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Abstract—Code evolution, whether related to the develop-
ment of new features, bug fixing, or refactoring, inevitably
changes the quality of the code. One particular type of such
change is the accumulation of Technical Debt (TD) resulting
from sub-optimal design decisions. Traditionally, refactoring
is one of the means that has been acknowledged to help
to keep TD under control. Developers refactor their code
to improve its maintainability and to repay TD (e.g., by
removing existing code smells and anti-patterns in the source
code). While the accumulation of the TD and the effect of
refactoring on TD have been studied before, there is a lack of
empirical evidence from industrial projects on how the different
types of code changes affect the TD and whether specific
refactoring operations are more effective for repaying TD. To
fill this gap, we conducted an empirical study on an industrial
project and investigated how Refactoring, Bug Fixing, and New
Development affect the TD. We have analyzed 2, 286 commits
in total to identify which activities reduced, kept the same, or
even increased the TD, further delving into specific refactoring
operations to assess their impact. Our results suggest that TD
in the studied project is mainly introduced in the development
of new features (estimated in 72.8 hours). Counterintuitively,
from the commits tagged as refactoring, only 22.90% repay TD
(estimated to repay 8.30 hours of the TD). Moreover, while
some types of refactoring operations (e.g., Extract Method),
help repaying TD, other refactoring operations (e.g., Move
Class) are highly prone to introduce more TD.

Keywords-Technical Debt, Empirical Study, Industrial Study,
Case Study, Refactoring, Bug Fixing, New Development

I. INTRODUCTION

Technical Debt (TD) is a metaphor used to discuss
the long-term consequence of sub-optimal design decisions
taken when short-term goals are prioritized [1], and motivate
the importance of refactoring for primarily nontechnical
stakeholders [2]. TD inevitably accumulates and evolves as
the software develops, and as it is maintained [3]. TD is
infamous for its negative impacts on software maintainability
and evolvability [4], [5]; and has, therefore, become an
important research topic in modern software engineering.

Technical Debt has been approached by researchers from
many different angles. On the one hand, one research
direction in the area of technical debt has focused on the
“rhetorical discussions” about the use of the metaphor [2],
ways for identifying and measuring the debt, causes, and

effects of the technical debt. On the other hand, several other
research works focus on the understanding of how to deal
with the TD, in particular, TD repayment, with refactoring
being one of the most common topics [6].

Refactoring is “the process of changing a software system
in such a way that does not alter the external behavior of
the code yet improves its internal structure” [7]. Certain
refactoring operations aim at improving the maintainability
of the code, while others are aiming at improving the
understandability or having more “clean code” (as defined
in [8]), or remediating the TD by removing a TD item [5],
[9], [10]. TD items (TDI) are “single elements of TD,”
something that can be identified in the code [5], and have
been introduced to be able to quantify or visualize the TD. In
their turn, refactoring operations are presented in refactoring
catalogs, such as the ones presented by Fowler [7], [11].
The catalogs provide the motivation behind each refactoring
operation and the circumstances in which it should be used.

Yet, refactoring is not the only way to address the TD. As
software evolves, developers perform various manipulations
to the code that can be categorized into three major types of
activities: refactoring, bug fixing, and new feature develop-
ment, all of which are likely to have some impact on the TD.
Related studies show, for example, that developers spend,
on average, 25% of the development time on managing the
TD [12], while these activities are not always performed
systematically but rather sporadically during the develop-
ment process [12], [13]. Similarly, Palomba et al. [14] and
Kim et al. [15] found that refactoring operations are mostly
performed when new features are implemented and not
as a result of dedicated code maintenance. At the same
time, any manipulation of the code, whether related to the
development of new features, bug fixing, or refactoring,
inevitably changes the quality of the code and often results
in the accumulation of TD. However, to the best of our
knowledge, the research comparing the evolution of TD
linked to the different types of activities (refactoring, bug
fixing, and new development) is scarce.

