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Abstract
In the hyperbolic community, discontinuous Galerkin (DG) approaches are mainly applied
when finite element methods are considered. As the name suggested, the DG framework
allows a discontinuity at the element interfaces, which seems formany researchers a favorable
property in case of hyperbolic balance laws. On the contrary, continuous Galerkin methods
appear to be unsuitable for hyperbolic problems and there exists still the perception that
continuous Galerkin methods are notoriously unstable. To remedy this issue, stabilization
terms are usually added and various formulations can be found in the literature. However,
this perception is not true and the stabilization terms are unnecessary, in general. In this
paper, we deal with this problem, but present a different approach. We use the boundary
conditions to stabilize the scheme following a procedure that are frequently used in the finite
difference community. Here, the main idea is to impose the boundary conditions weakly and
specific boundary operators are constructed such that they guarantee stability. This approach
has already been used in the discontinuous Galerkin framework, but here we apply it with a
continuous Galerkin scheme. No internal dissipation is needed even if unstructured grids are
used. Further, we point out that we do not need exact integration, it suffices if the quadrature
rule and the norm in the differential operator are the same, such that the summation-by-parts
property is fulfilled meaning that a discrete Gauss Theorem is valid. This contradicts the
perception in the hyperbolic community that stability issues for pure Galerkin scheme exist.
In numerical simulations, we verify our theoretical analysis.
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1 Introduction

In recent years, significant efforts have been made to construct and develop high-order meth-
ods for hyperbolic balance laws, and most of the methods are either based on finite difference
(FD) or finite element (FE) approaches. In the FE framework, one favorable, if not the most
favorable scheme, seems to be the discontinuous Galerkin (DG) method introduced by Reed
and Hill [1] because of its stability properties [2–5]. Many modern DG formulations are
based on summation-by-parts (SBP) operators and the recent stability proofs rely on the SBP
property [5–10]. Even, if the SBP operators where originally defined in the FE framework,
they have been transferred to FD methods [11] and have been further developed in the FD
setting where they are now commonly used. They lead to stability following the steps of the
continuous energy analysis [12–14]. Together with SBP operators, Simultaneous Approxi-
mation Terms (SATs) that impose the boundary conditions weakly are applied. The SBP-SAT
technique is powerful and universally applicable aswewill show in this paper. Another reason
for the popularity of DG is that the numerical solution is allowed to have a discontinuity at the
element boundaries, and, since non-linear hyperbolic problems are supporting shocks, this
property is believed to be desirable. In addition and maybe most important, the DG methods
leads to block diagonal mass matrices which are easy to invert. The difference between a DG
approach and continuous Galerkin (CG), besides the structure of the mass matrix, is that in
CG the approximated solution is forced to be continuous also over the element boundaries.
This restriction is perceived to be quite strong also in terms of stability where the erroneous
(as we will show) belief in the hyperbolic research community exists, that a pure CG scheme
is unstable,1 and stabilization terms have to be applied to remedy this issue [15–17].
One may only speculate where this erroneous perception come from? In our opinion, one
major reason could be that if one considers a pure Galerkin method using a linear Lagrange
polynomial basis of order one, it can be shown that the method is equivalent to the 3-
point central difference scheme. This scheme is not von Neumann stable [18] when periodic
boundary conditions are considered. By switching the basis functions for instance to splines
and / or some lumping technique, von Neumann stability can be proven, see [19,20]. We
want to point out that with the lumping technique as described in [20], one is able to re-
write the Galerkin method to well-known finite difference schemes like Lax-Friedrichs or
Lax-Wendroff schemes and at the end, a stable finite difference scheme.2 In addition, if one
considers initial-boundary value problems, there also exist some preliminary stability results
[21–23]. Here, themain idea is to switch the norms of the trial space and include the procedure
at the boundary. However, these results seems forgotten in the hyperbolic community.
In this paper, we focus on the stability property of a pure Galerkin scheme, but follow a
different approach. Our preliminary idea/thought is: If one considers the DG method with
one element, the method is stable. There is nothing that says that the approximation space
must be a broken polynomial space, the only thing that is needed is that the trial and test
function must have some kind of regularity within the elements, so that the divergence
theorem (or SBP techniques) can be applied. Continuity at the boundaries and regularity
inside the elements due to the polynomial space are enough. No internal artificial dissipation

1 We like to mention that also parts of the authors had this belief before starting the project.
2 Actually, the opposite is also true: Everything is a finite element scheme with a suitable quadrature rule.
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is required and no special conditions on the grid structure, for instance cartesian grids, have
to be assumed. Thus, for example unstructured triangular meshes can be applied. Hence,
one can see a CG method as a DG one, with only one element (the union of the simplices)
with an approximation space made of polynomials with continuity requirement between the
simplices. Hence, what is the difference between these two approaches? The answer to this
question points to the procedure at the boundary. In the stability proofs, the use of SATs is
essential. In [13] diagonal norm stable CG SBP-SAT discretizations have previously been
presented and further extended in [24,25] where local projection stabilizations are applied
to obtain entropy stable discretizations. The focus lies especially on the construction and
investigation of diagonal norm SBP operators. Contrarily, in this work we focus on SAT
and apply Galerkin schemes which fulfill the SBP property meaning that a discrete Gauss
theorem is valid. We apply them with pure CG discretizations with dense norms and this is
the topic of this paper where we show that no internal dissipation is needed in CG methods.
We divide the paper as follows: In the second section, we shorty introduce the continuous
Galerkin scheme which is used and investigated in the following. Next, we introduce and
repeat the main idea of the SAT procedure from the FD framework and extend it to the
Galerkin approach. We show that the determination of the boundary operators is essential.
In Sect. 4, we focus on the eigenvalue analysis of the spatial operators and derive conditions
from the continuous setting to build adequate boundary operators in the discrete framework.
We give some recipes which will be used in Sect. 5 to support our analysis in numerical
experiments. Finally, we conclude and discuss future work.

2 Continuous Galerkin Scheme

In this section, we shortly introduce the pure continuous Galerkin scheme (CG) as it is also
known in the literature [11,16,26]. We are interested in the numerical approximation of a
hyperbolic problem

∂U

∂t
+ div f (U ) = 0 (1)

with suitable initial and boundary conditions. The domain � is split into subdomains �h

(e.g triangles/quads in two dimensions, tetrahedrons/hex in 3D). We denote by K the generic
element of the mesh and by h the characteristic mesh size. Then, the degrees of freedom
(DoFs) σ are defined in each K : we have a set of linear forms acting on the set Pk of
polynomials of degree k such that the linear mapping q ∈ P

k �−→ (σ1(q), . . . , σ|∑K |(q)) is
one-to-one, where |∑K | denotes the total number of DoFs in K . The set S denote the set of
degrees of freedom in all elements. The solution U will be approximated by some element
from the space Vh defined by

Vh :=
⊕

K

{
Uh |K ∈ P

k ∩ C0(�)
}

. (2)

A linear combination of basis functions ϕσ ∈ Vh will be used to describe the numerical
solution

Uh(x) =
∑

K∈�h

∑

σ∈K
Uh

σ (t)ϕσ |K (x), ∀x ∈ �. (3)

As basis functions we are working either with Lagrange interpolation where the degrees of
freedom are associated to points in K or Bézier polynomials.
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To start the discretisation, we apply a Galerkin approach and multiply with a test function
V h and integrate over the domain. This gives

∫

�

(V h)T
∂U

∂t
dx +

∫

�

(V h)T div f (U )dx = 0. (4)

Using the divergence theorem, we get
∫

�

(V h)T
∂U

∂t
dx −

∫

�

(∇V h)T f (U )dx +
∫

∂�

(
V h)T f (U ) · n dγ = 0. (5)

By choosing V h = ϕσ for any σ ∈ S, where we further assume for simplicity that our basis
functions vanishes at the physical boundaries, we obtain with (3) a system of equations:

∑

K∈�h

∑

σ ′∈K

(
∂Uh

σ ′(t)

∂t

∫

K
ϕσ ′(x)ϕσ (x)dx −

∫

K
∇ϕσ ′(x) f (Uh)dx

)

= 0. (6)

Our approach makes (6) fully explicit with special focus on the basis functions. The contri-
butions from the boundary integral are removed due to the assumption that ϕ|∂� = 0. Our
motivation for this simplification is driven by the fact that we want to avoid a discussion
about boundary conditions in this part which will be the content of the followings sections.
The internal contributions cancel out through the different signs in the normals. In practice,
we compute (6) with a quadrature rule:

∑

K∈�h

∑

σ ′∈K

(
∂Uh

σ ′(t)

∂t

∮

K
ϕσ ′(x)ϕσ (x)dx −

∮

K
∇ϕσ ′(x) f (Uh)dx

)

= 0,

where
∮
represents the quadrature rules for the volume and surface integrals.

