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Abstract 

Background: Metastasized clear cell renal cell carcinoma (ccRCC) is associated with a poor prognosis. Almost one‑
third of patients with non‑metastatic tumors at diagnosis will later progress with metastatic disease. These patients 
need to be identified already at diagnosis, to undertake closer follow up and/or adjuvant treatment. Today, clinico‑
pathological variables are used to risk classify patients, but molecular biomarkers are needed to improve risk classifi‑
cation to identify the high‑risk patients which will benefit most from modern adjuvant therapies. Interestingly, DNA 
methylation profiling has emerged as a promising prognostic biomarker in ccRCC. This study aimed to derive a model 
for prediction of tumor progression after nephrectomy in non‑metastatic ccRCC by combining DNA methylation 
profiling with clinicopathological variables.

Methods: A novel cluster analysis approach (Directed Cluster Analysis) was used to identify molecular biomarkers from 
genome‑wide methylation array data. These novel DNA methylation biomarkers, together with previously identified 
CpG‑site biomarkers and clinicopathological variables, were used to derive predictive classifiers for tumor progression.

Results: The “triple classifier” which included both novel and previously identified DNA methylation biomarkers 
together with clinicopathological variables predicted tumor progression more accurately than the currently used 
Mayo scoring system, by increasing the specificity from 50% in Mayo to 64% in our triple classifier at 85% fixed sensi‑
tivity. The cumulative incidence of progress (pCIP5yr) was 7.5% in low‑risk vs 44.7% in high‑risk in M0 patients classified 
by the triple classifier at diagnosis.

Conclusions: The triple classifier panel that combines clinicopathological variables with genome‑wide methylation 
data has the potential to improve specificity in prognosis prediction for patients with non‑metastatic ccRCC.
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Background
More than a hundred thousand individuals in Europe are 
yearly diagnosed with kidney cancer [1, 2]. Renal cell car-
cinoma (RCC) is the most common type of kidney cancer 
and clear cell RCC (ccRCC) constitutes 75% of RCC cases 
[3]. Due to more extensive use of computed imaging, 
ultrasound, and magnetic resonance in diagnostics most 
patients with RCC are diagnosed incidentally before 
patients experience any classic symptoms (i.e. flank pain, 
haematuria, or a palpable abdominal mass) [4] and the 
frequency of metastatic disease at diagnosis has therefore 
decreased from 30 to 18% over a 5-year period (2005 to 
2009) [5]. Patients with non-metastatic disease at diagno-
sis have a 5-year survival of 75–85%, in contrast to only 
10% in patients with metastatic disease. Among patients 
with non-metastatic disease at diagnosis, approximately 
20–30% will later develop metastasis after nephrectomy, 
i.e. progression of the disease [5].

Non-metastatic patients with a high risk of tumor pro-
gression might benefit from an intensified follow-up to 
improve early diagnosis of tumor recurrence, and in the 
long run, be candidates for adjuvant treatment. There-
fore, it is essential to identify those patients already at 
diagnosis by reliable biomarkers with high sensitivity and 
specificity.

Currently, the Mayo scoring system (Mayo) is used to 
predict outcome and treatment stratification in ccRCC 
[6]. Mayo combines T-stage, N-stage, tumor size, Fuhr-
man grade, and the presence of necrosis to create a score 
dividing patients into three groups: low, intermediate, 
and high-risk for tumor progression. Depending on the 
risk group, the frequency and the total follow-up time 
differs, ranging from 5 to 10 years [7].

