
   

 

 

Department of informatics 

Master thesis, 30 hp 

Master's Programme in Human-Computer Interaction and Social Media 

SPM 2020.18   
 

Developer Experience of 

a Low-Code Platform: An 

exploratory study 
Daniel Dahlberg 



 

1 
 

Abstract 

In recent years, low-code development has become increasingly popular, enabling 

developers to write less code and focus on the objective. However, while proven efficient, little 

attention has been given to how developers experience working in these development 

environments. This is significant as providing unpleasant experiences could reduce the 

benefits of low-code platforms by leaving the developers unhappy. As such, this study aims 

to gain an understanding of developer experience in low-code environments. The study was 

conducted with an IT-company recently specialized in low-code solutions, where participants 

were chosen based on having prior experience with low-code development. This ensued in 

interviews with six low-code developers as well as a project leader. Main positive experiences 

found were, feeling more productive, improved customer relations, focus on the objective, 

shared developer understanding, and quick learnability. Key negative experiences found 

were, having work constrained, limited freedom and creativity, inadequate documentation, 

and overview, and having poor and unsafe teamwork capabilities. To the best of my 

knowledge this is the first study to explore developer experience in low-code development 

environments and stands as groundwork for future studies in low-code developer experience.  

 

Keywords: Business Automation, Developer Experience, Evaluation, HCI, Low-code 

Platform, System Development, User Experience 

1. Introduction 

The demand for technological solutions grows larger as the technological landscape reforms 

how businesses must operate to survive. Software must be delivered quickly, effectively, 

efficiently, securely and hold quality. Consequently, this has created a higher demand for 

specialized skills within the tech industry. Businesses must now have IT professions specialized 

in different development categories, cybersecurity, quality assurance, data, infrastructure and 

so on. However, as of today, reports suggest that this diverse skill demand has created a 

deficiency of available workforce within the IT sector (CompTIA, 2019; SHRM, 2019). One 

potential way of reducing this problem could be to utilize the recent emergence of low-code 

platforms. Low-code platforms provide companies with the ability to significantly speed up the 

application delivery, reduce the amount of workforce needed and increase their scalability 

(Sanchis et al., 2019). This is done by reducing the amount of code needed by breaking down 

essential functionality into reusable components that quickly can be put together and reshaped 

(Tisi et al., 2019). Additionally, some low-code platforms bridge and simplifies the gap between 

areas such as security, data handling and infrastructure, eliminating the need for specialized 

expertise (Sanchis et al., 2019). However, while studies have shown that these low-code 

platforms increase the efficiency of application delivery (Waszkowski, 2019), to the extent of 

my knowledge, little research seems to have been done from a user experience perspective in 

this area.  



 

2 
 

User experience has become a very important aspect of software development today 

(CompTIA, 2019), involving attitudes and emotions of an interaction (Law et al., 2009). 

Understanding the attributes of these interactions are necessary as they expose ways of how 

the experience could be improved (Beecham et al., 2008; Kuusinen et al., 2016). Furthermore, 

research has shown that negative experiences can cause mental health issues among 

developers, making them take shortcuts in the development process, potentially introducing 

bad software quality (Graziotin et al., 2017a; Graziotin et al., 2017b). 

Now, while user experience is concerned about the contexts in which a system is used, the 

complex nature of software development involves more than just using a system (Fagerholm 

& Munch, 2012). Here, developers experience the creation of systems that will be used by 

others while also iteratively reshaping their own experiences by altering and extending their 

development environments (Kuusinen et al., 2016). Consequently, in order to fill the gaps of 

user experience in software development environments, the novel area called developer 

experience has recently arisen, focusing on the activities of software development where 

traditional UX would not suffice (Fagerholm & Munch, 2012).  

Thus, with the importance of understanding how developers experience development, as 

well as the seemingly limited research, this study aims to understand developer experience in 

low-code environments. Consequently, based on the dimensions of Fagerholm and Munch 

(2012)’s developer experience framework, the following three research questions were formed 

(see table 1).  

1.1 Research questions 

 

Nr. Research Question 

RQ1 How do software developers feel about their work in low-code platforms? 

RQ2 How do developers perceive their contribution's worth in low-code platforms? 

RQ3 How do developers consider the infrastructure for development in low-code 

platforms? 

Table 1 – Main research questions 

The first question is based on the affect category, found in the developer experience 

framework (Fagerholm & Munch, 2012), and treats factors related to how the developer feels 

about their work such as sense of belonging, respect or attachment to social connections or the 

work itself.  

The second question addresses the conation category and explores how the developers 

experience their value of contribution. This includes factors such as motivation, goals, 

alignment, commitment, plan, and intention.  

The third and last question looks at the cognition category, which is how developers think 

about the infrastructure of the development process. This category includes factors related to 

platform, techniques, process, skill, and procedures.  



 

3 
 

In relation to the three main research questions, two other aspects of developer experience 

is also of interest as low-code development substantially differ from traditional development 

(see table 3), moreover, developers may also change their own experiences through individual 

customization of their own development environment through means such as using and 

configuring development tools (Kuusinen et al., 2016; Tchounikine, 2017). As a result, in order 

to understand how experiences may differ between low-code development and traditional 

development, as well as how developers may reshape their own experiences, the following two 

research questions have been created (see table 2).  

 

Nr. Research Question 

RQ4 How do developers experience differ between traditional and low-code 

development? 

RQ5 How do developers reshape their own experiences?  

Table 2 - Secondary research questions 

2. Related Research 

In this chapter, definitions and related research of low-code platforms, user experience and 

developer experience, will be presented to the reader. 

2.1 Low-Code Platforms 

Development Platforms that reduce code and automate development tasks for developers have 

recently started to become widely adopted (Koksal, 2020), and is now growing even further 

due to the outbreak of COVID-19 (Greig, 2020). These low-code platforms can be defined as:  

“set of tools for programmers and non-programmers. It enables quick generation 

and delivery of business  applications  with  minimum  effort  to  write  in  a coding 

language and requires the least possible effort for the installation  and  

configuration  of  environments,  and  training and  implementation" 

(Waszkowski, 2019).  

By simplifying the process of code to goal, developers now need to spend less time figuring out 

the complex coding requirements of a system and may instead switch their efforts to quickly 

building new functionality. This is done by automating and standardizing code that effortlessly 

can be implemented in a visual coding environment.  

2.1.1 Differences to traditional development 

Low-code platforms are able to significantly change the development landscape in terms of, 

time to market, scope, development, maintenance, integration, and deployment, compared to 

traditional development (Morris, 2017). Consequently, it may provide a different experience 

for the developer compared to developer experience in various traditional development 



 

4 
 

projects where more traditional tools and processes are used. A summary of the key differences 

between low-code development and traditional development can be seen in table 3, sourced 

from Morris (2017).  

 

Feature Traditional Development Low-code Development 

Time to 

market 

Manual coding 

Slow to launch 

Slow to change 

Drag and drop design 

Pre-built components 

Quick to launch 

Scope Build entire applications at once 

Large projects 

Build small independent solutions 

one at a time 

Framework for multiple small 

solutions 

Development Slow turnaround times 

Not aligned to business demands 

RAD: Build up to 5x quicker 

Efficient testing 

Prove ROI 

Maintenance Expensive to support 

Requires additional development 

Easy/quick to update or extend 

Excellent for prototyping 

Integration Time and investment heavy 

Requires developer(s) & 

documentation 

Open to testing delays 

Pre-built connectors 

Live debugging 

Create web services/APIs with no 

coding 

Deployment Slow and complex 

Multiple steps requiring 

development resources 

One-touch deployment 

Deploy to multiple environments 

Cloud or on-premise 

Table 3 - How do low-code development platforms compare to the traditional approach? 
(Morris 2017) 

2.2 User Experience 

According to the international standard on ergonomics of human-system interaction, user 

experience can be defined as “person's perceptions and responses resulting from the use 

and/or anticipated use of a product, system or service” (International Organization for 

Standardization, 2019). Similarly, Law et al. (2009) describes user experience as a person’s 

interaction with products, systems, services, and objects through a user interface. 

Consequently, this means that while our full experience may involve experiences such as 

events, spaces, physical interactions with people, art and so on, they are not part of user 

experience unless the interaction is done though a manmade user interface. To illustrate, some 

examples of user experience could be the interaction of playing mobile game, using a self-

service checkout machine, or searching for a movie on a streaming platform. During each of 

these interactions, perceptions and responses are created within the user.   

2.3 Developer Experience 

The main goal of user experience is the use of a product, system or service. While developers 

are also users of these products, systems or services, they are also more than a regular user, 



 

5 
 

they are producers. The developers' interactions with these artifacts are more complex in 

nature as they both create and use these artifacts in an iteratively changing fashion. Kuusinen 

et al. (2016) defines it as:  

“While UX considers the context of use of a system, DX considers the context of 

software development, including aspects beyond software tools, such as 

development processes, modeling methods, and other means of structuring SE 

tasks”. 

Additionally, developers also continuously change their own experiences as they often 

change their developing environment through the configuration and use of tools (Kuusinen et 

al., 2016). Subsequently, developer experience shares some characteristics with user 

experience as the focus lies on the user, or the developer in this case. However, the context for 

developers (software development) is different in comparison to more traditional users, as 

developers are also producers, requiring extension of our scope in order to understand the 

factors affecting the experience of software development. Moreover, UX focuses on the use of 

a product (user-centered design) while DX focuses on the creation of products (process-

product-centered in specific contexts). Consequently, UX involve the experiences of using a 

product whereas DX covers the development processes of creating products, each bringing 

their own priorities and goals (Fagerholm and Munch, 2012).  

2.3.1 Developer Experience Framework 

In contrast to user experience, the magnitude of the DX activities not only focuses on the 

affective attributes, but equally as much on the conative and cognitive as well as social 

attributes (Fagerholm and Munch, 2012). Consequently, the concept of mind is of importance. 