In this article, we investigate the effects that refactoring,
bug fixing, and new development have on the accumulation
of the TD. In addition, we further delve into specific



refactoring operations to understand how these refactoring
operations, that are expected to improve the internal quality
of the source code [7], [11], impact on the accumulation
of repayment of TD. Therefore, we aim at answering the
following research questions:

• RQ1. To what extent do activities marked as Refac-
toring, Bug Fixing, and New Development affect the
accumulation of Technical Debt in the project?

• RQ2. How each specific type of refactoring operations
affects the Technical Debt in the project?

This is done by conducting an empirical study where we
analyze a large-scale industrial project commit by commit, to
assess the impact that each commit has on the accumulated
TD. In this project, developers systematically tagged their
commits to identify the activity addressed in the commit. We
used two independent tools to i) calculate TD and ii) detect
the refactoring operations in each commit. We merge the
results to evaluate how TD is affected by the activities. We
analyzed 2, 286 commits in total and investigated whether
the total TD was reduced, remained the same as before,
or increased for each activity, and later by the specific
refactoring operation.

The rest of this article is structured as follows. Section II
summarizes the related work. Section III, research methodol-
ogy, describes how the data was collected and analyzed. The
results are presented in Section IV, and the implications of
the results are discussed in Section V. Section VI discusses
the threats to validity. Lastly, Section VII concludes the
paper.

II. RELATED WORK

Managing TD is essential, and companies have different
approaches on how to address this problem. In particular,
tracking TD and how it impacts the development is of
particular interest for industry and academia. In [12], the
authors investigate the state-of-practice in managing TD and
aim to understand how companies track TD, what tools they
use, and what is the cost of managing TD. They found that,
on average, 25% of development time is spent on managing
TD. In [13], the authors investigate the waste of development
time with regards to TD management. Their results suggest
that developers waste 23% of their time on managing TD
(i.e., mainly through refactoring), and developers frequently
introduce new TD.

Refactoring the code is one of the strategies to deal with
TD, and it has been investigated before [10], [16]–[24].
In [18], the authors investigate the relationship between code
quality and refactoring operations. They conclude that there
is no clear relationship between the refactoring operations
and code quality because the refactoring operations mostly
target the code components that quality metrics do not
consider as in-need-of-improvement. Palomba et al. [17]
investigate the perception of developers on code smells.
They summarize their findings in four lessons: not all the

code smells are considered as design flaws; the “intensity” of
the problem is an indication of it being a code smell or not;
the complex or long source code are generally an important
sign of code smells; and, the experience of developers is a
key when identifying a CS.

The impact of refactoring operations, in general, have
mostly been studied on code smells, which is only one
type of TDI. Santos et al. in [19] vestigate the impact of
code smells on software development. In [25], Fujiwara et
al. propose a method to assess the benefits of refactoring
instances in maintainability. They use three metrics; namely
refactoring frequency, defect density, and fix frequency. They
conclude that after a term with higher refactoring frequency,
defect introduction decreases. In their paper, Tufano et
al. [22] studied “when the code smells are introduced” and
“what is the survivability of the code smells.” They con-
ducted a study over the change history of 200 open source
projects from Apache, Android, and Eclipse ecosystems.
They focused on five different code smell types, namely
Blob Class, Class Data Should be Private, Complex Class,
Functional Decomposition, and Spaghetti Code. They con-
cluded that “most of the smell instances are introduced when
an artifact is created and not as a result of its evolution.”
They also found that 80% of the code smells remain in the
system. Finally, from the remaining 20% of the code smells
removed, refactoring operations only remove 9% of the code
smells. In a similar study, Yoshida et al. [20] analyzed
the refactoring data and code smells detected in APACHE
ANT, ARGOUML, and XERCES-J. They investigate the
effectiveness of refactoring patterns applied to code smells to
answer whether the refactoring operation helped to remove
the code smells. The results of their investigation concluded
that “... refactoring rarely removes the code smell because
the corresponding pattern is rarely applied to a code smell.”
In a similar article, Palomba et al. [14] investigate the rela-
tionship between refactoring operations and code changes.
Their results indicate that most of the refactoring operations
are done to remove the duplicated code or “previously
introduced self-admitted technical debt.”