Altered DNA methylation has been identified as a 
prognostic marker in several malignancies including 
ccRCC, and has been suggested as a potential target for 
therapy [8, 9]. We have recently shown that increased 
promoter-associated DNA methylation is correlated to 
poorer outcomes in ccRCC [10, 11]. Studies by others 
have identified selected CpGs with potential relevance 
for ccRCC prognosis [12–17]. Arai et al. and Tian et al. 
identified CpG island methylator phenotype (CIMP) 
panels, that predicted cancer-free survival and over-
all survival [13, 18]. In 2015, Wei et  al. presented a risk 
score based on five CpGs that predicted overall survival 
in three different ccRCC cohorts [14]. Joosten et al. [12] 
performed a systematic review summarizing prognostic 
DNA methylation biomarkers in ccRCC, and identified 
nine genes with strong evidence as prognostic biomark-
ers in ccRCC. However, few of these panels which are 
based on a limited number of CpGs, did show reproduci-
ble prognostic relevance in predicting risk for progress in 
non-metastatic patients [11]. Larger genome-wide panels 

of CpG sites might be needed for improved risk classifi-
cation [12].

An interesting approach suggested by Thompson and 
Marsit [19] combines several molecular and clinical 
biomarkers to create a prognostic risk score for ccRCC 
patients. Even though the benefits of integrative analy-
sis using different omics measurements and clinical data 
have started to become clear, few current risk classifica-
tion models combine clinicopathological variables with 
molecular biomarkers.

The current project aimed to derive a classifier to esti-
mate the risk of tumor progression after nephrectomy 
in patients with local ccRCC at diagnosis, by combining 
genome-wide methylation profiles and established clin-
icopathological variables. Three sets of biomarkers were 
considered in the prognostic modeling: clinicopathologi-
cal variables, previously identified CpGs (PI-CpGs), and 
a set of methylation biomarkers obtained using a novel 
approach called Directed Cluster Analysis (DCA). These 
sets were used together with logistic regression to build 
classifiers predicting patients as either high risk for pro-
gress (HRP) or low risk for progress (LRP).

Methods
ccRCC patient samples
This study included 115 patients with ccRCC, diagnosed 
between 2001 and 2009 at the University Hospital in 
Umeå, Sweden. All patients were primarily treated with 
either radical or partial nephrectomy and followed up 
in accordance with the Swedish health care program for 
kidney cancer (median follow-up time 98  months rang-
ing from 1–193  months) [7]. No patient included in 
this study received neoadjuvant and no non-metastatic 
patients received adjuvant treatment. Tissue samples 
were obtained after nephrectomy, snap-frozen in liquid 
nitrogen, and stored at − 80 °C until analysis. DNA was 
extracted from tissue samples as described previously 
[20].

The tumor disease was classified using the tumor-node-
metastasis (TNM) classifications system [21]. Eighty-
seven patients were non-metastatic (M0 i.e. TNM I-III) 
and 28 patients had metastatic disease (M1 i.e. TNM IV) 
at diagnosis. The nuclear grading was performed accord-
ing to Fuhrman et  al. [22] and the largest tumor diam-
eter was measured at the CT scans. Blood samples were 
taken within a week before nephrectomy and analyzed 
for hemoglobin levels, thrombocyte particle count, cal-
cium concentration, albumin levels, gamma-glutamyl-
transferase, alkaline phosphatase, and creatinine levels. 
The above variables were included in the analysis and 
are henceforth referred to as the clinical variables. Here, 
missing values were imputed using the mean value.
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All tumors were classified according to the Mayo 
scoring system, which calculates a risk score based on 
T-stage (T1a, T1b, T2, and T3-T4), tumor size (smaller/
larger than 10  cm), N-stage (NX/N0, N1), Fuhrman 
grade (Grade 1–2, Grade 3, Grade 4) and tumor necrosis 
(absent/present) (Additional file 1: Table S1) [6, 7].

Clinical follow-up data were extracted in August 2017. 
All patients have given informed and signed consent and 
the study was approved by the regional ethical review 
board in Umeå (Dnr 2011–156-31 M, 20110523).

High‑dimensional DNA methylation arrays
The DNA methylation analysis has previously been 
described by Evelönn et  al. [11]. In short; DNA was 
extracted from tissue samples, from 115 tumors and 12 
tumor-free (TF) tissue samples, and bisulfite converted 
using the EZ DNA Methylation Kit (Zymo Research, 
Irvine, USA). Methylation conversion was verified by 
MethyLight analysis [23] and samples were assessed for 
DNA methylation using HumanMethylation450K Bead-
Chip arrays (Illumina, San Diego, Ca, USA). The arrays 
were scanned with the HiScan array reader (Illumina). 
The quality of each array was evaluated with the built-
in controls. The technical reproducibility of methylation 
array analysis was monitored by replicated samples on 
each array, and the R2-values ranged from 0.995 to 0.997.