Fagerholm and Munch (2012) breaks down DX into three categories, cognition (How do 

developers perceive the development infrastructure?), affect (How do developers feel about 

their work?) and conation (How do developers see the value of their contribution?). These 

Figure 1 – Developer Experience Framework (Fagerholm & Munch, 2012) 



 

6 
 

categories are based on the classical separation of the mind, where cognition includes memory, 

attention, decision-making, problem-solving and the understanding and production of 

language. Affect, encompassing emotion, feelings and mood. And lastly conation, which 

consists of motivation, impulse, desire, volition and striving (Fagerholm & Munch, 2012; 

Fagerholm, 2015).  

As seen in figure 1, each of the three sections consists of multiple subsections, exploring how 

the developer experiences the infrastructure, their work, and their contribution. To further 

exemplify, the developer may have perceptions towards the infrastructural components such 

as a platform, programming language, framework, or method, as well as feelings about work, 

including respect and attachment to their work as well as social aspects contributing to a sense 

of belonging, and lastly seeing value of their contribution and feeling purposeful by being able 

to complete personal goals and plans as well as having them being aligned with others. For a 

more general description see 1.1. 

2.3.3 Various contexts  

At the time of writing this paper, and to the best of my knowledge, only a limited amount of 

studies has been conducted with developer experience in mind. Palviainen et al. (2015), 

investigated how developers experience working in a collaborative online coding environment 

using Fagerholm and Munch’s framework (2012). The results of Palviainen et al. (2015)’s 

research, further strengthened the statement that developer experience extends further than 

only experiencing the usage of a tool, it highlights the dynamic nature developers experience, 

formed by the tools, processes and people as they reiterate their actions.   

In a study by Fontão et al. (2017) where they look at the primary emotions in mobile 

software systems, they focus on the emotions of developer experience. Furthermore,  Fontão 

et al. (2018) employed Fagerholm and Munch’s framework (2012) as they explore how 

developers experience training approaches for mobile software ecosystems, while Kuusinen et 

al. (2015) conducted a study of developer experience in an integrated development 

environment in order to improve the tools of the developer as well as their activities. Kuusinen 

et al. (2015) additionally states the complexity of software development, signifying that 

developer experience is a very unstudied and critical topic. Continuing, further contexts can be 

found in Fagerholm’s (2015) study, where he explores the developer experience in lean, agile 

and open source development environments. 

2.3.5 Consequences 

Investigating the developer experiences is important, as DX may affect the development 

outcomes in negative ways. Studies have shown that unhappy developers can affect 

productivity and performance negatively (Graziotin, 2017a; Graziotin, 2017b). Furthermore, it 

may lead to developers taking shortcuts, impacting the quality of the product (i.e., errors, 

security and so on) (Graziotin, 2017a). Additionally, it may affect the developer’s motivation, 

resulting in the above issue as well as skipping “unhappy” tasks all the way to quitting their job 

(Graziotin, 2017a). Furthermore, the tools and their qualities that developers have available 

may also affect their motivation in positive or negative ways (Kuusinen et al., 2016). Lastly, in 

a study done by Baltes and Diehl (2018), participants where asked why their own or their co-



 

7 
 

workers programming performance may have dropped. The most common answer was 

demotivation.  

Contradictorily, motivated developers are more engaged, focused, and collaborative (França 

et al., 2014). Furthermore, motivated developers are also better analytical problem solvers 

(Graziotin et al., 2014).  

2.3.6 Motivating factors 

As part of exploring the developer experience, it is of relevance to understand what developers 

in software development are motivated or demotivated by. 

By looking at prior research, it is possible to get an overview of the common factors in 

software development that motivate developers as well as what may cause demotivation. For 

instance, a study done by Beecham et al. (2008), indicated that the main aspects for motivation 

among developers were problem-solving, team working, change, challenge, benefit, science, 

experiment, development practices and software process/lifecycle. In another study conducted 

by Baltes and Diehl (2018), the following motivating factors were found, presented in order 

from the most mentioned, problem-solving, seeing result of their work and particularly high-

quality work, creating something new, and helping others. In the same study, demotivating 

factors were also expressed, in order from most mention, non-challenging work, unclear vision 

where the project is heading, and lack of reward for their quality work. Similarity, França et al. 

(2014) found similar results, indicating that motivation and happiness comes from, 

engagement of co-workers, challenging work, social impact, acquisition of useful knowledge, 

work variety, creativity, well defined work, communication, participation and collaboration, 

and lastly feedback. Continuing, Misirli et al. (2014) as well as Oliveira and França (2019) 

found that teamwork was a significant factor for motivation among developers. Other 

motivational factors found in research showed that developers with more responsibility are 

more motivated, while processes that improve quality and readiness makes developer less 

stressed. Furthermore, the study also showed that long production times decreases confidence 

of the developers (Kärpänoja et al., 2016).  

In terms of values toward the technical side, Kuusinen et al. (2016) concluded that 

developers primarily value efficiency, meaning that the development environment should be 

fast and efficient to use, flexibility, covering aspects that fulfil the developer’s needs, such as 

allowing for customization, scalability, being extensive etc., informativeness, in relation to 

code and text editors such as code assistant tools, and finally intuitiveness, meaning that the 

development environment should be easy to use, understandable, intelligent etc. 

Technical debt has also been found to be a demotivating factor among developers. Technical 

debt can be defined as the debt given when an easy approach is chosen instead of a more 

complex and better solution, resulting in more work and costs in the future (Besker et al., 

2018). In Besker et al. (2020)’s paper, the results exposed that developers tend to lose morale 

from technical debt, as it prevents the developer from progressing and reduces confidence. On 

the other hand, the study also showed that good management of technical debt, can improve 

the developer’s morale by allowing the developers to perform their work better.  



 

8 
 

2.4 Software and Designing for Appropriation 

As developers can reform their own experiences by changing their tools, processes, and 

environment to their personal liking, it is appropriate to explore how this may take place in a 

low-code platform. Furthermore, this is also advocated by Fagerholm (2015).  

The process of users adopting software in ways that make it their own is defined as software 

appropriation (Dourish, 2003). Note that this is more than a technical change of software, it 

is concerned with how users adopt based on the context and their needs (Tchounikine, 2017). 

Consequently, software may be used in ways that the designer did not anticipate for. 

While software appropriation is about the personal adoption of software, design for 

appropriation focuses on helping the users adopt a system by intentionally providing means 

for the user to extend their use in their own unique ways (Tchounikine, 2017). As developers 

are both users and creators, it is particularly interesting to explore the dimensions in which the 

developers may shape their development tools as well as the product. 

2.5 Developer Experience in Low-Code Platforms 

At the time of writing this paper, research on the topic of developer experience seem limited. 

Additionally, the absence of developer experience research has also been acknowledged by 

Kuusinen et al. (2015) and Nylund (2020). Furthermore, to the best of my knowledge this is 

the first study to explore developer experience in low-code development environments. 

Consequently, with the increased use of low-code platforms, the seeming lack of studies for 

developer experience in low-code platforms and the importance of creating good experiences 

for developers, this study aims to explore and broaden the understanding of DX in a low-code 

environments through Fagerholm and Munch’s framework (2012) (see table 1 for research 

question one, two and three). Moreover, differences between traditional development and low-

code platform experiences will also be investigated as well as how the developers may re-

appropriate their tools to shape their experience (see table 2 for research question four and 

five). Finally, based on these results, recommendations for improving the developer experience 

in low-code platforms will be made.  

3. Methodology 

This section exposes the methodological procedure of this study. The chapter is broken down 

into four main categories, research design, containing information about the methodological 

choices of the study, research execution, explaining how the data was collected and analyzed, 

sample and participants, presenting the sampling method and participant selection, research 

ethics, accounting for how ethical research was considered and lastly, research discussion, 

expressing the strengths and weaknesses of the chosen methods.  

3.1 Research Design 

In order to explore the research questions defined in this study, a qualitative approach has 

been selected. Qualitative research enables the researcher to explore the perspectives, 

behaviors, and deeper meanings of people in their real contextual situations (Yin, 2011). As 

user experience and developer experience revolve around perceptions, feelings, behavior, and 



 

9 
 

the context of the interaction (Hassenzahl & Tractinsky, 2006), and with the limited resources 

of this study, it was viable to conduct the research through a qualitative approach based on 

semi-conducted interviews with developer using a low-code platform called Softadmin. This 

platform provides developers with standard components that can be used to build technical 

solutions quickly with high flexibility and scalability (Multisoft, 2020). 

3.1.1 Interview Background 

This paper uses interviews for understanding the studied phenomena. According to Beck and 

Manuel (2008), interviews should be used if want to understand humans on a deeper level, 

when the research question is more interested in the underlying meaning and not the numbers 

and lastly when investigating trends and themes of experiences. Consequently, as this study is 

focused on the developer experience and deeper internal thoughts of the developers, it is a 

practical choice of data collection tool.  

3.1.2 Interview Structure 

The interviews were conducted with semi-structured questions. By using semi-constructed 

interviews, the researcher was allowed to create follow up questions and get more detailed 

answers as semi-constructed interviews are more flexible and deeper than constructed 

interviews (Beck & Manuel, 2008; Bryman, 2011). The questions became based on Fagerholm 

and Munch’s (2012) developer framework (seen in figure 1), with a distinct focus on the low-

code platform environment. Furthermore, the questions were balanced to achieve results in 

each of the three areas, cognition, conation and affect. More generally, this meant questions 

related to how the developer consider the development infrastructure (e.g. what is possible to 

do in Softadmin?), how they feel about their work (e.g. how is it to work in Softadmin?), and 

how they see value of their contributions (e.g. what have you developed so far?, how did it go?). 

Many questions would also have overlapping areas and therefore provided richer information. 

3.2 Research Execution 

The interviews were conducted with a local IT-company located in Umeå, Sweden. For the 

purpose of improved comprehension and privacy, the IT-company will be named 

LowCodeTech in this study. LowCodeTech specializes in delivery of IT-solutions, support and 

hardware and have in the recent years adopted a low-code platform development strategy for 

delivering technological solutions quicker. As a result of this, a majority of the developers had 

worked in the platform for a year or longer. Furthermore, the researcher was also working as 

a part time developer on this firm and already had some experience with low-code 

development. Moreover, this meant that the researcher was acquainted with the developers.  