The articles that study TD management approaches have
an overview of what activities impact TD [6]. Digkas et
al. [23] studied fifty-seven open-source projects to investi-
gate how TD accumulates during the maintenance process.
They found out that a small proportion of issues (types
of TDIs in SonarQube terminology) are responsible for
the repayment of the large percentage of TD. They also
studied the evolution of TD, considering other activities than
refactorings. Silva et al. [21], similar to the previous study,
investigated the motivation behind applying specific refactor-
ing operations. They concluded that refactoring operations
are mostly performed when new requirements are presented
rather than to remove existing code smells.

Our study aims to fill in the gaps that are not covered in
previous studies by combining their strengths and different



perspectives. While previous studies mostly focus on specific
type of activities (primarily refactoring) and their impact on
specific types of TDI (code smells), our study compares
the impact of different activities (refactoring, bug fixing,
and new development) and their impact on TD. In contrast
to many studies of open source projects and sole reliance
on automatically detected refactoring operations, we have a
better certainty over the nature of activities by using the tags
that developers systematically introduced in their commits,
and thus their intention. Finally, while previous studies use
open-source data, we use industrial data to have insights
from the state-of-the-practice.

III. RESEARCH METHODOLOGY

To address the research questions, we designed an em-
pirical study where we analyzed data gathered through
archival analysis. We selected a large-scale (approximately
1.5 million LOC) industrial project from a company that
chose to stay anonymous. The product provides financial
services via mobile phones and the internet (FinTech global
product). The software in the project was written in JAVA
and has evolved for more than ten years. The project has
followed core Agile practices (e.g., continuous integration)
with frequent releases. We chose this project based on
convenience (availability and access) and because we could
extract developers’ intention for each specific commit activ-
ity through the systematically documented commit tags. The
analysis is circumscribed to a period of one year, where the
project was under heavy development process. We expected
to have more activity on the code during this period,
which encompasses more development and refactoring. It is
important to highlight that this project was developed with
some specific development practices such as “clean-code”,
test-focused development, high emphasis on refactoring, and
having a reliable regression test suite in place.
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Figure 1. The Study Constructs and Measurements.

In the following, we describe the main constructs and

measurements used in our study (summarized in Fig. 1).
We analyzed i) the type of commit activity based on the
tag provided by developers for each commit; ii) the amount
of TD in a given commit; iii) refactoring operations in
each commit. We used two tools to collect the data: i)
SonarQube1 for calculating the TD in the project, and
ii) RefactoringMiner2 to detect the refactoring operations
(ROs). Both tools have been previously used in similar
studies of refactorings [16] and TD [23]. The data was
collected by the tools separately in two steps and then
combined for the analysis using the git hash identifier for
each commit. The details of how the data was collected in
each step are described further in Section III-A.

A. Data Collection

1) Detecting Types of Code Change Activities: As de-
scribed in the case description, the comment field in each
commit was systematically tagged by the developers, which
helped us determine the intention of that particular commit.
We classified the activities on the commits in six categories,
namely Bug Fixing, Build, Commit Merge, New Develop-
ment, Refactoring, and Other.

Merge Commit

Refactoring

New Development

Figure 2. Merge Commit Investigation Example.

We discarded the commits tagged with Build and Other
since we are interested in commits that i) we can extract
developers’ intent; and ii) are related to the activities in the
scope of this paper (i.e., refactoring, bug fixing, and new
development). In the case of Merge Commits, we looked into
the branches before the merge commits to investigate them
instead. As an example, in Fig. 2, instead of investigating
TD in the Merge Commit, we looked back at the commits of
the two branches, i.e., Refactoring and New Development, to
analyze the activities and TD in those commits. The details
of the collected data are presented in Table I.