Pre-processing was performed as previously described 
by Degerman et al. [24]. Briefly, the fluorescence intensi-
ties were extracted using the Methylation Module (1.9.0) 
in the Genome Studio software (V2011.1). Pre-processing 
and downstream analysis was done using R (v2.15.0 and 
v3.4.3). Data were normalized using the BMIQ method 
[25] to compensate for the two different bead types used 
in the array. Filtering of data included the exclusion of 
CpG probes; located at the X and Y chromosomes, that 
align to multiple loci in the genome [26], located less than 
3 bp from a known single nucleotide polymorphism [26], 
without representation on the Illumina EPIC methylation 
arrays or had a detection p-value larger than 0.05 or a sig-
nal from less than 3 nbeads in any sample. The analysis 
was focused on CpGs located within the promoter region 
close to the transcription start site (TSS) (i.e. the regions 
denoted TSS1500, TSS200, 5′UTR, and exon 1). CpGs 
outside these regions and CpGs located in methylation 
quantitative trait loci (mQTLs) [27] were also excluded 
from the analysis. The methylation level (β-value) of each 
CpG site ranged from 0 (no methylation) to 1 (complete 
methylation). Differently methylated CpG sites (DM-
CpGs) were identified by comparing the sample’s β-value 
with the average β-value taken over the twelve TF-sam-
ples, and an absolute Δβtumor-TF-tissue-value ≥ 0.2 was con-
sidered as a DM-CpG.

Selection of CpGs previously associated with ccRCC 
prognosis
CpG sites previously associated with ccRCC, and present 
on HumMeth450K arrays, where identified in five origi-
nal publications and one review and included in the anal-
ysis [12–17]. The systematic review by Joosten et al. 2017, 
identified nine genes with strong evidence as prognos-
tic DNA methylation-based biomarkers in ccRCC [12]. 
Ricketts et al. [15] listed genes known to be hypermethyl-
ated in ccRCC in the publically available Tumor Cancer 
Genome Atlas Kidney Renal Cell Carcinoma (TCGA-
KIRC) project. Forty-five genes met the criterion to be 
hypermethylated in relation to paired tumor-free sam-
ples, and the CpG presented as most hypermethylated for 
each gene was included in our analysis. Van Vlodrop et al. 
[16] identified a four-gene promoter methylation marker 
panel that was associated with cancer-specific survival 
and validated in the TCGA-KIRC cohort. Wei et al. [14] 
analyzed paired tumor and tumor-free tissue samples 
from 46 individuals on the Infinium HumMeth450K 
arrays and built a model including five CpGs estimating 
risk for death. Arai et al. [13] created a 16 CpG site CIMP 
classification panel using the Infinium 27  K arrays that 
was correlated to more aggressive tumors. Fourteen out 
of these CpGs were represented on the Infinium Hum-
Meth450K arrays and included in our analysis. Wang 
et al. [17] identified a CpG site in the DAB2IP gene, both 
by Illumina 450  K arrays and pyrosequencing that was 
correlated to poorer overall survival if hypermethylated.

The CpG sites identified in these publications include 
87 CpGs of which 78 were unique, nine CpGs were pre-
sented in more than one publication (Additional file  2: 
Table  S2). All CpG biomarkers included in our analysis 
had to fulfill the filtering steps described above except the 
requirement for being located within a gene promoter. 
After going through the filtration steps, 64 CpG sites pre-
viously associated with ccRCC prognosis remained and 
were included in the analysis (Additional file 3: Table S3).

