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ABSTRACT 
 

There has been a considerable increase in the usage of paper products due to its sustainability 

in the product cycle. Many environmental and process variables can affect the mechanical 

behavior of paper from its making to finished products. Of these variables, moisture is of 

particular importance and strongly influences both papermaking, converting, and end-use of 

the paper products. 

 

Experimental investigations at different humidity levels reveals that normalized in-plane 

constitutive parameters, such as elastic parameters and the linear hardening modulus, in both 

MD and CD1) follow a linear relationship with normalized moisture ratio. This relation is found 

to be acceptable for a wide range of commercial paperboards. To capture this observation, a 

novel material model with orthotropic elasticity and anisotropic hardening2 is proposed. An 

associative flow rule for the evolution of plastic strain is proposed. The proposed flow rule is 

such that all stresses contribute to plastic flow rather than an effective stress. A simple version 

using anisotropic linear hardening is implemented. The mechanical properties, such as elastic 

parameters and hardening moduli are considered functions of the moisture ratio. An implicit 

variant of the material model is implemented in LS-DYNA®. The simulations with the proposed 

material model at different humidity levels follow the experimental results well for uniaxial 

loading, but discrepancies are obtained for simulation of biaxial loading tests. 

 
The moisture is assumed constant in the proposed model since the experiments are done in 

a moisture-controlled environment. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
1  MD – Machine Direction; CD – Cross Direction  
2 Anisotropic Hardening – Different Hardening modulus in different directions 
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SAMMANFATTNING 
 

Användningen av pappersprodukter har ökat avsevärt på grund av dess hållbarhet i 

produktcykeln. Många miljö- och processvariabler kan påverka papperets egenskaper från 

tillverkning till färdig produkt. Av dessa variabler är fukt särskilt viktig och fukt påverkar 

kraftigt både tillverkning, konvertering och slutanvändning av pappersprodukter. 

En experimentell undersökning vid olika fuktighetsnivåer visar att normaliserade konstitutiva 

parametrar, såsom elastiska styvheter och tangentmodulen i papperets plan i både MD och 

CD, uppvisar ett linjärt samband som funktion av normaliserad fuktkvot. Detta samband har 

visat sig vara en god approximation för ett stort antal kommersiella kartonger. En ny 

materialmodell baserad på ortotrop elasticitet och anisotropt hårdnande föreslås med 

hänsyn till detta. En associativ flytlag för plastisk deformation föreslås. Den föreslagna 

flytlagen är sådan att alla spänningar bidrar till den plastiska deformationen snarare än 

effektivspänningen. En enklare version baserad på linjärt anisotropt hårdnande har 

modellerats. De mekaniska egenskaperna såsom styvhet och hårdnandemodul anses vara 

funktioner av fuktkvoten och följa de linjära sambanden. En implicit variant av 

materialmodellen är implementerad i LS-DYNA®. Simuleringar med den föreslagna 

materialmodellen vid olika fuktkvoter följer de experimentella resultaten väl vid enaxlig 

belastning medan vissa avvikelser uppträder vid tvåaxlig belastning. 

I den föreslagna modellen antas fukten antas vara konstant eftersom de bakomliggande 

experimenten genomfördes i en fuktkontrollerad miljö. 
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1 INTRODUCTION 

1.1  PAPER AS A PACKAGING MATERIAL 
 

Paper is found almost everywhere in daily usage. Some of the products that are common and 

are widely used for a long time are office paper and newsprint. The earliest date of paper 

being used was about 2nd century BC in China (Wikipedia, n.d.). The raw product from which 

paper is made is pulp from wood fibers. The wood pulp is generally made from either a 

chemical or a mechanical process or can be a combination of both (Wikipedia, n.d.). The 

method of making pulp generally affects the final properties of paper.  

Paper is generally considered as a 2D material because of its very low thickness. Office paper 

and newsprint generally have a thickness of 0.1 mm (Gustafsson & Niskanen, 2012). The 

thickness can be up to 1 mm in applications such as display products. Special papers can also 

be made with a thickness as low as 0.01 mm as well. Thick paper grades are generally termed 

board or paperboard. 

The paper is made by spraying a suspension of water and fibers onto a moving wire, which 

aligns the fibers in one direction known as Machine Direction (MD). The general coordinate 

system used to define the paper products is shown in Figure 1.1. The other directions are 

defined as Cross Direction (CD) and thickness direction (ZD). Also, the x, y, z coordinate system 

refers to the global coordinate system. 

 

Figure 1.1 Coordinate system used for paper products (Gustafsson & Niskanen, 2012) 

There has been a considerable increase in the use of paper in packaging, other branches such 

as food, hygiene products, and e-commerce, but a decline in the use of graphic papers (Barg 

& Oskar, 2019). There is a need to understand the use of paper in design better so that 

products made from it can have a long life and less impact on the environment. This can be 

only done by having good models for the constitutive behavior of paper that can be used to 

predict the behavior of the final product. 

The final mechanical properties of paper are influenced by many parameters which can be 

environmental variables or process variables during papermaking. Some of the process 

variables in papermaking which can influence the properties of the paper include  
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• Pulp making process 

• Beating of pulp  

• Forming of fiber network 

• Drying technique in papermaking 

• Moisture content retention at the end of the papermaking 

The environmental variables to which paper is sensitive are moisture and temperature. 

Among them, the moisture is more dominant, since the fibers interact with water molecules, 

and the network strength decreases. (Motamedian & Kulachenko, 2019) 

1.2  MICROSTRUCTURE OF PAPERBOARD 
 

The microstructure is the key to understand the mechanical response of any material. An 

important role is played by the nanostructure in some materials. A good example of that is 

nanomaterials. 

The regular composite material treatment cannot be used for the paper. This is because of its 

peculiar microstructure and sometimes the nanostructure.  

The properties of any network structure are defined by mainly  

• Properties of a single fiber – defined by the nanofibrils 

• The bond strength between the fibers in the network 

The bond strength is affected by among others interacting water molecules, but also 

mechanical entanglement and other chemical bonds can play a role (Gustafsson & Niskanen, 

2012). 

1.3  INFLUENCE OF MOISTURE IN THE PAPER-MAKING PROCESS AND 

PACKAGING 
 

Generally, the paper is highly hygroscopic in nature. This makes the paper susceptible to 

water molecules. Either the water molecules are saturated in the fiber walls or they can be 

free in the domain. The paper encounters moisture in almost all its lifetime. Two divisions can 

be made in the lifetime of paper. The first division is when the paper is made from the pulp. 

The drying and pressing technique allows the paper to have contact with water molecules. 

The other being the lifecycle of a finished paper product. The finished product is affected by 

the environmental conditions that include the moisture level. 

The intake of moisture during pressing and drying techniques in the papermaking process 

generates three deformation patterns in the paper, which affect the process quality of the 

paper. They are curl, fluting, cockling which differ in length scale, and magnitude of 

deformation. (Kulachenko, 2012) 



 
CHAPTER 1: INTRODUCTION 

 

3 
 

Once the paper is made, it could be converted to a packaging product. Since the paper is 

highly hygroscopic, the ambient moisture has a significant effect on the final properties of the 

packaging product. Uptake of water can affect both the fiber properties and the bond 

between fibers, which ultimately weakens the network strength and reduces the package 

performance. 

1.4  SCOPE OF PROJECT 
 

An experimental procedure at different controlled humidity environments shows that some 

of the mechanical in-plane properties of paperboard are a linear function of moisture ratio 

(Marin, Nygårds, & Östlund, 2020). The moisture ratio (𝑚𝑟) of the paper and is defined as 

 𝑚𝑟 =
𝑚𝑤

𝑚𝑑
 (1.1) 

where 𝑚𝑤 is the mass of water and 𝑚𝑑 is the mass of the dry solid content. The mass of water 

is calculated from the total mass, 𝑚𝑡𝑜𝑡𝑎𝑙  , as 

 𝑚𝑤 = 𝑚𝑡𝑜𝑡𝑎𝑙 − 𝑚𝑑 (1.2) 

The relations are explained in detail in Section  2.2. 

This master thesis project focusses on including this moisture scaling in both the elastic and 

plastic stress-strain response of paperboard. This is done by proposing a new and simplified 

flow rule which can account for these scaling factors and the model is verified against the 

experimental values.  

In short, this thesis project can be summarized as 

• Include moisture scaling in anisotropic elasticity 

• Propose a new flow rule with moisture scaling for analysis of plasticity  

• Verify this model on uniaxial samples in both MD and CD 

• Verify this model on biaxially loaded samples. 

 

The moisture also affects the creep behavior of the paper. The creep behavior of paper is 

observed to change drastically due to altering moisture levels. This acceleration of creep 

behavior is termed as mechanosorptive creep. Although moisture changes are not considered 

in the proposed model, this project can be seen as an initial step towards prediction of 

mechanosorptive creep. 
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2 LITERATURE REVIEW AND EXPERIMENTAL WORK 

2.1  LITERATURE REVIEW 

 
As paper cannot be considered as a metal or a fiber-reinforced polymer composite, there are 

different techniques available to model its mechanical behavior. Continuum Mechanics that 

are being applied to all kinds of solid materials have been extensively employed to model the 

anisotropic behavior of paper.  

The most important one among those is perhaps the  Xia – Nygårds model (Xia, Boyce, & 

Parks, 2002) (Nygårds, 2005) which has been used extensively to model the response of 

paperboard.  In this model, the in-plane and out-of-plane responses are uncoupled and 

modeled using two sets of constitutive equations. The out of plane delamination behavior is 

modeled by an interface constitutive model. The in-plane elastic-plastic response is modeled 

by a 3D anisotropic continuum constitutive model, where the evolution of the yield surface is 

modeled by anisotropic hyperbolic strain hardening.  

A simple anisotropic elastic model with a Hill yield surface has been used to model paperboard 

(Huang & Nygårds, 2010). An isotropic hardening is considered for the evolution of the yield 

surface. The softening effect observed in non-proportional loading of pre-strained samples is 

modeled using distortional hardening (Borgqvist, Lindström, Tryding, Wallin, & Ristinmaa, 

2014). This model is an extension of the Xia – Nygårds model. The mechanical response of 

high-density cellulose-based materials considering rate-dependent formulation is proposed 

done by (Tjahjanto, Girlanda, & Östlund, 2015) using an approach based on the Xia – Nygårds 

model. To capture the hysteresis of the cellulose materials, kinematic hardening has also been 

modeled. The quadratic hardening model (Wallmeier, Linvill, Hauptmann, Majschak, & 

Östlund, 2015), (Linvill, Wallmeier, & Östlund, 2017) is extensively used in the analysis of deep 

drawing of paperboard. 

Some of the other material models proposed in the literature include modeling paper as a 

network of fibers, nonlinear hardening for papers at different dry solid contents (Erkkilä, 

Leppänen, & Hämäläinen, 2013), Hill model with anisotropic hardening (Liu, Huang, & Stout, 

1997), anisotropic plasticity at large strains (Harrysson & Ristinmaa, 2007), non-associative 

plasticity for the paper under in-plane loading (Pfeiffer & Kolling, 2019) and, transversely 

isotropic material with anisotropic hardening (Li, Guo, & Shim, 2018).  

The advantage of using these models is that the elastic-plastic behavior of paper can be 

captured using only orthotropic elasticity and a flow rule. The major drawback of these kind 

of models is that they do not include the inhomogeneous nature of the paper or the 

microstructure of the paper. 

Multi-scale modeling of paper is also gaining interest recently. Multiscale modeling of paper 

can be done by representing a random network of fibers and defining how the contact points 

between fibers behave (Borodulina, Kulachenko, Galland, & Nygårds, 2012), (Motamedian & 

Kulachenko, 2019). This kind of modeling is called fiber network modeling since it involves 
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going down one scale and fibers are modeled explicitly. This can help in tackling some of the 

problems that continuum mechanics is not able to do, such as include strength between 

individual fibers, and the random fiber network structure. The inhomogeneity problem can 

be solved by modeling a network of fibers. The main difficulty of this approach is to evaluate 

single fiber properties and the fiber-fiber joint strength distribution.  

Molecular dynamics in paper research is also gaining some attraction. Molecular dynamics is 

essentially solving Newton’s second law for many molecules as opposed to applying the same 

for a point in continuum mechanics. This can help to understand some questions that classical 

solid mechanics cannot answer. A single fiber consists of many molecules that in turn, can 

make the model complex and huge, which is a major limitation of this kind of modeling. 

(Khodayari, 2020) 

Thus, finally, it is one’s choice how to model the constitutive behavior of paper, and how 

much detailing is needed to understand the physics in relation to the particular application of 

interest. 

2.2  EXPERIMENTAL BACKGROUND 
 

An experimental study on paperboard at controlled humidity levels in both MD and CD 

samples is conducted by Marin et al. (2020). Different commercial paperboards from different 

producers and board machines are used. The selected paperboards have different types of 

fibers and different ply structures. They were chosen such that a large span in both 

mechanical properties and moisture dependency is observed. In addition, different 

grammages have been considered for each type of paperboard ranging from 180 to 350 g/m2.  

A bilinear elastic-plastic material is considered based on the mechanical properties: 

strength(𝜎𝑓), stiffness(𝐸), yield strength (𝜎𝑦) and hardening modulus(𝐻). The moisture 

ratio (defined in Section 1.4) is normalized with respect to moisture ratio at standard climate 

(50 % RH, 23 °C). The tests were performed at a different relative humidity (20, 50, 70, and 

90 % RH) but with constant temperature (23 °C) in MD and CD, respectively. The mechanical 

properties were normalized with respect to the property at standard climate (50 % RH, 23 °C). 