In this paper, we are considering linear problems, i.e. the flux is linear in U , but may
depend on the spatial coordinate. In all the numerical experiences, we will make the spatial
dependency simple enough (i.e. typically polynomial in x), so that it will always be possible
to find a standard quadrature formula and obtain accurate approximations for the integrals.
Note, if the quadrature rule is accurate enough, (6) can be exactly reproduced for linear
problems with constant coefficients.

Using a matrix formulation, we obtain the classical FE formulation:

M
∂

∂t
Uh + F = 0, (7)

where Uh denotes the vector of degrees of freedom, F is the approximation of div f and

M is a mass matrix.3 For continuous elements, this matrix is sparse but not block diagonal,
contrary to the situation for the discontinuousGalerkinmethods. Due to the rumor/perception
in the hyperbolic community that a pure Galerkin scheme suffers from stability issues for
hyperbolic problems, it is common to add stabilization terms to the scheme as for example in
[17]. However, as previously mentioned we take a different approach in this paper and will
renounce these classical stabilization techniques. In order to do this, we need more known
results from the literature, which we will briefly repeat here.

3 In the finite difference community M is called norm matrix and is classically abbreviated with P , c.f.
[14,27].
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3 Weak Boundary Conditions

Topreserve the structure of theSBPoperators, and facilitate proofs of stability,weakboundary
conditions are preferable over strong one’s.

3.1 SATs in SBP-FD Framework

To implement the boundary conditions weakly using simultaneous approximation terms
(SATs) is nowadays standard in the FD community and has been developed there. Together
with summation-by-parts (SBP) operators it provides a powerful tool for proofs of semidis-
crete (L2) stability of linear problems by the energy method, see [12,14,28] for details.

Here, we present a short introductory example of the SBP-SAT technique as it is presented
in [14,27]. Consider the linear advection equation

∂u

∂t
+ a

∂u

∂x
= 0, 0 ≤ x ≤ 1, t > 0,

u(x, 0) = uin(x),

u(x, t) = b(x, t) for inflow boundary,

(8)

where uin ∈ is the initial condition and b is the known boundary data that is only defined on
the inflow part of ∂[0, 1] = {0, 1}. In other words, if a > 0, then b is only set for x = 0, and
if a < 0, this will be for x = 1 only.
To explain the semi-discretisation of (8), we consider the discrete grid x = (x0, . . . , xN )T ,
with the ordering of nodes x0 = 0 < · · · < xN = 1. Furthermore, the spatial derivative
of a function φ is approximated through a discrete derivate matrix D , i.e. φx ≈ D φ with

φ = (φ(x0), u1, , . . . , φ(xN ))T . It is defined by

Definition 3.1 (SBP operators) An operator D is a p-th order accurate approximation of
the first derivative on SBP form if

1. D x j = M −1Q x j = j x j−1, j ∈ [0, p] with x j = (x j
0 , . . . , x j

N )T ,

2. M is a symmetric positive definite matrix,

3. Q + Q T = B = diag(−1, 0, . . . , 0, 1) holds.

Now, a semi-discretisation of (8) is given in terms of SBP operators as

∂u

∂t
+ aD u = M −1

S, t > 0,

u(0) = uin,
(9)

where u = (u0, u1, , . . . , uN (t))T are the coefficients of u and similarly for uin . The
coefficients are evaluated on the nodal values, i.e. the grid points, and are used to express
the numerical solution (3). Translating this into the FE framework, they correspond to the
coefficients for the degrees of freedoms. The symmetric positive definite matrix M approxi-

mates the usual L2 scalar product. Together with condition 3. from Definition 3.1, we mimic
integration by parts discretely, i.e.

v(1)u(1) − u(0)v(0) =
∫ 1

0
u(x)v′(x)dx +

∫ 1

0
u′(x)v(x)dx

≈uM D v + uD T M v = uB v.

(10)
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In (10), we have for smooth functions u

D u ≈ ∂

∂x
u and ||u||2M := uT M u ≈

∫ 1

0
u2(x)dx . (11)

Instead of having an extra equation on the boundary like in (8), the boundary condition is
enforced weakly by the term S = (S0, 0, . . . ,SN )T which is called the SAT.We demonstrate
how it should be selected to guarantee stability for (9).

Definition 3.2 The scheme (9) is called strongly energy stable if

||u(t)||2M ≤ K (t)

(

||uin ||2M + max
t1∈[0,t] |b(t1)|

2
)

(12)

holds. The term K (t) is bounded for any finite t and independent from uin , b and the mesh.

Remark 3.3 The Definition 3.2 is formulated in terms of the initial value problem (8) where
only one boundary term is fixed. If an additional forcing function is considered at the right
hand side of (8), we include the maximum of this function in (12) in the spirit of b, for details
see [14].

As established in [29], we can prove the following:

Proposition 3.4 Let D = M −1Q be an SBP operator defined in 3.1 with Q fulfilling

Q + Q T = B = diag(−1, 0, . . . , 0, 1). (13)

Let a+ = max{a, 0} and a− = min{a, 0}, b0 = b(0, t) and bN = b(1, t). If S0 =
τ0a+(u0 − b0) and SN = τa−

N (uN − bN ) with τ0, τN < − 1
2 , then the scheme (9) is strongly

energy stable.

Proof Multiplying (9) with uT M yields

uT M
∂

∂t
u + auT M D u = uT S. (14)

Transposing (14) and adding both equations together leads to

d

dt
||u||2M = uT M

∂

∂t
u + ∂

∂t
uT M u = −auT (Q + Q T )u + 2uT S.

Further, we obtain from (13)

d

dt
||u||2M =

(

au20 + 2a+τu0(u0 − b0)

)

−
(

au2N − 2a−τuN (uN − bN )

)

.

If τ0, τN < − 1
2 , we find

d

dt
||u||2M ≤ − a+τ 2

(1 + 2τ)
b20 + a−τ 2

(1 + 2τ)
b2N .

��
This shows that the boundary operator S can be chosen in such way that it guarantees stability
for the SBP-SAT approximation of (8). Next, we will apply this technique in the Galerkin
framework.
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3.2 SATs in the Galerkin-Framework

Instead of working with SBP-FD framework we consider now a Galerkin approach for the
approximation of (8). In [5,6], it is shown that the specific DG schemes satisfies a discrete
summation-by-parts (SBP) property and can be interpreted as SBP-SAT schemes with a
diagonal massmatrix. In this context, one speaks about the discontinuousGalerkin spectral
elementmethod (DGSEM).Here,we consider nodal continuousGalerkinmethods and focus
on stability conditions in this context. As we described already in Sect. 2, the difference
between the continuous and discontinuous Galerkin approach is the solution space (2) and
the structure of the mass matrix (7) which is not block diagonal in CG. However, in the
following we consider only Galerkin approaches which fulfill the SBP property meaning that
a discrete Gauss theorem is valid. The approach with SAT terms can still be used to ensure
stability also in case of CG but one has to be precise, as we will explain in the following. Let
us step back to the proof of Proposition 3.4 and have a closer look. Essential in the proof is
condition (13). Let us focus on this condition for a Galerkin discretisation of (8) as described
also in [27]. We approximate equation (8) now with uh(x, t) = ∑N

j=0 u
h
j (t)ϕ j (x) where

ϕ j are basis functions and uhj are the coefficients. First, we consider the problem without
including the boundary conditions. Let us assume that ϕ j are Lagrange polynomials where
the degrees of freedoms are associated to points in the interval. Introducing the scalar product

〈u, v〉 =
∫

I
u(x)v(x) dx,

let us consider the variational formulation of the advection equation (8) with test function
ϕi . We insert the approximation and get

〈
∂

∂t
uh(t, x), ϕi (x)

〉

+
〈

a
∂

∂x
uh(t, x), ϕi (x)

〉

= 0, ∀i = 0, . . . , N ,

i.e.