2) Detecting Technical Debt: SonarQube is an open-
source tool used for code quality inspection for a software
project, which analyzes the source code in order to detect
bugs, code smells, and security vulnerabilities (what in
SonarQube terminology is referred to as issues). Addition-
ally, SonarQube provides the effort in time, which is calcu-
lated based on the remediation effort function. Therefore, the
technical debt of a project is the summation of the estimated
time needed to solve all the issues. We used the default
profile in SonarQube for calculating the remediation time.

1https://www.sonarqube.org (version 6.7.4)
2https://github.com/tsantalis/RefactoringMiner



Table I
DEMOGRAPHICS OF THE ACTIVITIES.

Name # of Instances Percentage
Bug Fixing 226 9.88%
Build 199 8.70%
Commit Merge 578 25.28%
New Development 801 35.03%
Refactoring 476 20.82%
Other 6 0.26%
Total 2286 100%

3) Detecting Refactoring and Refactoring Operations:
We used RefactoringMiner to extract the detected refactoring
operations performed on commits classified as refactoring.
RefactoringMiner is a library developed by Tsantalis et
al. [26] that detects various types of refactoring operations
in the history of a JAVA project. The latest version of
RefactoringMiner can detect 40 different types of ROs with
the precision of 98% and recall of 87% [26]. We use
RefactoringMiner to first detect the ROs in the history of the
project in all the investigated commits. Later, we filtered and
investigated only the ROs that are tagged as a “refactoring”
commit by the developers.

B. Data Analysis

To analyze the effect of Refactoring, Bug Fixing, and New
Development, we calculated ∆TDj =

∑
ej −

∑
ej−1 (e:

effort in minutes)—i.e., the TD introduced or removed by
commit j. ∆TDj is the difference in TD between commit
j, in which the activity has happened, and the TD of the
previous commit TD (i.e., commit j-1). The sign of ∆TDj

determines how TD is affected. If the sign is positive,
it means that the project accumulates more TD with that
particular commit (i.e., TD increases). If the sign is negative,
it means that the TD was paid back with that particular
commit (i.e., TD decreases). If ∆TDj is zero, it means that
TD has not changed with that particular commit.

To analyze how individual Refactoring Operations affect
TD, we use the same concept of ∆TDj . However, we
analyze the data with a different granularity level.

We utilize the data collected by the RefactoringMiner tool
to extract the ROs that happened on specific files of the
commits tagged as refactoring. The developer expressed that
the primary purpose of the commit was performing refac-
toring. We look at the issues (if any) that were introduced
or removed by that particular commit in the files in which
RefactoringMiner detected ROs. With this data, we can trace
whether particular ROs happening in a file (or pairs of files)
have an effect on ∆TDj for those particular files (or pairs
of files). Fig. 3 illustrates an example of how ∆TDj is
calculated when an RO removes an issue.

IV. RESULTS

In this section, we present our results from studying the
impact of refactoring (also focusing on specific refactoring

XjXj-1
Tagged as Refactoring

i1
i2

i3
i4

in

a.java

b.java

commit

effortissuefile

e1

e2

e3

e4

en

i1

i3
i4

in

effortissue

e1

e3

e4

en

i2 e2
Removed

Figure 3. An Example of How ∆TD is Calculated Where an Issue is
Removed.

operations), bug fixing, and new development on Technical
Debt. Table II summarizes the descriptive statistics related to
the three types of activities and their impact on the accumu-
lation and repayment of TD. As we can see, Refactoring and
Bug Fixing have on average negative impact on TD (overall
mean of −1.04 and −0.2 minutes respectively), meaning
that refactoring and bug fixing, at large, helps in repaying
TD. The mean for commits tagged as New Development
is 5.45 minutes meaning that, overall, it contributes to the
accumulation of TD.

Table II
STATISTICS FOR THE COLLECTED DATA ON REFACTORING (R), BUG

FIXING (BF), AND NEW DEVELOPMENT (ND).