It was observed that a linear response was able to fit the normalized mechanical property to 

the normalized moisture ratio according to 

  
𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦

𝑃𝑟𝑜𝑝𝑒𝑟𝑡𝑦50 𝑅𝐻
= 𝑎𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 𝑚𝑟

𝑛 + 𝑏𝑝𝑟𝑜𝑝𝑒𝑟𝑡𝑦 ;  𝑚𝑟
𝑛 =

𝑚𝑟

𝑚𝑟 50 𝑅𝐻
  (2.1) 

where 𝑚𝑟 is the moisture ratio at the required humidity level and 𝑚𝑟 50 𝑅𝐻 is the moisture 

ratio at 50 % RH level and 𝑚𝑟
𝑛 is the normalized moisture ratio at the required humidity level. 

 

 

 



 
CHAPTER 2: LITERATURE REVIEW AND EXPERIMENTAL WORK 

 

6 
 

The linear constants are presented with the coefficient of determination (R2) in Table 2.1 

Table 2.1 Relation between normalized mechanical property and normalized moisture ratio 

 Mechanical Property 𝑎𝑖 𝑏𝑖 𝑅𝑖
2 

1 Strength (𝜎𝑓) − 0.35  1.36 0.96 

2 Stiffness (𝐸) −0.37 1.40 0.96 
3 Yield Stress (𝜎𝑦) −0.50 1.55 0.93 

4 Hardening modulus (𝐻) −0.43 1.49 0.88 
 

The linear equation gives a good estimation of strength and stiffness. The yield stress and 

hardening modulus are seen to have low R2. This makes the plastic response of paper, less 

accurate than the elastic response. The normalized stiffness as a function of normalized 

moisture ratio is shown in Figure 2.1.  

 

Figure 2.1 Normalized stiffness as a function of normalized moisture ratio for all boards in 
both MD and CD (Marin, Nygårds, & Östlund, 2020) 

 

From the experimental background and literature review, it is evident that a new model is 

needed to simulate the effect of moisture.  The new model should be simple to implement in 

any commercial finite element software and need to consider the moisture scaling of the 

constitutive parameters. 
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3 METHOD 
 

From the experimental work, it is clear that the moisture dependent in plane model should 

include  

• Orthotropic elasticity where all elastic constants are functions of moisture ratio 

• Anisotropic linear hardening plasticity with the hardening modulus being a function of 

moisture ratio 

3.1  THEORY OF PROPOSED MODEL 
 

The topic of interest is to model the in-plane response of paper, out-of-plane properties are 

not considered. The in-plane response can be calculated using plane stress approach, but a 

full orthotropic model is taken into consideration in this project. This is done to accommodate 

future work where out of plane response can be included. 

The response curve for a sample in the  MD is shown in Figure 3.1.  

 

Figure 3.1 Bi-linear elastic plastic model 

The first linear slope corresponds to the elastic modulus, 𝐸, and the second linear slope 

corresponds to the tangent modulus, 𝐸𝑇.  The tangent modulus, 𝐸𝑇, in this case can be 

computed as 

 
1

𝐸𝑇
=

1

𝐸
+

1

𝐻
 (3.1) 

where  𝐻 is the hardening modulus (see Section 3.1.2.1) 
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3.1.1 ORTHOTROPIC ELASTICITY 
 

In general, the elastic representation of paperboard is represented by an orthotropic 

behavior. The relation between stress and strain components for an orthotropic elastic 

material in Voigt notation can be written as 

 {𝜖} = [𝐿][𝐶]−1[𝐿]𝑇{𝜎} (3.2) 

where {𝜖} is the engineering strain vector in Voigt notation, [𝐿] is the transformation matrix 

required to transform into the global material direction, [𝐶]−1 is the inverse of stiffness matrix 

or compliance matrix in the local coordinate system and {𝜎} is the stress tensor written in 

Voigt notation. 

For an orthotropic material, the compliance matrix is given by  

 [𝑆] = [𝐶]−1 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝐸𝑥

−𝑣𝑥𝑦

𝐸𝑥

−𝑣𝑥𝑧

𝐸𝑥
0 0 0

−𝑣𝑦𝑥

𝐸𝑦

1

 𝐸𝑦

−𝑣𝑦𝑧

𝐸𝑦
0 0 0

−𝑣𝑧𝑥

𝐸𝑧

−𝑣𝑧𝑦

𝐸𝑧

1

𝐸𝑧
0 0 0

0 0 0
1

𝐺𝑥𝑧
0 0

0 0 0 0
1

𝐺𝑦𝑧
0

0 0 0 0 0
1

𝐺𝑥𝑦]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (3.3) 

Here x represents the MD, y represents the CD and z represents ZD as illustrated in Figure 

1.1. Nine material parameters are required for a complete representation of an orthotropic 

material. 

From the experimental work mentioned in Section 2.2, the elastic modulus can be written as 

 𝐸𝑖 = (𝑎2𝑚𝑟
𝑛  + 𝑏2)𝐸𝑖

50% (3.4) 

where 𝐸𝑖
50% is the elastic modulus determined from experiments at 50% RH, 𝑎2 , 𝑏2 are the 

constants determined in the fitting curve for the stiffness (Table 2.1) and 𝑚𝑟
𝑛 is the normalized 

moisture ratio at the required humidity level. 

Determination of Elastic Constants: 

The elastic constants to be determined for an orthotropic elasticity are 

𝐸𝑥, 𝐸𝑦, 𝐸𝑧 , 𝑣𝑥𝑦, 𝑣𝑦𝑧 , 𝑣𝑧𝑥, 𝐺𝑥𝑦, 𝐺𝑦𝑧 , 𝐺𝑧𝑥. 

The in-plane elastic moduli (𝐸𝑥, 𝐸𝑦) can be estimated from the experimental data of uniaxial 

tensile tests (see Section 4.1). 
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The other in plane constants  (𝑣𝑥𝑦, 𝐺𝑥𝑦) can be estimated from (Baum, Brennan D, & Habeger, 

1981) 

 

𝑣𝑥𝑦 = 0.293√
𝐸𝑥

𝐸𝑦
 

(3.5) 

𝐺𝑥𝑦 = 0.65√𝐸𝑥𝐸𝑦 

Since the objective of this project is focused on assessing the in–plane response, the out of 

plane properties are assigned values that should not influence the in-plane solution. However, 

if there is a need for estimating the out–of plane properties the reader is referred to Nygårds 

(2008) for more information. 

3.1.2 ANISOTROPIC HARDENING 
 

A simple yield criterion that accounts for the orthotropy in paper materials is assumed. To 

include the hardening modulus in all directions, the flow rule can be assumed as 

 𝑓 =
𝜎𝑖

2

(𝜎𝑖
𝑠(𝑚𝑟))

2 = (
𝜎𝑥

𝜎𝑥
𝑠)

2

+ (
𝜎𝑦

𝜎𝑦
𝑠)

2

+ (
𝜎𝑧

𝜎𝑧
𝑠
)
2

+ (
𝜎𝑥𝑦

𝜎𝑥𝑦
𝑠 )

2

+ (
𝜎𝑥𝑧

𝜎𝑥𝑧
𝑠 )

2

+ (
𝜎𝑦𝑧

𝜎𝑦𝑧
𝑠 )

2

= 1 (3.6) 

 where  𝜎𝑥 , 𝜎𝑦, 𝜎𝑧 , 𝜎𝑥𝑦, 𝜎𝑥𝑧 , 𝜎𝑦𝑧 are the components of the stress tensor. The flow stress is 

assumed to be given by 

 𝜎𝑖
𝑠(𝑚𝑟) = 𝜎𝑖

𝑦(𝑚𝑟) + 𝐻𝑖(𝑚𝑟)𝜖𝑖
𝑝 (3.7) 

where 𝜎𝑖
𝑦(𝑚𝑟) corresponds to the yield stress, 𝐻𝑖(𝑚𝑟) is the hardening modulus and 𝜖𝑖

𝑝 is 

the accumulated plastic strain in ‘i’ direction. It should be noted that both the yield stress and 

hardening modulus are functions of moisture ratio. 

Assuming an associative flow rule3, the plastic strain increment can be written as 

 𝑑𝜖𝑖
𝑝 =  𝑑𝜆  

𝜕𝑓

𝜕𝜎𝑖
 (3.8) 

where 𝑑𝜆 is the plastic multiplier, and  
𝜕𝑓

𝜕𝜎𝑖
 is the gradient of flow rule with the respective 

stress. 

 

 

 
3  Associative flow rule – Plastic evolution normal to flow (or yield) surface 
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3.1.2.1 Definition of hardening modulus: 

 

For an isotropic hardening behavior, the hardening modulus is defined as 

 𝐻 =
𝑑𝜎𝑒𝑓𝑓

𝑑𝜖𝑒𝑓𝑓
𝑝  (3.9) 

For an anisotropic hardening behavior, there are different hardening moduli in the different 

directions. In analogy with isotropic hardening, the hardening modulus for an anisotropic 

material is defined in all material directions as 

 𝐻𝑖 =
𝑑𝜎𝑖

𝑑𝜖𝑖
𝑝 (3.10) 

 As a simplification, the model only two considers two hardening moduli and the remaining 

four are assumed zero. The two hardening moduli considered are for the directions x and y 

(which are essentially MD and CD for paperboard). 

 
𝐻𝑥 = 

𝑑𝜎𝑥
𝑝

𝑑𝜖𝑥
 ; 𝐻𝑦 = 

𝑑𝜎𝑦
𝑝

𝑑𝜖𝑦
  

𝐻𝑥𝑦 = 𝐻𝑦𝑧 = 𝐻𝑧𝑥 = 𝐻𝑧 = 0 

(3.11) 

 

3.2  IMPLEMENTATION 
 

Since the topic of interest is in the mechanical response of paper (stress state, elastic strain, 

and plastic strain) when loads and displacements are applied, the problem to solve becomes 

a boundary value problem. 

The constitutive equations defined in Section 3.1.1 and 3.1.2 and the general structural 

geometries to be considered are far too complicated to solve with an exact analytical 

approach. Therefore, an approximate numerical method is needed.  The most widely used in 

solving boundary value problems in solid mechanics is the finite element (FE) method. 

The FE method is a numerical tool that is used to solve differential equations over a domain. 

In the FE method, the domain is discretized into small domains called finite elements. The 

finite elements can be a line element (1D), a planar element (2D) or a solid element (3D). This 

has to be properly selected based on the problem. The variables to solve for (typically 

displacements in solid mechanics problems) are then approximated with (e.g. linear, 

quadratic, etc.) interpolations over the elements. The interpolation functions need to be 

properly defined such that they can capture the variation of the variable in that particular 

element. The interpolation of the required variable makes the problem simpler because the 

continuous variable is approximated with simple polynomials. By assembling the stiffness 

properties and loads on all elements, a system of linear or non-linear equations is obtain. In 

general, many methods can be used to solve these systems of equations using computers. 
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The system of equations needed for the finite element method to be solved in solid mechanics 

problems is generally generated using the principle of virtual work or calculus of variations. 

More information about FEM can be found in Zienkiewicz. et al. (2013) and Bonet & Wood   

(1997). 

3.2.1 STRESS INTEGRATION  
 

The basic principle of FEM can be simply put in terms of the work done by the external forces 

equals the work done by internal forces 

 𝑃𝐼 = 𝑃𝐸  (3.12) 

 where 𝑃𝐼 is the internal work done and 𝑃𝐸 is the external work done. 

 

𝑃𝐼 = ∫[𝐵]𝑇[𝜎]

Ω 

 𝑑𝑣    

(3.13) 

𝑃𝐸 = ∫[𝑁]𝑇𝑡

𝛿Ω𝑡 

 𝑑𝑠 + ∫[𝑁]𝑇𝑏𝑓

Ω 

 𝑑𝑣 

where [𝑁] is the displacement interpolation matrix, [𝐵] is the strain -displacement matrix and 

[𝜎] is the stress-state written in Voigt notation. The traction vector is denoted by 𝑡 and 𝑏𝑓 is 

the body force vector. 

For the non – linear case, generally, an incremental procedure is used, which means that the 

load is applied in increments, and an iterative procedure is solved for fulfilling the equilibrium.  

The equation to solve becomes  

𝑃𝐼̇ = 𝑃𝐸̇  ⇒ ∫[𝐵]𝑇𝜎̇ 𝑑𝑣

Ω 

= 𝑃𝐸̇   

Nonlinear problems in solid mechanics can be classified into three types. 

• Geometric nonlinearity – large deformations  

• Material nonlinearity – the material behaves nonlinearly 

• Contact nonlinearity – two bodies in contact 

Any combination of above-mentioned three nonlinear varieties can be present in a problem. 

In this project, only material non-linearity is accounted for. 

The finite element equations can be solved using either an implicit or an explicit formulation. 

These resemble the backward and forward Euler methods known from applied mathematics. 

An implicit type of problem-solving starts with a value being assumed and iterated until global 

equilibrium is established. In the explicit type of problem solving, the solution for the next 

step is predicted directly from the already known values. Both have their advantages and 



 
CHAPTER 3: METHOD 

 

12 
 

disadvantages. More on that can be found in Bonet & Wood (1997) and Zienkiewicz, Taylor, 

& Zhu (2013). In this project, the problem is solved using the implicit method and the solution 

procedure for that is discussed here, only. All equations derived are based on the information 

provided in Gudmundson (2010). 