∫

I

N∑

j=0

(
∂

∂t
uhj (t))ϕ j (x)ϕi (x)dx + a

∫

I

N∑

j=0

uhj (t)(
∂

∂x
ϕ j (x))ϕi (x)dx = 0.

Finally, we get

N∑

j=0

Mi, j (
∂

∂t
uhj (t)) + a

N∑

j=0

Qi, j u
h
j (t) = 0 (15)

with

Mi, j =
∫

I
ϕ j (x)ϕi (x)dx and Qi, j =

∫

I

(
∂

∂x
ϕ j (x)

)

ϕi (x)dx . (16)

In matrix formulation (15) can be written

M
∂

∂t
u + aQ u = 0
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as described in [27]. Let us check (13). We consider

Qi, j + QT
i, j =

∫

I

(
∂

∂x
ϕ j (x)

)

ϕi (x)dx +
∫

I

(
∂

∂x
ϕi (x)

)

ϕ j (x)dx

=
∫

I

∂

∂x

(
ϕ j (x)ϕi (x)

)
dx = ϕi (x)ϕ j (x)|10

= ϕi (1)ϕ j (1) − ϕi (0)ϕ j (0) ∀i, j = 0, . . . , N .

(17)

If the boundaries are included in the set of degrees of freedom, then we obtain

ϕi (1)ϕ j (1) − ϕi (0)ϕ j (0) =

⎧
⎪⎨

⎪⎩

1 for i = j = N ,

−1 for i = j = 0,

0 elsewhere.

Up to this point exact integrals are considered but the same steps are valid if a quadrature
rule is applied such that (13) is satisfied and (17) is mimicked on the discrete level. This is
ensured if the SBP property is fulfilled. Note that in this paper we only consider Galerkin
schemes which guarantee this property. However, if we include a weak boundary condition
similar to (9), we obtain the semidiscrete scheme

N∑

j=0

Mi, j (
∂

∂t
uhj (t)) + a

N∑

j=0

Qi, j u
h
j (t) = S (18)

with the SAT term given by

S := τa+(u0 − b0)δx=0 + τa−(uN − bN )δx=xN=1. (19)

By following the steps from the proof of Proposition 3.4, we can prove:

Proposition 3.5 If the Galerkin method (18) is applied to solve (8) with S given by (19) and
τ< − 1

2 , it is strongly energy stable.

Proof The weak formulation of the problem reads:
〈

∂

∂t
uh(t, x), ϕi (x)

〉

+
〈

a
∂

∂x
uh(t, x), ϕi (x)

〉

= τa+(uh(0, t) − b0(t))ϕi (0) + τa−(uh(1, t) − bN )ϕi (1),

for all i = 0, . . . , N , where for simplicity, we consider the case a > 0. The SAT techniques
adds a penalty term into the approximation (18) on the right side.We focus now on the energy.
Therefore, we multiply also with uh instead of ϕi and rearrange the terms. We obtain for the
semi-discretization (18):

N∑

i, j,=0

Mi, j

(
∂

∂t
uhj (t)

)

uhi (t) + a
N∑

i, j=0

Qi, j u
h
j (t)u

h
i (t) = aτuh0(t)(u

h
0(t) − b0(t)),

where we used the fact that uh(t, 0) = ∑N
i=0 u

h
i (t)ϕi (0) = uh0(t) is valid. By following the

steps of the proof of Proposition 3.4 and using (17) we get the final result. ��
In the derivation above, we restricted ourselves to one-dimensional problems using Lagrange
interpolations. Nevertheless, this shows that a continuous Galerkin method is stable if
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the boundary condition is enforced by a proper penalty term. For the general FE semi-
discretization of (7), the procedure is similar and straightforward. Without loss of generality,
it is enough to consider homogeneous boundary conditions and for a general linear problem
(scalar or systems) the formulation (7) can be written with penalty terms as

M
∂

∂t
Uh + Q1 Uh = 
(Uh), (20)

where
 is the boundary operator which includes the boundary conditions. This operator can
be expressed in the discretization by a matrix vector multiplication. With a slight of abuse
of notation, we denote this boundary matrix with 
 and it is usually sparse. Further, Q1

represent the spatial operator and Q1 +Q1
T has only contributions on the boundaries. Then,

we can prove.

Theorem 3.6 Apply the general FE semidiscretisation (20) together with the SAT approach
to a linear equation and let the mass matrix M of (20) be symmetric and positive definite.
If the boundary operator 
 together with the discretization Q1 can be chosen such that

(
 − Q1 ) +
(

 − Q1

)T
(21)

is negative semi-definite, then the scheme is energy stable.

Proof We use the energy approach and multiply our discretization with Uh instead of ϕi and
add the transposed equation using M T = M . We obtain

d

dt
||Uh ||2M = Uh,T

(

(
 − Q1 ) +
(

 − Q1

)T
)

Uh ≤ 0.

��
Remark 3.7 This theorem yields directly conditions when a FEmethod is stable, or not. If the
matrix (21) has positive eigenvalues {λi }, stabilization terms have to be added.However, no
internal stabilization terms are necessarywhen (21) is negative semi-definite.Therefore,
a number of requirements are needed. The distribution of the residuals attached to the degrees
of freedom should be done in an “intelligent” way e.g. if we consider triangle elements and
polynomial order p = 1, we set the DoFs in every edge and not all of them on one face.
Further, the chosen quadrature rule in the numerical integration has to be the same as in
the differential operators. This means that the applied quadrature rule to calculate the mass
matrix should be the same as the used one to determine the differential operators, such that
SBP property is fulfilled meaning that a discrete Gauss Theorem is valid. In the numerical
test, we will present an example of what happens if the chosen quadrature rules disregard
this. Furthermore, in case of a non-conservative formulation of the hyperbolic problem or in
case of variable coefficients a skew-symmetric/split formulation should be applied in the way
described in [27,30,31]. In the one-dimensional setting, we obtain in the continuous case

∂x (au) = α∂x (au) + (1 − α) (u(∂xa) + a(∂xu))

with α = 0.5 and the implementation has to mimic this behavior.
If the implementation of the continuous Galerkin method is done in such way that the matrix
(21) is negative semi-definite, then the method is stable only through our boundary proce-
dure. In our opinion, this is contrary to common belief about continuous Galerkin methods
for hyperbolic problems. The only stabilizing factor needed is a proper implementation of
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boundary conditions. For the linear scalar case, the proof is given in Proposition 3.5. In the
following, we will extend this theory to more general cases.

Remark 3.8 (Weak Boundary Conditions in GalerkinMethods for Hyperbolic Problems) The
weak formulation of the boundary condition is not done for the first time to analyze stability
properties in continuous Galerkin methods. As already mentioned in the introduction, in
[21–23] the authors have included the procedure at the boundary in their stability analysis
where the main idea is to switch the norm of the trial space to prove stability.