N Mean SD Effect
on TD

Cases
Adding TD

Cases
Repaying TD

R 476 −1.04′ 29.30′ −8.3h 106 109
BF 226 −0.2′ 20.89′ −0.77h 40 44
ND 801 5.45′ 38.87′ 72.8h 250 158

Fig. 4 illustrates the accumulation of TD in hours in
the project during the period under analysis (i.e., prior to
the removal of commits tagged as Build, Commit Merge,
and Other). Commit 1 in this picture represents the initial
commit on the time-span of our analysis we investigated.
The total amount of TD increased by 67.72h during the
analyzed time-span, although, as we can observe in Fig. 4, it
fluctuates significantly during that period. Our results further
suggest that, in most cases, TD is introduced during the New
Development, while Refactoring and Bug Fixing were found
to, on average, remove TD. There are four major changes
in TD highlighted in Fig. 4 with red vertical solid lines for
major increases and green vertical dashed lines for major
decreases:

1: A sharp increase of TD tagged as new development.
2: A significant decrease of TD tagged as refactoring

(tagged as “Removed legacy value”, “Clean up”, and “Re-
moved dead code”).



3: A sharp increase of TD tagged as new development.
4: A significant decrease of TD tagged as refactoring and

bug fixing (tagged as “Fixing failing test cases”).
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Figure 4. The Evolution of Accumulated Technical Debt (hours) in the
Project.

Fig. 5 illustrates the impact of each activity on the
accumulation of TD in the project. The commits illustrated
in this figure are sequential but not consecutive because,
as described in Section VII, we have removed the commits
tagged as Build, Commit Merge, and Other. The red bars in
the figure show the total amount of the TD introduced by a
given commit, whereas the green bars show the total amount
of the TD removed in a given commit.
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As it could have been expected, our results indicate that

New Development is the primary source of accumulation
of TD. The 801 commits tagged as New Development
contributed to the accumulation of TD by 72.8h hours
in total. As shown in Fig. 6, 31.21% (250 cases) of the
commits marked as New Development contributes to the
accumulation of TD, while 19.73% (158 cases) contributed
to its repayment. This can be owing to the fact that the
commits tagged as the development of new features might
also include refactorings to introduce design or architec-
tural changes. Previous research suggests that refactoring
most likely occurs during new development or bug fixing
(e.g., [14], [15]).
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Figure 6. The Total Number of Cases and TD, in hours, each Activity
Introduces or Removes from the Project.

In the analyzed period, the commits tagged as Bug Fixing
contributed to the repayment of TD. The 226 commits
tagged as bug fixing contributed to the repayment of TD by
0.77h (i.e., 46 minutes) in total. While 16.54% (44 cases)
of the commits repaid TD, 15.03% (40 cases) contributed to
the accumulation of TD, and 62.83% had no impact on the
TD in the project.

Refactoring is the main activity that contributes to the
repayment of TD. The 476 commits tagged as refactoring
contributed to the repayment of TD by 8.30 hours in total.
While 22.90% (109 cases) of the commits repaid TD,
22.27% (106 cases) contributed to the accumulation the TD,
and 54.83% had no impact on the TD in the project.

To further detect the individual Refactoring Operations
that had happened in the commits tagged by the develop-
ers as “Refactoring,” we used RefactoringMiner tool. Our
analysis of the specific ROs suggests that out of 40 different
types of ROs that the tool detects, there are only 22 types
present within the analyzed commits. The impact of these
ROs on the TD is illustrated in Fig. 7.

Out of 22 ROs detected, 5 ROs, namely Replace Attribute,
Pull Up Method, Parametrize Variable, Move Attribute, and
Extract Superclass helped to remove the TD in all the cases.
Three ROs, namely Push Down Method, Pull Up Attribute,
and Extract Subclass were found to have no effect on the TD,
while Extract and Move Method were found to accumulate
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TD in all cases. Replace Attribute, Rename Variable, Re-
name Parameter, Rename Method, Rename Class, Rename
Attribute, Pull Up Method, Extract Variable, and Extract
Method can be said to be the most effective in removing
TD. At the same time, Rename Class, Move Class, Move
and Rename Class, Extract and Move Method, and Change
Package contribute to the accumulation of TD, although in
some cases can also help repaying TD. Fig. 7 (on the left
side) together with Table III illustrate and summarize the
ratio of observations for the RO types.

