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Abstract

We examine time-optimal processes of charging a quantum battery from an initial state
to a maximally energetic state through unitary dynamics. We assume that the dynamics
are restricted by one of two constraints, the bounded bandwidth or bounded variance
constraints. We calculate lower bounds on the charging time for both constraints in the
form of quantum speed limits. For the bounded bandwidth constraint we also find the
minimal charging time for a large class of systems. In the bounded variance case we
present current results in terms of properties of the dynamics. Lastly we examine how
time-optimal processes are influenced when multiple batteries are allowed to interact
and correlate. We explicitly calculate the charging time for a certain class of systems,

and we find that it is decreased if we allow correlation between batteries.
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Introduction

In modern society, energy is one of the most valuable resources. A crucial part of its usage
is the existence of the battery. The ability to store and successively extract energy from
a system is necessary for everything wireless, be it cellphones, cars or pacemakers. While
there is much to be said about the battery itself, it is of great importance to consider the
devices which we use to charge it. Of course, the energy which we store must be provided
from an external charger, and it is natural to question the efficiency of this charging
process. We might for example have a limited time in which we want to fully charge the
battery, in which case we require the charger to be sufficiently efficient to reach our goal.
In other words, we require the time-duration of the charging process to be optimal.

When discussing cellphone and car batteries it is sufficient to discuss classical physics, and
increasing charger efficiency is an engineering problem more than anything else. However
now, with the possibility of nanodevices, there is much interest in smaller systems, and
similar questions can be asked at a quantum mechanical level. The field of quantum
thermodynamics aims to formulate thermodynamical laws and properties in the quantum
regime [1], while quantum information theory discusses the information contents in quan-
tum systems [2]. The field of quantum batteries lies in the intersection of these two fields
and concerns quantum systems which we can charge and store with energy [3]. Further-
more, the above question of optimal charging is naturally extended to the quantum case
because of the large amount of research done on time-optimality in quantum information
theory. Since we do not usually want a battery to spontaneously interact with an external
environment, it is reasonable to assume that it is isolated with the exception of when a
controlled charging device is applied. We therefore assume that the quantum battery
evolves unitarily and that the dynamics is generated by a Hamiltonian which is supplied
by and represents a certain charging device.

When charging a classical battery it is valid to quantify various constraints on the charging
device. For example, a charger of a certain size might only be able to supply the battery
with a certain, bounded current. This will restrict how small we can make the duration of
the charging process, and it needs to be taken into consideration for all realistic chargers
and batteries. For quantum batteries such constraints are not as obvious. However, it is
possible to put quantitative bounds on the Hamiltonian responsible for the dynamics of
the quantum state. These constraints in conjunction with the problem of time-optimal
charging processes give us a natural question, which is the leading topic of this thesis.

Main Topic of Thesis
Consider a quantum battery represented by a quantum state with arbitrary energy-
content. If we impose a quantitative constraint on the Hamiltonian responsible for
the dynamics of the battery, what is the minimal duration required to charge the
battery to a state of maximal energy?

When answering these questions we will consider two possible constraints separately, the
bounded bandwidth constraint and the bounded variance constraint. Furthermore we will
examine how the minimal time is affected if we charge multiple batteries simultaneously,
allowing them to interact through quantum correlations.

This thesis is based upon an article written by me and my collaborators [4].
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Overview

This thesis is heavily reliant on the use of quantum operators. However it should —
Section 1 in particular — be accessible to all physicists with a fundamental understanding
of quantum mechanics. To this end we will presume that the reader is familiar with
concepts covered in [2, 5], such as density operators, unitary operators, entropy and the
von Neumann equation. While we at later stages must introduce mathematical tools
which might be new to some, we will not provide their full detail, but instead present
them to the extent that they can be used with relative comfort. For further information
on these mathematical frameworks the readers will be referred to [6, 7]. We will now
summarize each section. The whole thesis is summarized with a flow chart in Fig. 1. We
advice the reader to consult this flow chart throughout the thesis.

In Section 1 we impose the properties we require of a quantum battery represented by a
quantum state ρ. We define the energy content of the battery as the expectation value of
a Hamiltonian H0, and we assert which dynamics are allowed in the considered context.
We impose a necessary assumption on the initial state of the battery, and discuss a way
of preparing quantum batteries that satisfy this assumption. Lastly we present a method
of imposing constraints on the charging process.

Section 2 presents a method of determining the minimal duration given the properties
and constraints defined in the preceding section. The method consists of considering the
time-dependent unitary operators which charge the battery as curves in the unitary group.
This turns the problem into a time-optimization problem. Subsequently, by equipping the
unitary group with certain constraint-dependent metrics, the problem is transferred onto
finding shortest curves. We find that the method of determining the minimal time is
heavily dependent on the spectra of ρ and H0 and must be split into various cases. We
then find a beneficial way of representing these cases in terms of permutations. Lastly we
find our first result as two “quantum speed limits”, lower bounds on the minimal duration.
We find one such for each considered constraint, and these are shown to be sometimes
reachable.

In Section 3 we attempt to calculate the minimal duration given the bounded bandwidth
constraint. We determine a distance formula and apply it to two different cases; non-
degenerate and degenerate spectra. We find an exact solution for all batteries belonging
to the former case. In the latter case the problem becomes more complicated, and we
have to make further assumptions to determine the minimal duration.

Section 4 is dedicated to emphasizing the subtle differences between the bounded vari-
ance constraint and the bounded bandwidth constraint. We present the geometry of the
problem and describe some properties of time-optimal control Hamiltonians. We further
compare these properties to those for the bounded bandwidth constraint.

Section 5 examines how the minimal duration of a charging process is affected if the battery
is allowed to correlate with other identical batteries. We quantify a decrease in minimal
duration by means of a quantity which we call the quantum advantage. This section
is solely dependent on the contents of Section 2, and with certain assumptions we find
that allowing correlations is beneficial to time-optimal charging processes. Furthermore,
we find an interesting dependency on the parity of the number of possibly interacting
batteries.
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Finally Section 6 concludes the thesis, pointing out results and notions which are im-
portant to remember. We further present an outlook on future potential research topics,
some of which are already under progress in conjunction with this thesis.
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Figure 1: A flow chart depicting the general structure of the thesis. Rounded boxes
signalize main results. 5
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1 Quantum Batteries

Main Topics of Section
• Definitions of the main properties of a quantum battery, energy storage and

energy insertion/extraction.
• Detailing dynamics and necessary assumptions for initial states.
• Presentation of two constraints on controllable dynamics.

A battery is a physical system which we require to have two main properties. The first
property is that it should be able to store energy with high reliability. By this we mean
that we should have made sure that there is a minimal risk of “leakage”, i.e. energy
being spontaneously exchanged with an external device. Classically, such uncertainties
may be the result of a heat transfer to the device or an environment, and to achieve
an ideal battery we must reduce this to the point of omission. Secondly, we require a
method of inserting energy into it or, conversely, extracting energy from it. An ideal
battery requires that this method is fully controlled, by which we mean that energy is
neither lost nor unaccounted for during its implementation. Such a method usually makes
use of an external device referred to as a charger or discharger which interacts with the
battery.

For a quantum battery, these two main properties need to be defined in the quantum
mechanical framework. This is what the remainder of this section is dedicated to.

1.1 Energy Storage

To establish energy storage we first need to define the physical system which represents
the quantum battery. Consider a complex Hilbert space H of finite dimension d and
model a quantum state as a density operator ρ on H. This quantum system represents
the battery, and we say that ρ is the battery state. To assign to this state an energy we
must supply the battery with an internal Hamiltonian H0. It is natural to define the
energy content of ρ as the energy expectation value

E(ρ) := Tr[H0ρ]. (1)

Energy storage is achieved if the energy expectation value is conserved, i.e. independent
of time. The first step towards this is to examine internal properties of the battery,
i.e. consequences of ρ and H0. To begin with we want to make sure that H0 is time-
independent, since if not, the energy content might fluctuate. Note that as a consequence
of being an internal Hamiltonian, H0 does cause ρ to evolve unitarily [2] such that

ρ(t) = U(t)ρ(0)U †(t) (2)

where U(t) = exp(−iH0t). However this time evolution keeps the energy content Eq. (1)
invariant since U(t) and H0 commute. Hence it does not conflict with our idea of energy
storage.

The battery could however still spontaneously interact with external systems, in which
case the time-dependency of the battery becomes more general and stops being governed
by Eq. (2). To rid ourselves of this inconvenience we could further define the battery as
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a closed system [2]. Hence all changes in dynamics are fully characterized by alterations
of the battery’s internal Hamiltonian, i.e. by the change

H0 → H(t) = H0 +Hc(t). (3)

We say that Hc(t) is the possibly time-dependent deviation from the initial observable
H0. To describe the battery as a closed system can be further motivated by observing
that alterations to the internal Hamiltonian do not change the von Neumann entropy of
the battery [2]. This allows us to draw a parallel to thermodynamics where heat transfer
is accompanied by a change in entropy.

We have now laid down the conditions under which energy storage can be imposed on
the battery. This allows us to move on to the second required property of a quantum
battery, namely clear definitions for how to insert or extract energy into/from it. As we
will find, the assumption that the battery is a closed system will greatly assist us in this
regard.

1.2 Energy Insertion and Extraction

Since the battery is a closed system, energy insertion or extraction can happen only by
a change in the internal Hamiltonian. With H(t) in Eq. (3) as our new Hamiltonian we
exchange the dynamics for storage, Eq. (2), with

ρ(t) = U(t)ρ(0)U †(t), U(t) = T exp

(
−i
∫ t

0

H(t′)dt′
)
. (4)

Here T is the time-ordering operator. This is equivalently described by imposing the von
Neumann equation

ρ̇(t) = −i[H(t), ρ(t)]. (5)

Note that if Hc(t) = 0, the internal Hamiltonian is once again given by H0 and the
battery dynamics by Eq. (2). Hence Hc(t) is fully responsible for controlling insertion
and extraction of energy in the battery. It then becomes suitable for us to name it the
control Hamiltonian, or control for short. Henceforth we will let the charging/discharging
device be fully represented by Hc(t), and the setting can be visualized in Fig. 2.

We have now fully established a method of inserting or extracting energy in a controlled
manner which befits a battery. Since the theory is identical for charging or discharging
the battery, we will restrict ourselves to the charging process.

1.2.1 Quantum Quench

We required that we have complete control over the energy that is transferred during
charging. Since a quantum battery can lose energy when charged too long, we want a
method of instantaneously turning Hc(t) on or off. We refer to this property of instanta-
neously activating or deactivating Hc(t) as a quantum quench.

Assume that Hc(t) can fully charge the battery and let τ be the time required for this
process. We refer to τ as the process’ duration. Let ε be an arbitrary positive number
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Figure 2: A quantum battery with state ρ(t) and fixed internal Hamiltonian H0. We
can control the charging of this battery by applying a charging device that changes the
Hamiltonian of the battery to H(t) = H0 + Hc(t). The unitary dynamics of the battery
will then be governed by H(t).

and define a smooth function qε(t) that satisfies

qε(t) =

{
0, if t ≤ 0,

τ, if t ≥ τ + 2ε,
(6)

q̇ε(t) ∈ [0, 1] (7)

Define the quenched control Hamiltonian by H ′c(ε, t) = q̇ε(t)Hc(qε(t)). On account of qε(t)
being smooth, this alternative choice of control is equal to the zero operator for times
t ≤ 0 and t ≥ τ + 2ε. Hence it is quenched at these times. We now formulate the
following proposition.

Proposition 1.1. The quenched control H ′c(ε, t) fully charges the battery. Furthermore,
by decreasing ε the duration of this process can be made arbitrarily close to τ .

We prove this proposition in Appendix A.1. Note that this proof uses notation and
methods developed later in this thesis. This proposition allows us to always replace a
fully charging control with a a version which is quenched before and after the process.
The price we pay is that the duration of the process becomes infinitesimally longer than
τ . The lower bounds we examine are still important, however, especially since we must
determine τ before being able to apply the above quench.

1.3 Accessible Battery States

Having established the evolution dynamics of the battery it becomes relevant to ask which
states are accessible given a certain initial state ρi = ρ(0). Unitary dynamics preserves
the spectrum of our state [2]. Therefore, let p = {p1, p2, · · · , pd} be the spectrum of ρi
and define D(p) as the manifold of states with this spectrum. The unitary group acts
transitively on D(p). That is, any state in D(p) can be transformed into every other
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state in it through a unitary action. Because of this, D(p) is the full space of accessible
battery states and will thus be referred to as the battery state space. Henceforth, a “state”
will refer to an element in D(p). We will now examine some important states and their
properties.

1.3.1 Incoherent and Extremal States

Having assigned D(p) as the battery state space, it is important to identify which states
represent a “full” or “empty” battery. In terms of the energy content, these are those
which maximize or minimize the energy expectation value, Eq. (1). We borrow some
terminology from [8, 9, 10] and refer to a full battery state as an active state1 ρa and an
empty battery state as a passive state ρp.

Remark 1. Note that if either ρi or H0 can be written as the identity times a constant,
then ρi is simultaneously active and passive. We consider this as a trivial example, and
for the remainder of this thesis we will assume that such is not the case.

The active and passive states are fully dependent on the spectrum of the initial state ρi,
and it is natural to ask how ρi is prepared. It is convenient to prepare it in such a way
that it is held fixed before we activate the control Hc(t) through the quantum quench.
That is, the initial state is represented by a single element in D(p) for all times before
t = 0. We remind ourselves that before we attach a control the system is governed by the
dynamics of H0, Eq. (2). This dynamics will evolve all states except those with which H0

commutes. We refer to those states as incoherent states. Hence, it is useful to prepare ρi
as an incoherent state. Henceforth, all initial states are assumed to be incoherent. The
following proposition extends incoherence to our active and passive sets.

Proposition 1.2. Active and passive states are incoherent.

The proof is postponed until Appendix A.1. While this result is not intuitively useful,
it is similarly appropriate to keep the battery “fixed” after the charging is completed.
Predominately, however, the incoherence of both initial and active state will prove essential
for the results of this thesis.

Remark 2. In fact, the general theory of this thesis is fully applicable to any set of
isoenergetic final states, assuming that they are incoherent. Hence the results also apply
if we consider the minimal duration required to fully discharge a battery, i.e. transforming
ρi to a passive state ρp. This can be of interest during reverse processes where we want
to use the battery to power an external device.

Remark 3. It is important to realize that there can exist multiple active and passive states
in D(p). This observation will be essential in Section 2.1.2, where we seek to minimize
the charging duration τ .