Further, in [32] the authors have compared weak and strong implementation of the
boundary conditions for incompressible Navier Stokes when the boundary condition is dis-
continuous and C0 approximations are used. Here, non-physical oscillations are arising and
by switching to the weak implementation, the authors have been able solve this issue. How-
ever, as a baseline schemes they have always supposed a stabilized Galerkin methods like
SUPG in their theoretical considerations and applied it in their numerical examples. They
have not imposed the weak boundary condition to stabilize their baseline scheme, but to
cancel out these oscillations. In Nitsche’s method [33] for elliptic and parabolic problems,
the boundary conditions are also imposed weakly. Here, the theoretical analysis is based on
the bilinear from. However, further extensions of this method can be found and also a com-
parison to several DG methods. For an introduction and some historical remark, we strongly
recommend [2] for more details. Finally, in DG methods it is common to impose boundary
conditions weakly in hyperbolic problems and a detailed analysis for Friedrichs’ system [34]
can be found in [35] which is oriented more on the variational formulation.

Finally, we want to point out again that the purpose of this paper is to demonstrate that no
further internal dissipation is needed if the boundary conditions are implemented correctly.
In addition, our analysis holds also if we apply unstructured grids as demonstrated in the
numerics section below.

4 Estimation of the SAT-Boundary Operator

As described before, a proper implementation of the boundary condition is essential for
stability. Here, we give a recipe for how these SAT boundary operators can be chosen to
get a stable CG scheme for different types of problems. First, we consider a scalar equation
in 2D and transfer the eigenvalue analysis for the spatial operator from the continuous to
the discrete setting. Then, we extend our investigation to two dimensional systems. Using
again the continuous setting, we develop estimates for 
 and transfer the results to the finite
element framework. We apply them later in the numerical section.

4.1 Eigenvalue Analysis

We derive conditions on the boundary operators and perform an eigenvalue analysis to get
an energy estimate in the continuous setting. Next, the results are transformed to the discrete
framework to guarantee stability of the discrete scheme.

4.1.1 The Scalar Case

Continuous Setting

Consider the initial boundary value problem
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∂

∂t
u + a

∂

∂x
u + b

∂

∂ y
u = 0 x ∈ �, t > 0,

Bu = g x ∈ ∂�, t > 0,

u = f x ∈ �, t = 0

(22)

in the spatial domain� ⊂ R
2. Further,a, b ∈ R, the function f describes the initial condition,

B represents the boundary operator and the function g the boundary data. Without loss of
generality, it is enough to consider homogeneous boundary conditions and we consider the
spatial operator

Du :=
(

a
∂

∂x
+ b

∂

∂ y

)

u, (23)

considered in the subspace of functions for which Bu = 0. This operator will be dissipative
if 〈u, Du〉 > 0. Using the Gauss-Green theorem, we obtain

〈u, Du〉 =
∫

�

uDu d� =
∫

∂�

a

2
u2dy − b

2
u2dx = 1

2

∫

∂�

(a, b) · n
︸ ︷︷ ︸

:=an

u2ds. (24)

The operator is hence dissipative if
∫
∂�

anu2ds > 0.The question rises:Howdowe guarantee
this condition? This is the role of the boundary conditions, i.e. when an ≤ 0, we need to
impose u = 0. For outflow, i.e. ∂�out we have an > 0 and using this information, we directly
obtain

〈u, Du〉 = 1

2

∫

∂�out

anu
2ds > 0, (25)

and we have an energy estimate. We do not discuss well posedness, but we recommend
[28,36] for details regarding that. Now, we transfer our analysis to the discrete framework
and imitate this behavior discretely.

Discrete Setting

We have to approximate the spatial operator D and the boundary condition (B.C), i.e. Du +
B.C by an operator of the form M −1(Q −
 )u where we apply SBP operators as defined in

Definition 3.1. The term M −1Q u approximates Du and 
 u is used to describe Bu weakly.

Here, the projection operator 
 works only at the boundary points. Note that we must have

a Q such that Q + Q T only contain boundary terms. Looking at the dissipative nature of

M −1Q u amounts to study its spectrum. The related eigenvalue problem is

M −1(Q − 
)ũ = λũ. (26)

We denote by ũ∗,T , the adjoint of ũ and multiply (26) with ũ∗,T M to obtain

ũ∗,T (Q − 
)ũ = λũ∗,T M ũ = λ||ũ||2M . (27)

We transpose (27) and add both equations together. This results in

ũ∗,T
(
(Q + Q T ) − (
 + 
 T )

)
ũ

︸ ︷︷ ︸
:=BT

= 2Re(λ)||ũ||2M . (28)
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The boundary terms (BT) correspond to
∫
∂�out

anu2ds with a properly chosen 
 . Hence,
the matrix

(Q − 
) + (Q − 
)T (29)

is positive semi-definite, i.e. the eigenvalues for the spatial operator have a strictly positive
real parts only. Note that condition (29) and (21) are the same. Next, we estimate the boundary
operators for a linear system such that the conditions in Theorem 3.6 are fulfilled and the pure
CG scheme is stable. We start with the continuous energy analysis and derive the estimate
above. Afterwards, we translate the result to the discrete FE framework as done for the scalar
one-dimensional case, but before, we give the following remark:

Remark 4.1 (Periodic Boundary Conditions) As already described in the Introduction 1, peri-
odic boundary conditions for hyperbolic problems together with a pure Galerkin scheme
yields stability issues (von Neumann instability). If we consider a Galerkin scheme with the
described operators where the used quadrature rule in the numerical integration is the same as
the one in the differential operator and periodic boundary conditions in a hyperbolic problem,
we have the eigenvalues on the imaginary axis, cf. [27]. Therefore, explicit time-integration
schemes of order one or two like Euler method or SSPRK22 lead to instability since they
do not include parts of the imaginary axis in their stability regions. In such a case, we have
to add stabilization terms (diffusion) to the equation. Further, we want to point out that even
with a stable discretization for a linear hyperbolic problem, an unbounded error growth is
observed if periodic boundary conditions are imposed [37].

4.1.2 Systems of Equations

Next, we will extend our investigation to the general hyperbolic system

∂U

∂t
+ A

∂U

∂x
+ B

∂U

∂ y
= 0, (x, y) ∈ �, t > 0

LnU = Gn (x, y) ∈ ∂�, t > 0
(30)

where A, B ∈ R
m×m are the Jacobian matrices of the system, the matrix Ln ∈ R

q×m and
the vector Gn ∈ R

q are known, n is the local outward unit vector, q is the number of
boundary conditions to satisfy. We assume that A, B are constant and that the system (30)
is symmetrizable. There exists a symmetric and positive definite matrix P such that for any
vector n = (nx , ny)T the matrix

Cn = AnP

is symmetric with An = Anx + Bny . For arbitrary nx , ny this implies that both AP and BP
are symmetric.

Using the matrix P , one can introduce new variables V = P−1U . The original variable
can be expressed as U = PV and the original system (30) will become

P
∂V

∂t
+ AP

∂V

∂x
+ BP

∂V

∂ y
= 0 ⇐⇒ ∂U

∂t
+ AP

∂V

∂x
+ BP

∂V

∂ y
= 0. (31)
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The system (30) admits an energy: if we multiply (30) by V T , we first get
∫

�

V T ∂U

∂t
d� = −

∫

�

V T
(

A
∂U

∂x
+ B

∂U

∂ y

)

d�

= −
∫

�

V T
(

AP
∂V

∂x
+ BP

∂V

∂ y

)

d� = −1

2

∫

∂�

V TCnV dγ

i.e. setting E = 1
2

∫
�
V TU d�, we have

dE

dt
+ 1

2

∫

∂�

V TCnV dγ = 0.

To understand the role of the boundary conditions, we follow what is usually done for
conservation laws, we consider the weak form of (30): let ϕ be a regular vector function in
space and time. We multiply the equation by ϕT , integrate and get:

∫ T

0

∫

�

ϕT ∂U

∂t
d� dt −

∫ T

0

∫

�

(
∂ϕ

∂x

T

A + ∂ϕ

∂ y

T

B

)

U d� dt

+ 1

2

∫ T

0

∫

∂�

ϕT AnU dγ dt = 0.