A complete nonlinear implicit finite element problem is composed of two steps 

• The solution of the global equilibrium for each load increment 

• Integration of the constitutive equations at every material point (i.e. every Gauss 

point).  

The integration of the constitutive equations is not present in a linear problem because the 

material has not yet yielded. Thus, the displacements, strains and stresses follow directly from 

the solution of the linear system of equations.  

The global equilibrium for the next step is attained and can be written at time step ‘n’ as 

 Δ𝑃𝐼 = Δ𝑃𝐸 (3.14) 

For the next time step, generally an iterative procedure is used. The value to be solved is the 

displacement increment for the next time step. This is assumed zero at the start of the 

iteration.  

For time step ‘n+1’ at the 𝑖𝑡ℎ iteration  

 |Δ𝑃𝐼|𝑛+1 
𝑖 − Δ𝑃𝐸|𝑛+1 

𝑖 |  = Δ𝑅|𝑛 
𝑖  (3.15) 

where Δ𝑅|𝑛 
𝑖 is the residual between change in internal and external work done at 𝑖𝑡ℎ iteration. 

Ideally, it is required and essential that Δ𝑅|𝑛+1 
𝑖 = 0, but a tolerance ‘tol’ is generally kept 

 |Δ𝑅|𝑛+1 
𝑖 | < 𝑡𝑜𝑙 (3.16) 

The next iteration in this time step can be written as 

 

Δ𝐷|𝑛
𝑖+1 = Δ𝐷|𝑛

𝑖 −
Δ𝑅𝑛(Δ𝐷|𝑛

𝑖 )

(
dΔ𝑅𝑛

𝑑Δ𝐷|𝑛
𝑖  )

 

(3.17) 

⇒ Δ𝐷|𝑛
𝑖+1 = Δ𝐷|𝑛

𝑖 − [𝐾𝑁𝑅
𝑖 ]

𝑛

−1
Δ𝑅𝑛(Δ𝐷|𝑛

𝑖 ) 

 where Δ𝐷|𝑛
𝑖+1is the solution for next iteration, Δ𝐷|𝑛

𝑖  is the solution for the previous iteration 

and [𝐾𝑁𝑅
𝑖 ]

𝑛
is called the algorithmic tangent stiffness. 

The algorithmic tangent stiffness can be expressed as  

 [𝐾𝑁𝑅
𝑖 ]

𝑛
=

𝑑Δ𝑅𝑛

𝑑Δ𝐷|𝑛
𝑖

= ∫[𝐵]𝑇

Ω 

 
𝑑Δ𝜎𝑛

𝑖

𝑑Δ𝐷𝑛
𝑖
  𝑑𝑣 (3.18) 

Efficient calculation of this matric requires evaluation of stress at ‘n+1’ time step accurately. 

This can be done by either implicit or explicit type of stress integration. 
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Implicit integration of stress is used in this project. One commonly used method for implicit 

integration of stress is known as radial return mapping in computational inelasticity terms 

and it can be simply put in words as 

• Assume a trial stress state assuming elasticity 

• Check the flow rule and bring back the updated stress on to the yield (or flow) surface 

• Update the values and continue the loop until a certain tolerance is achieved 

The linear elastic trial stress state is defined as   

 𝜎𝑛+1
𝑖 = [𝑪(𝑚𝑟)]𝜀 ̅𝑛+1

𝑖 = [𝑪(𝑚𝑟)][𝑩] 𝐷𝑛+1
𝑖  ;  𝐷𝑛+1

𝑖 = 𝐷𝑛 + Δ𝐷𝑛
𝑖  (3.19) 

where 𝐷𝑛 is the converged displacement from the 𝑛𝑡ℎ time step, Δ𝐷𝑛
𝑖  is the 𝑖𝑡ℎ iteration of 

displacement increment for the next time step. 

Then the flow rule corresponding to the material model is checked with the trial stress state 

as  

 𝑓𝑛+1
𝑖 = ∑

(𝜎𝑛+1
𝑖 )

2

(𝜎𝑖
𝑠,𝑛(𝑚𝑟))

2 − 1

6

𝑖=1

 (3.20) 

 where 𝜎𝑖
𝑠,𝑛(𝑚𝑟) is the flow stress at the 𝑛𝑡ℎ time step. The flow stress is calculated from 

Equation (3.7). The plastic strains are added iteratively after each converged solution. 

1. If (𝑓𝑛+1
𝑖 < 0), then the iterative stress integration is not required, and the trial stress 

state is the final solution for that time step. 

2. Else, the stress state has to be brought back on the yield surface. This is done as 

 𝜖𝑡𝑜𝑡 = 𝜖𝑒𝑙 + 𝜖𝑝 + 𝜖𝑚𝑟 (3.21) 

where 𝜖𝑡𝑜𝑡 is the total strain, 𝜖𝑒𝑙 is the elastic component, 𝜖𝑝 is the plastic component and 

𝜖𝑚𝑟 is the swelling component due to moisture change. 

Moisture change is not considered in this project since the experiments were performed at 

stationary moisture conditions. Thus, the total strain can be written as 

 𝜖𝑡𝑜𝑡 = 𝜖𝑒𝑙 + 𝜖𝑝 (3.22) 

Multiplying with the stiffness matrix on both sides yields 

 
[𝑪(𝑚𝑟)]𝜖

𝑡𝑜𝑡 = [𝑪(𝑚𝑟)]𝜖
𝑒𝑙 + [𝑪(𝑚𝑟)]𝜖

𝑝  
(3.23) 

⇒ 𝜎𝑛+1
𝑖 = 𝜎𝑛+1

𝑖 − [𝑪(𝑚𝑟)]𝜖
𝑝 

where 𝜎𝑛+1
𝑖  is the stress for the 𝑖𝑡ℎ the iteration at time step 𝑛 + 1. 

In the implicit integration, the accumulated plastic strain can be written as 
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 𝜎𝑛+1
𝑖 = 𝜎𝑛+1

𝑖 − [𝑪(𝑚𝑟)] ∫ 𝜀̇𝑝

𝜀̅𝑛+1
𝑝

𝜀̅𝑛
𝑝

𝑑𝑡 (3.24) 

 From the definition of the updated flow rule 

 𝑓 = ∑
𝜎𝑖

2

(𝜎𝑖
𝑠,𝑛(𝑚𝑟) + 𝐻𝑖(𝑚𝑟)Δ𝜖𝑖

𝑝,𝑛)
2

6

𝑖=1

− 1 = 0 (3.25) 

where 𝜎𝑖
𝑠,𝑛(𝑚𝑟) is the flow stress at the  𝑛𝑡ℎ time step and Δ𝜖𝑖

𝑝,𝑛 is the increment of plastic 

strain during this time step. 

Following an associative flow rule, the plastic gradient can be written as 

 

𝜀̇𝑝 = 𝜆̇   
𝜕𝑓

𝜕𝜎
|
𝑛

𝑖

 

(3.26) 
𝜕𝑓

𝜕𝜎
|
𝑛

𝑖

=
2𝜎𝑖

(𝜎𝑖
𝑠,𝑛 + 𝐻𝑖Δ𝜖𝑖

𝑝,𝑛)
2 −

2𝜎𝑖
2 (𝐻𝑖

𝑑Δ𝜖𝑖
𝑝,𝑛

𝑑𝜎𝑖
)

(𝜎𝑖
𝑠,𝑛 + 𝐻𝑖Δ𝜖𝑖

𝑝,𝑛)
3 

This can be simplified as (See Section A.1 for complete derivation) 

  𝜀𝑖̇
𝑝 =  𝑑𝜆 [

2𝜎𝑖

(𝜎𝑖
𝑠,𝑛 + 𝐻𝑖Δ𝜖𝑖

𝑝,𝑛)
2 −

2𝜎𝑖
2

(𝜎𝑖
𝑠,𝑛 + 𝐻𝑖Δ𝜖𝑖

𝑝,𝑛)
3]   (3.27) 

Assuming that the gradient is constant during the step which means that only small steps can 

be taken in simulation, Equation (3.24) can be approximated in Voight notation as 

 𝜎𝑖 = 𝜎𝑖 − 𝑪𝑖𝑗(𝑚𝑟) [
2𝜎𝑗

(𝜎𝑗
𝑠,𝑛 + 𝐻𝑗Δ𝜖𝑗

𝑝,𝑛)
2 − 

2𝜎𝑗
2

(𝜎𝑗
𝑠,𝑛 + 𝐻𝑗Δ𝜖𝑗

𝑝,𝑛)
3] (3.28) 

The incremental plastic strain Δ𝜖𝑗
𝑝,𝑛 is an unknown to be solved for from the stress state. This 

term being in denominator makes solving for Δ𝜖𝑗
𝑝,𝑛 even more complicated. Small steps are 

already taken into consideration to simplify the Equation (3.24) to (3.28) and this is further 

motivated by this assumption. 

 𝜎𝑗
𝑠,𝑛 + 𝐻𝑗Δ𝜖𝑗

𝑝,𝑛  ≅  𝜎𝑗
𝑠,𝑛 (3.29) 

Finally, with all assumptions from Equations (3.26) to (3.29), the main Equation (3.24) can be 

rewritten as  

 [(𝛿𝑖𝑗)𝜎𝑗 + [
2 𝑪𝑖𝑗 𝜎𝑗

(𝜎𝑗
𝑠,𝑛)

2 −
2 𝑪𝑖𝑗 𝜎𝑗

2

(𝜎𝑗
𝑠,𝑛)

3 ] Δ𝜆𝑛  ] = 𝜎𝑖𝑗 (3.30) 

In matrix notation, this can be written as 
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  (𝐼 + 2𝐷Δ𝜆𝑛) 𝜎 − 2𝐸Σ(𝜎2)Δ𝜆𝑛 = 𝜎 ‖ 𝐷𝑖𝑗 =
𝑪𝑖𝑗

(𝜎𝑗
𝑠,𝑛)

2  ; 𝐸𝑖𝑗𝑘𝑙 = 
𝑪𝑖𝑗

(𝜎𝑗
𝑠,𝑛)

3   (3.31) 

where Σ(𝜎2) is another stress tensor where every element in the original stress tensor is 

squared. 

 Σ𝑖 = 𝜎𝑖
2 (3.32) 

Equations (3.25) and (3.30) constitutes a system of equations for the variables 𝑥 (7 × 1)  

𝑥 = [
𝜎𝑘𝑙

  Δ𝜆𝑛 ] 

The complete system of equations in the Voigt notation be written as  

 𝐹 =  

[
 
 
 
[𝛿𝑖𝑗 +  2𝐷𝑖𝑗Δ𝜆𝑛]𝜎𝑗 − 2𝐸𝑖𝑗𝜎𝑗

2Δ𝜆𝑛 − 𝜎𝑖

 ∑[
𝜎𝑖

𝜎𝑖
𝑠,𝑛 + 𝐻𝑖 Δ𝜖𝑖

𝑃(𝛥𝜆𝑛) 
]

2

− 1 

6

𝑖=1 ]
 
 
 

= 0 ‖‖  𝑥 = [
𝜎𝑖

Δ𝜆𝑛
] (3.33) 

This system of equations can be solved using many techniques for root finding. The most 

primitive one can be trial and error which is cumbersome and not advised because the same 

equation has to be solved for many elements in the FE problem. The most commonly used 

technique to solve this is the Newton-Raphson method which earlier was used in finding the 

displacement increment. This constitutes an internal Newton-Raphson method which is 

employed at Gauss point level, whereas the earlier one is at the global level employed after 

assembling the stiffness matrix of the complete system. 

The next iteration for the state variables can be computed as  

 𝑥𝑠+1 = 𝑥𝑠 − (
𝑑𝐹

𝑑𝑥
)
𝑠

−1

𝐹𝑠 (3.34) 

The evaluation of gradient  
𝑑𝐹

𝑑𝑥
 is essential to compute the next iteration. This matrix can be 

computed every time for the iteration or can be computed at the start of the iteration. The 

one-time computation method is called Modified Newton Raphson Method. This usually 

takes more iterations than the general Newton-Raphson Method. The gradients evaluated for 

the general Newton- Raphson Method are presented in A.2. 

3.2.2 ALGORITHM TANGENT STIFFNESS 
 

After a successful evaluation of stress state and incremental plastic strain for the next 

iteration, the immediate step would be to formulate the algorithmic tangent stiffness 

presented in Equation (3.18). After some manipulations, the algorithmic tangent stiffness can 

be rewritten as  
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[𝐾𝑁𝑅
𝑖 ]

𝑛
=

𝑑𝛥𝑅𝑛

𝑑𝛥𝐷|𝑛
𝑖

= ∫[𝐵]𝑇

𝛺 

 
𝑑𝛥𝜎𝑛

𝑖

𝑑𝛥𝐷𝑛
𝑖
  𝑑𝑣 = ∫[𝐵]𝑇

𝛺 

 
𝜕𝛥𝜎𝑛

𝑖

𝜕𝛥𝜀𝑛
𝑖

𝑑𝛥𝜀𝑛
𝑖

𝑑𝛥𝐷𝑛
𝑖
  𝑑𝑣 

 [𝐾𝑁𝑅
𝑖 ]

𝑛
= ∫[𝐵]𝑇

𝛺 

 
𝜕𝛥𝜎𝑛

𝑖

𝜕𝛥𝜀𝑛
𝑖
 [𝐵]  𝑑𝑣 (3.35) 

The only unknown in this evaluation is the gradient of change in stress to change in strain 

which is called the Jacobian matrix. 