1.3.2 Preparation of Incoherent States

There are multiple ways to prepare incoherent states, one of them being to perform a
non-selective von Neumann measurement with respect to H0 [2]. Let E1, E2, · · · , Em be
the distinct eigenvalues of H0. The Hilbert space H can be decomposed into m mutually

1In thermodynamics ρa is usually called a maximally active state.
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orthogonal Hilbert spaces H1, · · · ,Hm. Each such Hj is the eigenspace of H0 correspond-
ing to the eigenvalue Ej. Thus, Hj is spanned by all eigenvectors with eigenvalue Ej, and
has dimension equal to the multiplicity of Ej. Let Πj be the orthogonal projection of H
onto Hj. Then H0 can be written as

H0 =
m⊕
j=1

EjΠj. (8)

A selective measurement of H0 on ρ with outcome Ej would cause ρ to transform as

ρ→ ρ′ =
ΠjρΠj

Tr[ρΠj]
. (9)

The denominator Tr[ρΠj] is the probability of measuring the energy Ej. A non-selective
measurement is made by disregarding the selection. Hence, a non-selective measurement
of H0 prepares the state

ρ→ ρi =
m⊕
j=1

Tr[ρΠj]
ΠjρΠj

Tr[ρΠj]
=

m⊕
j=1

ΠjρΠj. (10)

This state commutes with H0. Given sufficient information of our observable, this is a vi-
able method of preparing an initial incoherent state. This will be the assumed preparation
method in this thesis, since it allows for initial states of arbitrary spectra.

1.4 Constraints

While charging a battery it is natural to encounter some constraints, e.g., the wires we use
to charge a device can only handle a certain maximum current. Such a constraint restricts
the time needed to fully charge the battery, and the number of possible constraints are
countless.

In the quantum case these constraints are not as apparent, but one could consider con-
straints that limit what charges the battery, i.e., the control Hc(t). In this thesis we an-
alyze two such constraints, the bounded bandwidth and the bounded variance constraints.
We will for convenience often omit the time-dependency from the notation and simply
write Hc for the control.

1.4.1 Bounded Bandwidth Constraint

Let ω be some constant positive number. The bounded bandwidth constraint is

Tr[H2
c ] ≤ ω2. (11)

This constraint is considered in various time-optimization problems [11, 12, 13] and bounds
the absolute values of the eigenvalues of Hc from above.

1.4.2 Bounded Variance Constraint

The bounded variance is, as the name suggest, a restriction of the variance

Var(Hc, ρ(t)) = Tr[H2
c ρ(t)]− Tr[Hcρ(t)]2 ≤ ω2. (12)
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Here, ω is again some fixed positive number. We remind the reader that if we would
perform measurements of Hc on an infinite number of copies of ρ(t), the variance is a
measure of the deviation from the expectation value. Variance is generally important
in the field of quantum information and is relevant in various problems related to time-
optimization [3, 14]. Furthermore, there are interesting and important differences between
Eqs. (11) and (12) which are important to point out in the context of more general
constraints. We will introduce these in Section 2.2.

Remark 4. For various geometrical reasons we will only consider ρi with full rank when
considering the bounded variance constraint. While the results of this thesis are applicable
even when ρi does not have full rank, the proofs become significantly more complicated.
For more on this subject read [15].

1.4.3 Saturation of Constraints

The above constraints both have the property that they are homogeneous of second order
in Hc. That is, if f is our constraint function and λ is a constant, then

f(λHc, ρ(t)) ≤ λ2f(Hc, ρ(t)). (13)

The following proposition proves something very powerful for our two constraints Eqs. (11)
and (12).

Proposition 1.3. If f(Hc, ρ(t)) ≤ ω2 is the only imposed constraint, then it is saturated
for all time-optimal charging processes.

We postpone the proof until Appendix A.1. This proposition tells us that f can be consid-
ered as a restriction of some resource. From this point of view it then becomes reasonable
that optimal time is achieved if we use all resources available. For the remainder of this
thesis we will assume that both constraints Eqs. (11) and (12) are saturated.

Remark 5. The reader might ask if constraints or their saturation conflicts with the
quenching of Hc in Section 1.2.1. We prove that such isn’t the case in the proof of
Proposition 1.1 in Appendix A.1.

Remark 6. It might be of interest to consider the case where multiple different constraints
are imposed simultaneously, e.g. the two arbitrary constraints f ≤ ω2

1 and g ≤ ω2
2. In

this case we cannot prove that Proposition 1.3 applies, and these constraints may or may
not be individually saturated at different times. For more on this see [16].
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2 The Charging Process

Main Topics of Section
• Formulating the time-optimization problem as a path-optimization problem
• Propose metrics which allows us to more easily handle the constraints.
• Formulate cycle-notation which assists us in categorizing various solutions.

We charge the battery by evolving an initial state ρi to an active state ρa, letting τ be
the duration of this process. The objective is to optimize the charging process in the
sense that we minimize this duration. However, due to the imposed constraints on Hc,
we cannot make this duration arbitrarily small, and our problem develops into a time
optimization problem: Given our constraints, what is the minimal duration τmin such
that ρ(τmin) in Eq. (4) is an active state? We will begin this section by establishing how
to solve this problem by means of a related subject; path optimization.

2.1 Time Optimization as a Path Optimization Problem

We are interested in finding the minimal duration τmin required for an evolving battery ρ(t)

in D(p) to become active. This is a time optimization problem of a non-static quantum
state, something which in general is a very difficult problem [11, 12, 13, 16, 17, 18]. In our
case there exists a convenient method as a consequence of the unitary dynamics, namely
time-optimal curves in the unitary group. We will start off by making an important
simplification by expressing everything in the interaction picture, the motivation for which
will be apparent in Section 2.2.

2.1.1 Quantum Drift and the Interaction Picture

So far the charging process of the battery is governed by the Hamiltonian H = H0 + Hc

while our constraints restrict the latter term, Hc. It would however be convenient to
express the problem in a frame where the constraints are turned into limitations on the
full dynamics of the system. The interaction picture will do just this.

Define the interaction picture equivalents of ρ and Hc as

ρI := eiH0tρe−iH0t,

HcI := eiH0tHce
−iH0t.

(14)

We remind the reader that the interaction picture represents that the whole state space
D(p) is rotating in time. Hence all coherent states get an explicit time-dependency. In
contrast, all incoherent states are fixed points in this frame, which is why it is beneficial
to impose that our initial and final states are incoherent. We now present a proposition
regarding how ρI evolves.

Proposition 2.1. If ρ obeys Eq. (5) with H = H0 +Hc, then

ρ̇I(t) = −i[HcI(t), ρI(t)]. (15)
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Proof. Using Eq. (14),

ρ̇I = i[H0, ρI ] + eiH0tρ̇e−iH0t

= i[H0, ρI ]− ieiH0t[H0 +Hc, ρ]e−iH0t

= −ieiH0t[Hc, ρ]e−iH0t

= −i[HcI , ρI ].

(16)

This concludes the proof.

Proposition 2.1 shows that the interaction picture allows us to instead consider unitaries
of the form

U(t) = T exp

(
−i
∫ t

0

HcI(t
′)dt′

)
(17)

Furthermore, both constraints Eqs. (11) and (12) are invariant under this change of frame:
If Tr [H2

c ] ≤ ω2 or Var (Hc, ρ(t)), then Tr [Hc
2
I ] ≤ ω2 or Var (HcI , ρI(t)) ≤ ω2. Hence, by

means of expressing the problem in the interaction picture we have managed to transform
the constraints from limitations on the partial dynamics to the full charging dynamics.
For the remainder of the thesis we assume that everything is expressed in the interaction
picture unless otherwise stated. When we write Hc and ρ these will refer to the interaction
picture equivalents.

2.1.2 Unitary Evolution as Curves

We want to find the minimal duration τmin such that ρ(τmin) is an active state. If we
remind ourselves of Eq. (4) we can equivalently ask ourselves: for a unitary operator U(t),
what is the minimal time τmin required for U(τmin)ρiU

†(τmin) to be an active state? This
is a different outlook on the same problem. Instead of focusing on the battery itself we
ask how much time we require to implement our unitary dynamics2.

Let U(H) be the unitary group, i.e. the group of unitary operators on H. The unitary
operator U(t) in Eq. (17) can be regarded as a continuous curve in U(H). Its time-
derivative is given by

U̇(t) = −iHc(t)U(t) (18)

and can be regarded as the tangent vector or velocity of the curve at time t. We can
choose U(0) = 1 such that this curve emanates from the identity, and we require that it
activates our state at time τ , i.e., that U(τ)ρiU

†(τ) is an active state. We now remind
ourselves of Remark 3 which stated that there might exist multiple active states. Similarly
there might be multiple distinct unitaries which activates our state. To this end we let
A(ρi) be the “activating set” of “activating” unitary operators A for which AρiA† is active.
In Fig. 3 we visualize these concepts.

Since we want to achieve minimal duration τ we must choose a curve U(t) which hits
any point in A(ρi) as fast as possible. Hence, it becomes essential to determine how
A(ρi) looks. To this end let U(H)H0 and U(H)ρi be the groups of unitary operators that
commute with H0 and ρi, respectively. We call these the isotropy groups of H0 and ρi.
The following proposition is proven in Appendix A.2.

2This is in fact a default approach in the field of quantum computation, where one often wants to
know the minimal time required to implement different gates, see [11, 12, 13, 16, 17, 16].
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Figure 3: A curve of unitary operators U(t) with tangent vector U̇ in the unitary group
U(H). The curve connects identity 1 and the activating set A(ρi), hence it activates the
battery.

Proposition 2.2. Given an arbitrary unitary A ∈ A(ρi),

A(ρi) = {UAV : U ∈ U(H)H0 , V ∈ U(H)ρi}. (19)

We mentioned earlier that U̇(t) could be interpreted as the velocity of the curve U(t) at
time t. In order to quantify the speed of U(t), i.e., assign a size to the velocity U̇(t), we
must first equip the unitary group with a Riemannian metric. Recall that a Riemann
metric is a smoothly varying field of inner products on the tangent spaces of U(H), see
[6, 7]. Such a metric also allows us to measure distances on U(H). While the choice
of metric is fully up to us, we want it to suit the problem at hand. In Proposition 1.3
we proved that the constraints are saturated, hence equal to some constant value ω2 for
all times t. If we manage to find a metric g for which the squared speed of U(t) agrees
with the constraint function f , then the squared speed in this metric is bounded from
above by the constraint ω2. Due to Proposition 1.3 this implies that time-optimal control
Hamiltonians generate unitary curves whose speed is constant. Furthermore, if the speed
of a curve is constant, then minimal time is achieved by letting it be a shortest curve.
Hence, given a “suitable” metric according to our definition, the problem boils down to
finding the length of the shortest curve connecting 1 and A(ρi). Finding metrics which
allows us to do this is the topic of the subsequent section.

2.2 Constraint-Induced Metrics

We want to choose a Riemannian metric g on U(H) such that the squared speed v2 of
time-optimal unitary curves equals the imposed constraint function. In other words, if
U(t) is generated by a time-optimal control Hc satisfying our constraint, then g should
satisfy

v2 = g(U̇ , U̇) = f(Hc, ρ) = ω2. (20)

The latter equality is a consequence of Proposition 1.3. This then implies that v = ω such
that the speed is constant and optimal paths become shortest curves. Before defining
metrics for either constraint we must discuss some algebraic and geometric properties of
the unitary group.
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The unitary group U(H) is a Lie group, a smooth manifold where the group law and
inverse are smooth maps. Since it is a smooth manifold there belongs to each point U
in U(H) a tangent vector space which we denote by TUU . The tangent space at identity
is the Lie algebra of U(H), which will be denoted by u(H). The Lie algebra is spanned
by the generators of its Lie group through the exponential map. That is, for any U in
U(H) there exists a vector ξ in u(H) such that U = exp(ξ). In the case of the unitary
group, u(H) consists of the skew-Hermitian operators on H, i.e. those operators for which
ξ† = −ξ. If ξ is time-dependent it will instead generate a curve in the unitary group.
For example, if we let ξ(t) = −itH where H is a Hamiltonian, then exp(ξ(t)) is the
time-evolution operator of H.

For every curve U(t) generated by ξ(t) we can define the initial speed as the length of the
tangent vector at identity, i.e. the “length” of ξ(0) in u(H). To do this we must endow the
Lie algebra with an inner product. Let ξ, η be elements in u(H) and consider the inner
products

〈ξ, η〉HS =
1

2
Tr
[
ξ†η + η†ξ

]
, (21)

〈ξ, η〉Var =
1

2
Tr
[
ρi
(
ξ†η + η†ξ

)]
. (22)

We must now argue that these inner products imply two metrics respectively. In Lie
theory, there is a one-to-one correspondence between the inner products on the Lie algebra
and what is called the left-invariant metrics on the Lie group [7]. Let W be a unitary
operator and define the map LW (U) = WU . The map LW maps U(H) onto itself and is
referred to as the left action of the Lie group. Furthermore, given LW there exists a push
forward or differential map denoted by dLW which further describes how TUU is mapped
onto TWUU , [6, 7]. This differential map is in turn given by

dLW : U̇ 7→ ˙(WU) = WU̇. (23)

A left-invariant metric is a metric which satisfies

g(U̇1, U̇2) = g(dLW (U̇1), dLW (U̇2)). (24)

We now observe that the inner products constructed in Eqs. (21) and (22) uniquely imply
two left-invariant metrics, gHS and gVar. Metrics defined through inner products in this
manner are examples of Riemannian metrics [6, 7].

Note that for any unitary operator U there exists a left action LU† which maps U to the
identity. The corresponding differential maps any tangent space TUU to the Lie algebra.
Due to left-invariance of the metrics, Eq. (24), this allows us to use the same expression
for the inner product on both TUU and the Lie algebra. Hence,

gHS(U̇1, U̇2) =
1

2
Tr
[
U̇ †1 U̇2 + U̇ †2 U̇1

]
, (25)

gVar(U̇1, U̇2) =
1

2
Tr
[
ρi

(
U̇ †1 U̇2 + U̇ †2 U̇1

)]
. (26)

This allows us to evaluate the length of any tangent U̇(t) of U(t). From both metrics and
Eq. (18) we find

gHS

(
U̇(t), U̇(t)

)
= Tr

[
H2
c (t)

]
, (27)

gVar

(
U̇(t), U̇(t)

)
= Tr

[
ρ(t)H2

c (t)
]
. (28)
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By comparing Eq. (27) with Eq. (12) we can observe that the speed of U(t) with respect to
the first inner product equals the bounded bandwidth condition, hence we have guaranteed
that Eq. (20) is fulfilled. It is however not immediately clear that Eq. (28) corresponds
to the variance Eq. (12), we affirm that such is indeed the case if U(t) is a horizontal lift
of ρ(t). We postpone what this entails to Section 4, where the variance case is treated in
detail. Hence we have found two constraint-induced metrics which allow us to consider
shortest curves.

Remark 7. While subtle, there are consequential geometrical differences between the above
metrics. The reason is that, just as it is invariant under the left action as defined above,
gHS is similarly invariant under the right action RW (U) = UW . If a metric is simultane-
ously left and right-invariant it is commonly referred to as bi-invariant, [7]. Hence, gHS
is bi-invariant while gVar is only left-invariant. These geometrical differences will prove
very important later in the thesis when determining the geodesic distance. More on this
topic can be read in [19].

Remark 8. Both metrics Eqs. (25) and (26) are invariant under the right action of U(H)ρi .
This will be of great use in Section 4.

2.3 General Shortest Curves

We found metrics which keep the squared speed constant and equal to our constraint,
the remaining problem is to find the length of the shortest curve3 for which the battery
ends up activated. Since the shortest curve traversed at constant speed is necessarily a
geodesic, we will henceforth refer to this length as the geodesic distance. Between any two
operators U and V we denote it by dist(U, V ). We must now mention a very important
concept to keep in mind when we look for the geodesic distance.