In order to enforce the boundary conditions weakly, we modify this relation by (note that
CnV = AnU ):

∫ T

0

∫

�

ϕT ∂U

∂t
d� dt −

∫ T

0

∫

�

(
∂ϕ

∂x

T

A + ∂ϕ

∂ y

T

B

)

U d� dt

+ 1

2

∫ T

0

∫

∂�

ϕT AnU dγ dt

=
∫ T

0

∫

∂�

ϕT
n
(
Ln(U ) − Gn

)
dγ dt .

(32)

The operator 
n depends on x = (x, y) ∈ ∂� and n the outward unit normal at x ∈ ∂�. It
is chosen in such a way that:

1. For any t , the image of the boundary operator Ln(U ) is the same as the image of
nLn(U )

in the weak formulation, i.e. there is no loss of boundary information,

2. If ϕ = V , then
dE

dt
< 0 follows.

A solution to this problem is given by the following: First, let Cn = XnnXT
n where n

is a the diagonal matrix containing the eigenvalues of Cn and Xn is the matrix which rows
are the right eigenvectors of Cn. We have XT

n Xn = I and choose:


n
(
Ln(U ) − Gn

) = Xn
−
n

(
Rn

0n−n0

)

XT
n −

(
Gn

0n−n0

)

, (33)

where −
n are the negative eigenvalues only and n denotes the number of unknowns for the

system. Here we have introduced the operator Rn which is Ln written using characteristic
variables.
In the following, we explain the implementation steps. To a large content we refer to [28].
To compute 
 we first consider again the strong implementation of the problem. We have

d

dt
V TU = −

∫

∂�

V TCnV dγ . (34)
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Using Cn = XnnXT
n , we obtain

V TCnV =V T XnnX
T
n V =

(
XT
n V
)T

n

(
XT
n V
)
=
(
W+

n
W−

n

)T (
+

n 0
0 −

n

)(
W+

n
W−

n

)

(35)

withW+
n = (XT

n V
)+

are the ingoing waves and they have the size of the positive eigenvalues

+
n . Analogously, W

−
n = (

XT
n V
)−

are the outgoing waves with size of −
n . A general

homogeneous boundary condition is W−
n = RnW+

n , since with that, and a proper choice of
Rn, we get

V TCnV = (W+
n )T

(
+

n + RT
n −

n Rn

)
W+

n ≥ 0 (36)

and so the decrease of energy in (34) if the matrix in the bracket is positive semidefinite.
Next, we will impose the boundary conditions weakly. Assume now that we have chosen

an Rn such that
(
+

n + RT
n −

n Rn

)
≥ 0. (37)

Here, the existence of such Rn is ensured through our assumption that our boundary value
problem (30) is well posed, c.f. [28]. The energy is given

∫

�

V T ∂U

∂t
d� + 1

2

∫

∂�

V T AnUdγ =
∫

∂�

V T
n
(
W−

n − RnW
+
n
)
dγ . (38)

We add the transpose of (38) to itself and consider

d

dt

∫

∂�

V TU d� = −
∫

∂�

V T AnUdγ

+
∫

∂�

V T
n
(
W−

n − RnW
+
n
)+ (W−

n − RnW
+
n
)T


T
n V dγ .

(39)

We define 
̃n such that V T
n = (W−
n )T 
̃n and get for the integrands

− (W+
n )T+

n W
+
n − (W−

n )T−
n W

−
n + (W−

n )T 
̃n
(
W−

n − RnW
+
n
)

+ (W−
n − RnW

+
n
)T


̃T
nW

−
n .

(40)

Collecting the terms, we obtain
(
W+

n
W−

n

)T ( −+
n −RT

n 
̃T
n

−
̃nRn −−
n + 
̃n + 
̃T

n

)

︸ ︷︷ ︸
=:WB

(
W+

n
W−

n

)

. (41)

We must select 
̃n such that the matrix WB is negative definite. Now, let us use the strong
condition (37). By adding and subtracting, we obtain

(
W+

n
W−

n

)T (
RT
n −

n Rn −RT
n 
̃T

n
−
̃nRn −−

n + 
̃n + 
̃T
n

)(
W+

n
W−

n

)

︸ ︷︷ ︸
=:Qw

−
(
(W+

n )T (+
n + RT

n −
n Rn)W

+
n

)
.

︸ ︷︷ ︸
≤0 by (37).

(42)

By rearranging and choosing 
̃n = −
n , we get

Qw =
(
RnW+

n
W−

n

)T ( 1 −1
−1 1

)

︸ ︷︷ ︸
=:Gn

⊗−
(
RnW+

n
W−

n

)

.
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Since Gn has the eigenvalues 0 and 2 and we obtain stability

d

dt

1

2

∫

�

V TU dx + 1

2

∫

∂�

V T AnU dγ ≤ 1

2

∫

∂�

V T
n
(
Ln(U ) − Gn

)
dγ (43)

thanks to (42) and (36). We will give a concrete example in Sect. 5.3.

5 Numerical Simulations

Here, we demonstrate that a pure Galerkin scheme is stable if we impose the boundary
conditionsweakly and use an adequate boundary operator as described in Sect. 4.We consider
several different examples and analyze different properties in this context (error behavior,
eigenvalues, etc.). As basis functions, we use Bernstein or Lagrange polynomials of different
orders resulting in Galerkin schemes of second to fourth order on triangular meshes. We
denote with B1, B2, B3 the Galerkinmethod using Bernstein polynomials with polynomial
order 1, 2 or 3 similar denoting P1, P2, P3 by applying a Lagrange basis. The basic
implementation is done in the RD framework, see [38]. The two approaches only differ
slightly. The time integration is done via strong stability preserving Runge-Kutta methods of
second to fourth order, see [39] for details. We use always the same order for space and time
discretization.

5.1 Two-Dimensional Scalar Equations

We consider a two-dimensional scalar hyperbolic equation of the form

∂U

∂t
+ a(x, y) · ∇U = 0, (x, y) ∈ �, t > 0, (44)

where a = (a, b) is the advection speed and � the domain. In this subsection, the initial
condition is given by

U (x, y, 0) =
{
lle−40r2 , if r = √(x − x0)2+(y − y0)2 < 0.25

0, otherwise .

It is a small bump with height one located at (x0, y0). We consider homogeneous boundary
conditions Gn ≡ 0 and further let the boundary matrix Ln be the identity matrix at the inflow
part of ∂� (i.e. ∂�−). The boundary conditions reads LnU = U = 0 for (x, y) ∈ ∂�−, t >

0 which means that the incoming waves are set to zero.

Linear Advection

In our first test, we are considering the linear advection equation in� = [0, 1]2. The advection
speed is assumed to be constant. The components of the speed vector a are given by (a, b)T =
(1, 0) and so the flux is given by f(U ) = aU with a = (1, 0). We have inflow / outflow
conditions on the left / right boundaries and periodic boundary condition on the horizontal
boundaries. In our first test, we use Bernstein polynomials and a fourth order C.G. scheme.
The boundary operators are computed using the technique developed in Sect. 4 where the
positive eigenvalues are set to zero and the negative ones are used in the construction of

. For the time discretization we apply strong stability preserving Runge–Kutta (SSPRK)
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Fig. 1 4-th order scheme in space and time

scheme with 5 stages and fourth order with CFL = 0.3. We use 1048 triangles. In Fig. (1),
we plot the results at three times. Clearly, the scheme is stable, also at the outflow boundary.
The maximum value is at the end 1.001 and the minimum is − 0.0199 where the starting
values are 1.000 and 0.000 (Fig. 1).