To evaluate this Jacobian matrix, all equations used in a computing stress state and 

incremental plastic strain has to be written in differential form. The equations used are  

 [𝛿𝑖𝑗 +  2𝐷𝑖𝑗Δ𝜆𝑛]𝜎𝑗 − 2𝐸𝑖𝑗𝜎𝑗
2Δ𝜆𝑛 = 𝜎𝑖 ;  𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗 (3.36) 

  𝑓(𝜎𝑖  , Δ𝜆𝑛, 𝜎𝑖
𝑠(𝑚𝑟),𝐻𝑖(𝑚𝑟)) = ∑[

𝜎𝑖

𝜎𝑖
𝑠,𝑛 + 𝐻𝑖  𝛥𝜖𝑖

𝑝 
]

2

− 1 = 0 

6

𝑖=1

 (3.37) 

Using Equations (3.36) and (3.37) in differential form and also consistency condition, it can be 

written as (See Section A.3 for more details) 

 (𝛿𝑖𝑗 + [2𝐷𝑖𝑗 + 4𝐸𝑖𝑗𝜎𝑗]𝛥𝜆𝑛)𝑑𝜎𝑗 = 𝐶𝑖𝑗𝑑𝜖𝑗 + [2𝐷𝑖𝑗𝜎𝑗 + 2𝐸𝑖𝑗𝜎𝑗
2]

(𝛻𝑓𝑛+1
𝑇 )𝑖𝑑𝜎

(
𝜕𝑓

𝜕(𝛥𝜆𝑛)
)

 (3.38) 

where  (∇𝑓𝑛+1
𝑇 )𝑖 = [

𝜕𝑓

𝜕𝜎1
⋯

𝜕𝑓

𝜕𝜎6
] is the gradient of flow rule with respect to the stress state 

and 
𝜕𝑓

𝜕(𝛥𝜆𝑛)
 is the gradient of flow rule with respect to the incremental effective plastic strain 

This equation is made simpler by introducing the two matrices 

 

𝐺𝑖𝑗 = 𝛿𝑖𝑗 + [2𝐷𝑖𝑗 + 4𝐸𝑖𝑗𝜎𝑗]𝛥𝜆𝑛 

(3.39) 
𝐿𝑖𝑗 =

1

(
𝜕𝑓

𝜕(𝛥𝜆𝑛)
)
[2𝐷𝑖𝑗𝜎𝑗 + 2𝐸𝑖𝑗𝜎𝑗

2] 

Using Equation (3.39), the Equation (3.38) can be rewritten as  

𝐺𝑖𝑗 𝑑𝜎𝑗 = 𝐶𝑖𝑗𝑑𝜖𝑗 + 𝐿𝑖𝑗(𝛻𝑓𝑛+1
𝑇 )𝑖𝑑𝜎𝑗 ⇒ [𝐺 − 𝐿(∇𝑓𝑛+1

𝑇 )𝑖]𝑑𝜎 = 𝐶𝑑𝜀 

⇒ 𝑑𝜎 = [𝐺 − 𝐿(∇𝑓𝑛+1
𝑇 )𝑖]

−1
𝐶  𝑑𝜀 =

𝜕𝛥𝜎𝑛
𝑖

𝜕𝛥𝜀𝑛
𝑖
 𝑑𝜀 

Finally, the Jacobian matrix can be written as  

 
𝜕𝛥𝜎𝑛

𝑖

𝜕𝛥𝜀𝑛
𝑖

= [𝐺 − 𝐿(∇𝑓𝑛+1
𝑇 )𝑖]

−1
𝐶 (3.40) 

The stress integration algorithm is summarized in Table 3.1 
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Table 3.1 Summary of Stress Integration method 

 

1. Compute trial elastic stress  

𝐷𝑛+1
𝑖 = 𝐷𝑛 + Δ𝐷𝑛

𝑖   ;  𝜀 ̅𝑛+1
𝑖 = [𝑩] 𝐷𝑛+1

𝑖  

𝜎𝑛+1
𝑖 = [𝑪(𝑚𝑟)]𝜀 ̅𝑛+1

𝑖 = [𝑪(𝑚𝑟)][𝑩] 𝐷𝑛+1
𝑖  

 

2. Update flow stress from previously converged solution 

𝜎𝑖
𝑠,𝑛(𝑚𝑟) =  𝜎𝑖

𝑠,𝑛−1(𝑚𝑟) + 𝐻𝑖(𝑚𝑟)Δ𝜖𝑖
𝑝,𝑛−1 

 

3. Check yield condition 

𝑓𝑛+1
𝑖 = ∑

(𝜎̅𝑛+1
𝑖 )

2

(𝜎𝑖
𝑠,𝑛(𝑚𝑟))

2 − 1

6

𝑖=1

 

             IF 𝑓𝑛+1
𝑖 ≤ 0 THEN: 

𝜎𝑛+1
𝑖 = 𝜎𝑛+1

𝑖  & EXIT 

             ENDIF 

 

4. Compute the system of equations from radial return method 

 

𝐹 = 

[
 
 
 
[𝛿𝑖𝑗 +  2𝐷𝑖𝑗Δ𝜆𝑛]𝜎𝑗 − 2𝐸𝑖𝑗𝜎𝑗

2Δ𝜆𝑛 − 𝜎𝑖

 ∑[
𝜎𝑖

𝜎𝑖
𝑠,𝑛 + 𝐻𝑖 Δ𝜖𝑖

𝑃(𝛥𝜆𝑛) 
]

2

− 1 

6

𝑖=1 ]
 
 
 

= 0  ‖‖  𝑥 = [
𝜎𝑖

Δ𝜆𝑛
] 

 

5. Solve this system of equations iteratively using Newton Raphson method 

𝑥𝑠+1 = 𝑥𝑠 − (
𝑑𝐹

𝑑𝑥
)
𝑠

−1

𝐹𝑠 

 
6. Compute the consistent tangent modulus for this iteration for all Gauss points  

𝜕𝛥𝜎𝑛
𝑖

𝜕𝛥𝜀𝑛
𝑖

= [𝐺 − 𝐿(∇𝑓𝑛+1
𝑇 )𝑖]

−1
𝐶 

𝐺𝑖𝑗 = 𝛿𝑖𝑗 + [2𝐷𝑖𝑗 + 4𝐸𝑖𝑗𝜎𝑗]Δ𝜆𝑛  ; 𝐿𝑖𝑗 =
1

(
𝜕𝑓

𝜕(Δ𝜆𝑛)
)
[2𝐷𝑖𝑗𝜎𝑗 + 2𝐸𝑖𝑗𝜎𝑗

2] 

 

The proposed model has not been checked for the principles of thermodynamics. Therefore, 

care must be taken when using this implemented model for problems with multiaxial loading 

and unloading.  
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3.3 IMPLEMENTATION IN LS-DYNA® 
 

The equations derived in Section 3.2 needs to be implemented in a commercial Finite Element 

software. Some of the major software available for implementing user – defined material 

models are LS – DYNA®, ABAQUS®, ANSYS® and COMSOL®. All have their advantages and 

disadvantages. LS – DYNA® is chosen for this project to implement the material model. There 

might be a difference while implementing the same in any other software. 

3.3.1 USER DEFINED FEATURES IN LS-DYNA® 
 

There are many pre – defined models in LS – DYNA® which can be used to solve problems in 

different fields. There is also a provision for the user to define fully customized building blocks, 

like material models, elements, friction models and loadings see LS-DYNA Keyword User’s 

Manual I (2019) and Erhart (2010) for more information. The user-defined models are plugged 

into LS – DYNA® via user subroutines written in FORTRAN 90. More information on the user-

defined features can be found in Appendix A-H of LS-DYNA Keyword user’s anual I (2019). 

The user-defined subroutines are compiled using the object version of LS – DYNA® (see Figure 

3.2) where the necessary coding must be done. Since the coding is completely done in 

FORTRAN, an external compiler is needed. The general ones include Intel FORTRAN Compiler 

(which is a part of Intel Parallel Studio), GNU compiler. For each variant of LS – DYNA® there 

is a particular set of Intel FORTRAN Compiler and Microsoft Visual C++ needed for linking and 

accessing the standard libraries. The recommended FORTRAN compiler for LS-DYNA R11 is 

Intel Parallel Studio XE 2017 and the corresponding Microsoft application environment is 

Microsoft Visual C++ 2017 x64 Cross Tools.   

The procedure for writing the user-defined subroutines varies for the LINUX and Windows 

operating systems, respectively. In LINUX, a module can be defined that can help facilitate 

working with User Defined Functions (UDFs). The work involved with defining UDFs is 

significantly reduced such that the whole usermat package (see Figure 3.2) need not be used 

for generating executable file but can be concise and replaced by *MODULE keywords (see 

Figure 3.3). 

The provision of the module concept is not available the Windows, so the normal procedure 

of changing the source codes and compiling them to get the executable file should be used. 

This is not as flexible as the ‘module’ concept and if there are many UDFs in a model, it is 

advised to use the ‘module’ concept in the LINUX environment. The material model in this 

project is implemented for Windows. 
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Figure 3.2 Details of Object Version in LS – DYNA® (LS-DYNA Keyword User’s Manual I (2019)) 

 

 

Figure 3.3 Module Concept used for LINUX environments (LS-DYNA Keyword User’s Manual I 
(2019)) 

Implementing any UDF is complicated, and a stepwise fashion to increase the complexity level 

is adopted which can be easy to implement and better for debugging. For example, in the 

User Defined Material Model (UMAT), an elastic solution is implemented first and then the 

yield condition with perfect plasticity is implemented and finally the hardening behavior.  
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3.3.2 USER DEFINED MATERIAL MODELS IN LS – DYNA® 
 

The major and the most common one of UDFs is the User Defined Material Model (UMAT). If 

the available material models are not sufficient to capture the material behavior, then a 

UMAT is to be implemented. The UMAT can be implemented for an explicit or an implicit 

cycle, respectively. For an explicit cycle, only a stress update (see Section 3.2.1) for the next 

time step is sufficient whereas for the implicit cycle including the stress update the consistent 

tangent matrix (see Section 3.2.2) also has to be updated.  

The implicit sequence is defined in the user-defined material subroutine umatXX (where 41 ≤ 

XX ≤ 50), with the strain rate (or deformation gradient) as the main input. The main objective 

of this subroutine is to update the (Cauchy) stress and any history dependent variables 

required for the next time step. The input quantities in this subroutine are in the local element 

coordinate system. This is illustrated in Figure 3.4. 

 

Figure 3.4 Finite Element Method for Explicit Method with User-Defined Material Model 

When implementing the material model for shells and beams, the stresses that are consistent 

with the assumptions according to structural elements (𝜎33 = 0 for shells) is implemented in 

the corresponding umatXX. 

For an implicit method, apart from the stress update the material stiffness matrix is to be 

implemented in the corresponding subroutine utanXX. This subroutine is called when 

assembling the global stiffness matrix. This is shown in Figure 3.5. 
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Figure 3.5  Finite Element Method for Implicit Method with User-Defined Material Model 

In this project all of the simulations are done in implicit mode. Both user-defined features, 

UMAT and UTAN, are needed. The stress integration method with Newton – Raphson method 

in Section 3.2.1 is implemented in umatXX. The tangent stiffness derived in Section 3.2.2  is 

implemented in utanXX. 

3.4  UNIAXIAL SPECIMEN 
 

The implemented model is verified on the uniaxial specimen used for experiments. It is shown 

with dimensions in Figure 3.6.  

 

Figure 3.6  Uniaxial specimen used for both MD and CD testing 

The uniaxial specimen can be modeled two ways i.e. modeling the complete specimen, fixing 

one end, and applying load at the other end. The full sample modeled with boundary 

conditions is shown in Figure 3.7.  

The other approach is to model the only a quarter of the specimen and applying the symmetry 

boundary conditions. For MAT157 both approaches have very small differences in 
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computation time, but for UMAT the full specimen takes a lot more execution time4 than the 

symmetry one. Therefore, the UMAT simulations are done with the quarter-symmetry model 

to reduce the execution time. The symmetry sample with boundary conditions is shown in 

Figure 3.8. 

 

Figure 3.7 Full Sample modelled with boundary conditions 

 

Figure 3.8 Symmetry sample with boundary conditions 

Generally, shell elements have been used to model the paper for both MAT 157 and UMAT 

simulations. Due to some implementation problems, solid elements are used for UMAT 

(discussed more in Section 6). These simulations are done with a fully integrated shell 

(ELFORM5 2 in LS-DYNA®) and solid elements (ELFORM 16 in LS – DYNA®). The simulations are 

done within a fully implicit setting. 

Also, preliminary biaxial testing is done according to Wallmeier (2018) is presented in 

Appendix B. 

The moisture ratio considered in the simulations are shown in Table 3.2 

Table 3.2 Normalized moisture ratio at different humidity levels 

Humidity level Normalized moisture ratio 

20 RH 0.69 
50 RH 1 
70RH 1.55 
90 RH 2.39 

 
4 Execution time of a full sample is more because the stress state is not entirely uniaxial near the fixed end of 
the specimen.   
5  ELFORM – element formulation, refer LS-DYNA Keyword User’s Manual I (2019) for more information 
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4 MODEL VERIFICATION 
 

The proposed model is compared with the experimental results and the predefined material 

model in LS – DYNA®. Only few material models can be used to model paperboard in LS – 

DYNA®. The Xia – Nygårds model (Xia, Boyce, & Parks, 2002) is implemented as MAT 274 and 

it involves a lot of parameter extraction. Therefore, this model is not used for comparison 

with the proposed model. 