2.3.1 Geodesic Distance to A(ρi)

When considering two points in the unitary group, the geodesic distance between them
is unique. There may of course be multiple shortest curves between the points, but all
these shortest curves have the same length. In our case, however, we want to connect the
identity operator not to a point, but to the whole set A(ρi). This introduces a difficulty
since some points in A(ρi) may be closer to identity than others.

This introduces one more step in our calculations. Since we want to minimize the length
of the curve, we must also minimize over all geodesic distances between the identity and
A(ρi). Due to Proposition 2.2, we thus have

dist(1,A(ρi)) = min
U,V

{
dist(1, UAV )

}
, (29)

where the right-hand side is minimized over all Us in U(H)H0 and all V s in U(H)ρi .

2.4 The Cycle Representation

For completely general dimensions and eigenspectra of H0 and ρi the number of cases is
infinite, and while we have introduced useful mathematical tools we can only hope to find

3The existence of a shortest curve is guaranteed on account of that the unitary group is compact and
without boundary [6].
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τmin for some of them. It is therefore useful to find a way to distinguish between solvable
and non-solvable cases. As we will show in later sections, the cycle representation of A
allows us to do this. In multiple cases it will also assist us in calculating τmin. Moreover,
it allows us to determine a lower bound on τmin for all cases and tells us when this bound
can be reached.

The representation we seek requires that we choose a basis in which we express our states.
We choose the basis |k〉 for which

ρi =
d∑

k=1

pk |k〉 〈k| . (30)

We index the eigenvectors such that the energy eigenspaces are in increasing order,
〈k|H0|k〉 ≤ 〈k + 1|H0|k + 1〉. Let σ denote a permutation of the eigenvectors of ρi.
Further write σ(k) for the permutation of the kth eigenvector. If every eigenvector is
permuted by σ in this way, then ρi is evolved into ρσ := AσρiA

†
σ, where

Aσ =
d∑

k=1

|σ(k)〉 〈k| . (31)

We refer to Aσ as the permutation operator of σ. The following proposition is an obser-
vation which is proven in Appendix A.2.

Proposition 2.3. The target set A(ρi) contains at least one permutation operator Aσ of
the form Eq. (31). That is, ρσ is active.

There can of course exist multiple distinct permutations σ for which ρσ is active. Hence-
forth, Aσ will refer to any operator that can be written as a permutation operator in the
basis of Eq. (30), assuming it activates our state. Remember that Aσ is not necessarily
the activating unitary closest to identity, but a good candidate for the arbitrary activating
operator A in Eq. (29). We now present a useful way of expressing this permutation using
a cycle decomposition.

Let ck = (k1, k2, · · · , kl) be a cycle of length l which permutes integers k1, · · · , kl according
to k1 → k2 → · · · → kl → k1. For our purposes, these integers will correspond to the
indices of the chosen basis |k〉. Every permutation σ can be uniquely decomposed into a
series of m such disjoint cycles [20],

σ = c1c2 · · · cm−1cm. (32)

Each cycle cr represents how the permutation Aσ operates on a certain subspace Hcr of H.
Each such Hcr is spanned by the eigenvectors whose indices are permuted by cr. Further-
more, these subspaces are held invariant by Aσ such that each eigenvector is permuted
onto the subspace it started in. The lengths of the cycles represents the dimensions of
these cycle-invariant subspaces and will turn out to have major relevance when improving
the charging duration τ . Cycles of length one represent fixed eigenvectors and will hence-
forth be referred as trivial cycles. Cycles of length two will turn out to be important,
and we will refer to these as transpositions. All other cycles are referred to as non-trivial
cycles. We will now present an example which visualizes a cycle representation, and how
to construct it. For many examples in this thesis we will let spec{A} = (A1, A2, · · · , Ad)
denote the ordered spectrum of an operator A. By this we mean that the eigenvalues are
ordered according to the basis |k〉 of Eq. (30), such that Ak = 〈k|A|k〉.
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Figure 4: A general example of a cycle reduction. A cycle of the form (k1, k2, · · · , kl) is
split at the position of the scissors and reduced into the two shorter cycles of the form
(k1, · · · , ki, kj+1, · · · , kl) and (ki+1, · · · , kj).

Example 1. Let the spectrum of H0, ρi and ρa be

spec{H0} = (E1, E1, E2, E2, E2, E3, E3, E4, E4),

spec{ρi} = (p4, p1, p6, p2, p5, p5, p3, p8, p7),

spec{ρa} = (p1, p2, p3, p4, p5, p5, p6, p7, p8),

(33)

where all indices represent distinct eigenvalues and pk ≤ pk+1 to ensure that ρa is an
active state. A permutation σ which performs this permutation can be written as

σ = (1, 4, 2)(3, 7)(5)(6)(8, 9), (34)

where each cycle is found by comparing the spectra of ρi and ρa.

2.4.1 Cycle Reductions

In Example 1, we note that the fifth cycle (8, 9) can be replaced by two trivial cycles,
(8)(9), such that

σ′ = (1, 4, 2)(3, 7)(5)(6)(8)(9). (35)

While σ′ is a different permutation, Aσ′ is still an activating unitary. As we will find later,
increasing the number of distinct cycles in this manner will in many cases strictly decrease
the charging duration τ . Hence, σ′ would be a more optimal permutation than the one
provided in Example 1. Splitting a cycle into multiple, shorter cycles will be referred to
as a cycle reduction. A general cycle reduction is presented in Fig. 4.

We say that a permutation is admissible if it activates our battery. A permutation σ which
cannot be subjected to further cycle reduction while remaining admissible will be referred
to as a fully reduced permutation. This concept will be important in later sections, and it
is often useful to consider fully reduced permutations.
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Remark 9. Note that for complicated σ there could potentially exist multiple distinct
methods of obtaining a permutation which is fully reduced. Hence we do not generally
know whether a fully reduced permutation is unique.

2.5 Quantum Speed Limits

When considering time optimization processes in quantum information we want to con-
sider lower bounds on the time that is required. Such a lower bound is what in quantum
information theory is referred to as a quantum speed limit4 [14, 21]. While the lower
bound is not always possible to reach, the quantum speed limit still gives insight into the
problem. In Propositions 2.4 and 2.5 we present two quantum speed limits, τBqsl and τ

V
qsl,

one for each constraint. However, we must first introduce some notation.

Let an activating permutation σ transform an eigenvector |k〉 to |σ(k)〉. Consider now
the two possibilities

pk = pσ(k), (36)
〈k|H0|k〉 = 〈σ(k)|H0|σ(k)〉 . (37)

Note that if either of the above equalities hold, then the permutation of the kth eigenvector
conserves the energy expectation value, Eq. (1). Define now the overlap κ as the number
of indices for which either of the above equalities hold. Contrary to the overlap we define
the discrepancy δ as the number of indices for which neither equality holds. The sum of
κ and δ is the dimension of the system. We further define the parameter P by

P =
∑
j

pj. (38)

The sum is over the indices j that do not satisfy any of Eqs. (36) and (37).

Remark 10. It is important to realize that κ, δ and P are invariant of the choice of
permutation σ, assuming that it activates the battery. The reason is that Eqs. (36)
and (37) can be interpreted as conditions for when an eigenvector can be held fixed
without altering the activation of the battery.

We can now formulate two quantum speed limits as propositions.

Proposition 2.4. For the bounded bandwidth constraint, τmin is bounded from below by

τBqsl =
π
√
δ

2ω
. (39)

Proposition 2.5. For the bounded variance constraint, τmin is bounded from below by

τVqsl =
π
√
P

2ω
. (40)

The proofs for these quantum speed limits are postponed to Appendix A.2. We now ask
whether there are any special cases where these bounds can be reached. The proposition
below gives us our first result.

4Contrary to its name, a quantum speed limit does not actually limit the speed of a quantum process,
but bounds the minimal time required to implement it.
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Proposition 2.6. If the permutation σ can be decomposed into solely transpositions and
trivial cycles, then the minimal duration is equal to the quantum speed limit.

The proof is postponed until Appendix A.2. This first result not only answers the ques-
tion for multiple more simple cases, but also further proves the usefulness of the cycle
decomposition. If it can be decomposed into cycles of length no greater than 2 we can
determine the charging time τmin without discussing shortest curves. We now present
such an example which will become useful later in the thesis.

Example 2. Let ρi be a non-degenerate, d-dimensional passive state with non-degenerate
observable H0. Then the ordered spectra are

spec{H0} = (E1, E2, · · · , Ed−1, Ed),
spec{ρi} = (pd, pd−1, · · · , p2, p1),
spec{ρa} = (p1, p2, · · · , pd−1, pd).

(41)

We find that AσρiA†σ = ρa, where Aσ is characterized by the permutation

σ =

{
(1, d)(2, d− 1), · · · ,

(
d
2
, d+2

2

)
if d is even,

(1, d)(2, d− 1), · · · ,
(
d−1
2
, d+3

2

) (
d+1
2

)
if d is odd,

(42)

This permutation decomposition solely consists of transpositions or trivial cycles such that
Proposition 2.6 applies, making this an example for when τmin is equal to the quantum
speed limit. If we assume that the control Hc satisfies the bounded bandwidth constraint
we find using Eq. (39) that

τmin =

{
π
√
d

2ω
if d is even,

π
√
d−1
2ω

if d is odd.
(43)

If instead Hc satisfies the bounded variance constraint, τmin is found by applying Eq. (40),

τmin =


π
2ω

if d is even,
π
√

1−p(d+1)/2

2ω
if d is odd.

(44)

If Proposition 2.6 is not satisfied, however, the problem immediately becomes more com-
plicated. In those cases we have to solve Eq. (29), which is dependent on the imposed
constraint. Hence we proceed by considering them individually.
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3 Optimal Time for Bounded Bandwidth

Main Topics of Section
• Formulate length of shortest curves.
• Determine the minimal duration for non-degenerate spectra.
• Develop a method to determine the minimal duration for degenerate spectra

and establish when it is applicable.

The metric introduced for the bounded bandwidth implies a certain geodesic distance. In
order to formulate it we must first present the consequences of Eq. (25) being bi-invariant.
This property will in fact imply the following Proposition.

Proposition 3.1. Time-optimal control Hamiltonians which satisfy the bounded band-
width constraint, Eq. (12), are necessarily time-independent.

The proof of Proposition 3.1 is presented in Appendix A.3. We remind ourselves that we
are in the interaction picture, hence the above proposition allows us to simplify Eq. (17)
and write U(t) = exp(−iHct). Having made this observation, let Log be the principal
logarithm on the unitary group and ‖·‖ the Hilbert-Schmidt norm. The logarithm of
a unitary operator U is the skew-Hermitian ξ for which U = exp(ξ). Since this is a
multi-valued function we choose the principal logarithm which guarantees that the eigen-
values zi of Log(U) all satisfy Im(zi) ∈ [−π, π). We prove in Appendix A.3 the following
proposition.

Proposition 3.2. If we constrain the control bandwidth, the geodesic distance between U
and V is given by

dist(U, V ) = ‖LogU †V ‖. (45)

This geodesic distance in conjunction with Eq. (29) then shows that the smallest distance
to the activating set A(ρi) is

dist(1,A(ρi)) = min
U,V
‖Log(UAV )‖. (46)

This is generally difficult to minimize, however. As we will see Eq. (46) is always possible
to evaluate if both H0 and ρi are non-degenerate. Instead, if either is degenerate, it can
be determined only for some very special kinds of spectra. This forces us to split the
following section into multiple parts, each considering a special set of state and energy
spectra.

3.1 Non-Degenerate Cases

Suppose that H0 and ρi are non-degenerate, i.e., the eigenspaces of H0 and ρi are one-
dimensional. Then, all operators which commute with them are necessarily diagonal in the
chosen basis |k〉. Hence the isotropy groups U(H)H0 and U(H)ρi are identical and consists
of operators represented by diagonal unitary matrices. The eigenvalues of these operators
are still arbitrary, however. Let this common isotropy group of diagonal unitaries be
written as U(H)diag.

In the non-degenerate case there only exists a single active state ρa. This stems from that
if the energy eigenvalues are non-degenerate and indexed in increasing order, Ek < Ek+1,
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then so must the eigenvalues of ρa be, pk < pk+1, in order for Eq. (1) to be maximized.
As a direct result the permutation σ which activates ρi is unique. It is essential to note,
however, that while the active state ρa is unique the activating unitary is not. Hence we
are still required to minimize over the isotropy groups in Eq. (46).

Recall that every cycle cr represents how Aσ operates on the subspace Hcr of H. Hence,
the permutation operator can always be written as a direct sum of sub-permutations
on these subspaces, Aσ =

⊕
r Acr . Similarly, since the isotropy groups now consist of

diagonal unitaries U, V on H, these can be written as a direct sum of operators Ucr , Vcr
on Hcr . If we consider the geodesic distance of Eq. (46) this allows us to write

‖Log

(
m⊕
r=1

UcrAcrVcr

)
‖2 =

m∑
r=1

‖Log(UcrAcrVcr)‖2, (47)

where the square is necessary for equality to hold. If we minimize this over U, V the
following proposition is proven.

Proposition 3.3. Let σ = c1 · · · cm be our cycle decomposition. If Hc satisfies the bounded
bandwidth condition and H0, ρi are non-degenerate, then

τmin =
π√
3ω

√√√√d−
m∑
r=1

1

lr
, (48)

lr being the length of cycle cr.

The proof is presented in Appendix A.3. Proposition 3.3 shows that the unique permuta-
tion σ fully determines Eq. (46) in the non-degenerate case, hence the minimal charging
time τmin. Another consequence of this observation is that the corresponding quantum
speed limit, Eq. (39), can be reached for non-degenerate cases if and only if each lr ≤ 2.
If such is the case Eqs. (39) and (48) are equal, and if not Eq. (48) must be larger. We
will now conclude the non-degenerate cases by presenting two examples where we apply
Proposition 3.3.

Example 3. Consider the d = 3 dimensional case where we have the spectra

spec{H0} = (E1, E2, E3),

spec{ρi} = (p2, p1, p3),

spec{ρa} = (p1, p2, p3).

(49)

In this case we can activate the battery with the (fully reduced) permutation σ = (1, 2)(3).
Since both ρi and H0 are non-degenerate we can apply Eq. (48) and find

τmin =
π√
3ω

√
3− 1

2
− 1 =

π√
2ω
. (50)

This result coincides with the quantum speed limit Eq. (39) given that δ = 2. This was
in turn was predicted by Proposition 2.6 since σ can be decomposed into transpositions
and trivial cycles.

Example 4. Consider the same dimension and spectra as in Example 3, the only difference
being the ordering of the initial battery spectrum,

spec{H0} = (E1, E2, E3),

spec{ρi} = (p3, p1, p2),

spec{ρa} = (p1, p2, p3).