V. DISCUSSION

In this section, we discuss our results with regards to our
research questions, followed by the implications of the major
findings for future research and practice.

A. RQ1: The effect of Refactoring, Bug Fixing, and New
Development on TD

As already highlighted in Section IV, Refactoring, Bug
Fixing, and New Development affect the accumulation of
TD in very different ways. We have observed that commits
tagged as Refactoring are, in general, contributing to the
repayment of TD, but also that some commits tagged as New
Development are contributing to its repayment. However, in
the majority of the cases commits have no global impact
on the accumulated TD (i.e., grey bars in Fig. 6). This
might be owing to the fact that, although the product under
study has strict rules to tag commits, developers can be
amalgamating changes in a single commit. For example
a commit tagged as New Development might also contain
many refactoring operations to prepare the architecture for
the new code added, and even some bug fixes, as suggested
in previous research in the area [15]. Refactorings can also
remove TD on a given code entity but at the same time
introduce the same amount of TD elsewhere, and the total
might have 0 balance (as if there has been no effect). In

addition, sometimes refactoring operations might contribute
to improving the quality of the code (by for example
reducing the size of a class without achieving the required
length to remove the Large Class code smell).

When considering the whole project, it might seem that
refactoring might not have a big impact on TD, but as
illustrated in Fig. 4, without the major refactoring events that
usually happen after new development, the accumulated TD
will grow very quickly and out of control.

Commits tagged as New Development contribute to the
accumulation of TD in 31.21% of the cases. However, New
Development also helps repaying TD in 19.73% of the
cases. Refactoring, on the other hand, is expected to have
substantial effect on the TD accumulated in the project.
However Refactoring is only responsible for the removal of
TD in 22.90% of the cases; in 54.83% cases, do not change
the amount of TD; and, counterintuitively, it introduces
additional TD in 22.27% of the cases. While Refactoring
is more effective in removing TD than Bug Fixing and
New Development, given its purpose, it’s not living up to
the expectations. Refactoring, by definition, is performed to
increase the code quality. Even though Refactoring slightly
out performs the other activities in removing TD, it still
introduces substantial amount of TD in a high proportion of
cases, and in half of the cases, does not introduce observable
changes in the overall amount of TD accumulated in the
project. These results are similar to the previous studies
(e.g., [13], [16], [27]) that suggest that developers might
waste a significant proportion of their time dealing with TD
in an inefficient way [13] and that refactoring operations
were not found to be effective in removing TD items as
Code Smells [27], or even were responsible for introducing
bugs [16].

Bug Fixing activities, by definition, are not aimed to deal
with TD. Bugs are not Technical Debt Items per-se; however,
they can be the consequence of TD. The TD removed by bug
fixing activities might be accidental, e.g., due to the deletion
of parts of the code, or refactorings being embedded in a
bug-fixing-tagged commit.

This overall lack of effectiveness of refactoring to repay
TD might be owing to the fact that developers do not refactor
the code only to remove TD, but also to make design or
architectural changes to enable other modification in the
code base. Other explanations might be: i) certain refactoring
operations are not specifically designed to mitigate TD, and
ii) that certain operation can have non-trivial side effects that
introduce TD in a bigger amount than the TD that helps
removing. And lastly, not all the TD can be resolved by
simply refactoring the code.

B. RQ2: The effect of Refactoring Operations on TD

In response to our second research question, we observe
that some types of Refactoring Operations are more effective
in removing TD such as Extract Method and Pull Up



Table III
REFACTORING OPERATIONS SUMMARY OF RESULTS - THE TABLE SUMMARIZES THE TOTAL NUMBER OF DETECTED CASES, THE DIVISION OF

Removed, Introduced, AND No Changes CASES WITH THEIR RESPECTIVE RATIOS, AND THE AMOUNT OF INTRODUCED AND REMOVED TD IN
MINUTES.