The other model in LS – DYNA® that can be used for comparison is MAT 157 (LS-DYNA 

Keyword User’s Manual II (2019)). This model is selected because of its simple but yet 

effective material treatment. The material is defined using anisotropic elasticity and isotropic 

hardening.  

 The flow stress is defined as  

 𝜎𝑌 =  𝜎𝑌0
+ 𝑄𝑟1(1 − exp(−𝐶𝑟1𝜀𝑒𝑓𝑓

𝑝 )) + 𝑄𝑟2(1 − exp (−𝐶𝑟2𝜀𝑒𝑓𝑓
𝑝 ) (4.1) 

where 𝜎𝑌0
 is the yield stress, 𝜎𝑌 is the flow stress, 𝜀𝑒𝑓𝑓

𝑝  is the effective plastic strain, and 

𝑄𝑟1, 𝑄𝑟2, 𝐶𝑟1, 𝐶𝑟2 are material parameters used to define the hardening behavior. 

To make this model comparable with the implemented model, the hardening behavior should 

be linear. This can be done by assuming  

 𝑄𝑟2 = 0; 𝐶𝑟2 = 0 𝑎𝑛𝑑𝐶𝑟1 ≪ 0 (4.2) 

After expanding the exponential and only considering lower order terms 

 𝜎𝑌 =  𝜎𝑌0
+ 𝑄𝑟1𝐶𝑟1𝜀𝑒𝑓𝑓

𝑝  (4.3) 

which can be related to 𝐻 = 𝑄𝑟1𝐶𝑟1 ; 𝐶𝑟1 ≪ 0. 

Since the material model MAT 157 has isotropic hardening behavior, the same simulation 

cannot be used to model uniaxial specimens in both MD and CD. Thus, they are here modeled 

separately. This will not be the case for the proposed model because it can corporate different 

hardening moduli for different directions. The material card definitions used in LS-DYNA® are 

presented in detail in Appendix C. 

4.1  CALIBRATION OF MATERIAL PARAMETERS FROM EXPERIMENTAL 

DATA 
 

To implement the material model or use the MAT 157, the material constants defined in 

Section  3.1.1 and 3.1.2 have to be determined properly. The material constants at different 

moisture ratios are derived from the experiments performed by Marin. et al. (2020). The 

material constants evaluated for 50 % RH for both MD and CD directions are shown in Figure 

4.1 and Figure 4.2.  
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Figure 4.1  Evaluation of linear hardening parameters for MD at 50 % RH 

 

Figure 4.2 Evaluation of linear hardening parameters for CD at 50 % RH 

𝜎𝑦𝑀𝐷
= 33.63 𝑀𝑃𝑎 

𝐻𝑀𝐷 = 2487.95 𝑀𝑃𝑎 

𝐸𝑀𝐷 = 5900 𝑀𝑃𝑎 

𝜎𝑦𝐶𝐷
= 19.60 𝑀𝑃𝑎 

𝐻𝐶𝐷 = 333.71 𝑀𝑃𝑎 

𝐸𝐶𝐷 = 2970 𝑀𝑃𝑎 
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The material constants for other humidity levels are evaluated using the same procedure that 

is used for MAT 157. For the proposed material model, the constants are evaluated using the 

relations presented in Section 2.2. The material parameters extracted for the both MD and 

CD directions are shown respectively in Table 4.1 and Table 4.2. 

 

Table 4.1 Material Constants at all humidity levels for MD direction 

Humidity 
Level 

Stiffness in MD (𝐸𝑀𝐷) 
(MPa) 

Hardening Modulus in 
MD (𝐻𝑀𝐷) (MPa) 

Yield Stress in MD (𝜎𝑀𝐷
𝑦

) 
(MPa) 

 Mean 
Experimental 
Evaluation 

From the 
relation 
in 
Equation 
(2.1) 

Mean 
Experimental 
Evaluation 

From the 
relation 
in 
Equation 
(2.1)  

Mean 
Experimental 
Evaluation 

From the 
relation 
in 
Equation 
(2.1) 

20 RH 6700 6753.37 3030.43 2968.87 41.17 40.49 
50 RH 5900 5900 2487.95 2487.95 33.63 33.63 
70 RH 4800 4876.35 1976.50 2048.83 26.40 26.04 
90 RH 2960 3042.63 1120.00 1150.79 10.64 11.92 

 

Table 4.2 Material Constants at all humidity levels for CD direction 

Humidity 
Level 

Stiffness in CD (𝐸𝐶𝐷) 
(MPa) 

Hardening Modulus in CD 
(𝐻𝐶𝐷) (MPa) 

Yield Stress in CD (𝜎𝐶𝐷
𝑦

) 
(MPa) 

 Mean 
Experimental 
Evaluation 

From the 
relation 
in 
Equation 
(2.1) 

Mean 
Experimental 
Evaluation 

From the 
relation 
in 
Equation 
(2.1) 

Mean 
Experimental 
Evaluation 

From the 
relation 
in 
Equation 
(2.1) 

20 RH 3450 3399.75 399.46 398.21 24.01 23.62 
50 RH 2970 2970 333.71 333.71 19.60 19.60 
70 RH 2400 2454.71 291.58 274.81 13.92 15.19 
90 RH 1500 1531.63 174.82 154.27 6.552 6.958 

 

4.2  MODEL CHECKING IN MATLAB® 
 

Before proceeding to the implementation of the material model in LS – DYNA®, a script for 

stress integration is developed in MATLAB®. A variety of tests ranging from single stress state 

to complete uniaxial testing is done. This is done to validate the material model and identify 

the mistakes before implementing it in LS – DYNA®. 

Initially, things were made simpler by implementing ideal plasticity. The radial return method 

for a single stress state for Ideal plasticity is shown in Figure 4.3. The variation of residuals for 

the same is presented in Figure 4.4.  
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Figure 4.3 Radial Return method for ideal plasticity 

 

Figure 4.4 Residuals during iterations for ideal plasticity 

Then the linear hardening is implemented and tested. The radial return method for a single 

stress state for linear hardening is shown in Figure 4.5. The variation of residuals for the same 
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analysis is presented in Figure 4.6. All samples tested are initially done with uniaxial testing in 

MD and later CD has been verified. 

 

Figure 4.5 Radial return method for linear hardening 

 

Figure 4.6 Residuals during iterations for linear hardening 
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Then a full – scale testing is done in MATLAB® to validate the stress integration technique for 

a complete uniaxial testing. This is done by assuming an elastic stress state and then the radial 

return method is applied in a loop. After finishing one loop, an elastic stress state is assumed 

and then the algorithm for stress integration was applied. 

The different stress states from only elastic, ideal plasticity and linear hardening are shown in  

Figure 4.7. 

 

Figure 4.7 Stress integration algorithm implemented in MATLAB® for MD uniaxial sample 

The same results have been compared to the experimental data by considering an equivalent 

displacement for the solution in MATLAB®. This is usually computed using the tangent 

stiffness in any commercial finite element software. 

The comparison between experimental data and the proposed anisotropic linear hardening 

model for MD uniaxial sample is shown in Figure 4.8. The same comparison for a CD uniaxial 

sample is shown in Figure 4.9. 

A section of residuals during the simulation for a MD uniaxial sample with linear hardening is 

shown in Figure 4.10. The X-axis in the figure represents the cumulative iteration number in 

the entire simulation. 
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Figure 4.8 Stress response curve for MD sample in MATLAB® 

 

Figure 4.9 Stress response curve for CD sample in MATLAB® 
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Figure 4.10 Residuals during the complete simulation 

4.3  FOUR ELEMENT SIMULATION IN LS-DYNA® 
 

After successful evaluation of stress integration in MATLAB®, small-scale simulation is setup 

in LS-DYNA. It is done by modelling a structure consisting of four identical quadratic elements 

of side 1 mm. The model with boundary conditions are shown in Figure 4.11.  

The complete algorithm presented in Table 3.1 is implemented in a stepwise manner in LS-

DYNA.  Initially only elasticity is assumed and scripted in LS-DYNA. Thereafter, moisture 

scaling of the elastic constants is done. This is presented for a CD uniaxial sample in Figure 

4.12. Then the yield condition is implemented with ideal plasticity. 

After successful implementation of ideal plasticity, the complete model with anisotropic 

hardening and with moisture scaling is implemented. This is presented for a CD uniaxial 

sample in Figure 4.13. 

Since the stress state in the sample is uniaxial, the results for both MD and CD should match 

with the corresponding MAT 157 simulations. The MD sample results for both MAT 157 and 

proposed model is shown in Figure 4.14. The CD sample results for both MAT 157 and 

proposed model is shown in Figure 4.15. 

These simulations are done with fully integrated shell (ELFORM 2 in LS-DYNA®) and solid 

elements (ELFORM 16 in LS-DYNA®). The simulations are done in an implicit setting. 
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Figure 4.11 Four Element sample modelled in LS-DYNA 

 

Figure 4.12 Moisture dependent elastic response in LS - DYNA for 4 element test at different 
humidity levels 
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Figure 4.13 Moisture dependent elastic plastic response in LS - DYNA for 4 element test at 
different humidity levels 

 

Figure 4.14 Comparison of material models for four-element MD sample at 50 RH 
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Figure 4.15  Comparison of material models for four-element CD sample at 50 RH 
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5 RESULTS 
 

The simulations are done for both MAT 157 and the proposed model for both MD and CD 

samples at different humidity levels. The simulation results for MD and CD samples at the 

normal humidity level of 50 % RH are shown, respectively in Figure 5.1 and Figure 5.2.  

 

Figure 5.1 Stress response curve for an MD uniaxial specimen at 50 % RH 

 

Figure 5.2 Stress response curve for a CD uniaxial specimen at 50 % RH 
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Similarly, all simulations for MD and CD samples are done at different humidity levels. The 

results from them are shown respectively, in Figure 5.3 and Figure 5.4. 

 

Figure 5.3  Stress response curve for an MD uniaxial specimen at all humidity levels 

 

Figure 5.4 Stress response curve for a CD uniaxial specimen at all humidity levels 
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6  DISCUSSION 
 

Element selection in LS – DYNA 

Shell elements are traditionally used to model paperboard. The shell elements can capture 

the strains in the thickness direction better than the solid elements. If solid element is 

modeled for out of plane problems, there must be a number of solid elements in the thickness 

direction to get an efficient solution. This makes the computation more complex and the 

simulation is more prone to the locking phenomenon. The other elements, which are better 

for out-of-plane problems are solid shell elements. They are named as TSHELL in LS – DYNA®. 

Since the simulations are in – plane, the results will not vary much for shell and solid elements. 

All the simulations are done in implicit mode, so fully integrated elements are used. They are 

shell: ELFORM 2 in LS – DYNA® and solid: ELFORM 16 in LS – DYNA®. 

Issues in LS – DYNA:  

For any orthotropic material, the material axes needed to be defined properly for an accurate 

simulation. These are defined in differ ways for shells and solids in LS – DYNA refer Keyword 

User’s manual II (2019). The method employed in all of the simulations is that the material 

axes are rotated to achieve the required material direction. In LS – DYNA® one vector is 

needed to define material axes for shells whereas two vectors are needed for solids. While 

using shell elements (with the same method as used in MAT 157 to define material axes) in 

coupling with UMAT, many null rows of the stiffness matrix occurred. The same did not occur 

when the UMAT was used for solid elements. Upon investigation, it was found that when 

using shell elements, the element direction6 is taken as the material direction for 

computation. This problem can be solved for uniaxial samples but could not be solved for 

biaxial sample because of the geometry. Therefore, to avoid confusion all the simulations 

using UMAT are done with solid elements. 

Uniaxial Results 

The comparison of the results has been done with averaged experimental data. This can be a 

problem in assessing the results, since the relations between material parameters and 

moisture ratio are computed using all the samples. The linear hardening approximation looks 

better for stress response in CD than MD. The moisture scaling was accurate enough at 

humidity level of 20 RH for both CD and MD. For humidity level of 70 % RH, the yield stress 

drifted from the fitted linear response for both MD and CD. The drifting was more for the CD 

sample. However, the hardening followed more or less the same for both MD and CD. At the 

humidity level of 90 % RH where all the things start being deviated, even the elastic response 

was a bit off. This can be attributed to low value of the coefficient of determination (R2) for 

the yield stress and hardening modulus when compared to the elastic stiffness. 

 
6 Element direction in shell: The X axis is defined as the vector defined by the direction from local element node 
1 to 2 
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7  CONCLUSION AND RECOMMENDATIONS 

7.1  SUMMARY OF WORK DONE 
 

A new material model is proposed for paperboard to model the in-plane response at different 

humidity levels. The model comprises of orthotropic elasticity and anisotropic linear 

hardening. All the mechanical parameters are considered functions of moisture ratio. An 

implicit variant of this model is implemented in LS-DYNA®. All necessary checks are done in 

MATLAB® before implementing the material model in LS-DYNA®. A step-by-step procedure is 

used while implementing the material model in LS-DYNA®. A small-scale model is tested 

initially and used for debugging. Then uniaxial simulations are done on the experimental 

specimens and the results were verified with the experimental results. The results were found 

to be in acceptable agreement for both the MD and CD simulations.  Finally, it should be noted 

that the thermodynamic consistency of the proposed model and its implementation in LS-

Dyna has not been verified. This is not expected to be a problem for the pre-dominantly 

uniaxial simulation results presented here, but could possibly be of concern for the biaxial 

simulations presented in Appendix B. 