(51)
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In this case σ = (3, 2, 1), and by using Eq. (48) we find

τmin =
π√
3ω

√
3− 1

3
=
π

ω

√
8

3
. (52)

This is larger than the quantum speed limit Eq. (39) given that δ = 3, which reinforces
our statement that τmin = τBqsl if and only if the length lr ≤ 2 for each cycle cr in σ.

3.2 Degenerate Cases

When any or both of H0 and ρi have degenerate spectra the isotropy groups U(H)H0 and
U(H)ρi consist of more arbitrary unitaries compared to the non-degenerate cases, and the
permutation is no longer unique. As a result, Eq. (48) need no longer hold.

But the right-hand side of Eq. (48) has another role. Given a certain permuting operator
Aσ, it always acts as an upper bound on the minimal duration τmin, even for arbitrary
degeneracies. This is a consequence of the fact that the isotropy group U(H)diag of the
non-degenerate case is a subgroup of all possible general isotropy groups U(H)H0 and
U(H)ρi . Consequently, by choosing U and V in Eq. (46) from U(H)diag, the process
duration τ can be made equal to the right-hand side of Eq. (48). However, since we
restricted ourselves to U(H)diag, we do not know if there are other unitaries in U(H)H0

and U(H)ρi which decrease the geodesic distance further. Thus,

τmin ≤
π√
3ω

√√√√d−
m∑
r=1

1

lr
. (53)

Notice that this bound is minimal if the permutation σ is fully reduced. This is the case
since if any cycle of length lr is replaced by two shorter cycles of lengths lr′ and lr′′ the
sum above increases and, consequently, the right-hand side of Eq. (53) decreases.

Generally, we cannot guarantee that Eq. (53) is saturated. In fact, we have not developed
a general formula for τmin for degenerate cases. As we will show, however, there exists
special sets of degenerate spectra where τmin can be determined. In the following section
we present two main assumptions which, if upheld, allows a method that determines τmin
for some degenerate cases.

3.2.1 The Decomposition Method

The decomposition method is a procedure which will allow us to divide the problem of
the degenerate case into smaller parts. These parts will then be possible to examine and
calculate independently. We will find that if each part has any of three mathematical
characteristics, then τmin can be determined. This method is only applicable if we impose
two assumptions on H0 and ρi, however.

Consider the permutation σ and its cycle decomposition c1c2 · · · cm. The cycles can be
arbitrarily grouped together into n ≤ m sub-permutations σl, such that

σ = c1 · · · ci︸ ︷︷ ︸
σ1

ci+1 · · · cj︸ ︷︷ ︸
σ2

· · · ck · · · cm︸ ︷︷ ︸
σn

= σ1σ2 · · ·σn. (54)

Each sub-permutation σl operates on a Hilbert subspace Hσl . These Hσl are spanned by
the eigenvectors whose indices are permuted by the corresponding σl. This allows us to
present the following proposition which is tied to our first required assumption.
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Proposition 3.4. If each eigenspace of H0 and ρi is contained within a Hσl, then these
Hσl are all invariant under action of unitaries in the activating set A(ρi). Furthermore,
there exists a shortest curve from 1 to A(ρi) which preserves each Hσl.

The proof is provided in Appendix A.3. The first assumption we make is that the premises
of this proposition are satisfied, i.e., that each eigenspace of H0 and ρi is contained in
a Hσl . This assumption implies that the elements of the isotropy groups U(H)H0 and
U(H)ρi can be decomposed into direct sums of unitary operators Uσl and Vσl on Hσl .
Simultaneously, Aσ can be written as a direct sum of the permutations Aσl on Hσl . This
is reminiscent of the non-degenerate case, and similarly to Eq. (47) we find

dist(1,A(ρi))
2 =

n∑
l=1

min
Uσl ,Vσl

‖Log(UσlAσlVσl)‖2. (55)

Hence the first assumption has allowed us to split the problem of minimizing over U and
V into multiple parts.

We still have no simple method of minimizing each term, however. To this end we require a
second assumption followed by some well-known geometrical results. Let U(Hσl)H0 be the
group of unitaries on Hσl which commute with the projection of H0 onto Hσl . Similarly
define U(Hσl)ρi . We can now propose a second proposition, whose proof we postpone
until Appendix A.3.

Proposition 3.5. If U(Hσl)ρi is a subgroup of U(Hσl)H0 for every l, then Eq. (55) can
be rewritten as

dist(1,A(ρi)) =

√√√√ n∑
l=1

min
Uσl

‖Log(AσlUσl)‖2, (56)

where we only minimize over all Uσl in the larger group U(Hσl)H0. Similarly, if U(Hσl)H0 ⊆
U(Hσl)ρi, we have

dist(1,A(ρi)) =

√√√√ n∑
l=1

min
Vσl

‖Log(AσlVσl)‖2. (57)

This proposition leads to our second assumption, namely that U(Hσl)ρi ⊆ U(Hσl)H0 and,
consequently, that Eq. (56) applies. While a seemingly restrictive assumption at first,
this implies that each eigenspace of ρi is contained within an eigenspace of H0. This
means that when we prepare ρi through a measurement, the probabilities of measuring
two non-equal energy eigenvalues are necessarily different. This is a special case, but one
of importance.

Interestingly, each individual term in the sum of Eq. (56) is in fact a well-known geodesic
distance of a Riemannian metric on a certain kind of manifold characterized by the cor-
responding U(Hσl)H0 . These manifolds are referred to in mathematics as flag manifolds
[7]. Hence, if the two mentioned assumptions hold we can decompose the squared total
geodesic distance of Eq. (45) into a sum of geodesic distances, each dependent on the
characteristics of U(Hσl)H0 . This is the decomposition method.

3.2.2 Geodesic Distances on Flag Manifolds

Let U(n) be the group of n-dimensional unitary matrices in the chosen basis Eq. (30) and
let dl be the dimension of Hσl such that U(Hσl) = U(dl). For every pair W1 and W2 in
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Figure 5: A visualization of how the equivalence relations “groups together” various subsets
of U(Hσl). Each dashed line represents a subset which is gained by considering a single
element in U(Hσl) and multiplying it from the right by an operator in U(Hσl)H0 . Each
such dashed line is then “projected” onto a space where each subset is considered a single
element.

U(dl) we now define the equivalence relation

W1 ∼ W2 ⇔ W †
2W1 ∈ U(Hσl)H0 . (58)

We denote the equivalence class of a W in U(dl) by [W ], such that

[W ] = {WU : U ∈ U(Hσl)H0}. (59)

An image which visualizes this is given in Fig. 5.

With the equivalence relation Eq. (58), all unitaries of the form AσlUσl in Eq. (56) belong
to the same equivalence class [Aσl ]. In fact, Eq. (58) partitions U(Hσl) into subsets which
are invariant under the right action of the isotropy group U(Hσl)H0 , and each such subset
is represented by an equivalence class. As it happens, each class [W ] can be considered
as an element of a quotient manifold denoted by U(Hσl)/U(Hσl)H0 [6, 7].5 Furthermore,
if we let Hl

1,Hl
2, · · · ,Hl

ml
denote the ml energy eigenspaces contained in Hσl we can write

U(Hσl)H0 as a product of the m unitary groups U(Hl
k). For conveniences sake let dl be

the dimension of Hσl and dkl be the dimensions of the respective Hl
k. If we consider the

chosen basis Eq. (30) we can then let U(n) denote the group of n-dimensional unitary
matrices and, consequently, the quotient manifold can be written in the form

U(dl)/
(
U(dl1)× U(dl2)× · · · × U(dlml)

)
. (60)

5That it is a quotient manifold and not a quotient space stems from that U(Hσl
)H0 is a Lie subgroup

of U(Hσl
). In fact, U(dl)/U(Hσl

)H0
is also a Lie group [6].
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Since the sum of all dlk equals dl, this quotient space has the structure of what in mathe-
matics is referred to as a flag manifold [7].

Proposition 3.6. If we equip U(dl) with the bi-invariant metric which agree with the
Hilbert-Schmidt inner product on the Lie algebra of U(dl), then the geodesic distance
between the elements [1] and [Aσl ] in the flag manifold Eq. (60) is given by

dist
(

[1], [Aσl ]
)

= min
Uσl

‖Log(AσlUσl)‖. (61)

The proof is postponed until Appendix A.3. Proposition 3.6 allows us to express Eq. (56)
in terms of geodesic distances on flag manifolds;

dist(1,A(ρi)) =

√√√√ n∑
l=1

dist
(

[1], [Aσl ]
)2
. (62)

For some special examples of flag manifolds the geodesic distance is known, in which case
each individual term in Eq. (62) can be determined.

First consider the case where each Hσl only contains two energy eigenspaces Hl
1 and Hl

2.
In this case the flag manifold is of the form

U(dl)/
(
U(dl1)× U(dl − dl1)

)
. (63)

Flag manifolds with this structure are also referred to as Grassmannians or Grassmann
manifolds and are very important in certain fields of research, e.g. quantum computing
[22]. If we let Π1 be the orthogonal projection of Hσl onto Hl

1, and s1, s2, · · · , sdl1 be the
singular values of Π†1AσlΠ1, then we have

dist
(

[1], [Aσl ]
)

=

√√√√2

dl1∑
i=1

(arccos(
√
si))2. (64)

The derivation of this distance is quite complicated. For details we refer to [23]. Note
that since Aσl is a permutation matrix, the singular values of the projection Π†1AσlΠ1

onto Hl
1 are either 0 or 1. Furthermore the number of 1s equals the number of trivial

cycles contained in Hl
1, which we refer to as the partial overlap κl. From Eq. (64) we find

that

dist
(

[1], [Aσl ]
)

=
π
√

2(dl1 − κl)
2

. (65)

Remark 11. While Eq. (65) is sufficient for energy eigenspaces of arbitrary dimensions, it
might be interesting for the reader to comment on the special case where one of them is
one dimensional, e.g. Hl

1. Then the flag manifold has the structure

U(dl)/(U(dl − 1)× U(1)) (66)

which is referred to as a projective space. In this case κl can only be equal to dl1 or dl1− 1

and Eq. (65) reduces to

dist
(

[1], [Aσl ]
)

=

{
π√
2
, κl = dl1 − 1.

0 κl = dl1.
(67)
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Readers familiar with quantum information might notice that this is the Fubini-Study
distance on projective Hilbert space between two orthogonal eigenvectors. This connection
is no happenstance. In fact, there exists a so called diffeomorphism between the projective
space Eq. (66) and projective Hilbert space. What this means and further details on this
subject can be found in [6, 7].

Consider the case where each energy eigenspace contained in Hσl has dimension 1. We
have

U(dl)/(U(1)× U(1)× · · · × U(1)) (68)

where U(1) is repeated dl times. This is referred to as a full flag manifold. Let l1, l2, · · · , lm
be the lengths of the m cycles contained in σl, then

dist
(

[1], [Aσl ]
)

=

√√√√π2

3

m∑
i=1

l2i − 1

li
. (69)

The proof is highly analogous to that of Proposition 3.3 in Appendix A.3, the only dif-
ference being that we exchange the permutation σ for the sub-permutation σl. This is a
natural case to consider, since it occurs when we have some “partial non-degeneracy”. If
all Hσl has this structure then the total state is non-degenerate, and through Eq. (62) we
regain Eq. (48).

Remark 12. We could instead make the opposite assumption that U(Hσl)H0 ⊆ U(Hσl)ρi
and apply Eq. (57). The results are fully analogous to the ones above with the exception
that we’d have to examine the state eigenvalues when determining which flag manifolds
each quotient space on the various Hσl are.

For completely general spectra some Hσl might not be of any of the three types described
above, i.e. it contains more than two eigenspaces of dimension larger than 1. In this case
the flag manifold is referred to as a generalized flag manifold and the geodesic distance is
currently unknown6. Hence, the decomposition method does not always work. However
it adds a large number of spectra to our list of solvable cases. We have to first examine
whether the eigenspaces of ρi are contained in those of H0, and then if those are contained
in a collection of cycles, i.e. a sub-permutation. The method works if the eigenspaces
of H0 has the appropriate dimensions in their respective sub-permutation. We will now
consider some examples where the decomposition method can be applied.

Example 5. Let the spectrum of H0 and ρi be

spec{H0} = (E1, E1, E2, E2, E3, E4, E5, E6, E6, E7)

spec{ρi} = (p3, p4, p2, p1, p6, p7, p5, p9, p10, p8)

spec{ρa} = (p1, p2, p3, p4, p5, p6, p7, p8, p9, p10)

(70)

If we assume that ρi is non-degenerate, i.e. pk 6= pj for all k 6= j, then the maximally
reduced permutation for which AσρiA†σ = ρa is

σ = (1, 3)(2, 4)(5, 6, 7)(8, 10)(9). (71)

6A numerical method of determining the geodesic distance on generalized flag manifolds is proposed
in [24].
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We now want to choose sub-permutations such that Proposition 3.4 is satisfied, i.e., each
eigenspace of H0 and ρi is contained within a σl. This is guaranteed by the choices

σ1 = (1, 3)(2, 4),

σ2 = (5, 6, 7),

σ3 = (8, 10)(9).

(72)

Furthermore Proposition 3.5 is trivially satisfied since ρi is non-degenerate, and we can
apply the decomposition method. We will now independently examine the Hilbert spaces
Hσl belonging to each σl. For Hσ1 the quotient manifold is a Grassmann manifold since
it contains two energy eigenspaces, therefore Eq. (65) gives us

dist
(

[1], [Aσ1 ]
)

= π. (73)

Subspace Hσ2 contains three energy eigenspaces, however since each is one-dimensional
the quotient is a full flag manifold. From Eq. (69) we find

dist
(

[1], [Aσ2 ]
)

=

√
8π

3
. (74)

Finally Hσ3 is a Grassmann manifold since it contains two eigenspaces. However in this
case one of them is one-dimensional, and due to Remark 11 we can apply Eq. (66) and
find

dist
(

[1], [Aσ3 ]
)

=
π√
2
. (75)

Consequently, according to Eq. (62) we find

τmin =
1

ω
dist(1,A(ρi)) =

1

ω

√
π2 +

8π2

9
+
π2

2
=

√
43

18

π

ω
. (76)

This method concludes the extent to which we can determine the minimal duration τmin,
given that the control Hc obeys the bounded bandwidth constraint Eq. (11).
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4 The Geometry of Bounded Variance

Main Topics of Section
• Clarify the theory which supports the chosen metric.
• Provide current results in terms of properties of time-optimal controls.

When considering the bounded variance cases the problem is vastly different than that
of Section 3. While subtle, this is a direct consequence of that the metric Eq. (26) is
not bi-invariant. For example we can no longer guarantee that time-optimal controls are
time-independent, since Proposition 3.1 requires bi-invariance of the metric. Hence we
cannot produce a geodesic distance function similar to the one in Proposition 3.2.

While this complication makes us currently unable to determine minimal durations of
charging processes, we can instead discuss properties of time-optimal controls. This sec-
tion will be dedicated to describing the geometry of the problem in more detail, which
will prove that the inner product Eq. (26) truly guarantees that the speed of time-optimal
curves equal the variance constraint Eq. (11). We will also be able to show that some
processes require time-dependent controls in order to be time-optimal.