Refactoring
Operation

#
Total

#
Removed

TD Minutes
Removed

#
Introduced

TD Minutes
Introduced

# No
Change

%
Removed

%
Introduced

% No
Change

1 Replace Variable 2 1 -14 1 49 0 50 50 1
with Attribute

2 Replace Attribute 1 1 -65 0 0 0 100 0 0
3 Rename Variable 23 8 -443 11 168 4 34.78 47.83 17.39
4 Rename Parameter 25 12 -596 8 156 5 48 32 20
5 Rename Method 28 16 -640 6 243 6 57.14 21.43 21.43
6 Rename Class 21 6 -343 6 424 9 28.57 28.57 42.86
7 Rename Attribute 13 5 -201 4 192 4 38.46 30.77 30.77
8 Push Down Method 3 0 0 0 0 3 0 0 100
9 Pull Up Method 10 10 - 650 0 0 0 100 0 0

10 Pull Up Attribute 2 0 0 0 0 2 0 0 100
11 Parametrize Variable 1 1 -10 0 0 0 100 0 0
12 Move Source Folder 7 0 0 1 15 6 0 14.29 85.71
13 Move Class 682 39 -390 86 1442 557 5.72 12.61 81.67
14 Move Attribute 1 1 -14 0 0 0 100 0 0
15 Move and Rename Class 5 0 0 3 57 2 0 60 40
16 Inline Method 9 3 -76 1 22 5 33.33 11.11 55.56
17 Extract Variable 7 5 -363 1 45 1 71.43 14.29 14.29
18 Extract Superclass 1 1 -65 0 0 0 100 0 0
19 Extract Subclass 1 0 0 0 0 1 0 0 100
20 Extract Method 15 12 -791 3 82 0 80 20 0
21 Extract and Move Method 1 0 0 1 190 0 0 100 0
22 Change Package 9 0 0 5 91 4 0 55.56 44.44

Total 867 121 -4661 137 3176 609 - - -

Method. The results suggest that the refactoring operations
which has to do with more than one file, i.e., changing more
than one file in the same refactoring (e.g., Extract and Move
Method, Move Class, and Move and Rename Class) tend to
increase the total amount of TD. Our results are aligned with
the findings of [16] that suggest the refactoring operations
involving hierarchies are prone to introduce faults. Therefore
these refactoring operations should be used cautiously with
more accurate code inspection and testing activities.

C. Implications for Research and Practice

• Implications for researchers: There is still room for
further research in this area. The findings of this study
can be used as a guideline to further investigate where
the refactoring operations should be used to be more
effective, i.e. whether the refactorings are happening
in the hotspots (the file with frequent changes) fol-
low the same pattern. Further analysis is required to
investigate whether there exists a correlation between
the total number of refactorings and the total amount
of Technical Debt. These results can lead to a better
understanding of how to utilize refactorings and thus
improve TD management.

• Implications for practitioners: As mentioned before,
some specific types of refactoring operations seem to
yield better results when applied to the code while
others seem to exacerbate the code quality. Practi-
tioners can utilize these results when prioritizing the
refactoring operations they use while maintaining the
code. Lastly, the refactoring types that contribute to

increasing the total amount of TD should be used
cautiously.

Generally, the mapping between theoretical constructs and
their representation are essential when building tools and
maybe of interest to raise as a challenge and focus of the
projects when building decision support tools.

VI. THREATS TO VALIDITY

The results of this study are subject to threats to construct
validity, internal validity, and external validity.

Construct validity refers to the relationship between the
theory and the measurements of the observations. It is
the most critical threat for this study which concerns the
collection of the data, and it is related to the limited scope of
the analysis. We only analyze a limited number of commits.
These commits are tagged by developers to identify the type
of activities performed on that commit. We rely on a tool to
detect refactoring operations. More specifically, the threats
to the construct validity of the study are:

• Imprecise identification of the refactoring operations:
We only studied the refactoring operations that have
happened in the commits tagged by the developers as
Refactoring. Further, to detect the individual refactor-
ing operations in refactored commits, we have used
RefactoringMiner. We have tried to mitigate this threat
by taking the developers’ intent into account and by
selecting a state-of-the-art tool whose accuracy has
been analyzed.