3.2.1 Data Collection 

Each participant was invited to an interview with the information that it would revolve around 

how they have been experiencing the low-code platform. The interviews were then conducted 

in private rooms at LowCodeTech. At the beginning of the interview, the participants got 

handed a consent form, including information about the topic of the interview as well as how 

their data will be processed (see 3.4 for research ethics).  Once signed, voice recording was 

started on a mobile phone as well as a computer. The researcher would go through each 

question constructed and ask follow-up questions to get more detailed insights or perspectives. 



 

10 
 

At the end of the interview, participants were asked for any additional comments and then 

thanked for their time and input. It should be noted that all information and data was 

processed in Swedish. 

3.2.1 Data Analysis 

After each interview, a transcription was made of the recorded data. Once all the interviews 

and transcriptions had been completed, a coding session would begin. The coding began by 

highlighting and categorizing comments into their respective area of Fagerholm and Munch’s 

(2012) developer framework (seen in figure 1) for each developer. As this step was finished, the 

researcher would search for themes in the comments. Each comment then becomes organized 

into matching themes as well as counted for the total amount of developers expressing that 

theme. In parallel with searching themes, the researcher analyzed for themes and comments 

related to design appropriation (see 2.6) as well as differences between traditional and low-

code platforms. Furthermore, each comment would in addition to being placed in a theme also 

get marked as either positive or negative, with the exception of differences to traditional 

development where also neutral comments could exist. Software and design appropriation 

would however not hold any positive, negative, or neutral comments as this was not relevant.  

3.3 Sample and Participants 

This study uses purposive sampling. With the limited resources of this study as well as its 

exploratory nature, purposive sampling is a sensible choice as it allows the researcher, based 

on personal judgement, to select participants within their operating context (Taherdoost, 

2016). As such, participants with a background in low-code development can be chosen to give 

rich and informational answers practically related to the low-code setting of this study. 

The sample selection was made from LowCodeTech that in recent years had adopted a low-

code platform. An invitation was sent to all developers who had worked for a year or longer 

with the low-code platform as well as a project leader who had supervised the work of the low-

code platform environment. 

A total of seven participants were interviewed. Six of these worked as developers and one as 

a project leader. This included all developers of LowCodeTech that had been working with low-

code development. Five of the developers were men while the project leader and one developer 

were women. Furthermore, the age range of the participants was between thirty and fifty. Five 

of the developers were active users of the platform while the sixth had some experience with 

the platform through integration of external software. All of the developers had between one 

to two years of experience with the low-code platform and also eight years or more of 

traditional development experience. Lastly, the project leader had supervised multiple low-

code platform projects and was very experienced with both the technical and organizational 

elements of the platform. 

3.4 Research Ethics 

In 2002 the Swedish Research Council (2002) published four key principles for conducting 

ethical research. These principles are presented next. 

The information requirement. The researcher must inform the purpose of the research to 

all those who are affected by the study. 



 

11 
 

The consent requirement. Participants of a study will always have right to decide over their 

own participation. 

The confidentiality requirement. All information related to people must be given the 

highest confidentiality possible so that no external part may access them.   

The usage requirement. All collected data about individuals may only be used in purpose of 

the study.  

3.4.1 Adoption of guidelines 

This previously mentioned ethical guidelines have been considered as this study was design 

and conducted. The consent requirement was reflected on by informing the participants of the 

goal and topic of the study, both prior, during and after as participants were handed a copy of 

the consent form, holding information about the study. Secondly, the consent requirement was 

fulfilled by having the participants sign a consent form holding information about the study, 

how the data is handled, their rights, and what they consent to. Thirdly, the confidentiality 

requirement was respected by storing all the collected data on encrypted devices with two step 

verification security, ensuring that no external part can access them. Lastly, the usage 

requirement has been upheld by only utilizing the collected data for the purpose of this study.  

3.5 Method discussion 

During this study, interviews have been used as data collection method. By selecting this data 

collection method, a couple of limitations may be introduced as interviews are subject to being 

affected by bias, resulting in possibly less generalizable results (Bell, 2016). Furthermore, the 

results could be influenced by the researcher’s inexperience of conducting interviews as well 

as being colleague to the developers, as this could result in data being kept secret (Mcconnell-

Henry et al., 2009). Conversely, the researcher did have practical experience of the low-code 

platform, potentially strengthening the scope and detail of the questions asked during the 

interviews. Moreover, as the researcher is familiar with the developers in this study, it might 

have formed trust between the developer and the participant, opening up for a more relaxed 

discussion, consequently aiding the extraction of more genuine and personal answers 

(Mcconnell-Henry et al., 2009). Implications for this were suggested by the participants’ 

interest of the topic as well as willingness to attend and share their own inputs. Likewise, 

during the interviews, participants were eager to share their personal insights and experiences, 

which was facilitated by the unstrained atmosphere. Lastly, participants could also quickly 

relate to issues that the researcher also were familiar with, progressing the conversation deeper 

with few hiccups.  

4. Results 

This section presents a compilation of the core topics found during the study. This includes the 

main DX findings based on Fagerholm and Munch’s (2012) framework, software and design 

appropriation and finally traditional development differences. Citations have been translated 

from Swedish to English.  



 

12 
 

4.1 Developer Experience 

This part presents the main developer experiences found in the interviews. The results are 

presented in relation to their related research question, based on their placement in the 

developer experience framework (Fagerholm and Munch’s 2012). Furthermore, to create a 

more comprehensive overview of the results, each finding is also characterized as a negative or 

positive experience. 

The coding of the interviews resulted in a couple of distinct themes that each developer 

affect could be categorized into and will be described next. The formed themes were the 

following, productivity, which includes experiences about being more productive, 

collaboration, covering experiences about teamwork and communication, problem-solving, 

involving experiences related to solving problems and intellectual challenges, personal touch, 

concerning experiences about being creative and expressing personal touches, cognitive 

overhead, encompassing experiences of having to take more or less steps in order to reach a 

goal or solution, common ground, which covers experiences of sharing the same base 

knowledge and tools for development, learning process, consisting of experiences related to 

learning and building knowledge, skill entry, which holds skill requirements for getting started 

with the low-code platform, specialized problem-solving, concerning low-code elements that 

require developers to form new specialized thinking processes, hard dependency, where issues 

and possibilities related to control and third party ownership is included, documentation and 

overview, holding topics about documentation and overview of the features, tools and 

possibilities of the low-code platform, and finally programming language, encompassing 

issues on the subject of programming language. 

4.1.1 – Research Question 1 

How do software developers feel about their work in low-code platforms? 

Theme Description Positive 

developer 

count 

Negative 

developer 

count 

Productivity Feelings about being more productive 5  

Collaboration Feelings about teamwork and 

communication 

2 1 

Problem-solving Feelings about solving problems 3 6 

Personal Touch Feelings about creativity and personal 

touch 

1 5 

Table 4 – Feelings about work in low-code platforms 

Questions related to how the developer feel about their work in the low-code platform resulted 

in feelings that could be categorized into four distinct themes, productivity, collaboration, 

problem-solving and personal touch. Issues related to negative productivity were however not 

found. The total amount of developers (and the project leader) expressing a theme can be found 

in table 4. 



 

13 
 

Positive Experiences: 

Four developers as well as the project leader expressed that they felt positive, happy, or 

satisfied by being able to produce results in a timely, quickly, and easy manner. These results 

were based on comments such as ”very satisfying to be efficient” (developer 2), “there is 

happiness in being able to deliver results so fast” (developer 6), “It’s fun to be so productive 

and being able to skip all the boring parts” (developer 7). 

One developer and the project leader mentioned positive feelings about the collaboration 

around the platform. The results were based on statements such as “they are having fun; it is 

easy to work together in this and you also get faster and more feedback from the customer 

which makes one happy” (project leader), “I see it a bit how we manage to fulfill the customer's 

wishes in a very good way. It kind of brings joy to the development” (developer 6), “it is fun 

when the customer actually appreciates it... they get a focus on solution rather than having it 

look a certain way” (developer 6). 

Three developers voiced positive feelings about the problem-solving and intellectual 

challenges that the low-code platform would offer. Some examples are the following, “I felt that 

I miss it a bit to work with databases. So, then it became like a way in to be able to do that. I 

think it's fun” (developer 2), “I enjoyed it but it did not go as fast as I did but it was because I 

was still learning new things” (developer 4), “challenging in such a way that you have to write 

quite a lot of clever SQL code and it is fun” (developer 6). 

The project leader also talked about personal touch, creativity and how developers build an 

acceptance towards the layout after a while “you get used to a layout… you get used to it looking 

like this... so that then it will be easier to eat it” (project leader). 

Negative Experiences:  

One developer mentioned negative feelings about the collaboration around the platform. The 

results were based on statement, “I'm more into working locally actually” (developer 2). 

Five developers and the project leader expressed negative feelings about problem-solving 

and intellectual challenges, example comments were, “those who like to code raw, they don’t 

think it is so fun” (project leader), “Sometimes you get a little frustrated when it was not 

possible to do as you wanted” (developer 2), “I would rather do programming because it's more 

fun…you get to think more” (developer 4), “You can get really frustrated that you can only get 

two buttons in the width” (developer 5).  

Four developers and the project leader had negative feelings towards creativity and personal 

touches on the platform. Some key issues where, “changing the interface. Some do not like that 

you cannot put your personal touch on it” (project leader), “ There is like no creativity.. , it feels 

like it is very forced how it should be” (developer 3). “a bit boring that that it is left behind... 

You lose creativity and the artistic part” (developer 5).  
  



 

14 
 

4.1.2 – Research Question 2 

How do developers perceive their contribution's worth in low-code platforms? 

Theme Description Positive 

developer 

count 

Negative 

developer 

count 

Productivity Perceived value of being productive 7  

Collaboration Perceived value of teamwork and 

communication 

4  

Problem-solving Perceived value of solving problems 4 6 

Personal Touch Perceived value of creativity and 

personal touch 

 6 

Table 5 - Perceived value of work in low-code platforms 

Questions related to how the developer perceive the value of their contributions resulted in 

four distinct categories, productivity, collaboration, problem-solving and personal touch. 