4.1 Projections and Horizontal Lifts

We began Section 2 by shifting focus and “lifting” time-optimal ρ(t) to curves U(t) in the
unitary group U(H). We did this since we had convenient methods of equipping U(H)

with suitable metrics, transforming the problem into a path optimization problem. We
now ask ourselves if, given the convenient metrics on U(H), we can “go back” to the state
space D(p) and consider activation of ρi as a path optimization problem there instead.
In order to do this let us define a map π from the unitary group U(H) to D(p) by

π : U 7→ UρiU
†. (77)

Note that if U is multiplied from the right by an operator V in the isotropy group U(H)ρi
we find

UV 7→ UV ρiV
†U † = UρiU

†. (78)

Hence the map π is a many-to-one map, and the pre-image of each element in D(p)

is a copy of U(H)ρi in U(H). Henceforth π will be called the projection of U(H) onto
D(p). Furthermore we will borrow some terminology from the mathematical theory of
fibre bundles, [6], and refer to the the copy of U(H)ρi which is mapped onto ρ = UρiU

†

through Eq. (77) as the fibre over ρ. This is visualized in Fig. 6.

In order to see how U(t) is projected onto ρ(t) we now take a look at how tangent vectors
are mapped given Eq. (77). We recall the theory in Section 2.2 and denote the differential
of π by dπ. Let U(t) be generated by a skew-Hermitian ξ(t) in the Lie algebra u(H), that
is

U(t) = T
(∫ t

0

dt′ξ(t′)

)
. (79)

Then we find
dπ : U̇(t) = ξ(t)U(t) 7→ ρ̇(t) = [ξ(t), ρ(t)]. (80)
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Figure 6: A visualization of the projection π Eq. (77) from the unitary group U(H) to
the state space D(p). Each dashed line in U(H) denotes a copy of U(H)ρi .

We now make a crucial geometrical argument whose support is presented in Appendix
A.4: Given a metric g on U(H) every U̇(t) can be uniquely decomposed into a sum of
orthogonal components

U̇(t) = ξv(t)U(t) + ξh(t)U(t) = ξ(t)U(t), (81)

such that ξv(t) commutes with ρ(t). By orthogonality we mean that

gVar
(
ξv(t)U(t), ξh(t)U(t)

)
= 0. (82)

We refer to ξv(t) and ξh(t) as the vertical and horizontal components of ξ(t). The following
proposition is a consequence.

Proposition 4.1. The component ξv(t)U(t) belongs to the kernel of dπ at U(t):

dπ (ξv(t)U(t)) = 0. (83)

Due to Proposition 4.1 there exists multiple different U(t) emanating from identity which
all project onto the same ρ(t), on account of that these U(t) are generated by skew-
Hermitians with various vertical components. One of these unitary curves has no vertical
component and is fully generated by ξh(t), and we refer to this unique7 unitary curve Uh(t)

as the horizontal lift of ρ(t), see Fig. 7. We further refer to a ξ(t) as parallel transporting
if it only consists of a horizontal component.

In order to assert lengths of the tangents of ρ(t), Eq. (83), we now want to equip the state
space D(p) with a metric. In our context there exists a good way of doing this, namely

7This horizontal lift is in truth unique only with the assumption that U(t) emanates from identity.
Recall that we made this choice in Section 2.1.2.
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Figure 7: Two curves in the unitary group U(H), emanating from identity and reaching
the same fibre (grey line). U(t) is generated by a skew-Hermitian with both vertical and
horizontal components. Uh(t) has no vertical component and is the horizontal lift of ρ(t).

such that the map of the horizontal lift Uh(t) onto ρ(t) is an isometry. In other words, if
we equip U(H) and D(p) with the metrics gVar and gD, respectively, then

gD

(
ρ̇(t), ρ̇(t)

)
= gVar

(
U̇h(t), U̇h(t)

)
. (84)

In this way we can use an appropriate metric on U(H) to infer a metric on the state
space. This specific way of inferring metrics through an isometry with the horizontal
lift is referred to as a Riemannian submersion [25], and becomes useful since we already
equipped the unitary group with the metric gVar, Eq. (26). We remind ourselves of the
assumption made in Remark 4 of Section 1.4.2, namely that ρi is of full rank.

4.2 Time-Optimal Controls for Bounded Variance

In the previous section we presented a way of perceiving the geometry of the problem by
projecting unitary curves onto a ρ(t) in the state space. We then defined one of these
unitary curves as the horizontal lift of ρ(t) and inferred a metric on D(p) through an
isometry with the horizontal lift. We will now make use of this in an effort to determine
some properties of time-optimal controls. In tandem with this we will be able to prove
that the currently utilized inner product, Eq. (26), truly respects the bounded variance
constraint.

4.2.1 Almost Parallel Transporting Controls

To calculate the speed squared of ρ(t) we now calculate Eq. (84) given that the projected
unitary curve U(t) is generated by the control Hc(t) = Hv

c (t) + Hh
c (t). Here Hv

c (t) and
Hh
c (t) are the control components corresponding to how we decomposed ξ(t),

Hv
c (t) = −iξv(t), Hh

c (t) = −iξh(t). (85)
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Let Πj(t) be the orthogonal projection of H onto the jth eigenspace of ρ(t) and assume
that it has m distinct eigenvalues, then

Hv
c (t) =

m∑
j=1

Πj(t)Hc(t)Πj(t). (86)

In the ordered eigenbasis of ρ(t) these are represented by block diagonal matrices. We
consequently find the horizontal component Hh

c (t) as Hc(t) − Hv
c (t), which in turn is

block off -diagonal in the same basis. The following proposition follows from Eqs. (26),
(84) and (86).

Proposition 4.2. The squared speed of ρ(t) and its horizontal lift Uh(t) is bounded from
above such that

gD(ρ̇(t), ρ̇(t)) ≤ Var(Hc(t), ρ(t)). (87)

Furthermore, this bound is saturated if and only if Hv
c (t) = E(t)1, E(t) being a possibly

time-dependent scalar.

We prove this in Appendix A.4. Since we in Proposition 4.1 already proved that the
dynamics are invariant of the vertical component Hv

c (t), any such choice will not alter
the curves ρ(t). Since optimal time is achieved if the speed along a curve is maximal
this proves that time-optimal controls are of the form Hc(t) = E(t)1 + Hh

c (t). If on this
form we say that the control is almost parallel transporting, and they become parallel
transporting if and only if E(t) = 0 for all t. This is a large restriction on available
optimal controls, and one should keep this in mind when looking for optimal durations in
the bounded variance case.

Remark 13. The same theory applied above can be done in the bounded bandwidth case,
given that we replace the metric gVar with the metric gHS, Eq. (25). In this case we find
that time-optimal controls are always parallel transporting, i.e., the vertical component
is always the zero operator. These differences are ultimately due to the bi-invariance of
gHS.

4.2.2 A Geodesic Equation

We are interested in shortest curves in the unitary group, given that they are traversed
with constant speed. In other words we are interested in shortest geodesics in the unitary
group, hence they should satisfy some geodesic equation.

Let B(H) be the space of all linear operators on H. The unitary group U(H) is a subspace
of B(H). We extend the metric gVar to the surrounding space B(H) such that, for any
vectors X and Y in B(H),

gB(X, Y ) =
1

2
Tr
[
ρi
(
X†Y + Y †X

)]
. (88)

The curve U(t) can be regarded as a curve in B(H), and its acceleration in this surrounding
space is the second temporal derivative, Ü(t). In order for U(t) to be a geodesic in
U(H) the acceleration Ü(t) must belong to the kernel of the orthogonal projection onto
TU(t)U(H), the tangent space of U(H) at U(t). Equivalently, Ü(t) must be perpendicular
to TU(t)U(H). This is a main result in differential geometry, and for more details see
[26]. With the help of the metric gVar we can determine when these are perpendicular,
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and we formulate the corresponding geodesic equation as a proposition which we prove in
Appendix A.4.

Proposition 4.3. A unitary curve U(t) is a geodesic with respects to the metric gVar if
it satisfies the geodesic equation

i
{
Ḣc(t), ρ(t)

}
+
[
H2
c (t), ρ(t)

]
= 0. (89)

Remark 14. With similar theory we can determine the geodesic equation for the bounded
bandwidth case. And by performing the same calculation which proves Proposition 4.3
except with the metric gHS we find the geodesic equation Ḣc(t) = 0, which is the time-
independency of optimal controls which was stated in Proposition 3.1. Once again this
difference is a consequence of bi-invariance.

The usefulness of the geodesic equation Eq. (89) is immediate if we consider the following
example, Example 6, where we will see that there exists cases where time-independent
controls Hc cannot charge the battery in optimal time.

Example 6. Consider the non-degenerate 3-dimensional battery with spectra

spec{H0} = (E1, E2, E3),

spec{ρi} = (p3, p1, p2),

spec{ρa} = (p1, p2, p3).

(90)

We want to find a time-optimal control Hc which performs this activation. If we further
assume that Hc is time-independent, then by applying Proposition 4.3 we find that it
must satisfy

i
{
Ḣc, ρ(t)

}
+
[
H2
c , ρ(t)

]
=
[
Hh
c

2
, ρi

]
= 0. (91)

Note that we have made the choice Hv
c = 0, which is possible due to Proposition 4.1.

Hence we are looking for a Hc which is off-diagonal in the basis of ρi, and whose square
is diagonal. In this basis we have

Hc = α |2〉 〈1|+ β |3〉 〈1|+ γ |3〉 〈2|+ h.c., (92)

where h.c. denotes the Hermitian conjugate. In order for H2
c to be diagonal we require

that either two out of α, β and γ are zero. If we assume that β = γ = 0, then the unitary
generated by Hc is given by

U = exp(−itHc) =
∞∑
k=0

(−it)k

k!
(α |2〉 〈1|+ α∗ |1〉 〈2|) . (93)

Such a unitary can only interchange the first and second eigenvalue of ρi in some dura-
tion τ . The result is similar for non-zero β or γ. Consequently a time-optimal, time-
independent control Hc cannot implement an activating unitary.

As seen above the properties of time-optimal controls declared in Proposition 4.1 and
4.3 have helped us show that we cannot solve the bounded variance case in such a a
straight forward manner as we could in the bounded bandwidth case. These differences
are consequences of the bi-invariance of the Hilbert-Schmidt metric, which is a subtle,
mathematical detail. The main take-away of this section is thus to keep such things in
mind when examining different constraints, and ask whether the corresponding metric is
left, right or bi-invariant.
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5 Charging an Ensemble of Batteries

Main Topics of Section
• Charging multiple batteries simultaneously, allowing correlations during the

process.
• Defining a quantum advantage which quantifies the decrease of minimal charg-

ing duration as a consequence of allowing correlations.
• Calculating the quantum advantage for some simple examples and remarking

on results.

So far we have considered the process of charging a single battery. While we defined
the battery as a quantum system, the problem has had the characteristics of a path
optimization problem in the unitary group, and unique quantum properties have not made
a distinct appearance. The role of such properties become very important in the situation
where we have multiple batteries which we want to charge simultaneously. The problem
is then converted into that of a multi-partite quantum state, where quantum effects such
as entanglement gets a predominant role. The implications of quantum entanglement and
similar effects are some of the main things which discerns quantum mechanics from its
classical counterpart, hence they are widely examined in modern research. However we
want to remind the reader that entanglement is not the only form of quantum correlation.
Quantum correlation is the umbrella term for general, non-local properties of quantum
systems. How to discern various quantum correlations from others in the context of mixed
states is still under discussion [27, 28].

The question we would like to ask now is; if we consider multiple identical quantum
batteries and allow them to correlate, how is the minimal duration of the charging process
for each individual battery affected? As we will find, results seem to indicate that the
minimal duration decreases if we allow correlation between batteries. Multiple papers
have considered various advantages of making use of quantum correlations [3, 29], and we
borrow their terminology by expressing a decrease in the minimal duration in terms of a
quantum advantage.

5.1 Multi-Battery States

In Fig. 8 we present an image which encompasses everything in this and the subsequent
section, and we encourage the reader to consult it when reading. Consider an ensemble of
N individual quantum batteries of dimension d, all which may or may not be correlated.
If they are, then they may interchange information, hence they do not individually evolve
according to Eqs. (4) and (5). This makes the former results non-applicable for each
individual battery in the presence of correlations. To maneuver this issue let ρ(N)

i be
a multi-partite system consisting of N identically prepared batteries ρi. The process of
charging each battery can then be represented by evolving ρ(N)

i to another multi-partite
state ρ(N)

f consisting of N activated batteries ρa. We now make a powerful assumption
by writing

ρ
(N)
i =

N⊗
j=1

ρi, ρ
(N)
f =

N⊗
j=1

ρa. (94)

36



Figure 8: A joint quantum state ρ(N) with HamiltonianH(N)
0 . It is composed ofN identical

marginal batteries ρ with HamiltonianH0. It is driven by a joint control HamiltonianH(N)
c

which charges each marginal battery simultaneously, possibly allowing them to interact
during this process.

We remind the reader that if a multi-partite state is a product state, then the marginal
states are necessarily non-correlated. Eq. (94) is actually a necessary assumption since
we want the batteries to be non-correlated during storage. If not we would never be able
to pick out and extract the resources of a single battery without inadvertently altering
the others, and the batteries could not be independently prepared.

Remark 15. Note that the theory presented in this section technically does not require
that each battery is in the same initial state. Hence, it would make sense to replace each
ρi by a ρki , k being an index which labels each battery. While this would be more general,
the focus of this section is only to shed light on the advantage of quantum correlations.

Let ρ(N)(t) be a time-dependent multi-partite state that evolves ρ(N)
i into ρ(N)

f in duration
τN . We will refer to ρ(N)(t) as the joint state of N simultaneously charged marginal
batteries. Since τN is the duration required to charge all the batteries simultaneously we
want to minimize this time. In order to do so we want to be able to apply the results of
Sections 2-4 to ρ(N)(t), which requires it to satisfy all the requirements we imposed on a
single battery in Section 1.

Firstly we require that ρ(N)(t) is the state of a closed, hence unitarily evolving sys-
tem,

ρ̇(N)(t) = −i[H(N)(t), ρ(N)(t)]. (95)

Above, H(N)(t) is the joint total Hamiltonian of the joint state. Similar to Section 1.2 we
want write this as a sum of a constant joint observable H(N)

0 and a joint control H(N)
c (t).

We can determine an expression for the former by arguing that if we measure the joint
energy of non-correlated batteries, the result must be the sum of the energy of each
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individual battery. This is achieved if we write

H
(N)
0 =

N∑
l=1

N⊗
k=1

Hδkl
0 , (96)

where δkl is Kronecker’s delta such that Hδkl
0 is the identity operator if k 6= l. Furthermore

we note that the states ρ(N)
i and ρ(N)

f are incoherent states with respect to H(N)
0 , which

solidifies a second requirement. The third and last requirement is that we have a well
defined restriction Ω2 on the resource of H(N)

c (t). That is, if f is a constraint function
with the properties of Eq. (13), then

f
(
H(N)
c (t), ρ(N)(t)

)
≤ Ω2. (97)

The value Ω should be the same regardless of which joint control we choose. Hence we
consider a joint control of the form

H(N)
c =

N∑
l=1

N⊗
k=1

Hδkl
c . (98)

Such a H(N)
c would act locally on each battery with control Hc, i.e., each battery would

evolve according to Section 1. If we consider the bandwidth and variance constraints,
Eqs. (11) and (12), and let ω2 be the constraint on each marginal battery we find that

Tr
[
H(N)
c

2
(t)
]
≤ NdN−1ω2 = Ω2, (99)

Var(H(N)
c (t), ρ(N)(t)) ≤ Nω2 = Ω2 (100)

are valid joint constraints. Consequently these are the constraints which we choose to
impose on all joint controls H(N)

c , i.e., those not necessarily on the form Eq. (98). Further
comments and details on these calculations are provided in Appendix A.5.