Next, we check the real parts of the eigenvalues of our problem using formula (21) for
different orders, different bases (Bernstein and Lagrange) and different meshes. For the
calculation of the eigenvalues of (21), we use a Petsc routine [40,41] which can calculate
up to 500 eigenvalues.4 Have in mind that in contrast to DG and multi-block FD setting, the
mass matrix in the pure Galerkin scheme is not block diagonal. Therefore, we can not split
the eigenvalue calculation to each block matrix and have to consider the whole matrix M
and therefore Q . Different from before, we consider the complete skew-symmetric spatial

operator Q + Q T in the whole domain and not in one element only, where it is equal to

B . Every coefficient of the numerical approximation belongs to one degree of freedom and
we obtain the same number of eigenvalues as number of DoFs are used. However, for the
coefficients which belong to DoFs inside the domain, in all calculations we obtain zero up to
machine precision. To get useful results, we decrease the number of elements in the following
calculations and provide only the most negative and positive ones in Tables 1, 2 and 3 where
we give results with and without the application of the SAT boundary operators.

We see from Tables 1, 2 and 3 that the the boundary operator decreases the negative
eigenvalues and forces the positive ones to zero (up tomachine precision). For third and fourth
order, we print only the case using Bernstein polynomials. The applications of Lagrange
polynomials lead only to slightly bigger amounts of positive and negative eigenvalues of the
Q + Q T operator (i.e maximum eigenvalue is 0.11713334374388217 for P3). However,

the results are similar after applying the SAT procedure, we obtain only negative or zero
eigenvalues.
We also mention that for higher degrees and more DoFs, we may strengthen the SAT terms
to guarantee that the eigenvalues are negative and /or forced to zero. All of our investigations
are in accordance with the analysis done in Sect. 4.1 and all of our calculations demonstrate
that a pure Galerkin scheme is stable if a proper boundary procedure is used.

Remark 5.1 Finally, we did a couple of additional simulations changing both, the domain �

(circles, pentagons, etc.) and the speed vector including also some horizontal movement. All
of our calculations remained stable if the boundary approach from Sect. 4 was used.

4 We have used simple, double and quadruple precision, the results remain the same upto machine precision.
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Table 1 Eigenvalue of the operators (29) with and without the boundary operators using P1/B1 (41DoFs)

neg. eigen. of Q + Q T pos. eigen. of Q + Q T neg. eig. for BT from (29) pos. eig. for BT from (29)

− 0.2317 0.2317 − 0.3135 6.0289 · 10−17

− 0.1839 0.1839 − 0.2555 3.8787 · 10−17

− 0.1250 0.1250 − 0.2317 3.0097 · 10−17

− 6.6074 · 10−2 6.6074 · 10−2 − 0.1848 2.3845 · 10−17

− 5.9935 · 10−2 5.9935 · 10−2 − 0.1839 1.7762 · 10−17

− 7.2852 · 10−17 3.9582 · 10−17 − 0.1250 1.2997 · 10−17

− 4.0170 · 10−17 3.4527 · 10−17 − 0.1181 9.7095 · 10−18

− 3.0744 · 10−17 2.6742 · 10−17 − 7.7263 · 10−2 9.4396 · 10−18

− 2.9953 · 10−17 2.4023 · 10−17 − 6.6074 · 10−2 9.4396 · 10−18

− 2.3732 · 10−17 1.8552 · 10−17 − 5.9935 · 10−2 6.6812 · 10−18

− 1.9299 · 10−17 1.2938 · 10−17 − 7.2894 · 10−17 5.6739 · 10−18

Table 2 Eigenvalue of the operators (29) with and without the boundary operators using B2 (145DoFs)

neg. eigen. of Q + Q T pos. eigen. of Q + Q T neg. eig. for BT from (29) pos. eig. for BT from (29)

− 0.1343 0.1343 − 0.1924 2.8085 · 10−16

− 0.1186 0.1187 − 0.1746 2.5390 · 10−16

− 9.7804 · 10−2 9.7804 · 10−2 − 0.1524 2.4456 · 10−16

− 6.1147 · 10−2 6.1147 · 10−2 − 0.1343 2.2495 · 10−16

− 5.8452 · 10−2 5.8451 · 10−2 − 0.1186 2.2016 · 10−16

− 2.6008 · 10−2 2.6008 · 10−2 − 0.1088 2.0043 · 10−16

− 1.6694 · 10−2 1.6694 · 10−2 − 9.7804 · 10−2 1.9144 · 10−16

− 1.0862 · 10−2 1.0862 · 10−2 − 6.9258 · 10−2 1.8695 · 10−16

− 9.4054 · 10−3 9.4054 · 10−3 − 6.1147 · 10−2 1.8192 · 10−16

− 2.7617 · 10−16 2.8085 · 10−16 − 5.8452 · 10−2 1.7825 · 10−16

− 2.5757 · 10−16 2.5390 · 10−16 − 3.0333 · 10−2 1.7762 · 10−16

This is in contradiction of a common belief in the hyperbolic research community about
continuous Galerkin schemes.

But what are the reasons for this belief? In our opinion, one of the major issues is that
the chosen quadrature rule in the numerical integration differs from the the one used in
the differential operators and without artificial stabilization terms the continuous Galerkin
scheme collapses, and the corresponding Q matrix does not become almost skew-symmetric.

Inexactness of the Quadrature Rule

To support our statement,weprovide the following example.Weconsider the sameproblemas
before, but in the Galerkin scheme we lower the accuracy of our quadrature rule to calculate
the mass matrix and the conditions at the boundary procedure. Before, we used always a
quadrature rule which is accurate up to sixth order. Then, we lower the quadrature rule for
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Table 3 Eigenvalue of the operators (29) with and without the boundary operators using B3 (313DoFs)

neg. eigen. of Q + Q T pos. eigen. of Q + Q T neg. eig. for BT from (29) pos. eig. for BT from (29)

− 9.3746 · 10−2 9.3746 · 10−2 − 0.1417 2.2109 · 10−16

− 8.6774 · 10−2 8.6774 · 10−2 − 0.1345 2.1270 · 10−16

− 7.7346 · 10−2 7.7346 · 10−2 − 0.1260 2.0375 · 10−16

− 5.1492 · 10−2 5.1492 · 10−2 − 9.3746 · 10−2 1.9449 · 10−16

− 5.0243 · 10−2 5.0243 · 10−2 − 9.1241 · 10−2 1.9060 · 10−16

− 3.1541 · 10−2 3.1541 · 10−2 − 8.6774 · 10−2 1.8710 · 10−16

− 2.3206 · 10−2 2.3206 · 10−2 − 7.7354 · 10−2 1.8543 · 10−16

− 1.6530 · 10−2 1.6530 · 10−2 − 5.7862 · 10−2 1.7657 · 10−16

− 1.4887 · 10−2 1.4887 · 10−2 − 5.1492 · 10−2 1.6555 · 10−16

− 4.4006 · 10−3 4.4006 · 10−3 − 5.0243 · 10−2 1.6338 · 10−16

− 3.0050 · 10−3 3.0050 · 10−3 − 3.6266 · 10−2 1.6222 · 10−16

− 2.1187 · 10−3 2.1187 · 10−3 − 3.1541 · 10−2 1.6088 · 10−16

− 1.8526 · 10−3 1.8526 · 10−3 − 2.8790 · 10−2 1.5858 · 10−16

− 2.1399 · 10−16 2.2109 · 10−16 v2.3210 · 10−2 1.5731 · 10−16

Fig. 2 4-th order scheme in space and time

the surface integral to five, the rest remain the same. Please be aware that in the Galerkin
approach, we apply integration by parts before formulating the variation formulation. We
decrease the CFL number to 0.01 for stability reasons. However, as it is shown in Fig. 2
the scheme crashes after some time even with this super low CFL number. In Fig. 2c, the
structure of the bump can still be seen, but, simultaneously, the minimum value is≈ − 2.996
and the maximum value is around 2.7 (Fig. 2).