Perceptions related to positive personal touch were however not found. The total amount of 

developers (and the project leader) expressing a theme can be found in table 5. 

Positive Experiences: 

Six developers and the project leader reported positive perceived value of their work by being 

more productive. Some examples were: “You can do a lot in one day. In one day you are able 

to do very, very much” (developer 2),  “very easy to do things…fast” (developer 3), “you start 

on a more helpful percentage...it is quick to prototype for the customer“ (developer 6), 

“productive that you can do a lot with little time…and also flexible…easy to make changes 

afterwards” (developer 7). 

Three developers and the project leader stated that they had gained positive perceived value 

of their work by having better teamwork and communication. The results are based on 

statements such as, “you get very easy and good feedback…so that it turns into what they want” 

(project leader), “you can sit and look it up and visualize for the customer what your thoughts 

are” (developer 2), “you can get customers to agree that it should look exactly like this” 

(developer 3), “You have to say no to customers…that is not a good idea. Significantly earlier 

than you would otherwise. On the other hand, there is a strength in being able to say no that 

the platform does not support this, it is not possible” (developer 5).  

Four developers expressed positive perceived value of their work by problem-solving and 

intellectual challenges that the platform provided. Some of the comments were, “you can 

instead see the advantage of being able to help an organization with very, very simple means” 

(developer 5), “it is surprisingly much in these requirements that customers have that can 

actually be solved with what you have to work with. (developer 6), and lastly: 

“my experience with some other platforms like this is that if you do not do exactly 

what the people who made the platform thought you should use that file for then 

you have to work against it rather than with it to make it work the way you want. 

I think this happens much less often with Softadmin than with others I have tried” 

(developer 7). 



 

15 
 

Negative Experiences:  

Five developers and the project leader mentioned that they have had negative perceived value 

of their work as a result of problem-solving and intellectual challenges. The following examples 

occurred, “Sometimes it feels like you have to make pretty ugly interfaces, I mean not visually 

ugly, but they get a little bit harder to work with” (developer 2), “But you cannot…it's pretty 

square” (developer 3), “That's the thing...if it does not work in Softadmin…then it does not 

work in Softadmin…there is nothing you can do” (developer 6). 

Five developers and the project leader reported negative perceived value of their work 

because of issues with creativity and personal touch. Some of the key issues were, “you are 

basically not allowed to design anything” (developer 5), “you do not have much freedom when 

it comes to what it should look like” (developer 6), “what the interface should look like...it is 

complicated to fix in Softadmin. So that is a little worse” (developer 7).  

4.1.3 – Research Question 3 

How do developers consider the infrastructure for development in low-code platforms? 

Theme Description Positive 

developer 

count 

Negative 

developer 

count 

Cognitive Overhead Attitudes on infrastructure & total 

steps to reach a solution 

5 4 

Documentation and 

overview 

Attitudes on infrastructure, 

documentation & overview 

 4 

Common Ground Attitudes on infrastructure & shared 

base knowledge 

5  

Learning Process Attitudes on infrastructure & learning 

process 

5 2 

Skill Entry Attitudes on infrastructure & required 

entry skills 

3  

Programming 

Language 

Attitudes on infrastructure & 

programming language 

 3 

Specialized 

Problem-solving 

Attitudes on infrastructure & 

specialized thinking processes 

2  

Hard Dependency Attitudes on infrastructure & third-

party control 

1 3 

Collaboration Attitudes on infrastructure, teamwork 

& communication 

3 5 

Table 6 – Attitudes on infrastructure in low-code platforms 

Questions related to how the developer consider the infrastructure for development in low-

code platforms resulted in a total of nine categories, cognitive overhead, common ground, 

learning process, skill entry, specialized problem-solving, hard dependency, collaboration, 

documentation and overview and lastly programming language. The total amount of 

developers (and the project leader) expressing a theme can be found in table 6. 



 

16 
 

Positive Experiences: 

Four of the developers and the project leader reported positive attitudes towards 

infrastructure and total steps to reach a solution. Some key statements were, “But you do not 

have to put a lot of work into the basic…because it already exists” (project leader), “you write 

code in SQL, you write questions to be done against the database so you just have to focus on 

that” (developer 4), “you do not have to think about the interface composition” (developer 6), 

“Less risk to do errors” (developer 7). 

Four of the developers and the project leader told that they have had positive attitudes 

towards infrastructure and the shared base knowledge it brings. The results are based on some 

of the following comments, “It is good that everyone involved has the same basis” (project 

leader), “if we make a new system then there will only be very low entry time for those who 

worked in the old as well as you get the uniform look of everything” (developer 2), “It is very, 

very easy for me to hand over a Softadmin solution to another developer who has just 

completed the training” (developer 5). 

Five developers expressed positive attitudes towards infrastructure and the learning 

process. The result are based on some of the following remarks, “So it was very good because 

you could basically read the whole thing and work yourself without much help” (developer 2), 

“everyone takes a course for a few days and then you can use it” (developer 3), “Softadmin is 

built on standard components. It is very easy to adapt even if you do not have the knowledge” 

(developer 5), “It was good. It was great educational resources” (developer 6). 

Three developers mentioned positive attitudes towards infrastructure and skill 

requirements. Some key examples are the following, “It is required that you know SQL in order 

to be able to develop in it, but it is also the only thing required in general” (developer 2), 

“Anyone really if you are a little learned in programming...if you work with SQL questions you 

can learn it fast I think. It should go fast” (developer 4). 

Two of the developers stated that they positive attitudes towards infrastructure and its 

specialized thinking processes. Some of their key remarks were, “it is a little different thinking 

process… I think it forces one into a good mind in some way. The first thing you do is sit down 

and map out the system” (developer 2), “you think like how do we solve this based on what we 

have… you need to have a Softadmin mindset in your head when you think about how to solve 

it” (developer 6). 

One developer also showed positive attitudes towards infrastructure and dependency on 

third-party platform owners. This is based on the following statement, “So they update, they 

maintain the product and you do not need us to do it more than clicking the update button on 

the customer and it is fixed as well” (developer 2).  

Three developers expressed positive attitudes towards the infrastructure’s teamwork and 

communication possibilities. Some key examples were, “So you sit at customer meetings. 

Someone can sit and fix the thing that the customer is just talking about and as well show on 

the screen directly” (developer 2), “in five minutes from changing it in the data model to adding 

it to the form and you can view it in the app” (developer 5), “when customers see okay…they 

may not like exactly what everything looks like but when they see the benefits and that it is still 

a very easy-to-use interface, then it does not matter much” (developer 7). 



 

17 
 

Negative Experiences:  

Three developers and the project leader stated negative attitudes towards infrastructure and 

its documentation and overview. The following are some key examples, “it still requires that 

you work with it for a while to understand” (project leader), “everything is in a database…in 

one place…it is like you can structure things with schemes and so on, but it's hard to get any 

bigger order in it” (developer 2), “sometimes they have had lacking documentation and you 

had to email them” (developer 6). 

Four developers mentioned that they have had negative attitudes towards infrastructure 

and total steps to reach a solution. Some statements are the following, “if you then in the middle 

of the project realize that you have misunderstood something big...then it will be quite messy 

to correct it later” (developer 2), “It is difficult with this to be able to see what changes I made 

here to destroy this, how can I diff it and who has done this, how it has happened and so on. 

Such things are difficult” (developer 5), “Multisoft's app...like tables were limited to 3 

columns...(to solve it)…either build your own mobile app as we have done or do your own APIs 

that do things” (developer 7). 

Two developers expressed negative attitudes towards infrastructure and the learning 

process. Some of the comments where, “I feel it may be a small disadvantage that the 

introductory material goes through everything quite clearly, but where It ends, there you are 

rarely working yourself” (developer 2), “I think learning SQL and SQL server and how to do 

things there in simple and efficient ways…that's what is difficult” (developer 7).  

Three developers said that they have had negative attitudes towards infrastructure and its 

programming language. The results are based on some of the following, “SQL is the basis of 

SoftAdmin and it is a huge big thing...I think that few can call themselves fully educated in SQL 

as well” (developer 2), “SQL is in many ways superb but in many ways useless, most primitive 

programming language and using SQL as a programming language means that you inherit 

many of the qualities of the negative aspects that SQL has” (developer 5). 

Two developers and the project leader stated negative attitudes towards infrastructure and 

the dependency on third-party platform owners. This is based on some of the main comments, 

“Yes, then a potentially bad thing is that the whole tool is one…yes, it is like a third party tool 

the whole platform…you sit a little in the knees of them” (developer 2), “But I believe that you 

could open it up and make it less dependent and take it to another level with the possibility 

when it comes to customizations and interfaces and stuff” (developer 5). 

Five developers expressed negative attitudes towards the infrastructure’s teamwork and 

communication possibilities. The following key statements occurred, “it's a bit dangerous to be 

work in such things...if you save a stored procedure that I also open and maybe I am unsure if 

I have saved this or not...then an hour later I save it and overwrite your changes” (developer 

2), “I make a change and then someone decides that now we will deploy, then my small changes 

will be included…even though they are not really ready” (developer 4), “to be more than two, 

three people in a Softadmin system at the same time and actively develop it… then you have to 

document it very well and have a data-model in place from the beginning” (developer 5).  



 

18 
 

4.2 Traditional Development and Low-code Development 

4.2.1 Research Question 4 

How do developers experience differ between traditional and low-code development? 

The participants also stated differences in their experience between traditional and low-

code development. A total of seven distinct themes could be found from these results, 

productivity, common ground, creativity & problem-solving, learning process, control, 

collaboration, and finally “other platforms”. Descriptions for these themes can be found in 4.1 

with the exception of creativity & problem-solving which includes both problem-solving as well 

as personal touches (both themes found in 4.1), control meaning changed control and overview 

and finally other platforms for differences to other platforms. Each theme may be presented as 

either positive, negative, or neutral difference.  