We have now assured ourselves that ρ(N)(t) fulfills all requirements necessary for the
results of Sections 2-4 to be applicable to it. It is worth remarking that ρ(N)

f may not be
an active state itself, i.e., that it maximizes the expectation value of H(N)

0 . This is not
a requirement, however, as we recall Remark 2 in Section 1.3. Consequently we should
never consider the joint state as a battery on its own, but rather an ensemble of batteries
whose dynamics obey the precedent theory. This will be crucial to keep in mind when
considering examples, since this distinction will put heavy restrictions on the unitary
operators which evolves the joint state.

5.2 The Quantum Advantage

Having determined the properties of the joint state and found them suitable to our needs,
we can now define the quantum advantage. Let τNmin be the minimal duration in which
the joint state evolves from ρ

(N)
i to ρ(N)

f , i.e., the minimal time required for all batteries to
be activated with a joint process whose control satisfies Eqs. (99) and (100). Then define
the quantum advantage B as

B = 1− τNmin
τmin

. (101)

The denominator τmin is the minimal time required to activate a marginal battery inde-
pendently. Hence it is given by the former results of this thesis. The quantum advantage
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B is necessarily a value in the range [0, 1), where an increasing, non-zero value implies
a decreasing process duration due to allowing correlations. We want to maximize the
quantum advantage B.

Note that B cannot be negative since τNmin always is less than τmin. This is a consequence
of the fact that we always can charge each battery individually by choosing the joint
control in Eq. (98). If the local control Hc is time-optimal, the duration of this process is
τmin.

5.3 Multi-Battery Quantum Speed Limits

When attempting to determine the minimal joint duration τNmin it is natural to start by
finding quantum speed limits for the joint state, corresponding to those in Proposition 2.4
and 2.5. We refer to these as joint quantum speed limit, and for the bounded bandwidth
and bounded variance cases we denote them by τB

Nqsl and τ
V
Nqsl, respectively. Proposition

2.4 and 2.5 allows us to write

τBNqsl =
π
√

∆

2Ω
, τVNqsl =

π
√
P

2Ω
. (102)

Here ∆ and P are the joint state correspondents of δ and P in Eqs. (39) and (40). We
define these in a manner similar to Section 2.5: Let σ be a permutation of the eigenvectors
of ρ(N)

i such that ρ(N)
f = Aσρ

(N)
i A†σ. We define κ as the number of eigenvectors |j〉 for

which σ(j) preserve the energy expectation value of H(N)
0 . Then ∆ = dN − κ where dN

is the dimension of the joint state. If qj is the eigenvalue corresponding to |j〉, then the
parameter P is defined as

P =
∑
j

qj. (103)

The sum is over those j for which σ(j) preserve the energy expectation value.

Given a certain ρi and H0 it was relatively straight forward to determine δ and P , hence
the single battery quantum speed limits. This simplicity vanish when attempting to
calculate ∆ and P , since the spectra of ρ(N)

i and H(N)
0 are heavily degenerate and depend

on N . Consequently Eq. (102) becomes difficult to calculate in full generality. In the
next section we will consider non-degenerate and passive batteries in which case we will
be able to develop a method which gives us ∆ and P as functions of N .

5.4 Non-Degenerate and Passive Batteries

In this section we will consider some examples of correlated batteries and calculate the
corresponding quantum advantage, Eq. (101). We will do this by means of examining
the spectra of ρ(N)

i and H
(N)
0 . Let p = (p1, p2, · · · , pd) be the spectrum of ρi and E =

(E1, E2, · · · , Ed) be that of H0. Let also j = (j1, j2, · · · , jd) be a sequence of non-negative
integers which sum to N . Then, according to Eqs. (94) and (96) we find that

qj = pj11 p
j2
2 · · · p

jd
d , Ej = j1E1 + j2E2 + · · ·+ jdEd (104)

are eigenvalues of ρ(N)
i and H(N)

0 , respectively. The multiplicities of these eigenvalues are
bounded from below by the multinomial coefficient

Mj =

(
N

j1, j2, · · · , jd

)
=

N !

j1! j2! , · · · , jd!
. (105)
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This can be seen by rewriting the trace of ρ(N)
i ,

Tr
[
ρ
(N)
i

]
=

(
d∑

k=1

pk

)N

=
∑

j1,j2,···,jd

(
N

j1, j2, · · · , jd

)
pj11 p

j2
2 · · · p

jd
d =

∑
j

Mjqj. (106)

The latter sum is over all different sequences j. The same results are found if we replace
ρ
(N)
i by H(N)

0 . Note that the multiplicity can be higher than Eq. (105) if some eigenvalues
with different sequences j happen to be equal.

Let us now assume that ρi is simultaneously non-degenerate and passive, i.e. it minimizes
the energy expectation value Eq. (1). Such a battery can be individually charged according
to Example 2. This implies that the permutation σ which actives ρi is unique and of the
form Eq. (42), and that it can be implemented in the quantum speed limits, Eqs. (39)
and (40). We now make the important notion that for every j there exists a reversed
sequence j? = (jd, jd−1, · · · , j1). This sequence give rise to the eigenvalues

qj? = pjd1 p
jd−1
2 · · · pj1d , Ej? = jdE1 + jd−1E2 + · · ·+ j1Ed. (107)

If compared to Eq. (104) we find that if qj and qj? are interchanged, then each individual
battery is activated according to the permutation Eq. (42). Hence the joint state ρ(N)

i can
be transformed into ρ(N)

f with a permutation σ whose cycles are transpositions of the form
(j, j?). This implies that the joint quantum speed limits, Eq. (102), become applicable.
This allows us to rewrite the quantum advantage, Eq. (101), as

B = 1−
√

∆

NdN−1δ
, B = 1−

√
P
NP

, (108)

where we made use of Eqs. (39), (40), (99), (100) and (102). The problem of calculating
the quantum advantage for N batteries has been fully reduced to determining ∆ and P
along with their single battery correspondents.

While we in Example 2 could determine the overlap immediately on account of ρi and
H0 being non-degenerate, such is not the case for ρ(N)

i and H
(N)
0 . Because of this, we

must return to the original definition of of the overlap. Consider the conditions qj = qj?

and Ej = Ej? . If either of these hold the energy expectation value of H(N)
0 is invariant

both under σ(j) and σ(j?). Then, per definition, κ is necessarily equal to the number of
eigenvectors for which qj = qj? or Ej = Ej? . These conditions are now what we seek to
solve.

5.4.1 Overlap Conditions for Full-Rank Spectra

Assume that each ρi has full rank. From Eqs. (104) and (107) we find that we can write
the conditions for when qj = qj? and Ej = Ej? as

bd/2c∏
i=1

(
pi

pd−i+1

)ji−jd−i+1

= 1, (109)

bd/2c∑
i=1

(ji − jd−i+1)(Ei − Ed−i+1) = 0. (110)
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Above, b·c is the floor function which rounds down to the closest integer. The solutions
to any of these conditions are the sequences j. Hence we let {j}p and {j}E denote the sets
of sequences which solve Eqs. (109) and (110), respectively. This allows us to formulate
the union of these,

{j}p ∪ {j}E, (111)

which then is the set of sequences solving any of Eqs. (109) and (110). We will refer to
the elements of this union as the overlap sequences of full-rank spectra. We now remind
ourselves of that the degeneracy of the eigenvalue which correspond to each j is bounded
from below by the corresponding multinomial coefficientMj, Eq. (105). Consequently the
number of eigenvalues part of a redundant transposition equals the sum of all Mj which
corresponds to overlap sequences. If we reduce all these redundant cycles to trivial cycles
we find

∆ ≥ dN −
∑
j

Mj, (112)

where the sum is over all j in the union Eq. (111). We can similarly calculate P since
each eigenvalue qj belonging to a trivial cycle has multiplicity Mj, and we find that

P ≥ 1−
∑
j

Mjqj. (113)

While Eqs. (112) and (113) are straight forward results, determining Eq. (111) is generally
difficult. We will now examine this method for 2 and 3-dimensional batteries, which are
more commonly referred to as qubit and qutrit batteries. For these cases {j}p and {j}E
are always equal, which simplifies the problem to the extent that we will be able to express
∆ as a function of N . We will also discuss larger dimensions and present to which extent
the union becomes problematic. To this end we will cover a third case more explicitly,
the 4-dimensional ququart batteries.

Remark 16. Note that if we do not assume that ρi has full rank, then Eq. (109) is no
longer valid. However in this case the zero eigenvalues increases the multiplicity of some
eigenvalues, hence it decreases ∆ and τB

Nqsl. The assumption of full rank thus gives us a
lower bound on the quantum advantage, which is satisfactory when examining quantum
effects. A similar argument applies to P and τV

Nqsl.

5.4.2 Qubits

Qubits, or quantum bits, are 2-dimensional quantum systems with spectrum p = {p1, p2}.
The only non-trivial case in accordance with Remark 1 in Section 1.3.1 is the non-
degenerate one. For this case the initial state is necessarily passive, which implies that
the proposed method is viable for arbitrary, non-trivial qubit batteries.

For the qubit the sequences has two elements, j = (i, j). From both Eqs. (109) and (110)
we find the same solutions, namely that i = j. Consequently {j}p and {j}E are identical
and contain the sequences of the form (i, i). Furthermore, since i, j sum to N we find
i = j = N

2
, which never holds for odd N . Consequently, Eq. (112) gives us the two

cases

∆ =

2N , if N is odd,
2N − N !

(N2 !)
2 , if N is even. (114)
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(a) (b)

Figure 9: (a) The quantum advantage B, Eq. (108), for an ensemble of N qubits given
the bounded bandwidth constraint. The advantage is not strictly increasing due to a
parity-dependency. (b) The advantage B for an ensemble of N qubits given the bounded
variance constraint. The spectrum of ρi is p = (0.6, 0.4). In contrast to Fig. 9a it is
strictly increasing, despite the parity-dependency.

And similarly from Eq. (113) we find

P =

1, if N is odd,
1− N !

(N2 !)
2 (p1p2)

N
2 , if N is even. (115)

For qubits we have an interesting parity-dependence of the number of batteries N . The
implications of this are not immediately obvious from Eqs. (114) and (115), however. To
get a better understanding of the consequences we plot the quantum advantage Eq. (108)
as a function of N qubits in Fig. 9. Since the quantum advantage Eq. (108) quantifies to
which extent quantum correlation between our batteries reduces their minimal charging
duration, it might seem natural that a larger number N of batteries allow more compli-
cated correlations, hence increasing the advantage. Such is however not the case, and
Fig. 9a demonstrates that odd numbers N of qubits satisfying the bounded bandwidth
condition produces a lower advantage compared to both closest even numbers of qubits.
On the other hand, despite the fluctuating behaviour of Fig. 9a, the advantage still con-
verges towards 1 for large N . Meanwhile the plot of the bounded variance case, Fig. 9b,
also present consequences of the parity-dependence. The same fluctuations do not appear
in this case, however.

Remark 17. From a geometrical standpoint this parity-dependency on the number N of
batteries might not be surprising. By applying another battery the geometry of the joint
state space changes considerably, and it is reasonable to assume that the time required
to evolve ρ(N)

i into ρ(N)
f changes in an erratic, possibly fluctuating manner. Hence the

quantum advantage fluctuates. Finding physical interpretation of these geometrical effects
would be of great interest.

5.4.3 Qutrits

Qutrits are, as the name proposes, 3-dimensional quantum systems. For this dimension
and above, we can no longer guarantee that the non-trivial cases are passive, hence we
must assume that such is the case to apply the above method. However the simplicities of
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(a) (b)

Figure 10: (a) The advantage B of an ensemble of N qutrits given the bounded bandwidth
constraint. (b) The advantage B of an ensemble of N qutrits given the bounded variance
constraint. The spectrum of ρi is p = (0.5, 0.3, 0.2).

the qubit case are still present. We still assume that the battery is non-trivial, i.e., that
the battery cannot be simultaneously passive and active.

Let j = (i, k, j) be the sequences for qutrits. Similar to qubits, Eqs. (109) and (110)
both return i = j. Hence the sequence sets {j}p and {j}E are identical and composed
of sequences of the form (i, k, i). The integer k is free and we find that i = j = N−k

2
.

Now there is no distinct difference between odd and even N , hence there is no parity-
dependence. We find

∆ = 3N −
N∑
k=0

N !(
N−k
2

!
)2
k!
, (116)

P = 1−
N∑
k=0

N !(
N−k
2

!
)2
k!

(p1p3)
N−k

2 pk2. (117)

To compare this to Fig. 9 we plot the advantage Eq. (108) for qutrits in Fig. 10. With-
out the parity-dependence on N the fluctuations of Fig. 9 vanish, even for the bounded
bandwidth constraint.

5.4.4 Higher Dimensions

For qubits and qutrits we noticed that the solutions to Eqs. (109) and (110) coincided,
a simplicity that vanishes for higher dimensions where the conditions become spectrum-
dependent. Consequently Eqs. (112) and (113) can become complicated to calculate. To
make this clear we examine the above method for the simplest spectrum-dependent case;
the non-degenerate 4-dimensional ququart battery.

Let j = (i, j, k, l) be the sequences for ququarts. From Eqs. (109) and (110) we find

k − j = (i− l)α, α = logp2/p3

(
p1
p4

)
, (118)

k − j = (i− l)β, β =
E4 − E1

E3 − E2

. (119)

If both α and β are rational, then the above equations may have different solutions.
Hence the union of {j}p and {j}E becomes difficult. There exists solvable cases, however:
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Figure 11: The quantum advantage B of an ensemble of N ququarts, assuming that α
and β are irrational numbers. It has a parity-dependency on N , however in contrast to
Fig. 9a it is strictly increasing.

Assume that both α and β are irrational. Then {j}p and {j}E are the same and contain
sequences which satisfy

i− l = k − j = 0. (120)

In this case we find that

∆ =


4N , if N is odd,

4N −
N/2∑
i=0

N !

(i!(N2 −i)!)
2 , if N is even.

(121)

P =


1, if N is odd,

1−
N/2∑
i=0

N !

(i!(N2 −i)!)
2 (p1p4)

i(p2p3)
N
2
−i, if N is even.

(122)

Once again we encounter a parity-dependence. This is possibly a property of even-
dimensional batteries. In Figure Fig. 11 we plot the quantum advantage Eq. (108) for the
bounded bandwidth. While the parity-dependence is somewhat apparent, the quantum
advantage remains strictly increasing with N .