 

7.2  FUTURE RECOMMENDATIONS 
 

Different fitting procedures for moisture scaling 

The relation between moisture ratio and material parameters can be changed to a higher 

order (or exponential fit) to get the coefficient of determination (R2) close to unity.  In tandem 

to that, confidence bounds to the fitted relations can also be determined. This makes the 

fitting procedure more robust and can be useful to modeling the variations in paper. The basic 

idea is shown in Figure 7.1. 

 

Figure 7.1 Relation between stiffness and yield strength with moisture ratio including 
confidence bounds 
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The orange lines in the Figure 7.1 covers some of the sample points, whereas the green line 

covers almost all of the sample points. There is also limitation to this type of fitting procedure 

since many more samples are needed to predict the correct bounds. 

 

Introduce kinematic hardening 

Here, the paperboard is assumed to have the same mechanical properties in compression and 

tension, which gives a poor estimate in biaxial simulations. This problem can be solved by 

adding kinematic hardening to the already defined anisotropic hardening. Then the complete 

material model includes anisotropic and kinematic hardening, which can be used to solve 

many relevant problems.  

To define kinematic hardening, the definition of back stress becomes necessary. This 

definition can add some more parameters as described by Borgqvist, .et.al (2014). Kinematic 

hardening without any additional variables is defined in Tjahjanto, .et. al.(2015). This 

definition can be used in addition to the already defined model. 

Changes can be made to the Equation (3.6) to implement kinematic hardening as 

 𝑓 =
𝜎𝑖

2 + 𝜎𝑏𝑖

2

(𝜎𝑖
𝑠(𝑚𝑟))

2 = 1  (7.1) 

 where 𝜎𝑏𝑖
 is the introduced back stress. The back stress should correspond to the previous 

loading direction. That means that it should be history dependent. 

In Tjahjanto, .et. al.(2015), the back stress is assumed to be 

 𝜏𝑏
(𝛼)

= 𝑠𝑎
(𝛼̅)

 (7.2) 

where 𝛼̅ indicates the sub-yield surface opposite to surface 𝛼. Consequently, no additional 

parameter is required to describe the evolution of the back stress. However, in the present 

model being considered here, there are no sub-surfaces. In this scenario, it can be assumed 

that   

 

𝜎𝑏𝑀𝐷
= 𝐻𝐶𝐷

𝜕𝑓

𝜕𝜎𝐶𝐷
 𝜆 

(7.3) 

𝜎𝑏𝐶𝐷
= 𝐻𝑀𝐷

𝜕𝑓

𝜕𝜎𝑀𝐷
 𝜆 

where 𝜎𝑏𝑀𝐷
, 𝜎𝑏𝐶𝐷

 are the back stresses defined in MD and CD respectively, 𝐻𝑀𝐷 , 𝐻𝐶𝐷 are the 

linear hardening moduli and, 𝜆 is the effective plastic strain. 

The other four stress components can be tricky to identify. As a start, this material model can 

be implemented, and other complexities can be further added. 

 

 



 
CHAPTER 7: CONCLUSION AND RECOMMENDATIONS 

 

39 
 

Moisture ratio as a state variable 

This project assumed that moisture ratio is a boundary condition, but to model the moisture 

changes in an uncontrolled environment properly, the moisture ratio has to be considered as 

a state variable. In making moisture a state variable, the strain due to change in moisture also 

need to be considered. By defining the strain due to moisture change, a moisture evolution 

law is needed as similar to plastic flow rule evolution. This can be done by assuming moisture 

ratio as a function of all other state variables: stress state, incremental effective plastic strain, 

and the environmental variables. 

 𝑚𝑟 = 𝑓(𝜎𝑖𝑗 , Δ𝜆𝑛, 𝑚𝑟
𝑒𝑛𝑣) (7.4) 

This function can be evaluated by conducting experiments in an uncontrolled environment. 

During these experiments, the weight of the sample has also to be measured in parallel stress 

and strain. This can help in deducing the moisture content of the sample during the whole 

testing. This information can be used to fit a curve with the other state variables. 

By introducing this function, the values, which are assumed zero while calculating much of 

the stuff in Sections 3.2.1 and 3.2.2 cannot be zero. They should instead be computed using 

the Equation (7.4) 

𝜕𝑚𝑟

𝜕𝜎𝑘
≠ 0 ;

𝜕𝑚𝑟

𝜕(Δ𝜆𝑛)
≠ 0; 𝑑𝑚𝑟  ≠ 0 

This also introduces a new variable in the system of equations, and they become 

indeterminant.  Thus, an extra equation is needed to make them determinant. The extra 

equation in this case is the diffusion equation. This equation in addition to the system of 

equations defined in Section 3.2.1 can be used to identify the next iteration values. This also 

makes the tangent stiffness more complicated and necessary care must be taken to evaluate 

the differentials.  

By introducing moisture ratio as a state variable, changes in moisture can be modeled. To 

model mechanosorptive creep, there is also a need for a term accelerating the strain due to 

moisture changes. 
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APPENDIX A MATERIAL MODEL 
 

A.1 DEFINITION OF INCREMENTAL PLASTIC STRAIN 
 

The plastic strain increment can be written as 

𝑑𝜖𝑘
𝑝 =  𝑑𝜆  

𝜕𝑓

𝜕𝜎𝑘
|
𝑛

𝑖

 

𝜕𝑓

𝜕𝜎𝑘
=

𝜕

𝜕𝜎𝑘
(∑

𝜎𝑘
2

(𝜎𝑘
𝑦(𝑚𝑟) + 𝐻𝑘(𝑚𝑟)𝜖𝑘

𝑝)
2

6

𝑘=1

− 1) 

⇒
𝜕𝑓

𝜕𝜎𝑘
=

2𝜎𝑘

(𝜎𝑘
𝑦(𝑚𝑟) + 𝐻𝑘(𝑚𝑟)𝜖𝑘

𝑝)
2 −

𝐻𝑘𝜎𝑘
2 𝑑𝜖𝑘

𝑝

𝑑𝜎𝑘

(𝜎𝑘
𝑦(𝑚𝑟) + 𝐻𝑘(𝑚𝑟)𝜖𝑘

𝑝)
3 

And it is known that from the definition of hardening modulus 

𝐻𝑘 =
𝑑𝜎𝑘

𝑑𝜖𝑘
𝑝 ⇒ 𝐻𝑘

𝑑𝜖𝑘
𝑝

𝑑𝜎𝑘
= 1 

Substituting this the equation changes to  

𝜕𝑓

𝜕𝜎𝑘
=

2𝜎𝑘

(𝜎𝑘
𝑦(𝑚𝑟) + 𝐻𝑘(𝑚𝑟)𝜖𝑘

𝑝)
2 −

𝜎𝑘
2

(𝜎𝑘
𝑦(𝑚𝑟) + 𝐻𝑘(𝑚𝑟)𝜖𝑘

𝑝)
3 

To find the plastic strain increment for a particular direction substitute this gradient and 

integrate it 

Δ𝜖𝑘
𝑝,𝑛 = ∫ (

2𝜎𝑘

(𝜎𝑘
𝑦,𝑛(𝑚𝑟) + 𝐻𝑘(𝑚𝑟)𝜖𝑘

𝑝,𝑛)
2 −

𝜎𝑘
2

(𝜎𝑘
𝑦,𝑛(𝑚𝑟) + 𝐻𝑘(𝑚𝑟)𝜖𝑘

𝑝,𝑛)
3)𝑑𝜆

𝜆𝑛+1

𝜆𝑛

 

To make the model simple, this gradient can be assumed as a constant in the integral bounds, 

which give the incremental plastic strain as 

Δ𝜖𝑘
𝑝,𝑛 = (

2𝜎𝑘

(𝜎𝑘
𝑠,𝑛(𝑚𝑟))

2 −
𝜎𝑘

2

(𝜎𝑘
𝑠,𝑛(𝑚𝑟))

3)Δ𝜆𝑛  

𝜎𝑘
𝑠,𝑛 = 𝜎𝑘

𝑦,𝑛(𝑚𝑟) + 𝐻𝑘(𝑚𝑟)𝜖𝑘
𝑝,𝑛  ; 𝑓𝑙𝑜𝑤 𝑠𝑡𝑟𝑒𝑠𝑠 𝑎𝑡 𝑛𝑡ℎ𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

This is the one that has been implemented in the model. So, this makes the model dependent 

on the size of incremental effective plastic strain. This has to be small to make sure that the 

model converges. 
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To make it independent of the size of incremental plastic strain, the integral must be 

evaluated assuming the gradient is not constant. This can be done by the general definition 

of plastic strain in that direction as  

𝜖𝑘
𝑝 =

2𝜎𝑘

(𝜎𝑘
𝑠)2

 𝜆 = Χ𝑘𝜆 

Substituting this in the integral, 

Δ𝜖𝑘
𝑝,𝑛 = ∫ (

2𝜎𝑘

(𝜎𝑘
𝑦

+ 𝐻𝑘Χ𝑘𝜆)
2 −

𝜎𝑘
2

(𝜎𝑘
𝑦

+ 𝐻𝑘Χ𝑘 𝜆)
3)𝑑𝜆

𝜆𝑛+1

𝜆𝑛

 ; 𝐿𝑒𝑡 𝐻𝑘Χ𝑘 = Γ𝑘 

Changing the integral domains 

⇒ Δ𝜖𝑘
𝑝,𝑛 = ∫ (

2𝜎𝑘

(𝜎𝑘
𝑠,𝑛 + Γ𝑘

𝑛𝜆)
2 −

𝜎𝑘
2

(𝜎𝑘
𝑠,𝑛 + Γ𝑘

𝑛 𝜆𝑘)
3)𝑑𝜆

Δ𝜆𝑛

0

 

⇒ Δ𝜖𝑘
𝑝,𝑛 = −

2𝜎𝑘

Γ𝑘(𝜎𝑘
𝑠,𝑛 + Γ𝑘

𝑛𝜆)
−

𝜎𝑘
2

Γ𝑘(𝜎𝑘
𝑠,𝑛 + Γ𝑘

𝑛𝜆)
2|

0

Δ𝜆𝑛

 

⇒   −
2𝜎𝑘

Γ𝑘(𝜎𝑘
𝑠,𝑛 + Γ𝑘

𝑛Δ𝜆𝑛)
−

𝜎𝑘
2

Γ𝑘(𝜎𝑘
𝑠,𝑛 + Γ𝑘

𝑛Δ𝜆𝑛)
2 +

2𝜎𝑘

Γ𝑘
𝑛𝜎𝑘

𝑠,𝑛 +
𝜎𝑘

2

Γ𝑘
𝑛(𝜎𝑘

𝑠,𝑛)
2 

∵ Γ𝑘
𝑛 = 𝐻𝑘Χ𝑘

𝑛 =
𝐻𝑘2𝜎𝑘

(𝜎𝑘
𝑠,𝑛)

2  

⇒
1

𝐻𝑘
+

𝜎𝑘

2𝐻𝑘𝜎𝑘
𝑠,𝑛 − [

𝜎𝑘
𝑠,𝑛

𝐻𝑖(𝜎𝑘
𝑠,𝑛 + Γ𝑘

𝑛Δ𝜆𝑛)
 ] −

𝜎𝑘𝜎𝑘
𝑠,𝑛

𝐻𝑖(𝜎𝑘
𝑠,𝑛 + Γ𝑘

𝑛Δ𝜆𝑛)
2 

⇒ Δ𝜖𝑘
𝑝,𝑛 = 

1

𝐻𝑘
[1 −

𝜎𝑘
𝑠,𝑛

𝜎𝑘
𝑠,𝑛 + Γ𝑘

𝑛Δ𝜆𝑛

 ] +
𝜎𝑘

2𝐻𝑘
[

1

𝜎𝑘
𝑠,𝑛 −

𝜎𝑘
𝑠,𝑛

(𝜎𝑘
𝑠,𝑛 + Γ𝑘

𝑛Δ𝜆𝑛)
2] 

⇒ Δ𝜖𝑘
𝑝,𝑛 = 

1

𝐻𝑘
[
Γ𝑘

𝑛Δ𝜆𝑛

𝜎𝑘
𝑠,𝑛+1  ] +

𝜎𝑘

2𝐻𝑘
[
(Γ𝑘

𝑛Δ𝜆𝑛)2 + 2𝜎𝑘
𝑠,𝑛Γ𝑘

𝑛Δ𝜆𝑛

𝜎𝑘
𝑠,𝑛(𝜎𝑘

𝑠,𝑛+1)
2 ] 

⇒ Δ𝜖𝑘
𝑝,𝑛 =

2𝜎𝑘Δ𝜆𝑛

(𝜎𝑘
𝑠,𝑛)

2
𝜎𝑘

𝑠,𝑛+1
+

𝜎𝑘
2

(𝜎𝑘
𝑠,𝑛)

2 [
Γ𝑘

𝑛Δ𝜆𝑛
2 + 2𝜎𝑘

𝑠,𝑛Δ𝜆𝑛

𝜎𝑘
𝑠,𝑛(𝜎𝑘

𝑠,𝑛+1)
2 ]  

⇒ Δ𝜖𝑘
𝑝,𝑛 =

2𝜎𝑘Δ𝜆𝑛

(𝜎𝑘
𝑠,𝑛)