Six developers and the project leader expressed positive differences to traditional 

development through productivity. Some major statements were the following, “there is 

nothing that is so easy to start up in” (project leader), “You can do a lot in one day…compared 

to traditional development where you have to sit with API calls and validations and interfaces 

that must correspond to both validation, calls and structure” (developer 2), “it seems to go very 

fast to get something to show…in comparison to when you have to code it yourself from the 

beginning” (developer 3), “this agility and the speed of meeting changes in customer 

requirements” (developer 6).  

One developer talked about positive differences by common ground. The result is based on 

the following comment,  

“if you have made more than one softadmin system to a customer then they will 

of course recognize themselves in it…then we make a new system then there will 

only be a very low run-in time for those who worked in the old as well as you get 

the uniform look of everything. So it's a positive one. It can be done in traditional 

coding as well, but they become a little more automatic with softadmin” 

(developer 2) 

Three developers mentioned positive differences in creativity and problem-solving. This is 

based on some of the following key observations, “you can do some things outside the 

softadmin sandbox. Get some free hands” (developer 2), 

“you think like, how do we solve this based on what we have…which makes you 

get a slightly different focus than that...with traditional development where you 

maybe do something because you can but then maybe it was not really the best 

way but you do it anyway because it works” (developer 6), 

“for the type of system where Softadmin fits well, it is difficult to find something that is much 

better with traditional development” (developer 7).  

Five developers did also express negative differences in creativity and problem-solving. 

These are some of the main comments, “Because you may have encountered a certain situation 

that could be solved quite easily but then it turns out that there was really no support for that” 

(developer 2), “you are basically not allowed to design anything” (developer 5), “with 



 

19 
 

traditional tools...there is maybe a lot more information to access and how others solved things 

and stuff” (developer 7).  

Three developers had additionally neutral differences in creativity and problem-solving. 

This are some examples, “So I see nothing that traditional coding cannot do that Softadmin 

can do. After all, there are no restrictions in the traditional world. But it takes much longer” 

(developer 2),  

“in traditional development you are paralyzed by having all the possibilities, and 

you are paralyzed by the paradox that you do not know how best to do something, 

so instead of doing something fast you try to find the best way to do it, so it takes 

a very long time… and the other limits one so that one can only do it in one way” 

(developer 5). 

One developer mentioned positive differences with the learning process. This is based on 

the following comment, “easier to learn it than to start programming in standard traditional 

tools” (developer 4). 

One developer showed positive differences regarding control. The statement made was, 

“Because there is so much more code based on many different components that 

you have downloaded from different manufacturers, so you have to keep track of 

yourself that they are safe and work over time, while Softadmin releases new 

features regularly and very simple process to upgrade. It did not get much better 

for traditional development…for this type of system” (developer 7). 

Three developers talked about positive differences in collaboration. These are some of the 

main observations made, “And just to avoid this extra labor...I have to send an email to the 

customer later and describe with arrows and screenshots that we have changed this and does 

it look good? And instead of being able to do it in a sitting meeting, it is invaluable” (developer 

5),  

“I can well think that the need to prototype is not there in the same way. But with 

Softadmin solutions...if you have shown how Softadmin works and looks…then the customer 

knows when you explain…then you don’t need to mockup layouts and stuff” (developer 6).  

 

Four developers did however mention negative differences in collaboration. The results are 

based on some of the following comments, “Well, there is no version control…it must be seen 

as a big disadvantage that you can never sort of check what others have done or go back” 

(developer 3), 

 “In traditional, there are millions more functionality and support and stuff for 

collaboration. Everything from pair programming to that you can sit in different 

geographical locations and code in the same code while it runs live and you can 

get branches, you can get an all-DevOps spirit that has ever existed. Not to 

mention tests and all that stuff. I mean it is thirty years back…forty years back 

for Softadmin on that part” (developer 5).  



 

20 
 

Furthermore, all four developers mention negative differences with version control.  

One developer had a neutral stance differences in collaboration. This is based on the 

following comment: 

“The easiest way to work with collaboration is to sit close to each other, talk 

constantly and work with separate parts of the same system, but to be more than 

two, three people in a Softadmin system at the same time and actively develop 

it… then you have to document it very well and have a data-model in place from 

the beginning” (developer 5). 

The project leader mentioned negative differences to another more traditional development 

platform. The project leader said the following, “SharePoint is a variant, but it is much…much 

slower and much harder and much more boring to work in as a developer” (project leader). 

4.3 Software and Design Appropriation 

4.3.1 Research Question 5 

How do developers reshape their own experiences? 

The participants did express cases of software and design appropriation. These results can 

be categorized into three main themes, creativity extension, which includes new thought 

processes that the developer must use in order to solve some problems in the low-code 

platform, environment extension, which encompasses how the developer extend and reshape 

their development environment in order to solve problems, and finally productivity extension, 

holding tools and software that the developer may use to speed up their development. 

Two developers made comments about how the low-code platform may require a creativity 

extension. The comments made are the following, “I know that there are people who have done 

work-arounds to get around it and it is good that it is possible, but for me it feels like it might 

be a bit too much hand-laying call to get to something that should be quite easy” (developer 2),  

“then you try to model the system based on your vision in ordinary cases when it 

comes to traditional programming. But when you work with Softadmin, it is 

rather, okay...I have these puzzle pieces and what can I do with these puzzle 

pieces? Ah, then it must be like this. So that it is a state of mind where you change 

and it becomes...but and the other side, there are many who say that with 

creativity arises from limitations” (developer 5).  

Three developers talked about how they had extended their development environment in 

the low-code platform. This is based on the following statements, “you can do some things 

outside the softadmin sandbox or what should I say…get some free hands” (developer 2), 

“precisely because of what I said that SQL is not really built to write algorithms and because of 

that it will be easier and simpler to test, more separated and nicer if you write certain code in 

C# instead” (developer 5), “well what we have done so far is to do it outside Softadmin in such 

cases. With...well, either build your own mobile app as we have done or do your own APIs that 

do things” (developer 7).  



 

21 
 

Four developers made comments about tools and software they use to further improve the 

productivity of the low-code platform. Some key examples are the following, “but we run 

this..what is this called…SQL Prompt to get intellisense and be able to write a little faster” 

(developer 2),  “we have bought a single component called SQL promt that handles how you 

code and gives you tips” (developer 5). 

5. Discussion 

This chapter analyses and discusses the findings of this study based on related research and 

empirical conclusions. 

5.1 Developer Experience 
This section holds a discussion on the first three research questions, relating them to research within 

the field.  

5.1.1 Research Question 1  

How do software developers feel about their work in low-code platforms? 

From the results it is possible to extract that a majority of the developers feel satisfaction or 

happiness from being more productive in the low-code platform. Which is in line with Fontão 

et al. (2017)’s result where developers showed joy from improving their productivity, as well 

the results by Kuusinen et al. (2016), indicating that developers get motivated by an efficient 

development environment.  Additionally, some positive emotions also existed for the increased 

collaboration abilities with the customer as well as problem-solving and intellectual challenges 

from working with the programming language of the platform. Subsequently, this is consistent 

with developers being highly motivated by problem-solving and teamwork (França et al., 2014; 

Baltes & Diehl, 2018; Oliveira & França, 2019) As for creativity, this is a more neutral statement 

by the project leader, suggesting that some acceptance towards less creativity grows as 

productivity replaces it. This is an interesting aspect in its own. 

In contrast, negative emotions were significantly expressed for problem-solving and 

personal touch, as a majority of the developers felt that the platform sometimes constrained 

their abilities to come up with solutions, along with the fact that they could not use their 

creativity and personal touch to alter the layout of the product. Successively, this a similar 

result was shown for emotions in mobile software ecosystems by Fontão et al. (2017), where 

two of the most common negative emotions, sadness and anger, were related to issues in 

manipulation of interfaces and incompatibility with the developers’ preferred problem-solving 

methods. Additionally, the most common positive emotion, joy, was in addition to being more 

productive, also connected to creativity and being able to manipulate interfaces. Furthermore, 

this result may also be explained by the fact that creativity is an important factor for motivation 

(Beecham et al., 2008; França et al., 2014; Baltes & Diehl, 2018). As well as giving the 

developers freedom (Kärpänoja et al., 2016). Only one developer expressed negative emotions 

about collaboration, preferring to work locally.   

  



 

22 
 

5.1.2 Research Question 2 
How do developers perceive their contribution's worth in low-code platforms? 

In terms of how developers see the value of their work, all of the developers saw increased 

productivity of their work. This was also endorsed by the project leader. This may be a major 

positive impact for the low-code platform as Kuusinen et al. (2016) showed that developers 

value efficiency in their development environment, while Baltes and Diehl (2018) found that 

developers are highly motivated by seeing result of their work. Furthermore, Kärpänoja et al. 

(2016) found that longer production time makes developers less confident. As for 

collaboration, multiple developers felt that the relationship with the customer had improved 

by the added transparency, communication, and feedback. This made it possible for the 

developers to better understand the requirements, reiterate on feedback, hence improving 

their work efforts. Going back to motivation, developers who experience good communication, 

feedback, teamwork and have well defined work are according to multiple studies more 

motivated (França et al., 2014; Baltes & Diehl, 2018; Misirli et al., 2014). Consequently, the 

low-code platform may provide some motivation through these experiences. Furthermore, 

some developers also stated that their work had improved as a result of the efficient problem-

solving possibilities of the platform. Because of this, developers could now solve problems, see 

result of their work, and provide the customer with a solution more quickly. Hence, as seeing 

result of ones work as well as helping others are important factors for motivation among 

developers (Baltes & Diehl, 2018; Fontão et al., 2018), this provides another strength in terms 

of developer experience. Additionally, this may improve the moral among the developers as it 

could reduce technical debt (Besker et al., 2020). 

Looking at negative perceived value of the developer’s work, almost all developers expressed 

that they have had their work constrained as a result of the limited choices for problem-solving 

on the platform. Subsequently, almost all developers also expressed negative attitudes towards 

the restricted creativity and space for personal touch. As mentioned earlier, problem-solving 

and creativity is an important aspect of motivation for developers (Beecham et al., 2008; Baltes 

and Diehl, 2018). Consequently, these are two significant factors that may demotivate the 

developers in a low-code platform.   

5.1.3 Research Question 3  
How do developers consider the infrastructure for development in low-code platforms? 

For attitudes towards the development infrastructure, the developers had numerous inputs. 