Directed cluster analysis
CpG clusters of potential prognostic relevance were iden-
tified using the novel clustering method Directed Cluster 
Analysis (DCA) described below. For each CpG site, the 
samples were grouped using 2-means clustering. Samples 
belonging to the group with the highest mean β-value 
were labeled 1 while the other samples were labeled 0. 
Hence, for each CpG site, a binary profile vector was 
constructed. CpGs with less than 10% of the samples in 
the smallest group were removed from further analysis. 
The difference between the mean β-values in the two 
groups was calculated for each CpG and sites with an 
absolute difference lower than 0.2 were excluded from 
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downstream analysis. The remaining CpGs were clus-
tered using k-means with k = 40. Note that CpGs with 
similar binary partition of the samples are more likely to 
end up in the same cluster. For each cluster and sample, 
a robust consensus variable was obtained by calculat-
ing the mean β-value of all sites included in the cluster. 
The consensus variables were treated as biomarkers. The 
DCA method workflow is summarized in Fig. 1a, b.

Classification
The classification was used to estimate the risk of metas-
tasis within 5 years among patients with non-metastatic 
disease at diagnosis. The inclusion criterion was at least 
a 5-year follow-up, which was met by 78 non-metastatic 
patients. Fifty-eight patients remained non-metastatic 
(M0-PF), while 20 patients progressed (M0-P) dur-
ing the 5-year follow-up. Three sets of biomarkers were 

considered: the clinicopathological variables (clinical), 
the previously identified ccRCC associated methylation 
sites (PI-CpGs), and the consensus variables identified 
by directed cluster analysis (DCA). The sets were used 
individually and combined in six sets: clinical, PI-CpGs, 
DCA, clinical + PI-CpGs, clinical + DCA, and clini-
cal + PI-CpGs + DCA. For each set, a classifier was built 
on the first five Principal Components (PC) using logistic 
regression. The PCs’ were obtained using standardized 
variables, except for the categorical and ordinal variables 
that were mean-centered. The classifiers were evaluated 
by the specificity observed at a fixed 85% sensitivity.

Statistical analysis
Differences between patient groups were analyzed using 
the Mann–Whitney U test for continuous variables and 

a b

Filtration of CpG sites as described
in methods section

Cluster each CpG individually into
two groups such that group 1 

always have higher mean value. 

Exclude sites with skew distribution 
and with absolute difference in 

methylation lower than 0.2. 

Cluster all sites based on ther 0-1 
vectors into 40 groups

Construct the consensus variables
by calculating the mean β for each

cluster

Build Classifier

ccRCC cohort
n = 115

DCA
n = 110

Outcome
prediction

n = 78

M0-PF
n = 58

M0-P 
n = 20

Extremly Hypometh. 
non-metastatic samples

n = 5

M1 samples n = 28
FU < 5 yr (M0-

censored) n = 9

Fig. 1 Analysis workflow. a DCA consensus cluster workflow. Showing the steps for the creation of consensus variables using Directed Cluster 
Analysis (DCA). b Patient inclusion in analysis steps
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the Chi-square test for categorical variables. The calcu-
lations were performed in R v3.4.3. Agreement between 
the Mayo  (MAYOhigh/intermediate and  MAYOlow risk) and 
the triple classifier (high risk and low risk) was measured 
by the Cohen´s kappa score in R-package psych.

Receiver operating characteristic (ROC) analysis and 
the area under the curve (AUC) calculations were done 
using R-package pROC, Mayo scores, and the posterior 
probabilities of the six classifiers. The ROC curves were 
compared using the methodology described by DeLong 
et al. [28].

The cumulative incidence of progress within 5 years 
from diagnosis  (CIP5yr) was estimated by Kaplan–Meier 
survival tables. Differences in survival distributions 
between subgroups of samples were calculated using 

the log-rank test. Survival analysis was performed using 
the Statistical Package for the Social Sciences (SPSS Inc., 
Chicago, IL) software version 24.