• Imprecise calculation of Technical Debt: We have tried
to mitigate this threat by using SonarQube which is



broadly used tool measuring TD and has been also
employed in similar research studies (e.g., [23], [28]).
We have used the default remediation that SonarQube
associates to TD items, since we believe the results
can be more repeatable, and also because practitioners
might be reluctant to customize static code analysis
tools [29].

• Developers incurring in unintentional TD: TD per
definition refers to taking the shortcut intentionally,
but this is the most rare case (as discussed in [5] pp.
153-154). We cannot be certain about whether the TD
was introduced intentionally, and we only rely on the
results provided by SonarQube. This might threaten
our results, and we will investigate this issue in future
empirical studies.

• TD being introduced not in the files affected by refac-
toring operations: When analyzing RQ2 we have min-
imized this threat by circumscribing the analysis to the
files affected by each refactoring operation.

Threats to internal validity refer to confounding factors
that might affect the results. The first threat to the internal
validity comes from the association between the main ac-
tivity tagged by developers in the commit and the different
activities that can contain in reality. We make the analysis re-
lying on the information tagged by the developer, but a given
commit might of course comprise several different activities.
However we are analyzing the main intent expressed by the
developer. In the case of a refactoring commit, it can contain
not only refactoring operations, but the goal of the commit is
improving the quality of the code, therefore one can expect a
positive impact on the global TD of the project. Our results
might have been affected by this fact and we plan to deeper
investigate this phenomena in further empirical studies.

Threats to external validity refer the generalizability of
the results. In this study, we have analyzed a large scale
industrial project which is mainly developed in Java. We
understand that the generalizability of the results is limited,
and we can only claim that our results are applicable to the
analyzed context. We plan to replicate this study not only
in other industrial but also in Open-Source projects.

VII. CONCLUSION

In this paper we present an empirical study for investigat-
ing the impact of refactoring, bug fixing, and new develop-
ment on technical debt, further delving into specific refac-
toring operations to assess their impact. We have analyzed
2, 286 commits from a large scale industrial project, commit
by commit in file level. Our results, within the studied
project, show that overall Refactoring help mitigating TD.
However we have also found that the majority of the cases
Refactoring has no effect on TD, and it can even contributes
to the accumulation of TD, which is in line with previous
results (e.g., [27]). The TD is mainly introduced during
the development of new features, although we have also

observed that commits tagged as new development can help
repaying TD, which might be owing to the fact that commits
tagged as new development might contain refactoring opera-
tions embedded, as found in previous research [15]. Finally,
Bug fixing was found to contribute to the repayment of TD
in the studied period.

Further, we have investigated the impact of specific refac-
toring operations (ROs) on TD. The results suggest that
some ROs namely Extract Method, Pull Up Method, Rename
Method, Rename Parameter, and Rename Variable help to
remove TD while the ROs that deal with more than one
file namely, Extract and Move Method, Move Class, and
Move and Rename Class increases the total amount of TD.
These results are aligned with previous studies (e.g., [16]),
that although addressing similar research questions, focused
only on code smells and performed a more coarse-grained
analysis on open source projects.

This study supports, within the limits of the threats of
validity, that even though ROs are thought as a means to
mitigating TD, in some cases, they might contribute to the
accumulation of TD if not applied with care. This does
not necessarily mean that refactoring operations lower the
code quality, but what our results in the analyzed context
suggest is that certain operations might tend to introduce
new problems in the code (i.e., TD) while might not be
effective on solving the problem the developer had in mind.
Further, from a managerial point of view, our findings about
the impact of refactoring operations on TD can, at the same
time, help reduce the waste of effort by developers.
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