To start with, a majority of the developers felt that the low-code platform had improved their 

cognitive overhead by removing and automating steps in the development process, meaning 

that developers now were able to focus more on the task at hand. Subsequently, as Kuusinen 

et al. (2016) showed, efficiency and intuitiveness of the development platform is highly valued 

by developers, suggesting this a major positive experience towards the development 

infrastructure. Furthermore, as less steps needs to be taken for a solution, it could reduce the 

technical debt as there is less options for creating the technical debt (Besker et al., 2020). 

Continuing, the results also indicated that having a common ground was a beneficial key 

attribute of the platform as the shared base knowledge and functionality allowed the 

developers to jump in, out and between projects without or very little effort. Furthermore, in 

relation to this, many developers thought that the learning process was quick, easy and 



 

23 
 

straightforward while, some developers also talked about the low-skill entry for learning how 

to develop on the platform, as well as gaining a specialized thinking process. This seem to be 

the result of the fact that the platform provides limited but easy and efficient tools for the 

developers to learn and employ. Because of the limited thinking space, the developers are now 

challenged to think with what they have, making them all share the specialized problem-

solving techniques offered by the platform. Moreover, the collaborative features compare to 

the result of Palviainen et al. (2015), where developers in a collaborative coding environment 

saw increased efficiency of coordination tasks as well as being more motivated by perception 

of working together with others. This illustrates that the limited but efficient platform 

capabilities may allow for more close teamwork and thus improve on the developer’s 

experience. Furthermore, some developers also appreciate the collaborative ability to quickly 

prototype and work closely with the customer by showing them progress, ideas, and goals. 

Subsequently, these features may help to further motivate the developers as teamwork, having 

a clear path, and seeing results of work are important motivators (França et al., 2014; Baltes & 

Diehl, 2018). Lastly, one developer was also positive to the third-party ownership of the 

platform, as this meant that the platform would be kept updated by the owner, removing this 

work from the developers. This could also mean less technical debt as there it is managed by 

the platform owner, thus improving the morale and work efficiency of the developers (Besker 

et al., 2020). 

Looking at the results for negative attitudes towards the development infrastructure, it is 

possible to see that there were multiple areas of concern. Firstly, multiple developers as well 

as the project leader stated that it can be hard to get an overview of the assets used on the 

platform as well as finding information about them, as the documentation was limited. 

Fundamentally, this can be seen as a major drawback of the infrastructure and developer 

experience as Fontão et al. (2017) showed that anger among developers was closely related to 

unavailability of documentation and not knowing how to proceed. Secondly, several developers 

also pointed out that the platform’s infrastructure sometimes limits their problem-solving, 

thus increasing the cognitive overhead. While the constrained nature of the platform seem to 

have created positive effects, as discussed previously, it seems that it also introduces problems 

and extra steps for the developers to solve, in other words, it may create some technical debt. 

This is also hinted by the following developer comment,  “if you then in the middle of the 

project realize that you have misunderstood something big...then it will be quite messy to 

correct it later” (developer 2), because options for resolving the issues may be limited in 

comparison to traditional ways. Subsequently, as developer anger also is associated with 

incompatibility of resources (Fontão et al., 2017), the fact that developers highly value 

flexibility of their development environment (Kuusinen et al., 2016), and that technical debt is 

bad for developer morale (Besker et al., 2020), this suggests that this is another important 

factor of infrastructure affecting the developer experience. Continuing, while the limited, easy, 

and efficient scope of the platform had benefits in aspects such as quick learning and skill entry, 

it can also be seen that developers dislike some of this limitations. For instance, some 

developers felt that the learning process was quick but did not cover more advanced aspects 

that later would be become a challenge, as documentation was hard to find. Furthermore, in 

some relation to this, the programming language of the platform, SQL, was mentioned 



 

24 
 

numerous times as a constraining factor as it is a very old and advanced programming 

language. According to the developers, this meant that the developers have to work with the 

outdated and bad aspects that SQL has. Furthermore, as SQL is a very advanced language, the 

learning process cannot cover many of the more complicated but important techniques, thus 

preventing the developers from reaching optimal performance.  In relation to Kuusinen et al. 

(2016)’s research, it could be said that this is a limitation in the flexibility and intuitiveness of 

the development platform, as well as a risk for technical debt from non-optimal solutions in 

SQL. Consequently, this is further a key aspects of infrastructure that may affect the developer 

experience negatively, as a bad learning process may lead to technical debt ending in morale 

loss (Besker et al., 2020), while the programming language itself as well as having inadequate 

skills in it, may result in unalignment between the values of the developer and the development 

environment’s offerings. Next, there also seem to be some negative attitudes towards the third-

party dependency as this type of infrastructure restricts the developers from having the 

flexibility they would like when developing a solution. As previously discussed, flexibility 

(Kuusinen et al., 2016) and freedom (Kärpänoja et al., 2016) in the development environment 

is something that developer value greatly. As such, these result further suggest these values.  

Lastly, there were a significant amount comments about a particular collaboration issue on the 

platform. This issue was related to the fact the platform had a very lacking support for safely 

working together. Thus, risks such as overwriting someone else’s work existed as well as poor 

overview of what others are doing, have done, or will be doing. Subsequently, in relation to 

previous research and numerous comments of it, this rises multiple flags for possible 

demotivation. For instance, one of the four important factors that developers’ value is 

informativeness in their development environment (Kuusinen et al., 2016). The results found 

here suggest a lack of informativeness for organized collaboration. Furthermore, this issue may 

prevent good teamwork, an important motivator for developers (Misirli et al., 2014; Oliveira & 

França, 2019), as well as conceivably causing demotivating by removing the reward for their 

quality work (Baltes & Diehl, 2018), since their efforts may get overwritten. Consequently, with 

the numerous comments about this issue as well as the negative effects mentioned earlier, this 

signifies a major infrastructural component that affect the developer experience negatively. 

Furthermore, this could also explain why one developer preferred to work alone.  

5.2 Traditional versus Low-Code 

This section discusses differences found between experiences in traditional and low-code 

development. 

5.2.1 Research Question 4  

How do developers experience differ between traditional and low-code development? 

Based on the result, it was possible to extract multiple differences that the developers had 

experienced. Firstly, a key difference found was in productivity, as a majority of the developers 

felt that they were able start, change and finish significantly more quickly. Secondly, as 

discussed in 5.1, common ground was found to be a positive factor by many. However one 

developer stated a direct comparison, expressing that the low-code platform is able to create a 

common ground between customer and the developers, thus making it easier to for the 

customer and developers to know the possibilities and constraints of future solutions.  Thirdly, 



 

25 
 

developers found that the limited creativity and problem-solving capabilities of the platform 

allowed them to focus on doing solutions in the best way possible whereas traditional 

development would have exposed them to a multitude of options, making it harder to know 

which approach would be the best. Furthermore, some possibilities did exist for extending the 

low-code platform with custom code, which to some extent meant that developers could 

combine some traditional coding with the low-code platform. This is an interesting aspect as it 

could be seen as a hybrid way development, further rising an issue of balance between 

creativity and productivity. On the same topic, many developers also had negative comparisons 

as the limitations of the platform meant that some things could not be solved or designed in 

ways that the developer originally had in mind. Moreover, traditional development would offer 

a lot more options for finding information and help for progressing a solution. Continuing, 

some noteworthy neutral differences could also be found on this topic, containing the issue of 

infinite possibilities versus development time. As previously discussed, this could be seen as 

another view of the balance between creativity and productivity. On the next topic, learning 

process, the discussion in 5.1 argued that the learning process for the low-code platform was 

very fast. It is possible that the learning process may be faster in this low-code platform as 

opposed to traditional development considering that this was specifically stated by one 

developer. In relation to this, it is important to note that all of the developers had many years 

of experience with traditional development. Going further, the difference of control between 

traditional and this low-code platform is another changed aspect of the overall development 

experience as there is less things that developers have to consider in terms of security and 

updates. According to one developer this was a positive difference to traditional development 

as it meant less work as well as future work, such as technical debt (Besker et al., 2020). 

Another topic that the developers found different was collaboration, including positive 

negative and neutral aspects. From the positive comments it is possible to see that the easy 

prototyping, available on low-code platforms (Morris, 2017), and common ground of 

understanding had improved the communication with the customer by being able to do direct 

feedback changes as well as the customer understanding the possibilities and limitations of the 

platform. However, a major negative difference stated by many developers was the fact that 

there was a lack of support for safe and sound teamwork on platform, compared to traditional 

development where a magnitude of collaboration tools would be at hand. Consequently, this 

may form concerns among the developers as traditionally code can be tracked, reverted and 

worked on simultaneously while their low-code development efforts could get wiped by 

another developer not knowing that that the work already had been completed. Furthermore, 

it also means that it can be hard to track what went wrong, when did it go wrong, and who did 

it. Nevertheless, a developer did state in a neutral comment that the best way to work is by 

having a small team, talking to each other often, making sure to work in separate parts of the 

system as well having a well-defined data-model from the beginning. Lastly, the project leader 

mentioned that the team previously had been working with another development platform, 

holding some similarities to a low-code platform. Evidently, Softadmin was a lot easier and 

more fun to work with.  



 

26 
 

5.3 Software and Design for Appropriation 

This section discusses findings of software appropriation and design for appropriation in the 

low-code platform.  

5.3.1 Research Question 5  

How do developers reshape their own experiences?  

The findings in this study shows that the developers themselves employ software 

appropriation (Dourish, 2003) to reshape their experiences. Furthermore, the low-code 

platform seems to include some design for appropriation (Tchounikine, 2017), enabling 

developers to reshape their development environment and processes. The results could be 

categorized into three areas, the extension of creativity, environment, and productivity.  