Results
Descriptive analysis of the ccRCC cohort
A total of 115 patients were included in this study, 57% 
were men, and the median age was 65 (± 11.6) years at 
diagnosis. The patients were divided into three groups; 
non-metastatic progression free (M0-PF, n = 58); non-
metastatic with progression within 5 years (M0-P; 
n = 20), and metastasized at diagnosis (M1; n = 28). Nine 
non-metastatic patients (M0-censored) were excluded 
from the risk classification models as 5 years follow-up 
was not reached e.g. due to the death of other diseases 

Table 1 Clinicopathological variables and their relation to ccRCC progression

Mean values and standard deviation (SD) are reported for each continuous variable. Chi‑square tests were used for testing independence between categorical 
variables and Mann–Whitney U tests were used for comparisons between continuous variables. M0 and M1 denote non‑metastatic and metastatic patients at 
diagnosis respectively, while PF and P denote progress free patients and patients with progress within 5 years respectively
a One missing value in group M1
b Three missing values. One value is missing in each of M0‑PF, M0‑P and M1
c One missing value in M0‑PF
d Four missing values. Three in M0‑PF and one in M1

Variable M0‑PF n = 58 M0‑P n = 20 M1 n = 28 M0‑PF vs M0‑P 
p‑value

M0‑PF vs M1 
p‑value

M0‑P 
vs M1 
p‑value

Gender

 Male 32 10 21 0.888 0.125 0.139

 Female 26 10 7

Morphological  gradea

 G1 12 1 0 0.002  < 0.001 0.394

 G2 30 6 7

 G3 15 8 8

 G4 1 5 12

TNM

 I 39 5 0  < 0.001  < 0.001  < 0.001

 II 10 2 0

 III 9 13 0

 IV 0 0 28

Mayo

 Low 29 3 0.006 – –

 Intermediate/high 29 17

 Age (years) 65.6 (11.6) 64.2 (11.9) 63.0 (11.0) 0.590 0.345 0.706

 Albumin (g/L) 40.6 (4.1) 38.6 (7.2) 36.7 (4.5) 0.299  < 0.001 0.121

 Alkaline phosphatase (µkat/L)b 1.9 (2.0) 2.2 (1.5) 5.1 (6.6) 0.745  < 0.001 0.026

 Calcium (mmol/L)c 2.35 (0.14) 2.32 (0.13) 2.46 (0.26) 0.358 0.212 0.129

 Creatinine (µmol/L) 79.6 (16.3) 86.0 (32.4) 93.3 (27.6) 0.837 0.015 0.300

 Gamma glutamyltanseferase (µkat/L)d 0.76 (1.17) 0.83 (1.21) 2.23 (3.06) 0.401  < 0.001 0.002

 Hemoglobin (g/L) 137.6 (17.3) 121.1 (22.0) 116.9 (19.1) 0.002  < 0.001 0.331

 Thromobocyte particle count  (109/L) 251.7 (77.7) 316.5 (175.4) 365.3 (136.8) 0.112  < 0.001 0.090

 Tumor diameter (mm) 56.5 (31.2) 95.0 (44.8) 108.3 (35.7)  < 0.001  < 0.001 0.262
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(Fig. 1b). No significant differences in age or gender were 
observed between the subgroups (Table 1).

Individual analysis of clinical and methylation variables.
Twelve clinical variables were compared in the groups 
M0-PF and M0-P. The tumor diameter was significantly 
larger in the M0-P group than in the M0-PF group at 
diagnosis (p < 0.001), 95.0 mm and 56.5 mm, respectively. 
Moreover, the distributions of morphological grade 
(p = 0.002) and TNM stage (p < 0.001) differed in M0-PF 
and M0-P patients, with a higher grade/TNM stage in 
the M0-P patients. The hemoglobin value was signifi-
cantly higher (p = 0.002) in M0-PF (mean 137.6 g/l) than 
in M0-P (mean 121.1  g/l) patients at diagnosis. For the 
remaining clinical variables, no significant differences 
were observed (Table 1).

Next, differences in methylation between M0-P and 
M0-PF were investigated. For the 64 previously identified 
sites (PI-CpGs), 15 (23.4%) sites were significantly more 
methylated in the M0-P group compared to the M0-PF 
group (Additional file 3: Table S3).