Additional time steps will lead to a complete crash of the test. At 400 steps the maximum
value is 74.45 and the minimum is at − 82.15. Here, again nothing has changed from the
calculations before except that the quadrature rules are changed which leads to an error in the
interior of the spatial matrix Q , which cannot be stabilized with the SAT boundary treatment.

We will focus on this test again in the second part of the paper series [42] to demonstrate
the entropy correction term as presented in [38] and applied in [43,44] can also be seen as a
stabilization factor for linear problems.
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Fig. 3 4-th order scheme in space and time

Linear Rotation

In the next test we consider an advection problemwith variable coefficients. The speed vector
has components

a = 2π y, b = − 2πx .

The initial and boundary conditions are given by

U (x, y, 0) =
{
lle−40r2 , if r = √x2 + (y − 0.5)2 < 0.25,

0, otherwise

U = 0, (x, y) ∈ ∂�, t > 0.

The problem is defined on the unit disk D = {(x, y) ∈ R
2|√x2 + y2 < 1}. The small bump

rotates in the clockwise direction in a circle around zero. In Fig. 3a the initial state is presented
where Fig. 3b shows the used mesh (Fig. 3).

We apply an unstructured triangular mesh with 932 triangles. In the second calculation
5382 triangles are used. The time integration is again done via a SSPRK54 scheme with
CFL=0.2. A pure continuous Galerkin scheme with Bernstein polynomials is used for the
space discretization. Due to the variable coefficient problem, we apply the splitting technique
as described in [27,31] and see 3.7. The volume term is split into a symmetric and anti-
symmetric part, see for details the mentioned literature. The boundary operator is estimated
via the approach presented in 4.1.2. In Fig. 4, the results are presented after two rotations of
the bump. Using 932 triangles, we obtain a maximum value of 0.993 and a minimum value
fo − 0.012. Increasing the number of triangles, the maximum value after two rotations is
9.997 where the minimum value is − 0.001. This test again verifies that our scheme remains
stable only through our boundary procedure (Fig. 4).

We compute this problem up to ten rotations for different orders. We observe that all of
our calculation remain stable both using Lagrange or Bernstein polynomials as can be seen
for example in Fig. 5. In the captions, we mentioned the respective maximum and minimum
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Fig. 4 4-th order scheme in space and time

Fig. 5 2,3,4-th order scheme in space and time

values and applied 10 contour lines to to divide the different value regions. Especially,
in Fig. 5a one can imagine some stability issues. However, this is not the case. Here, the
calculations demonstrated some numerical inaccuracies, but the calculation remains stable as
can be read of the absolute maximum andminimum values.We recognize also that compared
to the others the hight of the bump is decreasing. This behavior suggest a certain amount
of artificial dissipation. We obtain the most accurate results using the fourth order scheme
which is not surprising (Fig. 5).

Finally, we analyze the error behavior and calculate the order. We use again the SSPRK
schemes of the same order (Fig. 6).

We recognize a slight decrease of the order similar to the observation made in [45] which
was up to our knowledge the first ones who described it. The investigation of the decreased
order of accuracy is not themain focus of this paper, wherewe focus on the stability properties
of the pure continuous Galerkin scheme.
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Fig. 6 t = 1, L1-error and L2-error

5.2 One-DimensionalWave Equation

As a first example for systems with non-homogeneous boundary condition, we consider the
linear wave equation

∂2u

∂t2
− ∂2u

∂t2
= 0 t > 0, x ∈ (0, 1),

By applying a change of variables ũ := ∂xu and ṽ = − ∂t u, the wave equation can be
rewritten as a first order hyperbolic system of conservation laws

∂ ũ

∂t
+ ∂ṽ

∂x
= 0,

∂ṽ

∂t
+ ∂ ũ

∂x
= 0,

(45)

which is sometimes referred to as the one-dimensional acoustic problem. The system (45)
can also be expressed through the linear system

∂U

∂t
+ A

∂U

∂x
= 0 with U =

(
ũ
ṽ

)

and coefficient matrix A =
(
0 1
1 0

)

. (46)

which we consider in the following. We assume the sinusoidal boundary conditions:

x = 0 : 1√
2

(
1 1
1 − 1

)(
ũ
ṽ

)

=
(
sin t
0

)

,

x = 1 : 1√
2

(
1 1
1 − 1

)(
ũ
ṽ

)

=
(

0
sin t

)

.

To determine the boundary operators, we calculate the eigenvalues and the eigenvectors of
A following the ideas of Sect. 4.1.2. We obtain the eigenvalues λ1/2 = ±1 and

X = 1√
2

(
1 1
1 − 1

)

= XT ,
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Fig. 7 Results for the wave problem (45) and t = 1, 2, 5, 50, 3rd order scheme in space and time. We have
100 cells (199 degrees of freedom), CFL = 0.1

where the rows are the eigenvectors. It is XT X = I. We assume that (the subscripts “0” and
“1” refers to the end points of [0, 1])


0
(
M0(U ) − g0

) =
(−R0 1

0 0

)

XTU −
(
sin t
0

)


1
(
M1(U ) − g1

) =
(
0 0
1 −R1

)

XTU −
(

0
sin t

)

with |R0|, |R1| < 1. Described in [28], the problem is well posed in L2([0, 1]). For the
time integration, we apply the SSPRK method of third order given in [39] and the space
discretization is done via a pure Galerkin scheme of third order using Lagrange polynomials.
TheCFL condition is set to 0.4. For 100 cells and a regularmesh,we have the results displayed
in Fig. 7.We tested it up to t = 50 without any stability problems. The Galerkin scheme gives
us numerical approximations in a way as expected and determined from the theory (Fig. 7).

Under the same terms and conditions, we ran the test again now with a random mesh.
Figure 8 demonstrates the results at t = 2 with a zoom in in Fig. 8b to highlight the mesh
points. Indeed, no visible difference can be seen between Figs. 7b and 8a (Fig. 8).
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Fig. 8 Results for the problem and t = 2, irregular mesh, 3rd order scheme in space and time. We have 100
cells (199 degrees of freedom), CFL = 0.1

5.3 R13 Sub-model for Heat Conduction

In our last simulation, we consider the steady R13 sub-model for heat conduction investigated
in [46,47]. It reads

div s = f ,

grad θ + div R = − s

τ
,

1

2

(
grads + (grad s)T ) = − R

τ
,

(47)

in � = {(x, y)| 12 ≤ √
x2 + y2 ≤ 1} ∈ R

2. The outer boundary will be denoted by �1 and
the inner circle is �0. The process includes a scalar temperature θ ∈ R, a vector values heat
flux s ∈ R

2, and a symmetric tensorial variable R represented by a symmetric 2× 2 matrix.
τ is a constant relaxation time.

We set

s = (sx , sy),R =
(
Rxx Rxy

Rxy Ryy

)

If U = (θ, s,R) with R = (Rxx , Rxy, Ryy) the system (47) can be rewritten as:

A
∂U

∂x
+ B

∂U

∂ y
= 0.

In the following applications, we will consider the unsteady version of (47)

∂U

∂t
+ A

∂U

∂x
+ B

∂U

∂ y
= 0

with boundary conditions that will be detailed in the next part of this section. The aim is to
look for a steady solution of this system, and hence to develop a time marching approach.
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With α ∈ R, the matrix cosαA + sin αB reads

Aα =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 cosα sin α 0 0 0
cosα 0 0 cosα sin α 0
sin α 0 0 0 cosα sin α

0 cosα 0 0 0 0
0 sin α

2
cosα
2 0 0 0

0 0 sin α 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

(48)

and we notice that the system (47) is symmetrizable. The symmetrizer is P = diag(1, 1, 1, 1,
1
2 , 1) and together, we obtain

AαP =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 cosα sin α 0 0 0
cosα 0 0 cosα sin α

2 0
sin α 0 0 0 cosα

2 sin α

0 cosα 0 0 0 0
0 sin α

2
cosα
2 0 0 0

0 0 sin α 0 0 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= Bα.