The limitations set by the platform appear to have created a form of creativity where 

developers have to find their own ways around problems by bypassing them through creative 

means, sometimes not intended by the low-code platform. Consequently, these creative 

solutions may sometimes require the developer to extend their development environment by 

developing outside and in parallel with the low-code platform. By allowing the developers to 

partly extend the platform’s functionality, the low-code platform have utilized some design for 

appropriation as each developer are able to slightly reshape and extend their development 

environment to their own wishes. Lastly, while the low-code platform has created a feeling of 

increased productivity, the developers have found further ways to extend the productivity by 

adding external tools that help them code faster and smarter. However, this is a design for 

appropriation possibility given by Microsoft SQL Management Studio (a tool for database 

management) and not the low-code platform itself. Summarizing, it is possible to see that the 

low-code platform provides some design for appropriation and that developers exploit this for 

their software appropriation in order to support their individual creative goals as well as being 

more productive. 

5.4 Consequences 

Providing developers with a good experience is important as it may reduce the negative effects 

from bad experiences as well as enhance the positive effects of having good experiences (see 

2.3.5 where this issue is described). Consequently, it should be reflected on how the results of 

this study may impact the developers. Therefore, a discussion will be held here on the possible 

consequences that may occur as a result of the perceived developer experience in the low-code 

platform.  

5.4.1 Key factors for positive outcomes 

As shown by França et al. (2014) and Graziotin et al. (2014), motivated developers are more 

engaged, focused, collaborative, and better problem-solvers. The results of this study indicate 

that there may me several implications for motivation and positive emptions when working 

with the low-code platform. As discussed in previous sections it can be concluded that some of 

the key positive values were, being more productive, improved relationship with the customer, 

having to focus less on boring and redundant steps, having a common ground of knowledge 

and being able to learn it quickly. Consequently, as it has been discussed, these characteristics 

may enable the developers to gain positive experiences and motivation, indicating that they are 



 

27 
 

the key strengths for positive experience on the platform and may contribute to improved 

performance among the developers.  

5.4.2 Key factors for negative outcomes 

Unhappy and demotivated developers may reduce the developer’s productivity and 

performance (Graziotin, 2017a; Graziotin, 2017b; Baltes and Diehl, 2018) as well as reducing 

the quality of the product (Graziotin, 2017a). While the results showed multiple positive 

consequences for experience, it also held a few negative aspects that could create demotivation 

and negative feelings. The key findings were, having their goals constrained, restricted 

creativity and personal touch, poor documentation, and overview as well as poor and unsafe 

teamwork. As discussed in previous sections, these may evidently cause demotivation among 

developers contributing to the negative developer performance.  

5.5 Recommendations for low-code platform owners 

Based on the key strengths and weakness found in this study, a couple of recommendations 

can be made for low-code platform owners, wishing to improve on the developer experience. 

 A key challenge that should be considered is the balancing act between productivity and 

freedom on the platform. As it has been discussed, while the limitations enable the developers 

to create optimal and speedy solutions, it also may constrain productivity by hindering the 

developers from achieving a particular goal, hence making the developer do workarounds and 

possibly suboptimal solutions in order to continue. Subsequently, it also prevents the 

developer from expressing their creativity as well as putting their personal touch on the 

product, which may demotivate the developer (Beecham et al., 2008; Baltes and Diehl, 2018).  

On the other hand, giving too much freedom and creativity could diminish the productivity 

gain as developers now have too many options, making it more difficult to select the best 

approach, thus making the project timeline longer and more complex, which may demotivate 

the developer (Kärpänoja et al., 2016; Besker et al., 2020). It may however boost productivity 

in some cases as developers have an easier time reaching their goals. Furthermore, allowing 

more freedom and creativity could make the platform lose some of the effects from common 

ground as developers lose some of the shared knowledge, enabling them to jumping in or out 

between projects, as each developer now can create their own personal solutions and looks. 

Still, more freedom and creativity may allow the developer to become more motivated 

(Beecham et al., 2008; Baltes and Diehl, 2018) as it is easier to put their personal touch on the 

product. This is a twofold issue where the platform owners must balance limitation against 

freedom in order to ensure that development is efficient and productive but still allows the 

developers to express their creativity.  

Teamwork is an important aspect for motivation developers (Misirli et al., 2014; Oliveira & 

França, 2019). This study showed that developers of the low-code platform were happy with 

the improved customer relationship as they could prototype more easily. However, teamwork 

fell short when it came to developers working together as the collaborative environment was 

unsafe and unclear to work in. As such, platform owners should focus on making good 

collaborative features for developers to feel the pretense of others, having a safe development 

environment for teamwork and making the platform informative of what other are doing, have 

done or will be doing.  



 

28 
 

The platform owner should ensure that proper documentation and support is in place as it 

otherwise prevents the developer from progressing and causes negative feelings (Fontão et al., 

2017). Furthermore, it may help the common ground effect because there will be less 

workarounds done by each individual developer. Additionally, it should be easy for the 

developers to get an overview of the components used in the platform as informative 

development environments is valued by developers (Kuusinen et al., 2016). 

Providing developers with an easy but still rich learning process could help to improve the 

common ground among developers as every developer can proceed where another developer 

left off. Moreover, it decreases the need to read up on documentation for the developers in later 

stages, where documentation, as mention before, must be of proper quality.  

6. Limitations and Future Work 

This section discusses the potential limitations bound to this study as well as areas for future 

research opportunities. For methodological issues (see 3.5).  

6.1 Limitations and gaps 

With the so far limited research on the topic of developer experience, it can be difficult to 

compare and make draw generalizable conclusions for developer experience, and in 

particularly for low-code environments. Furthermore, this have made it difficult to estimate 

how significant the lesser mentioned experiences may be, as further studies are needed to 

confirm the weight and scope of these issues. However, the exploration done by this study has 

opened up the landscape for studying developer experience in low-code environments and may 

stand as a starting ground for future researchers to investigate and compare developer 

experience in low-code platforms as well as other developer environments. 

This study was conducted in collaboration with a smaller IT-firm where the researcher also 

worked. As this may have an impact on the result, future researchers should be aware that 

results could be different in larger and more complex firms. This provides an opportunity for 

future research on the differences. Furthermore, all developers of this study had multiple years 

of experience in traditional development and a few in low-code development. This may further 

have an impact on the results and should be further investigated by exploring how prior 

experience, age, gender, or possibly development preference may impact the developer 

experience.  

Lastly, the research methods used in this study have shown to be effective in exploring the 

general developer experience in the low-code environments. However, as discussed, user 

experience is complex, and even more so for developers, and thus these methods may not 

encompass the whole experience. Researchers interested in developer experience therefore 

have an opening for considering different methodological tools in order to fill the gaps of this 

study.  

6.2 Topics of interest  

In addition to the research opportunities mention above, a few topics of interest have occurred 

during this study. Firstly, the project leader in this study had an interesting comment about 



 

29 
 

how developers may drop creativity for productivity. This raises the question if some elements 

of experience can lessen the need for other developer experiences. Future researchers may 

explore how developer experience weight and compare against each other in different 

developer environments. Furthermore, this study showed that there is a balancing act between 

productivity and creativity in low-code environments. An interesting issue is, what is enough 

creativity for developers? Future research could help low-code platform owners by 

investigating how much creativity should offered in order to maintain motivation among 

developers.   

7. Conclusion 

This section concludes the paper by briefly describing the study and its outcomes.   

This paper has been concerned with how developer experience takes fold in low-code 

environments. Using Fagerholm and Munch, (2012)’s framework as foundation, the study 

explored developer experience among six developers and a project leader that had been 

working with a low-code platform in the recent years.  

The findings indicate that the major components for positive developer experience are being 

able to be more productive, having an improved relationship with the customer as prototyping 

and showcasing becomes easier, being able to focus on the task at hand and put less effort into 

previously required tasks as these have been automated, making it easier start and switch 

between projects, as skill and knowledge is shared among developers, and finally being able to 

learn it quickly.  

Negative factors for developer experience were also found. The main findings include, 

having their work and goals constrained by limitations set on the platform, having less freedom 

and creativity for personal touch as a result of the restrictions set by the platform, unable to 

proceed as a cause of poor documentation and overview, and lastly inadequate teamwork from 

having unsafe and suboptimal collaboration features.  



 

30 
 

References 

Baltes, S., & Diehl, S. (2018). Towards a Theory of Software Development Expertise. 

Proceedings of the 2018 26th ACM Joint Meeting on European Software 

Engineering Conference and Symposium on the Foundations of Software 

Engineering - ESEC/FSE 2018, 187–200. https://doi.org/10.1145/3236024.3236061 

Beck, S. E., & Manuel, K. (2008). Practical research methods for librarians and information 

professionals. New York, NY: Neal-Schuman. 

Beecham, S., Baddoo, N., Hall, T., Robinson, H., & Sharp, H. (2008). Motivation in Software 

Engineering: A systematic literature review. Information and Software Technology, 

50(9–10), 860–878. https://doi.org/10.1016/j.infsof.2007.09.004 

Bell, J., & Waters, S. (2016). Introduktion till forskningsmetodik (5., [updated] ed.). Lund: 

Studentlitteratur AB. 

Besker, T., Ghanbari, H., Martini, A., & Bosch, J. (2020). The influence of Technical Debt on 

software developer morale. Journal of Systems and Software, 167, 110586. 

https://doi.org/10.1016/j.jss.2020.110586 

Besker, T., Martini, A., Bosch, J. (2018). Managing architectural technical debt: a unified 

model and systematic literature review. Journal of Systems and Software, 135, 1–16 

Supplement C. 

Bryman, A., 2011. Samhällsvetenskapliga metoder. 2 ed. Malmö: Liber. 

CompTIA (2019) IT INDUSTRY OUTLOOK. Retrieved from 

https://comptiacdn.azureedge.net/ webcontent/docs/default-source/research-

reports/comptia-it-industry-outlook-2020.pdf?sfvrsn=8869ad68_0 

Dourish, P. (2003). The appropriation of interactive technologies: Some lessons from 

placeless documents. Computer Supported Cooperative Work, 12, 465–490. 

doi:10.1023/ A:1026149119426 

Fagerholm, F. (2015). Software Developer Experience: Case Studies in Lean-Agile and Open 

Source Environments (Doctoral dissertation, Ph. D. Dissertation. Department of 

Computer Science, University of Helsinki. Series of Publications A, Report A-2015-7). 