Before the DCA analysis, an overview of all the samples’ 
methylation profiles was performed. Five non-metastatic 
samples showed an extreme number of hypomethylated 
(Δβ ≤ − 0,2) CpGs and were excluded from the DCA 
clustering process to avoid heavily unbalanced distribu-
tions in the first step in the DCA procedure. However, 
these samples were included in the downstream analysis 
after the consensus variables were constructed (Fig. 1b).

Applying the DCA method yielded 40 DNA meth-
ylation cluster variables (Additional file 4: Table S4). Six 
(15%) of these variables showed a significantly higher 
methylation level in the M0-P group compared to the 
M0-PF group (Additional file 5: Table S5).

Classification of non‑metastatic ccRCC patients
The objective was to build classification models that can 
be used to predict tumor progression among non-met-
astatic ccRCC patients at diagnosis, i.e. either M0-PF or 
M0-P. Six classification models were constructed and 

evaluated against the Mayo classification. Mayo classified 
32 patients as low-risk, 36 patients as intermediate-risk, 
and 10 patients as high-risk. To calculate the specificity 
and sensitivity of Mayo, we pooled the Mayo intermedi-
ate and Mayo high groups motivated by identical clini-
cal follow-up scheme for these patients [7]. The pooled 
group was denoted Mayo intermediate/high. Mayo 
showed 85% sensitivity and 50% specificity in our cohort.

The six classifiers were derived using logistic regres-
sion and the first five principal components taken from 
one or several of the considered data sets i.e. clinical, 
PI-CpGs, DCA, clinical + PI-CpGs, clinical + DCA, and 
clinical + PI-CpGs + DCA. Each classifier predicted the 
patients as either low risk for progress (LRP) or high risk 
for progress (HRP) (Additional file 6: Table S6). To enable 
comparison with Mayo, the classifiers were evaluated by 
considering the specificity when the sensitivity was fixed 
at 85% by controlling the cutoff of the predicted poste-
rior probabilities. The expected specificity observed by 
chance for a non-informative random data was tested 
through simulation and was estimated to 11%.

The performances of the classifiers using the clini-
cal, PI-CpGs, and DCA data alone were compared with 
Mayo. The clinical, PI-CpGs, and DCA classifiers had 
43%, 59% and 43% specificity respectively (Table 2). The 
deviated predictions suggest that the data sets contain 
complementary information and that better predictive 
models can be obtained by combining several data sets.

Accordingly, the triple classifier using data from all 
three data sets, i.e. 12 clinical variables, 64 PI-CpGs, 
and 40 DCA variables had the highest specificity (64%) 
(Table 2). This triple classifier correctly identified 37 of 58 
patients without progression and 17 of 20 patients with 
tumor progression. Classification of new ccRCC patients 
using the triple classifier can be performed using the R 
script found at: https ://githu b.com/Linda Vi/ccRCC -class 
ifica tion. To impute missing values, mean values based 
on our cohort for all variables included in the model, are 
supplied along with the script.

Table 2 Performance of the considered classifiers and the Mayo Scoring system

Classifier Sensitivity (%) Specificity (%)

A Mayo scoring system (Mayo) 85 50

B Clinicopathological variables (Clinical) 85 43

C Identified prognostic biomarker CpGs (PI‑CpGs) 85 59

D Consensus variables (DCA) 85 43

E Clinical + PI‑CpGs 85 55

F Clinical + DCA 85 53

G Clinical + PI‑CpGs + DCA (the triple classifier) 85 64

https://github.com/LindaVi/ccRCC-classification
https://github.com/LindaVi/ccRCC-classification
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ROC-curves were made for all classifiers and no sig-
nificant differences (p > 0.05 for all pairwise comparisons) 
were shown between the overall AUC-values (Additional 
file 8: Figure S1).

Similarities between models
A sensitivity of 85% entails that each of the models cor-
rectly classified 17 of the 20 patients with tumor pro-
gression within 5  years. Sixty-five percent of the M0-P 
patients and 21% of the M0-PF patients were correctly 
classified by all seven models, including Mayo. Moreover, 
47% of the patients (independent of true outcome) were 
classified the same by all classifiers (Additional file  6: 
Table S6).