2
𝜎𝑘

𝑠,𝑛+1
+

2𝜎𝑘
3𝐻𝑘Δ𝜆𝑛

2

𝜎𝑘
𝑠,𝑛(𝜎𝑘

𝑠,𝑛+1)
2 +

2𝜎𝑘
2Δ𝜆𝑛

(𝜎𝑘
𝑠,𝑛)

2
(𝜎𝑘

𝑠,𝑛+1)
2 

⇒ Δ𝜖𝑘
𝑝,𝑛 = [

2𝜎𝑘

(𝜎𝑘
𝑠,𝑛)

2
𝜎𝑘

𝑠,𝑛+1
+

2𝜎𝑘
2

(𝜎𝑘
𝑠,𝑛)

2
(𝜎𝑘

𝑠,𝑛+1)
2] Δ𝜆𝑛 + (

2𝜎𝑘
3𝐻𝑘

𝜎𝑘
𝑠,𝑛(𝜎𝑘

𝑠,𝑛+1)
2)Δ𝜆𝑛

2  
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A.2  JACOBIAN IN NEWTON RAPHSON METHOD  
 

The Jacobian 
𝑑𝐹

𝑑𝑥
  in the Newton – Raphson can be written as  

𝐹̅𝑖𝑘 =
𝜕𝐹𝑖

𝜕𝜎𝑘
= 𝛿𝑖𝑘 + 2 Δ𝜆𝑛

𝑑

𝑑𝜎𝑘
(

𝐶𝑖𝑗(𝑚𝑟)𝜎𝑗

(𝜎𝑗
𝑠,𝑛(𝑚𝑟))

2) − 2 Δ𝜆𝑛

𝑑

𝑑𝜎𝑘
(

𝐶𝑖𝑗(𝑚𝑟)𝜎𝑗
2

(𝜎𝑗
𝑠,𝑛(𝑚𝑟))

3) ; 𝑖, 𝑘 = 1, . . ,6    

The plastic increment is a variable here, so it is not considered as a function of the stress state 

and vice – versa. 

⇒ 𝐹̅𝑖𝑘 = 𝛿𝑖𝑘 + 2 Δ𝜆𝑛 [
𝜕𝐶𝑖𝑗

𝜕𝑚𝑟

𝜕𝑚𝑟

𝜕𝜎𝑘

𝜎𝑗

(𝜎𝑗
𝑠,𝑛(𝑚𝑟))

2 − 2
𝐶𝑖𝑗(𝑚𝑟)𝜎𝑗

(𝜎𝑗
𝑠,𝑛(𝑚𝑟))

3

𝜕𝜎𝑗
𝑠,𝑛

𝜕𝑚𝑟

𝜕𝑚𝑟

𝜕𝜎𝑘
+

𝐶𝑖𝑗(𝑚𝑟)
𝑑𝜎𝑗

𝑑𝜎𝑘

(𝜎𝑗
𝑠,𝑛(𝑚𝑟))

2]

− 2 Δ𝜆𝑛 [
𝜕𝐶𝑖𝑗

𝜕𝑚𝑟

𝜕𝑚𝑟

𝜕𝜎𝑘

𝜎𝑗
2

(𝜎𝑗
𝑠,𝑛(𝑚𝑟))

3 − 3
𝐶𝑖𝑗(𝑚𝑟)𝜎𝑗

(𝜎𝑗
𝑠,𝑛(𝑚𝑟))

4

𝜕𝜎𝑗
𝑠,𝑛

𝜕𝑚𝑟

𝜕𝑚𝑟

𝜕𝜎𝑘

+
2𝐶𝑖𝑗(𝑚𝑟)𝜎𝑗

𝑑𝜎𝑗

𝑑𝜎𝑘

(𝜎𝑗
𝑠,𝑛(𝑚𝑟))

3 ] 

In this model, the moisture ratio is considered to be a boundary condition rather than a state 

variable. So, the gradient of moisture ratio with the state variables both stress state and 

incremental plastic strain are considered to be zero 

𝜕𝑚𝑟

𝜕𝜎𝑘
= 0 ;

𝜕𝑚𝑟

𝜕(Δ𝜆𝑛)
= 0 

 ⇒ 𝐹̅1 = 𝐹̅𝑖𝑘 = 𝛿𝑖𝑘 +  2 Δ𝜆𝑛𝐷𝑖𝑗𝛿𝑗𝑘 −  4 Δ𝜆𝑛𝐸𝑖𝑗𝛿𝑗𝑘  

(A.1)  ⇒ 𝐹̅1 = 𝐹̅𝑖𝑘 = 𝛿𝑖𝑘 + [2 𝐷𝑖𝑘 − 4𝐸𝑖𝑘𝜎𝑘]Δ𝜆𝑛; 𝑖, 𝑘 = 1, . . ,6 

 

The same gradient with the incremental effective plastic strain can be written as 

𝐹̅2 = 𝐹̅𝑖7 =
𝜕𝐹𝑖

𝜕(𝛥𝜆𝑛)
 

⇒ 𝐹̅𝑖7 =  2
𝑪𝑖𝑗𝜎𝑗

(𝜎𝑗
𝑠,𝑛)

2 + 2 [

𝜕𝑪𝑖𝑗

𝜕𝑚𝑟
𝜎𝑗

(𝜎𝑗
𝑠,𝑛)

2 +
𝑪𝑖𝑗

𝜕𝜎𝑗

𝜕𝑚𝑟
 

(𝜎𝑗
𝑠,𝑛)

2 −
2𝑪𝑖𝑗𝜎𝑗

(𝜎𝑗
𝑠,𝑛)

3

𝜕𝜎𝑗
𝑠,𝑛

𝜕𝑚𝑟
 ]

𝜕𝑚𝑟

𝜕(Δ𝜆𝑛)
−  2

𝑪𝑖𝑗𝜎𝑗
2

(𝜎𝑗
𝑠,𝑛)

3

− 2 [

𝜕𝑪𝑖𝑗

𝜕𝑚𝑟
𝜎𝑗

2

(𝜎𝑗
𝑠,𝑛)

3 +
2𝑪𝑖𝑗𝜎𝑗

𝜕𝜎𝑗

𝜕𝑚𝑟
 

(𝜎𝑗
𝑠,𝑛)

2 −
3𝑪𝑖𝑗𝜎𝑗

2

(𝜎𝑗
𝑠,𝑛)

4

𝜕𝜎𝑗
𝑠,𝑛

𝜕𝑚𝑟
 ]

𝜕𝑚𝑟

𝜕(Δ𝜆𝑛)
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 ∵
𝜕𝑚𝑟

𝜕(Δ𝜆𝑛)
= 0 ⇒ 𝐹̅2 = 𝐹̅𝑖7 = 2𝐷𝑖𝑗𝜎𝑗 − 2𝐸𝑖𝑗𝜎𝑗

2 ; 𝑖 = 1, . . ,6 (A.2) 

The gradient of the flow rule with the stress state is given as 

𝐹̅3 = 𝐹̅7𝑘 =
𝜕𝐹7

𝜕𝜎𝑘

= 2
𝜎𝑘

(𝜎𝑘
𝑠,𝑛 + 𝐻𝑘Δ𝜖𝑖

𝑃)
2

− 2(∑ [
𝜎𝑖

2

(𝜎𝑖
𝑠,𝑛 + 𝐻𝑖 Δ𝜖𝑖

𝑃)
3

𝜕𝜎𝑖
𝑠,𝑛

𝜕𝑚𝑟
+ 𝛥𝜆𝑛 [

𝜎𝑖
2

(𝜎𝑖
𝑠,𝑛 + 𝐻𝑖  Δ𝜖𝑖

𝑃)
3

𝜕𝐻𝑖

𝜕𝑚𝑟
]]

6

𝑖=1

)
𝜕𝑚𝑟

𝜕𝜎𝑘
 

 ∵
𝜕𝑚𝑟

𝜕𝜎𝑘
= 0 𝐹̅3 = 𝐹̅7𝑘 =

𝜕𝐹7

𝜕𝜎𝑘
=

2𝜎𝑘

(𝜎𝑘
𝑠,𝑛 + 𝐻𝑘 Δ𝜖𝑖

𝑃)
2  ; 𝑘 = 1,2,3,4,5,6 (A.3) 

The same with the incremental effective plastic strain can be written as 

𝐹̅4 = 𝐹̅77 =
𝜕𝐹7

𝜕(𝛥𝜆𝑛)

=  −2

(

 
 

∑

[
 
 
 
 𝜎𝑖

2𝐻𝑖  
𝑑Δ𝜖𝑖

𝑃

𝑑𝛥𝜆𝑛

(𝜎𝑖
𝑠,𝑛 + 𝐻𝑖 Δ𝜖𝑖

𝑃)
3

6

𝑖=1

+ [
𝜎𝑖

2

(𝜎𝑖
𝑠,𝑛 + 𝐻𝑖 Δ𝜖𝑖

𝑃)
3

𝜕𝜎𝑖
𝑠,𝑛

𝜕𝑚𝑟
+ 𝛥𝜆𝑛 (

𝜎𝑖
2

(𝜎𝑖
𝑠,𝑛 + 𝐻𝑖Δ𝜖𝑖

𝑃)
3

𝜕𝐻𝑖

𝜕𝑚𝑟
)]

]
 
 
 
 

)

 
 𝜕𝑚𝑟

𝜕(Δ𝜆𝑛)
 

From the associative plasticity, it is known that  

Δ𝜖𝑖
𝑝 = Δ𝜆𝑛  

𝜕𝑓

𝜕𝜎𝑖
|
𝑛

=  Δ𝜖𝑖
𝑝 = Δ𝜆𝑛  

2𝜎𝑖

(𝜎𝑖
𝑠,𝑛)

2 ⇒
𝑑Δ𝜖𝑖

𝑝

𝑑Δ𝜆𝑛
= 

2𝜎𝑖

(𝜎𝑖
𝑠,𝑛)

2  , ∵
𝜕𝑚𝑟

𝜕(Δ𝜆𝑛)
= 0  

 ⇒ 𝐹̅4 = 𝐹̅77 =
𝜕𝐹7

𝜕(𝛥𝜆𝑛)
= − 4∑

𝜎𝑖
3𝐻𝑖

(𝜎𝑖
𝑠,𝑛 + 𝐻𝑖Δ𝜖𝑖

𝑃)
3
(𝜎𝑖

𝑠,𝑛)
2

6

𝑖=1

 

 

(A.4) 

Finally, from the Equations (A.1-A.4), the Jacobian 
𝑑𝐹

𝑑𝑥
 in matrix form can be written as  

 
𝑑𝐹

𝑑𝑥
= 𝐹̅𝑖𝑘 = [

[𝐹̅1]6 ×6 [𝐹̅2]6 ×1

[𝐹̅3]1 ×6 [𝐹̅4]1 ×1

] (A.5) 

From Equations A.1 – A.5, the incremental plastic strain and the stress state for the next state 

are evaluated for newton Raphson. 
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A.3 ALGORITHMIC TANGENT STIFFNESS 
 

The Equations (3.36) and (3.37) are the system of equations used in evaluating the stress state 

and incremental plastic strains. They are 

 [𝛿𝑖𝑗 +  2𝐷𝑖𝑗Δ𝜆𝑛]𝜎𝑗 − 2𝐸𝑖𝑗𝜎𝑗
2Δ𝜆𝑛 = 𝜎𝑖 ;  𝜎𝑖 = 𝐶𝑖𝑗𝜀𝑗 

 
(A.6) 
    𝑓(𝜎𝑖  , Δ𝜆𝑛, 𝜎𝑖

𝑠(𝑚𝑟), 𝐻𝑖(𝑚𝑟)) = ∑[
𝜎𝑖

𝜎𝑖
𝑠,𝑛 + 𝐻𝑖 𝛥𝜖𝑖

𝑝 
]

2

− 1 = 0 

6

𝑖=1

 

Now differentiating the first equation   

𝑑𝜎𝑖 =  𝑑𝐶𝑖𝑗𝜖𝑗 + 𝐶𝑖𝑗𝑑𝜖𝑗 − [2𝐷𝑖𝑗𝜎𝑗 − 2𝐸𝑖𝑗𝜎𝑗
2]𝑑Δ𝜆𝑛

− [2(𝐷𝑖𝑗𝑑𝜎𝑗 + 𝑑𝐷𝑖𝑗𝜎𝑗) − 4(𝐸𝑖𝑗𝜎𝑗𝑑𝜎𝑗 + 𝑑𝐸𝑖𝑗𝜎𝑗
2)]Δ𝜆𝑛 

(A.7) 

𝑑𝐷𝑖𝑗 =
𝜕𝐷𝑖𝑗

𝜕𝑚𝑟
𝑑𝑚𝑟   𝑑𝐸𝑖𝑗 =

𝜕𝐸𝑖𝑗

𝜕𝑚𝑟
𝑑𝑚𝑟 𝑑𝐶𝑖𝑗𝑘𝑙 =

𝜕𝐶𝑖𝑗

𝜕𝑚𝑟
𝑑𝑚𝑟 

 ∵ 𝑑𝑚𝑟 = 0 ⇒ 𝑑𝐷𝑖𝑗 =  𝑑𝐸𝑖𝑗 =  𝑑𝐶𝑖𝑗 = 0   (A.8) 