For higher dimensions determining the union of the solution sequences of Eqs. (109)
and (110) becomes increasingly difficult due to an increase in spectrum dependent param-
eters similar to α and β. On the other hand, a lower bound on the quantum advantage
is still found for the cases where {j}p and {j}E are identical, and Eqs. (112) and (113)
become saturated. The solution for such cases is a straight forward generalization of
Eq. (120), namely

ji = jd−i+1. (123)

Remark 18. It can in fact be shown that there exists special ququart spectra for which the
quantum advantage is not strictly increasing. Instead it displays a fluctuating behaviour
similar to that of the qubit case. While interesting, we will not delve further into this
topic.
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6 Conclusions and Future Research

In this thesis we have studied the minimal duration required to fully charge a quantum
battery. The battery is represented by a quantum state whose energy content is defined by
the expectation value relative to an internal Hamiltonian. We assumed that the battery
satisfied a von Neumann equation and that it was prepared in a state which commuted
with the observable. Furthermore, we assumed that the control Hamiltonian responsible
for the increase in energy content satisfied either of two constraints, the bounded band-
width or the bounded variance constraints. We found that for time-optimal processes the
problem could be solved by determining the length of shortest geodesic curves in the uni-
tary group. The nature of shortest curves were heavily dependent on both the initial state
of the battery and the imposed constraint. This split the problem into multiple different
cases. To differentiate between these we found it useful to use cycle decompositions of
the possible permutation operators that fully charges the battery.

In Section 2.5 we found the first result in the form of two quantum speed limits, one
for each constraint. These act as lower bounds on the minimal duration for arbitrary
batteries. This bound is not necessarily saturated. On the other hand we managed to
prove that the minimal duration is equal to the quantum speed limit for certain choices of
initial battery states. The case where the battery is initially fully discharged is one such
important example.

A larger extent of cases were covered for the bounded bandwidth constraint in Section 3.
For this constraint we first managed to determine the minimal duration for the complete
set of cases where both battery state and its observable Hamiltonian had non-degenerate
spectra. If, instead, either was degenerate the issue became more complicated. Although
the non-degenerate solution was found to be an upper bound on the minimal duration.
While not able to find the exact minimal duration for arbitrary degenerate cases, we
developed a decomposition method which does so for some special, yet useful cases. The
method works by decomposing the problem into more easily solved sub-problems where
we can utilize well-known properties of flag manifolds. Here there is much room for
further investigation. Developing the knowledge of geodesic distances on generalized flag
manifolds could improve the extent to which the method is applicable.

When we in Section 4 considered the bounded variance constraint we detailed some com-
plications which arise as consequences of the metric not being bi-invariant. Instead of
determining minimal durations we established two criteria on time-optimal controls. The
former states that time-optimal controls are almost parallel transporting, while the latter
is a geodesic equation which has to be satisfied for shortest curves. We compared these
to the bounded bandwidth case, where the geodesic equation becomes a requirement for
time-optimal controls to be time-independent. We concluded the section with an example
which shows that some batteries cannot be activated with control Hamiltonians that are
both time-optimal and time-independent.

Finally we dedicated Section 5 to examining the consequences of charging multiple bat-
teries simultaneously, assuming we allow correlations during, but not before nor after the
charging process. Since the correlations can be of quantum nature this allowed us to define
a quantum advantage Eq. (101), a parameter which quantifies to which extent allowing
correlations is beneficial for the minimal duration. By assuming that each individual bat-
tery is identical, passive and non-degenerate we managed to find an expression for the
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quantum advantage. When calculating the advantage for some examples we manage to
show that allowing correlations can be beneficial for certain systems. We also find that
that the advantage sometimes has a dependency on the parity of the number of batteries.
We discuss the interest of this behaviour briefly. While difficult, it would be of use to
give physical interpretations to the changes in geometry when we add another battery to
the simultaneously charged ensemble. This could possibly be done by examining various
hypothesized measures of correlation, [27, 28], and comparing it to the parity-dependency
in the quantum advantage. This could possibly give hints to the nature of quantum
correlations for mixed states.
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A Appendix

A.1 Quantum Batteries

Proof of Proposition 1.1

Assume that the control Hc(t) fully charges the battery in duration τ , i.e., U(τ)ρiU
†(τ)

is an active state. In the interaction picture the battery state and the control are given
by

ρI(t) = eitH0ρ(t)e−itH0 , (124)
HcI(t) = eitH0Hc(t)e

−itH0 . (125)

The unitary dynamics of ρI(t) in this frame are given by (see Section 2.1.1)

UI(t) = T exp

(
−i
∫ t

0

dt′HcI(t
′)

)
. (126)

Consider now the curve WI(t) = UI(qε(t)) where qε(t) is a smooth function satisfying
Eq. (6). This curve satisfies

W (0) = UI(qε(0)) = UI(0) = 1, (127)

W (τ + 2ε) = UI(qε(τ + 2ε)) = UI(τ) (128)

and is generated by H ′cI(ε, t) := q̇ε(t)HcI(qε(t)), since

ẆI(t) = q̇ε(t)U̇I(qε(t)) = −iq̇ε(t)HcI(qε(t))UI(qε(t)) = −iH ′cI(ε, t)WI(t). (129)

If we let ρ′I(t) = WI(t)ρiW
†
I (t) we find, using Eq. (127), that

ρ′I(τ + 2ε) = UI(τ)ρiU
†
I (τ) (130)

Note that the right-hand side is an active state per assumption. Hence the controlH ′cI(ε, t)
fully charges the battery in time τ + 2ε. The physics are independent on frame, and we
can thus equivalently say that the control

H ′c(ε, t) = q̇ε(t)e
−itH0HcI(qε(t))e

itH0 = q̇ε(t)Hc(qε(t)) (131)

induces a unitary U(t) such that ρ(t) is active at time τ + 2ε. If we let ε → 0, then this
time goes towards the duration τ . This concludes our proof.

We will now prove that the quenched control H ′c(ε, t) satisfy both constraints introduce in
Section 1.4. Note that since the physics are independent on frame, it is enough to prove it
in the interaction picture. In both calculations we use that the constraint is homogeneous
of second order in the first argument, the fact that q̇2ε (t) ∈ [0, 1], and that HcI(qε(t)) is
a time-reparametrization of HcI(t). For the bounded bandwidth constraint, Eq. (11), we
have

Tr
[
H ′cI

2
(ε, t)

]
= q̇2ε (t) Tr

[
Hc

2
I(qε(t))

]
≤ ω2. (132)

Similarly, for the bounded variance constraint, Eq. (12),

Var (H ′cI(ε, t), ρI(t)) = q̇2ε (t)Var (HcI(qε(t)), ρI(t)) ≤ ω2 (133)
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Proof of Proposition 1.2

Let ρe be an extremal battery state in D(p). Since D(p) is a compact manifold and the
energy function E(ρ) is smooth, ρe is necessarily a stationary with respects to E(ρ). Con-
sequently, for any tangent vector −[A, ρe] to D(p) at ρe the differential map dE(−i[A, ρi])
vanishes. We find

0 = dE(−i[A, ρe])

= Tr
[
H0(−i[A, ρe])

]
= Tr

[
iA[AH0, ρe]

]
.

(134)

Since this must apply for all Hermitian operators A we deduce that [H0, ρe] = 0 and that
extremal states are incoherent.

Proof of Proposition 1.3

Consider a constraint function F (t) = f(Hc(t), ρ(t)) which is homogeneous of second
order in Hc(t). Assume that Hc(t) is time-optimal, i.e. the curve it generates in D(p)

reaches an active state in duration τmin. Let g(t) be a continuous and everywhere positive
function for which F (t) ≤ g(t) ≤ ω2. Furthermore define the function

s(t) =
1

ω

∫ t

0

dt′
√
g(t′) (135)

on the domain [0, τmin]. Since g(t) is continuous and positive, s(t) is necessarily smooth
strictly increasing function. Consequently it has an inverse t(s) which satisfies

0 < ṫ(s) =
ω√
g(t(s))

≤ ω√
F (t(s))

. (136)

If f(Hc) happen to be zero, replace the right-hand side by positive infinity. Let ρ′(s) =

ρ(t(s)) be a curve in D(p) parametrized by s which reaches an active state in time
s = s(τmin). This curve is generated by the Hermitian operator H ′c(s) = Hc(t)ṫ(s),

ρ̇′(s) = ρ̇(t(s))ṫ(s)

= −i
[
Hc(t(s)), ρ(t(s))

]
ṫ(s)

= −i
[
H ′c(s), ρ

′(s)
]
.

(137)

Furthermore since the constraint function F is homogeneous of second order Eq. (136)
guarantees that H ′c(s) satisfies the constraint, f (H ′c(s), ρ(s)) ≤ ω2.

Assume that the constraint is not saturated for Hc, i.e. F (t) < ω2 at some t. Then g(t(s))

can be chosen strictly less than ω2 in a neighbourhood of that t. We find

s(τmin) =
1

ω

∫ t

0

dt′
√
g(t′) < τmin. (138)

However this contradicts that τmin is a lower bound on the duration. Consequently, by
proof of contradiction, F (t) = ω2 for all time-optimal processes.
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A.2 The Charging Process

Proof of Proposition 2.2

Let W be any unitary operator which activates our state, WρiW
† = ρa. The energy

isotropy group U(H)H0 acts transitively on all active states from the left, i.e. for each
A ∈ A(ρi) there exists a U ∈ U(H)H0 such that UAρiA†U † = WρiW

†. However from this
we find

W †UAρi = ρiW
†UA. (139)

Thus, ρi commutes with the unitary operator V = W †UA, and V is an element in the
state isotropy group U(H)ρi . Hence W can always be written of the form W = UAV

where A is an activating unitary, U ∈ U(H)H0 and V ∈ U(H)ρi .

The reverse follows straight forward from that Eq. (1) is invariant under U, V when acting
on ρi from the left with UAV .

Proof of Proposition 2.3

In the basis Eq. (30) we have

ρi =
d∑

k=1

pk |k〉 . (140)

where the indices are ordered such that 〈k|H0|k〉 ≤ 〈k + 1|H0|k + 1〉. This ordering is
possible due to Proposition 1.2. Consider the state

ρa =
d∑

k=1

pσ(k) |σ(k)〉 . (141)

where σ is some permutation. If pσ(k) ≤ pσ(k+1), then this is an active state, and ρi can
be activated with the unitary

U =
d∑

k=1

|σ(k)〉 〈k| . (142)

This is of the form of a permutation operator, which concludes the proof.

Proof of Proposition 2.4

Let |k〉 be an eigenvector of ρi and define |k(t)〉 = exp(−itHc) |k〉 as a curve on the unit
sphere. Each vector |k〉 must either evolve to an orthogonal eigenspace or remain fixed.
The number of vectors that must evolve in order to activate ρi is δ, and the length of these
curves is equal to the spherical distance between two orthogonal states, π/2. Furthermore
the squared speed of each curve equals 〈k|H2

c |k〉 and Proposition 1.3 guarantees that these
sum to ω2. We find

ω2τ 2min =
d∑

k=1

〈k(t)|H2
c |k(t)〉 τ 2min ≥

π2δ

4
. (143)

This allows us to write

τmin ≥
π
√
δ

2ω
(144)

which proves the proposition.
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Proof of Proposition 2.5

Let |k(t)〉 be the set of curves characterized by |k̇(t)〉 = −iHc(t) |k(t)〉 and |k(0)〉 = |k〉.
Then the spectral decomposition of ρ(t) can be written as

ρ(t) =
∑
k

pk |k(t)〉 〈k(t)| . (145)

We now define the dispersions ∆Hc(t) and ∆kHc(t) by

∆Hc(t) =

√
Tr [H2

c (t)ρ(t)]− Tr [Hc(t)ρ(t)]2, (146)

∆kHc(t) =

√
〈k(t)|H2

c (t)|k(t)〉 − 〈k(t)|Hc(t)|k(t)〉2. (147)

Note that due to convexity,

∆2Hc(t) =
∑
k

pk 〈k(t)|H2
c (t)|k(t)〉 −

(∑
k

pk 〈k(t)|Hc(t)|k(t)〉

)2

≥
∑
k

pk 〈k(t)|H2
c (t)|k(t)〉 −

∑
k

pk 〈k(t)|Hc(t)|k(t)〉2 =
∑
k

pk∆
2
kHc(t).

(148)

Let τ be the duration of the process and define the time average of the dispersion ∆Hc(t)

by

〈∆Hc(t)〉 =
1

τ

∫ τ

0

dt∆Hc(t). (149)

Jensen’s inequality and Eq. (148) then implies that

〈∆2Hc(t)〉 ≥
∑
k

pk 〈∆2
kHc(t)〉 ≥

∑
k

pk 〈∆kHc(t)〉2 . (150)

There exists a well-known quantum speed limit which is known as the Mandelstam-
Tamm quantum speed limit (MTQSL), see [30, 15]. Let τk be the time required for
each eigenvector |k(t)〉 to reach its destination, and let S be the set of eigenvectors
required to evolve into a perpendicular eigenspace in order for ρ(τ) to be active, i.e.,
S = {|k(t)〉 : 〈k|k(τ)〉 = 0}. If k /∈ S, then τk = 0. If instead k ∈ S the MTQSL states
that

τk ≥
π

2 〈∆kHc(t)〉
. (151)

Note that τmin ≥ maxk{τk}. Due to Eq. (12) and Proposition 1.3 we have that 〈∆2Hc(t)〉 =

ω2, hence

ω2τ 2min = 〈∆2Hc(t)〉max
k
{τk}2 ≥

∑
k

pk 〈∆kHc(t)〉2 τ 2k ≥
π2

4

∑
k∈S

pk. (152)

If we define P =
∑

k∈S pk we find that

τmin ≥
π
√
P

2ω
. (153)

This concludes the proof.
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Proof of Proposition 2.6

Let σ = c1c2 · · · cmcm+1 · · · cn be the fully reduced cycle decomposition where the first
m cycles are of the form ck = (k1, k2) and the latter are trivial. If we first consider the
bounded bandwidth constraint we can construct the control Hamiltonian

Hc =
ω√
2m

m∑
k=1

(|k1〉 〈k2|+ |k2〉 〈k1|) . (154)

This choice of control satisfies Eq. (11) and generates the unitary −iAσ in time τ = π
√
2m

2ω
.

Furthermore, the discrepancy of ρi is δ = 2m, and we prove

τ =
π
√
δ

2ω
= τBqsl. (155)

For the bounded variance similarly impose the control

Hc =
ω√∑m

k=1(pk1 + pk2)

m∑
k=1

(|k1〉 〈k2|+ |k2〉 〈k1|) . (156)

It satisfies Eq. (12) and generates the same unitary in the time

τ =
π
√∑m

k=1(pk1 + pk2)

2ω
:=

π
√
P

2ω
= τVqsl. (157)

Remark 19. The reader might wonder why we choose to generate −iAσ and not Aσ. In
fact, the generating control of Aσ cannot achieve the above times for neither constraint.
This shows that not all unitaries in the activating set A(ρi) are equidistant and that this
has to be taken into consideration when examining more complicated systems.