As expected, methods relying on only clinical data 
(clinical and Mayo) gave similar output (Fig.  2a and 
Additional file  6: Table  S6), where 87% of the patients 
were classified identically by the methods. The DCA 

and PI-CpGs classifiers that rely on only methylation 
data, showed identical classification output in 81% of the 
patients (Fig. 2a, b). The similarities in the classification 
of the triple classifier compared to every single subset; 
clinical, PI-CpGs and DCA, showed an overlap in 72%, 
83%, and 74% respectively (Fig. 2b).

The triple classifier showed a moderate agreement with 
the Mayo classification, with Cohen´s kappa = 0.49 and 
with 74% of the samples classified identically (Fig. 2c, d 
and Additional file 7: Table S7).

Survival analysis
Cumulative incidence of progress (CIP) analysis was used 
to investigate the prognostic relevance for the triple clas-
sifier and Mayo in 78 non-metastatic ccRCC patients. 
Both classifiers divided the patients into two groups: 
low risk for progress and high risk for progress. The tri-
ple classifier was better than Mayo to prognosticate 
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identically by the triple classifier and the Mayo Scoring System for the true outcome in c non‑metastatic ccRCC at diagnosis and progress‑free after 
5 years (M0‑PF) patients and d non‑metastatic ccRCC at diagnosis with progression within 5 years (M0‑P) patients
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progress  (pCIP5yr 9.4% low  riskMayo vs 7.5%  LRPtriple clas-

sifier)  (pCIP5yr 37% intermediate/high  riskMayo vs 44.7% 
 HRPtriple classifier) (Fig. 3).

Discussion
DNA methylation alterations are early events in tumor 
progression and has appeared as a molecular biomarker 
candidate for improved risk classification [11–17]. Our 
study shows that the prediction of tumor progression 
within 5 years after nephrectomy in non-metastatic 
ccRCC patients at diagnosis was improved by using 
bioinformatics modeling to combine clinicopathologi-
cal variables with methylation signatures.

One-third of non-metastatic ccRCC patients at 
diagnosis are at risk for later tumor progress [5]. It is 
of importance to identify patients with a high-risk for 
tumor progression, since they may benefit from a more 
intensive follow-up and adjuvant therapy. As reviewed 
by Bai et  al. [29] several adjuvant studies using tyros-
ine kinase inhibitors (TKI) have been performed in 
patients with locally advanced non-metastatic RCC. 
The conclusion drawn from this systematic review is 
that there might be ccRCC patients that benefit from 
adjuvant treatment, as described in the S-TRAC study 
showing longer disease-free time but not for overall 
survival, while other TKI studies showed no survival 

benefit [29, 30] Deepened knowledge of ccRCC biol-
ogy is important to identify new therapeutic strategies 
for high-risk patients. New ongoing phase 3 adjuvant 
immunotherapy trials might theoretically be more suc-
cessful since these therapies unblock the hampering of 
the patient’s immune cells by the tumors [31].

Risk classification strategies which include both clini-
cal and molecular biomarkers have the potential to 
improve sensitivity and specificity and more effectively 
identify the patients at high risk for progress which may 
benefit from modern adjuvant therapies, despite the 
common side-effects.

Our population-based ccRCC cohort represents well-
characterized patients with long follow-up time. We 
performed genome-wide methylation analysis on the 
diagnostic tumor samples and included both M0 and 
M1 samples in the DCA modelling.

