜⎝

16 10 9 0 0 0
10 11 7 0 0 0
9 7 43 0 0 0
0 0 0 8 0 0
0 0 0 0 8 0
0 0 0 0 0 3

⎞
⎟⎟⎟⎟⎟⎠

GPa, (50)

where we round off 0.1GPa in all components. For the higher-order terms, results depend on the arbitrary infill
ratio set by the homothetic ratio ε, as follows:

GM
Aα = ε

⎛
⎜⎜⎜⎜⎜⎜⎝

70 −85 −7 1 8 55 −21 84 26 −18 −3 −40 4 −38 −18 7 11 9
44 −51 −4 0 5 34 −24 96 30 −21 −4 −46 3 −31 −15 6 9 7
40 −48 −4 0 4 31 −16 63 20 −14 −2 −30 19 −178 −83 35 51 41
0 0 0 0 0 0 3 −31 −15 6 9 7 −14 65 21 −14 −2 −31
4 −34 −16 7 10 8 0 0 0 0 0 0 37 −44 −4 0 4 28

−5 23 7 −4 0 −11 11 −14 −1 0 1 10 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

kN/mm,

(51)
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with ±0.1kN/mm accuracy as well as

DM
αβ = ε2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−102 −63 −58 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−63 −72 −47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
−58 −47 −275 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −48 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −53 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −16 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −136 −84 −77 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −84 −96 −63 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 −77 −63 −366 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 −64 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −70 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 −22 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

TN,

(52)
with 0.1TNaccuracy,where 1TN=̂1012 N.Ageneral sensitivity analysis of higher-order terms is inadequate, in
other words, comparison between the displacement altering because of GM and DM components is impossible.
The structure dependence on the homothetic ratio ε as well as loading and boundary conditions affect the
sensitivity. Therefore, we have written out all terms with their own accuracy and circumvent ourselves from
reducing the complexity of the outcome.

Since the topology is hexagonal, centro-symmetry is lacking such that GM tensor of rank 5 fails to vanish.
All components DM×33××× regarding the second gradient along Z -axis are zero due to the chosen geometry.
Obviously, the periodic boundaries along Z -axis create hollow hexagonal tubes without “porosity.” Such a
porous structure is indeed the case in XY -plane. Therefore, out of XY -plane the homogenization introduces
a weakened structure, visible as CM

3333 being less than the half of the Young’s modulus of the material itself;
however, no higher-order terms occur.

It is challenging to directly relate the homothetic ratio to the physical length scale, and further studies are
necessary in order to justify this study’s parameters.

5 Conclusions

Generalized mechanics has been already studied in 1950s as a purely academic research. Additive manufac-
turing opens the door for crafting structures with substructures (microscale), called infills, leading to different
length scales performing simultaneously at the macroscale, thus making the generalized elasticity necessary
for accurate modeling. Involving strains, conventional elasticity necessitates 21 material parameters. General-
ized elasticity with strain gradients introduces additional to the 21 (different) parameters in CM rank 4 tensor,
another 108 parameters in GM rank 5, and 171 parameters in DM rank 6 tensors. Asymptotic analysis results in
micro-macro-scale relations that we briefly yet thoroughly demonstrated in this work. Finally, a new method-
ology is proposed for using the substructure and determining all the parameters in generalized elasticity by
using computations based on the finite element method (FEM). In order to present the method on a particular
case of hexagonal honeycomb substructure, open-source codes-based numerical implementation is established
under GNU public license [96], the code is available in [98] in order to allow a transparent scientific exchange.
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