A.3 Optimal Time for Bounded Bandwidth

Proof of Proposition 3.1

According to Proposition 3.10 in [7], all geodesics of a bi-invariant metric emanating from
the identity element in a Lie group G are one-parameter subgroups of G. A one-parameter
subgroup φ(t) of the unitary group is given by a unique skew-Hermitian ξ through the
map φ : t → exp(tξ). The shortest curve between two points in a manifold is a geodesic
if the curve is traversed at constant speed. Since the metric in Eq. (25) conserves speed
along time-optimal curves and is bi-invariant it follows that it is generated by a unique,
i.e. time-independent control Hc.

Proof of Proposition 3.2

Since the metric gHS is bi-invariant, so is the corresponding geodesic distance. Hence if
U †V = W we find

dist(U, V ) = dist(1,W ) = ‖LogW‖, (158)

and it becomes sufficient to prove the latter inequality. To this end let exp(−itHc) be a
shortest geodesic connecting 1 and W . Being a shortest geodesic, the time required to
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reach W is τmin, hence LogW = τminB for any B that shares eigenvalues with Hc. Since
the Hilbert-Schmidt norm only depends on the eigenvalues of a matrix, we find

‖LogW‖ = τmin‖Hc‖ = τminω, (159)

where the second equality follows from Proposition 1.3. Since the speed in the chosen
metric is ω the length of exp(−itHc) is equal to ‖LogW‖, hence it is the geodesic dis-
tance.

Proof of Proposition 3.3

Write cr = (r1, r2, · · · , rlr) and let eiαrj and eiβrj be the jth eigenvalues of Ucr and Vcr ,
respectively. We then find that the characteristic equation of UcrAcrVcr is (eiθr −λlr) = 0,
where

θr =
lr∑
j=1

(αrj + βrj) mod 2π. (160)

Therefore we find that the eigenvalues of UcrAcrVcr are given by λk = ei(θr+2πk)/lr where
k ranges from 0 to lr − 1. Each term in Eq. (47) then becomes

‖Log(UcrAcrVcr)‖2 =
1

l2r

lr−1∑
k=0

(θr + 2πk)2

=
1

lr

(
θ2r + 2πθr(lr − 1) +

2

3
π2(lr − 1)(2lr − 1)

)
.

(161)

Minimizing this over all U, V corresponds to minimizing over θr. Consequently we find

min
U,V
‖Log(UAσV )‖2 =

m∑
r=1

min
θr
‖Log(UcrAcrVcr)‖2

=
π2

3

m∑
r=1

l2r + 1

lr
=
π2

3

(
d−

m∑
r=1

1

lr

)
.

(162)

The latter equality follows from that the sum of all cycle lengths lr equals the batteries
dimension. Hence by taking the square root we find the geodesic distance for all non-
degenerate cases, and the minimal duration is given by Proposition 3.3.

Proof of Proposition 3.4

Foremost all Hσl are invariant under Aσ. Meanwhile the isotropy groups U(H)H0 and
U(H)ρi keep the eigenspaces of H0 and ρi invariant per construction. Hence, if each Hσl is
spanned by various contained eigenspaces it must also be invariant. Proposition 2.2 then
guarantees that all unitaries in the activating set A(ρi) keeps each Hσl invariant.

To prove that Hσl is invariant during traversal of a shortest geodesic, let W be a closest
activating unitary and decompose it as W =

⊕
lWσl where Wσl is an operator on Hσl . If

we define on Hσl the Hamiltonian

Hl =
LogWσl

iτmin
(163)
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it will generate the operator Wσl in duration τmin. The direct sum of all those Hl is a
Hamiltonian Hc on H for which the bandwidth is

Tr[HcH
†
c ] =

‖LogW‖2

τ 2min
= ω2. (164)

The latter inequality since ‖LogW‖ is the geodesic distance between 1 and W according
to Proposition 46. Hence Hc is a valid control which generates geodesic curves in each
Hσl , all with duration τmin. Consequently there exists a shortest geodesic between 1 and
W generated by Hc keeps each Hσl invariant.

Proof of Proposition 3.5

Consider each individual term in Eq. (55), we find

min
Uσl ,Vσl

‖Log(UσlAσlVσl)‖2 = min
Uσl ,Vσl

‖UσlLog(AσlWσl)U
†
σl
‖2 (165)

where Wσl = VσlUσl . If we assume that U(Hσl)ρi ⊆ U(Hσl)H0 , then Wσl is an unitary in
U(Hσl)H0 . Furthermore, the Hilbert-Schmidt norm is base independent, hence

dist(1,A(ρi))
2 =

m∑
l=1

min
Wσl

‖Log(AσlWσl)‖2 (166)

from which we find Eq. (56). If instead U(Hσl)H0 ⊆ U(Hσl)ρi then Wσl is instead an
unitary in U(Hσl)ρi and we analogously find Eq. (57).

Proof of Proposition 3.6

Let the structure (E,B, π, F ) be a fibre bundle with total space E, base space B, fibre F
and (surjective) submersion map π : E → B [6, 7]. Since U(Hσl)H0 is a closed subgroup
of U(Hσl), where U(Hσl) is a Lie group, the quotient space U(Hσl)/U(Hσl)H0 can be
regarded as the base space of the fibre bundle(

U(Hσl),U(Hσl)/U(Hσl)H0 , π,U(Hσl)H0

)
(167)

with submersion
π : U(Hσl)→ U(Hσl)/U(Hσl)H0 ,

π : WU 7→ [W ], U ∈ U(Hσl)H0 .
(168)

Since the metric we chose on the unitary group, hence U(Hσl), is a collection of inner
products on the tangent spaces of the Lie group Eqs. (21) and (22), U(Hσl) is a Riemannian
Manifold. Furthermore if U(Hσl) is Riemannian then there exists a metric g on the
quotient Lie group U(Hσl)/U(Hσl)H0 such that the submersion Eq. (168) is an isometry,
see Section 4.18. This is also referred to as a Riemannian submersion [7]. Due to the
isometry we find

min
U

dist(1,WU) = dist
(
π(1), π(WU)

)
= dist

(
[1], [W ]

)
= min

U
‖LogWU‖

(169)

where the latter inequality follows from Proposition 3.2. If we exchange the set WU ,
U ∈ U(Hσl)H0 , with the set of operators of the form AσlUσl with which we are concerned
the proof of Proposition 3.6 is complete.

8Note that we in that section replace U(Hσl
)/U(Hσl

)H0 with D(p), which in turn is diffeomorphism
of U(H)/U(H)ρi . This theory is identical to that of U(Hσl

)/U(Hσl
)H0

.
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A.4 The Geometry of Bounded Variance

On Vertical and Horizontal Tangent Spaces

We remind ourselves that we consider the map π : U(H)→ D(p). Let TW be the tangent
space at a point W in U(H) and decompose it into two orthogonal spaces T vW and T hW
such that

TW = T vW ⊕ T hW . (170)

We refer to T vW and T hW as the vertical and horizontal tangent spaces at W and identify
the former with the space of all vectors at W which are tangent to the fibre over WρiW

†.
Let ηv be any member of u(H)ρi . It will generate a curve exp(tηv) in U(H)ρi . The fibre
can be written as the left action of W on the isotropy group U(H)ρi , hence

T vW =

{
d

dt
(W exp (tηv))

∣∣∣
t=0

: ηv ∈ u(H)ρi

}
= {Wηv : ηv ∈ u(H)ρi} . (171)

Let us choose the metric gVar, Eq. (26). We can then characterize T hW by those vectors
X ∈ TW for which gVar (Wηv , X) = 0. Since the metric is left-invariant we can pull
it back to the Lie algebra through the differential left action dLW † . Hence if we define
ηh = W †X we find that

T hW =
{
Wηh : gVar

(
ηv, ηh

)
= 0 ∀ ηv ∈ u(H)ρi

}
. (172)

Thus the decomposition of TW into the components T vW and T hW was uniquely determined
through the fibre structure and the considered metric.

Let U(t) be a curve generated by a ξ(t) ∈ u(H) such that U̇(t) = ξ(t)U(t). Furthermore
let U̇ v(t) = ξv(t)U(t) be the component of U̇(t) which is contained in T vU(t). Then, by
Eq. (171) we find that

U̇ v(t) = ξv(t)U(t) = U(t)ηv ⇒ ξv(t) = U(t)ηvU †(t), (173)

where ηv ∈ u(H)v. Similarly, if U̇h(t) = ξh(t)U(t) is the component contained in T hU(t)

and we find that
ξh(t) = U(t)ηhU †(t), (174)

where ηh is perpendicular to ηv. In order for U̇(t) = U̇ v(t) + U̇h(t) it follows that ξ(t) =

ξv(t) + ξh(t). Eq. (173) now allows us to prove Proposition 4.1 since

[ξv(t), ρ(t)] = U(t) [ηv, ρi]U
†(t) = 0, (175)

which follows from that ηv generates an operator in U(H)ρi . Hence,

ρ̇(t) = [ξ(t), ρ(t)]

=
[
ξv(t) + ξh(t), ρ(t)

]
=
[
ξh(t), ρ(t)

] (176)

which concludes the proof of Proposition 4.1.

56



Proof of Proposition 4.2

Due to the isometry in Eq. (84) we calculate the squared speed of ρ(t) to be

gD

(
ρ̇(t), ρ̇(t)

)
= gVar

(
−iHh

c (t)Uh(t),−iHh
c (t)Uh(t)

)
= Tr

[
ρi

(
Uh†(t)Hh

c

2
(t)Uh(t)

)]
= Tr

[
ρ(t) (Hc(t)−Hv

c (t))2
]

= Tr
[
ρ(t)H2

c (t)
]
− Tr

[
ρ(t)Hv

c
2(t)
]
.

(177)

Note that ρ(t) = Uh(t)ρiU
h†(t) as a consequence of Proposition 4.1. Furthermore we in the

last equality made use of that Hh
c (t)Hv

c (t) is traceless as a consequence of Eq. (86).

The variance of ρ(t) with respects to Hv
c (t) is given by

Var (Hv
c (t), ρ(t)) = Tr

[
ρ(t)Hv

c
2(t)
]
− Tr [ρ(t)Hv

c (t)]2 ≥ 0 (178)

Consequently we can rewrite Eq. (177) as

gD

(
ρ̇(t), ρ̇(t)

)
≤ Tr

[
ρ(t)H2

c (t)
]
− Tr [ρ(t)Hv

c (t)]2

= Tr
[
ρ(t)H2

c (t)
]
− Tr [ρ(t)Hc(t)]

2 = Var(Hc(t), ρ(t)).
(179)

The latter equality follows from that Tr[ρ(t)Hh
c (t)] = 0. This shows that the squared

speed is bounded from above by the variance. Furthermore equality holds if and only if
Eq. (178) is equal to zero, i.e. the variance of ρ(t) relative Hv

c (t) is zero for all t. This only
holds if Hv

c (t) = E(t)1, i.e. it is evenly distributed. Such a choice of vertical component
satisfies the orthogonality requirement gVar(−iHv

c (t)U(t),−iHh
c U(t)) = 0, and is thus

valid. This concludes our proof.

Proof of Proposition 4.3

The tangent space at U(t) is spanned by all operators of the form ηU(t), η ∈ u(H). Given
a unitary curve U(t) with tangent vector U̇(t) = −iHc(t)U(t), its acceleration vector Ü(t)

in B(H) is given by
Ü(t) = −iḢc(t)U(t)−H2

c (t)U(t). (180)

Hence, for this to be perpendicular to ηU(t) with respects to gVar we find that

gVar(Ü(t), ηU(t)) =
1

2
Tr
[
ρi

(
Ü †ηU − U †ηÜ

)]
=

1

2
Tr
[
ρ(t)

(
iḢc(t)η −H2

c (t)η + iηḢc(t) + ηH2
c (t)

)]
=

1

2
Tr
[
η
(
i
{
Ḣc(t), ρ(t)

}
+
[
H2
c (t), ρ(t)

])]
= 0.

(181)

For this to hold for every η ∈ u(H) it follows that

i{Ḣc(t), ρ(t)}+ [H2
c (t), ρ(t)] = 0, (182)

which concludes our proof.
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A.5 Charging Correlated Batteries

Calculation of Eqs. (99) and (100)

First consider the bounded bandwidth case. Let 1d be the identity operator of dimension
d. By taking the Hilbert-Schmidt norm of Eq. (98) we find

Tr
[(
H(N)
c

)2]
= N Tr

[
H2
c ⊗

N−1⊗
k=1

1d

]
+

(
N

2

)
Tr

[
Hc ⊗Hc ⊗

N−2⊗
k=1

1d

]

= NdN−1 Tr
[
H2
c

]
+ dN−2

(
N

2

)
Tr [Hc]

2 ,

(183)

where
(
N
2

)
is the binomial coefficient. We want to choose a suitable value Ω2 that bounds

Eq. (183) from above. Denote the latter term of the right-hand side by ε ≥ 0, which
vanishes for time-optimal processes due to Remark 13. This allows us to write

NdN−1 Tr
[
H2
c

]
≤ Ω2 − ε. (184)

Due to Eq. (11) the left-hand side is bounded from above by NdN−1ω2, hence

NdN−1ω2 = Ω2 − ε ≤ Ω2. (185)

If Ω2 > NdN−1ω2 then ε > 0, hence Eq. (183) can never saturate the bound on the
resource with local time-optimal processes. Since we will want to compare local and
global time-optimal processes we instead choose Ω2 = NdN−1ω2.

Consider now the bounded variance case. The variance of ρ(N) relative the joint control
Eq. (98) is

Var(H(N)
c , ρ(N)) = Tr

[(
H(N)
c

)2
ρ(N)

]
− Tr

[
H(N)
c ρ(N)

]2
. (186)

We calculate each term individually and find that

Tr
[(
H(N)
c

)2
ρ(N)

]
= N Tr

[
H2
c ρ⊗

N−1⊗
k=1

ρ

]
+

(
N

2

)
Tr

[
Hcρ⊗Hcρ⊗

N−2⊗
k=1

ρ

]

= N Tr
[
H2
c ρ
]

+

(
N

2

)
Tr [Hcρ]2 ,

(187)

and

Tr
[
H(N)
c ρ(N)

]2
=

(
N Tr

[
Hcρ⊗

N−1⊗
k=1

ρ

])2

= N2 Tr [Hcρ]2 . (188)

After adding Eqs. (187) and (188) together and simplifying we find

Var(H(N)
c , ρ(N)) = NVar(Hc, ρ)−

(
N

2

)
Tr [Hc]

2 . (189)

Again we want to bound Eq. (189) from above by some suitable value Ω2. Denote the
second term on the right-hand side by ε ≥ 0, with equality for horizontal single battery
controls Hc = Hh

c , see Section 4. We find that

NVar(Hc, ρ) ≤ Ω2 + ε. (190)
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and with Eq. (12)
Nω2 = Ω2 + ε ≥ Ω2. (191)

We want the resource Ω2 to allow all choices of single battery controls Hc. If Ω2 < Nω2

then ε > 0, and Eq. (189) can never be saturated with horizontal controls. Again, since we
will want to compare time-optimal processes we need to allow all time-optimal processes.
Therefore we make the choice Ω2 = Nω2.
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