Among the 78 non-metastatic ccRCC at diagnosis, 
the currently used Mayo showed a sensitivity of 85% 
and a specificity of 50% in predicting tumor progres-
sion. We tested six different classifiers including clinical 
and/or methylation derived variables at a fixed desir-
ably high sensitivity of 85% to allow comparison with 
Mayo, and also motivated by the clinical need for high 
sensitivity in risk classification. The specificity at the 
fixed sensitivity of 85% was considerably higher for the 
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Fig. 3 Cumulative incidence of progress  (pCIP5y). Seventy‑eight non‑metastatic tumors were classified using a the Mayo Scoring System (Mayo) 
and b the triple classifier (clinical + PI‑CpGs + DCA) at diagnosis. The  pCIP5y were compared in the risk groups. Log‑rank p-values are presented
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triple classifier than for Mayo (64% vs. 50%), although 
the overall ROC curve analysis could not significantly 
discriminate between the classifiers’ AUC. Moreover, 
the triple classifier showed a more accurate prediction 
of progress than Mayo in the cumulative incidence of 
progress analysis.

Altogether, the addition of methylation biomarkers to 
the currently used clinical variables improved the pre-
diction of progress among non-metastatic patients at 
diagnosis. Thompson and Marsit [19] also combined 
clinical variables and molecular biomarkers, including 
both methylation and gene-expression profiles. Their 
study supports our conclusion that methylation analysis 
has the potential to improve risk classification in ccRCC.

Biomarkers derived from DNA methylation analysis 
have several advantages, e.g. DNA methylation altera-
tions are stable, do not require adapted sample han-
dling, and DNA is routinely extracted in the clinic. DNA 
methylation classifiers are in clinical use as a prognostic 
marker in other malignancies. Jaunmuktane et  al. used 
the classifier presented by Capper et  al. in combination 
with established methods (i.e. histological assessment 
and conventional molecular testing) to diagnose CNS 
tumors. Methylation-based classification contributed to 
a more accurate and clinically relevant diagnosis, most 
pronounced in unusual, non-specific, or non-represent-
ative histological cases [32, 33]. Bioinformatics pipelines 
for methylation array data analysis in CNS tumors are 
being introduced at clinical diagnostic laboratories [32, 
34]. Although methylation analyses have shown prognos-
tic value in ccRCC [12] they are still not used in clinical 
diagnosis.

An alternative classifier using gene expression data, 
ClearCode34, is of prognostic relevance in several ccRCC 
cohorts as reviewed by Ghatalia and Rathmell [35]. 
Expression levels of 34 genes were analyzed and tumors 
were classified as either low-risk ccA or high-risk ccB. 
Notably, the same tumor could be categorized as both 
ccA and ccB due to tumor heterogeneity in expression 
levels. We have previously shown that DNA methylation 
patterns in ccRCCs are heterogeneous between different 
patients, but within individual tumors, the methylation 
pattern is homogenous [11]. This was further supported 
by the study of Wei et al. who classified multiple samples 
within each tumor and showed that 90% of tumors were 
correctly classified by DNA methylation-based classifica-
tion [14], suggesting DNA methylation as an attractive 
and stable biomarker.

The proposed DCA-method is a novel unsupervised 
approach for identifying potential biomarker panels. 
Hence, the method does not use class information, in our 
case information on progress, to derive the biomarkers. 
An advantage with an unsupervised approach is that it 

can capture biological signatures also when the classes of 
interest are heterogeneous.

The DCA variables are obtained by taking the average 
beta-value over a large number of CpGs, which makes 
them less sensitive to noise compared to single CpG bio-
markers. Future studies on independent ccRCC cohorts 
are of importance for confirming the prognostic rele-
vance of our defined risk classification panel. We encour-
age researchers to independently evaluate the proposed 
triple classifier, utilizing standard clinical data and meth-
ylation data from either the Infinium Human Methylation 
450 k BeadChip or Infinium MethylationEPIC arrays.

We believe that our study shows the potential in com-
bining clinicopathological variables with methylation 
signatures to improve current risk classification of non-
metastatic ccRCC.

Conclusions
A combination of clinicopathological and epigenetic 
variables, i.e. DNA methylation, have benefits in pre-
dicting survival of patients with ccRCC, compared to 
the currently used Mayo classifier. The triple classifier 
has the potential to enhance specificity in identifying 
ccRCC patients with a high risk of tumor progression and 
improve treatment stratification.
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