Substituting Equation A.8 in A.7  

 ⇒ (𝛿𝑖𝑗 + [2𝐷𝑖𝑗 + 4𝐸𝑖𝑗𝜎𝑗]Δ𝜆𝑛)𝑑𝜎𝑗 = 𝐶𝑖𝑗𝑑𝜖𝑗 − [2𝐷𝑖𝑗𝜎𝑗 + 2𝐸𝑖𝑗𝜎𝑗
2]𝑑(Δ𝜆𝑛)  (A.9) 

The only unknown in Equation A.9 is 𝑑(Δ𝜆𝑛). It can be written in terms of 𝑑𝜎𝑖𝑗 using the flow 

rule and consistency condition. The consistency condition states that  

𝜆𝑓̇ = 0 ⇒ 𝑑𝑓 = 0 ∵ 𝜆 ≠ 0  

Where 𝑑𝑓 is the total derivate of the flow rule which can be written as  

𝑑𝑓 =  ∑
𝜕𝑓

𝜕𝜎𝑖
𝑑𝜎𝑖

6

𝑖=1

+
𝜕𝑓

𝜕(Δ𝜆𝑛)
𝑑(Δ𝜆𝑛) + ∑[

𝜕𝑓

𝜕𝜎𝑖
𝑠

𝜕𝜎𝑖
𝑠

𝜕𝑚𝑟
+

𝜕𝑓

𝜕𝐻𝑖

𝜕𝐻𝑖

𝜕𝑚𝑟
 ]

6

𝑖=1

 𝑑𝑚𝑟 = 0 

⇒ 𝑑𝑓 = ∑
𝜕𝑓

𝜕𝜎𝑖
𝑑𝜎𝑖

6

𝑖=1

+
𝜕𝑓

𝜕(Δ𝜆𝑛)
𝑑(Δ𝜆𝑛) = 0 ∵ 𝑑𝑚𝑟 = 0 

 ⇒  𝑑(Δ𝜆𝑛) =  −
∑

𝜕𝑓
𝜕𝜎𝑖

𝑑𝜎𝑖
6
𝑖=1

𝜕𝑓
𝜕(Δ𝜆𝑛)

= −
(∇𝑓𝑛+1

𝑇 )𝑖𝑑𝜎

𝜕𝑓
𝜕(Δ𝜆𝑛)

 (A.10) 

(∇𝑓𝑛+1
𝑇 )𝑖 = [

𝜕𝑓

𝜕𝜎1
⋯

𝜕𝑓

𝜕𝜎6
] is the gradient of flow rule with the stress state 

Substituting Equation A.10 in A.9 gives the Equation (3.38) 

 (𝛿𝑖𝑗 + [2𝐷𝑖𝑗 + 4𝐸𝑖𝑗𝜎𝑗]𝛥𝜆𝑛)𝑑𝜎𝑗 = 𝐶𝑖𝑗𝑑𝜖𝑗 + [2𝐷𝑖𝑗𝜎𝑗 + 2𝐸𝑖𝑗𝜎𝑗
2]

(𝛻𝑓𝑛+1
𝑇 )𝑖𝑑𝜎

(
𝜕𝑓

𝜕(𝛥𝜆𝑛)
)

 (A.11) 
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APPENDIX B BIAXIAL TESTING 

B.1 BIAXIAL SPECIMEN 
 

The biaxial testing is one of the main benchmarks to validate a user-defined material model 

for paperboard. The biaxial simulation done is the benchmark problem 1 of (Wallmeier, 

Benchmark studies for the simulation of paperboard forming, 2018). The geometry is 

simplified by only modeling one quarter of the sample using symmetry boundary conditions 

is shown in Figure B.1. 

 

Figure B.1 Geometry of biaxial sample and finite element model 

This sample is modeled using shell elements for MAT 157 and it is modeled using solid 

elements for the UMAT. The loading is applied as displacement on the green lines shown in 

Figure B.1.  

 

Figure B.2 Material axes and loading axes definitions for both simulations 
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Two simulations are done for every humidity level  

I. Test 1: The material axes of the sample MD and CD coincide with the corresponding 

axes X1 and X2 (shown in Figure B.1).  

II. Test 2: The material axes of the sample make an angle of  45o  with the axes X1 and X2 

(shown in Figure B.1). 

They are shown in Figure B.2. 

Since MAT 157 has only isotropic hardening, the yield stress and hardening modulus for test 

1 and test 2 are considered to the normalized components of both MD and CD values. The 

hardening for UMAT was not considered (see Section B.4). 

The loading conditions also vary for the two tests and they are presented in Table B.1. 

Table B.1 Loading conditions of biaxial sample for both test cases 

Time in s Loading Axis 
Displacement in mm 

Resultant Displacement 
Test 1 Test 2 

0 – 1 
X1  0.1 0.1 Tension 

X2 0.4 0.3 Tension 

2.4 – 3.4 
X1 0.3 0.3 Tension 

X2 0.2 0.2 Compression 

4.8 – 5.8 
X1 0.2 0.2 Compression 

X2 0.5 0.4 Tension 
 

All simulations are done with a fully integrated shell (ELFORM 2 in LS – DYNA®) for MAT 157 

and solid elements (ELFORM 16 in LS – DYNA®) for UMAT. 

The following results are of interest as mentioned in Wallmeier (2018). 

• The Force response curve in both directions at both clamps 

• The x and y displacement of the point ‘P’ specified in Figure B.3. 

 

Figure B.3 Point definition for displacement measurement 
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B.2 BIAXIAL TEST 1 
 

The displacements of the point ‘P’ for both material models at 50 % RH is shown in Figure B.4. 

The same for 20 % RH is shown in Figure B.5.  

 

Figure B.4 Displacement of point P at 50 % RH for test case 1 

 

Figure B.5 Displacement of point P at 20 % RH for test case 1 
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The force response curve for 50  % RH and 20 % RH are shown respectively in Figure B.6 and 

Figure B.7. 

 

Figure B.6 Reaction forces at clamps at 50 % RH for test case 1 

 

Figure B.7 Reaction forces at clamps at 20 % RH for test case 1 
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B.3 BIAXIAL TEST 2 
 

The displacements of the point ‘P’ for both material models at 50 % RH is shown in Figure B.8. 

The same for 20 % RH is shown in Figure B.9. 

 

Figure B.8 Displacement of point P at 50 % RH for test case 2 

 

Figure B.9 Displacement of point P at 20 % RH for test case 2 
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The force response curve for 50 % RH and 20 % RH are shown respectively in Figure B.10, 

Figure B.11. 

 

Figure B.10 Reaction forces at clamps at 50 % RH for test case 2 

  

Figure B.11 Reaction forces at clamps at 20 % RH for test case 2 
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B.4 DISCUSSION – BIAXIAL TESTING 
 

Updating Flow stress:  

The flow stress updating mentioned in the section works very well for uniaxial simulation. The 

same does not apply to biaxial specimens because the plastic strain accumulated in a biaxial 

loading (multi-axial loading) condition cannot be used to update the uniaxial flow stress. Using 

the same procedure, the solution did not converge in the biaxial simulations. This was the 

reason to consider ideal plasticity for the UMAT in biaxial simulations.  

This problem can be solved by defining the flow stress (or hardening modulus) in every 

direction as a function of plastic strain in that respective direction. The plastic strain 

evaluation might be trickier but can be identified through careful processing of uniaxial data. 

The other way would be identifying the flow stress through a simple relationship that is 

identified from Figure B.12. 

 

Figure B.12 Identification of flow stress for the next iteration 

From the final in-plane solution, (𝜎𝑀𝐷 , 𝜎𝐶𝐷 , 𝜎𝑀𝐷𝐶𝐷), it is known that  

(
𝜎𝑀𝐷

𝜎𝑀𝐷
𝑦 )

2

+ (
𝜎𝐶𝐷

𝜎𝐶𝐷
𝑦 )

2

+ (
𝜎𝑀𝐷𝐶𝐷

𝜎𝑀𝐷𝐶𝐷
𝑦 )

2

= 1.2  
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Where 𝜎𝑀𝐷
𝑦

, 𝜎𝐶𝐷
𝑦

, 𝜎𝑀𝐷𝐶𝐷
𝑦

 are the yield stresses for MD, CD, and in-plane shear stress, 

respectively. The uniaxial flow stresses MD and CD can be computed as  

𝑓 = 1.2 =  (
𝜎𝑀𝐷

𝜎𝑀𝐷
𝑦 )

2

+ (
𝜎𝐶𝐷

𝜎𝐶𝐷
𝑦 )

2

+ (
𝜎𝑀𝐷𝐶𝐷

𝜎𝑀𝐷𝐶𝐷
𝑦 )

2

=  (
𝜎𝑀𝐷

𝑓

𝜎𝑀𝐷
𝑦 )

2

=  (
𝜎𝐶𝐷

𝑓

𝜎𝐶𝐷
𝑦 )

2

 

⇒
𝜎𝑀𝐷

𝑓

𝜎𝑀𝐷
𝑦 = 

𝜎𝐶𝐷
𝑓

𝜎𝐶𝐷
𝑦 = √(

𝜎𝑀𝐷

𝜎𝑀𝐷
𝑦 )

2

+ (
𝜎𝐶𝐷

𝜎𝐶𝐷
𝑦 )

2

+ (
𝜎𝑀𝐷𝐶𝐷

𝜎𝑀𝐷𝐶𝐷
𝑦 )

2

 

 

Biaxial Results: 

The material models considered MAT 157 (normalized isotropic hardening) and UMAT (with 

ideal plasticity) in the simulations vary a lot. This is seen in all of the results for both test cases 

in the biaxial sample. 

Test case 1: The displacements for point P follow the same pattern but differ in the value. The 

difference in displacements at humidity levels of 20, 50, 70 % RH seems to be small, but they 

vary a lot at 90 % RH. This difference can be attributed to the different hardening conditions 

in material models. The reaction force also seems to follow the same pattern for both material 

models but there is a difference in values. The difference in the reaction forces is very small 

at humidity levels of 20, 50, 70 % RH. The difference is quite noticeable at 90 % RH. The 

difference arises due to different modeling considerations in the material models. The large 

difference between displacements and reaction force in 90 % RH simulations can be 

attributed to poor uniaxial estimation.  

Test case 2: The displacement results for both material models at all humidity levels of 20, 50, 

70, 90 % RH are not comparable with each other. This can be attributed to the difference in 

material modeling and poor estimation of yield stress for the in-plane shear stress. The 

difference in reaction forces is less and they seem to follow the same pattern at humidity 

levels of 20, 50,70 % RH. The reaction forces at 90 % RH are nowhere comparable and are 

similar to test case 1. 
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APPENDIX C MATERIAL CARD DEFINITION 
 

The material card definitions for MAT 157 in an MD sample and CD sample are shown 

respectively in Figure C.1 and Figure C.2 . The material parameters defined in this material 

card are 𝑄𝑟1, 𝐶𝑟1, 𝑄𝑟2, 𝐶𝑟2 𝑎𝑛𝑑 𝐶11 𝑡𝑜 𝐶66. The parameters 𝑄𝑟1, 𝐶𝑟1, 𝑄𝑟2, 𝐶𝑟2 are defined in 

Chapter 4. The other parameters  𝐶11 𝑡𝑜 𝐶66 are the stiffness matrix defined in section 3.1.1. 

The only difference in MD and CD material cards is that the yield stress and hardening 

parameters. The other material parameter is ‘ro’: the material density and ‘mid’ is material 

identification. 

 

Figure C.1 Material card data for MAT 157 at 50 RH – MD sample 

 

Figure C.2 Material card data for MAT 157 at 50 RH – CD sample 

The material card for the UMAT is shown in Figure C.3. The same material card can be used 

for both MD and CD samples and the same in even biaxial testing. The ‘mt’ is the material 

subroutine number called. In this case, it is 41. The ‘lmc’ is the length of the array of material 

constants and it is 16 in this card. ‘nhv’ are the number of history variables stored. ‘iortho’ is 

a Boolean operator to define the orthotropic behavior of the material. Similarly, ‘ivect’ is the 

Boolean operator for the vectorized subroutine implementation. ‘ibulk’ and ‘ig’ are the 

locations of bulk modulus and shear modulus in the ‘lmc’ array. 

The ‘lmc’ array is in two rows defined from ‘p1 -p8’. The first row corresponds to the first 8 

entries in the array and the second row corresponds to the next 8 entries in the array. The 
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material constants array is defined as ‘cm’ in the subroutine. The code snippet which defines 

every parameter is shown in Figure C.4. 

 

Figure C.3 Material card data for UMAT at 50 RH 

 

Figure C.4 Code snippet defining material parameters in the local coordinate system 

Definition of bulk modulus and shear modulus: 

The bulk modulus and shear modulus are required for transmitting boundaries, contact 

interfaces, rigid body constraints, and time step calculations (refer (Livermore Software 

Technology Corporation (LSTC), 2019) for more information). For an isotropic material, bulk 

and shear modulus can be computed easily from other parameters like stiffness and poison’s 

ratio. This is not the same for orthotropic material since it has three shear moduli, and the 

definition of bulk modulus definition is not straightforward.  

The shear modulus and bulk modulus needed for the necessary computation in an orthotropic 

material is defined as  

Shear modulus – max(𝐺𝑥𝑦 , 𝐺𝑦𝑧 , 𝐺𝑥𝑧) – generally, it is the in-plane shear modulus 

Bulk Modulus – max(𝐶11, 𝐶22, 𝐶33) – maximum of the diagonal elements in the stiffness 

matrix. 
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