Fagerholm, F., & Munch, J. (2012). Developer experience: Concept and definition. 2012 

International Conference on Software and System Process (ICSSP), 73–77. 

https://doi.org/10.1109/ICSSP.2012.6225984 

Fontão, A., Bonifácio, B., Santos, R. P. dos, & Dias-Neto, A. C. (2018). Mobile Application 

Development Training in Mobile Software Ecosystem: Investigating the Developer 

eXperience. Proceedings of the 17th Brazilian Symposium on Software Quality - 

SBQS, 160–169. https://doi.org/10.1145/3275245.3275262 

Fontão, A., Ekwoge, O. M., Santos, R., & Dias-Neto, A. C. (2017). Facing up the primary 

emotions in Mobile Software Ecosystems from Developer Experience. Proceedings of 

the 2nd Workshop on Social, Human, and Economic Aspects of Software - WASHES 

’17, 5–11. https://doi.org/10.1145/3098322.3098325 

França, C., Sharp, H., & da Silva, F. Q. B. (2014). Motivated software engineers are engaged 

and focused, while satisfied ones are happy. Proceedings of the 8th ACM/IEEE 

https://doi.org/10.1145/3236024.3236061
https://doi.org/10.1016/j.infsof.2007.09.004
https://doi.org/10.1016/j.jss.2020.110586
https://doi.org/10.1109/ICSSP.2012.6225984
https://doi.org/10.1109/ICSSP.2012.6225984
https://doi.org/10.1145/3275245.3275262
https://doi.org/10.1145/3098322.3098325


 

31 
 

International Symposium on Empirical Software Engineering and Measurement - 

ESEM ’14, 1–8. https://doi.org/10.1145/2652524.2652545 

Graziotin, D., Fagerholm, F., Wang, X., & Abrahamsson, P. (2017a). Consequences of 

Unhappiness While Developing Software. 2017 IEEE/ACM 2nd International 

Workshop on Emotion Awareness in Software Engineering (SEmotion), 42–47. 

https://doi.org/10.1109/SEmotion.2017.5 

Graziotin, D., Fagerholm, F., Wang, X., & Abrahamsson, P. (2017b). Unhappy Developers: 

Bad for Themselves, Bad for Process, and Bad for Software Product. 2017 IEEE/ACM 

39th International Conference on Software Engineering Companion (ICSE-C), 362–

364. https://doi.org/10.1109/ICSE-C.2017.104 

Graziotin, D., Wang, X., & Abrahamsson, P. (2014). Happy software developers solve 

problems better: Psychological measurements in empirical software engineering. 

PeerJ, 2, e289. https://doi.org/10.7717/peerj.289 

Greig, J. (2020). COVID-19 triggering a massive shift in adoption of low-code platforms. 

TechRepublic. Retrieved from https://www.techrepublic.com/article/covid-19-

triggering-a-massive-shift-in-adoption-of-low-code-platforms/ 

Hassenzahl, M., & Tractinsky, N. (2006). User experience—A research agenda. Behaviour & 

Information Technology, 25(2), 91–97. 

https://doi.org/10.1080/01449290500330331 

International Organization for Standardization (2019). Ergonomics of human-system 

interaction — Part 210: Human-centred design for interactive systems (ISO 9241-

210:2019). Retrieved from https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-

2:v1:en 

Kärpänoja, P., Virtanen, A., Lehtonen, T., & Mikkonen, T. (2016). Exploring Peopleware in 

Continuous Delivery. Proceedings of the Scientific Workshop Proceedings of XP2016 

on - XP ’16 Workshops, 1–5. https://doi.org/10.1145/2962695.2962708 

Koksal, I. (2020, April 29). The Rise Of Low-Code App Development. Forbes. 

https://www.forbes.com/sites/ilkerkoksal/2020/04/29/the-rise-of-low-code-app-

development/ 

Kuusinen, K. (2015). Software Developers as Users: Developer Experience of a Cross-

Platform Integrated Development Environment. In P. Abrahamsson, L. Corral, M. 

Oivo, & B. Russo (Eds.), Product-Focused Software Process Improvement (Vol. 9459, 

pp. 546–552). Springer International Publishing. https://doi.org/10.1007/978-3-319-

26844-6_40 

Kuusinen, K., Petrie, H., Fagerholm, F., & Mikkonen, T. (2016). Flow, Intrinsic Motivation, 

and Developer Experience in Software Engineering. In H. Sharp & T. Hall (Eds.), 

Agile Processes, in Software Engineering, and Extreme Programming (Vol. 251, pp. 

104–117). Springer International Publishing. https://doi.org/10.1007/978-3-319-

33515-5_9 

Law, E. L. C., Roto, V., Hassenzahl, M., Vermeeren, A. P., & Kort, J. (2009, April). 

Understanding, scoping and defining user experience: a survey approach. In 

Proceedings of the SIGCHI conference on human factors in computing systems (pp. 

719-728). 

https://doi.org/10.1145/2652524.2652545
https://doi.org/10.1109/SEmotion.2017.5
https://doi.org/10.1109/SEmotion.2017.5
https://doi.org/10.1109/ICSE-C.2017.104
https://doi.org/10.7717/peerj.289
https://www.techrepublic.com/article/covid-19-triggering-a-massive-shift-in-adoption-of-low-code-platforms/
https://www.techrepublic.com/article/covid-19-triggering-a-massive-shift-in-adoption-of-low-code-platforms/
https://doi.org/10.1080/01449290500330331
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:9241:-210:ed-2:v1:en
https://doi.org/10.1145/2962695.2962708
https://www.forbes.com/sites/ilkerkoksal/2020/04/29/the-rise-of-low-code-app-development/
https://www.forbes.com/sites/ilkerkoksal/2020/04/29/the-rise-of-low-code-app-development/
https://doi.org/10.1007/978-3-319-26844-6_40
https://doi.org/10.1007/978-3-319-26844-6_40
https://doi.org/10.1007/978-3-319-33515-5_9
https://doi.org/10.1007/978-3-319-33515-5_9


 

32 
 

Mcconnell-Henry, T., James, A., Chapman, Y., & Francis, K. (2009). Researching with People 

You Know: Issues in Interviewing. Contemporary Nurse : a Journal for the 

Australian Nursing Profession, 34(1), 2–9. 

Misirli, A. T., Verner, J., Markkula, J., & Oivo, M. (2014). A survey on project factors that 

motivate Finnish software engineers. 2014 IEEE Eighth International Conference on 

Research Challenges in Information Science (RCIS), 1–9. 

https://doi.org/10.1109/RCIS.2014.6861052 

Morris, A. (2017). The rise of low-code development. Linx Software. Retrieved from 

https://linx.software/the-rise-of-low-code-development/ 

Multisoft. (2020). Automatisera med marknadens mest effektiva Low-code plattform. 

Multisoft®. Retrieved from https://www.multisoft.se/softadmin/ 

Nylund, A. (2020). A multivocal literature review on developer experience. (Unpublished 

master’s thesis, Aalto University, School of Science, Esbo, Finland) 

http://urn.fi/URN:NBN:fi:aalto-202003222600 

Oliveira, R., & França, C. (2019). Agile Practices and Motivation: A quantitative study with 

Brazilian software developers. Proceedings of the Evaluation and Assessment on 

Software Engineering, 365–368. https://doi.org/10.1145/3319008.3319714 

Palviainen, J., Kilamo, T., Koskinen, J., Lautamäki, J., Mikkonen, T., & Nieminen, A. (2015). 

Design framework enhancing developer experience in collaborative coding 

environment. Proceedings of the 30th Annual ACM Symposium on Applied 

Computing - SAC ’15, 149–156. https://doi.org/10.1145/2695664.2695746 

Sanchis, R., García-Perales, Ó., Fraile, F., & Poler, R. (2019). Low-Code as Enabler of Digital 

Transformation in Manufacturing Industry. Applied Sciences, 10(1), 12. 

https://doi.org/10.3390/app10010012 

SHRM. (2019). THE GLOBAL SKILLS SHORTAGE - Bridging the Talent Gap with 

Education, Training and Sourcing. https://www.shrm.org/hr-today/trends-and-

forecasting/research-and-surveys/Documents/SHRM%20Skills%20Gap%202019.pdf 

Taherdoost, H. (2016). Sampling Methods in Research Methodology; How to Choose a 

Sampling Technique for Research. SSRN Electronic Journal. 

https://doi.org/10.2139/ssrn.3205035 

Tchounikine, P. (2017). Designing for Appropriation: A Theoretical Account. Human–

Computer Interaction, 32(4), 155–195. 

https://doi.org/10.1080/07370024.2016.1203263 

Tisi, M., Mottu, J.-M., Kolovos, D. S., de Lara, J., Guerra, E., Ruscio, D. D., Pierantonio, A., & 

Wimmer, M. (2019). Lowcomote: Training the Next Generation of Experts in 

Scalable Low-Code Engineering Platforms. 6. 

Vetenskapsrådet, 2002. Forskningsetiska principer, Stockholm: Vetenskapsrådet. 

Waszkowski, R. (2019). Low-code platform for automating business processes in 

manufacturing. IFAC-PapersOnLine, 52(10), 376–381. 

https://doi.org/10.1016/j.ifacol.2019.10.060 

Yin, R. K. (2011). Qualitative Research from Start to Finish. New York: Guilford. 

https://doi.org/10.1109/RCIS.2014.6861052
https://linx.software/the-rise-of-low-code-development/
https://www.multisoft.se/softadmin/
http://urn.fi/URN:NBN:fi:aalto-202003222600
https://doi.org/10.1145/3319008.3319714
https://doi.org/10.3390/app10010012
https://www.shrm.org/hr-today/trends-and-forecasting/research-and-surveys/Documents/SHRM%20Skills%20Gap%202019.pdf
https://www.shrm.org/hr-today/trends-and-forecasting/research-and-surveys/Documents/SHRM%20Skills%20Gap%202019.pdf
https://doi.org/10.2139/ssrn.3205035
https://doi.org/10.1080/07370024.2016.1203263
https://doi.org/10.1016/j.ifacol.2019.10.060
https://doi.org/10.1016/j.ifacol.2019.10.060