Bα is symmetric and to estimate the boundary operator, we need the eigenvalues and eigen-
vectors of An. The eigenvectors are

R =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 0 0 − 1 − cos2 α√
2 cosα −√

2 cosα −
√
2
2 sin α

√
2
2 sin α 0 0√

2 sin α −√
2 sin α

√
2
2 cosα −

√
2
2 cosα 0 0

cos2 α cos2 α
sin(2α)

2 − sin(2α)
2 1 cos(2α)

sin(2α)
2

sin(2α)
2 − cos(2α)

2
cos(2α)

2 0 sin(2α)
2

sin2 α sin2 α
sin(2α)

2
sin(2α)

2 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= (R1, R2, R3, R4, R5, R6
)

associated to the eigenvalues λ = (
√
2,−√

2,
√
2
2 ,−

√
2
2 , 0, 0). Through P , we can calculate

P−1, P1/2 and P−1/2 without problems.

Remark 5.2 Since the system is symmetrizable, the eigenvectors are orthogonal for the
quadratic form associated to P , i.e. for eigenvectors ri �= r j hold 〈Pri , r j 〉 = 0, where
〈·, ·〉 denotes the scalar product.

The Boundary Conditions

The physical boundary condition follows from Maxwell’s kinetic accommodation model.
We have

( −αθ + sxnx + syny − αRnn

βtx sx + βtysy + txnx Rxx + (txny + tynx )Rxy + tyny Ryy

)

= LnU , U =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

θ

sx
sy
Rxx

Rxy

Ryy

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

with normal components (nx , ny) = (cos γ, sin γ ) and tangential components (tx , ty) =
(− sin γ, cos γ ) where γ is the angle between the x-axis and the outward unit normal
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on ∂�. The accommodation coefficients are given by α and β. We have further Rnn =
Rxx cos2 γ + Ryy sin2(γ ) + 2Rxy cos(γ ) sin(γ ) and together this gives

Ln =
(−α cos γ sin γ −α cos2 γ − 2α cos γ sin γ −α sin2 γ

0 −β sin γ β cos γ − cos γ sin γ cos(2γ ) sin γ cos γ

)

.

Thanks to this, the boundary conditions on �0 on �1 reads

LnU −
( −αθ0

− ux sin γ + uy cos γ

)

= 0 on �0, LnU −
(−αθ1

0

)

= 0 on �1,

where θ0 and θ1 are the prescribed temperatures on the cylinders (boundaries of�) and ux , uy

denote the prescribed slip velocity. To simplify notations, we introduce G as

Gn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

(−αθ0
− ux sin γ + uy cos γ

)

if x ∈ �0,
(−αθ1

0

)

if x ∈ �1.

We follow the investigation in Sect. 4.1.2 and get to the energy balance (43)
∫

∂�

(
1

2
V T (Anx + Bny)U − V T
LnU

)

∂� > −
∫

∂�

V T
Gn∂�.

In our practical implementation, we look for 
 to get energy stability in the homogeneous
case. Instead of working with the variable transformation U = PV , we select U = P1/2V
for convenience reasons later in the implementation. Then the condition reads:

1

2
V T (Anx + Bny)U − V T
LnU = V T

((
1

2
An − 
Ln

))

P1/2V > 0. (49)

One way to achieve this is to assume that 1
2 An − 
Ln has the same eigenvectors as 1

2 An

and that the eigenvalues are positive, i.e. 
Ln − 1
2 A

−
n and 
Ln and 1

2 A
−
n have the same

eigenvalues.5 The idea behind this is that ( 12 An − 
Ln)P1/2 is positive definite. However,
this is well-defined under the condition that LnPLn

T is invertible, and we obtain

LnPLn
T =

(
1 + 2α2 0

0 1
2 + β2

)

. (50)

Thismatrix is always invertible since its determinant is always positive.A solution to the prob-
lem is 
LnPLn

T = RDLP1/2Ln
T with D ≤ 1

2
− so 
 = RDLP1/2Ln

T (LnPLn
T )−1

with D ≤ 1
2

− and using the transformation with P1/2, we obtain:
(
1

2
An − 
Ln

)

P1/2V = λP1/2V ,

i.e.
(
1

2
An − λI

)

P1/2V = 
LnP
1/2V

that is
(
1

2
An − λI

)

PLn
T (LnPLn

T )−1V = 
V (51)

5 Here, we denote again by − the negative eigenvalues.
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Fig. 9 Mesh and steady state (t = 10), 3rd order scheme

Using U instead of V in the implementation, we have to multiply 
 with P−1/2.

Remark 5.3 Anotherway to determine
, we choose δ < 0 such that
LnP1/2− 1
2 AnP1/2 =

δId, and thus yields


 = (δP−1/2 + 1

2
An
)
Ln

T (LnLn
T )−1.

However, this is well-defined under the condition that LnLn
T is invertible. We obtain

LnLn
T =

( 1
4 (4 + 9α2 − α2 cos 4γ ) − 1

4α sin 4γ
− 1

4α sin 4γ 1
4 (3 + 4β2 + cos 4γ )

)

. (52)

The matrix is always invertible since elementary calculations yield to an estimation of the
determinate which can be shown to be bigger than 0.5.

Concrete Example

We have explained how we estimate the boundary operator in the above Eq. (51). In the test,
we have set the accommodation coefficients α = 3.0 and β = − 0.5. The temperature at
the boundaries are given by θ0 = 0 and θ1 = 1. Further, we have ux = 1 and uy = 0. The
relaxation time is set to 0.15. Again, we use a continuous Galerkin scheme together with
the above developed boundary procedure. The term δ is set to − 2 and the CFL number is
0.1. We ran the problem up to steady state with a RK scheme. In Fig. 9 we show the mesh
and also the result at steady state using a coarse grid. The number of triangles is 400. The
problem is elliptic and smooth which cannot be seen in this first picture since the mesh is too
coarse (Fig. 9).

In the second test, we increase the number of elements in the mesh. Now, we are using
5824 elements and also Bernstein polynomials of second order. The mesh and the result are
presented in Fig. 10. Here, we recognize the smooth behavior and the scheme remains stable
only through the above described boundary procedure (Fig. 10).
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Fig. 10 Mesh and steady state (t = 10), 3rd order scheme

6 Conclusion and Outlook

In this paper, we have demonstrated that a pure continuous Galerkin scheme is stable only
through the applied boundary conditions. No further stabilizations terms are needed. This
contradicts the erroneous perception in the hyperbolic community about pure continuous
Galerkin schemes to be unstable without additional stabilizations terms. In our approach,
the application of the SAT technique is essential where we impose the boundary conditions
weakly. Using this approach, we derive a suitable boundary operator from the continuous
setting to guarantee that the discrete energy inequality is always fulfilled. We present a recipe
on how these operators can be constructed, in detail, for scalar two-dimensional problems
and two-dimensional systems. In numerical experiments, we verify our theoretical analysis.
Furthermore, in one test, we demonstrate the importance of the used quadrature rule. The
chosen quadrature rule in the numerical integration has to be the same as in the differential
operators such that the SBP property of our Galerkin scheme is valued. If not, the Galerkin
scheme suffers from stability issues. If stability can be reached only by enforcing the proper
dissipative boundary conditions, there is no free meal: this procedure is very sensitive to any
numerical error, like roundoff error or quadrature error. We think and hope that through our
results the common opinion about continuous Galerkin and its application in CFD problems
changes, modulo the restrictionwe have already described. This result is also interesting from
a theoretical point of view, and emphasizes the positive role that the boundary conditions
may have. In the companion paper [42], we consider and analyze non-linear (e.g. entropy)
stability of continuous Galerkin schemes. Here, the SAT approach will also be important and
some approximation for the boundary operators will be developed.
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