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Abstract
During the last few years, segmentation architectures based on deep learning
achieved promising results. On the other hand, attention networks have been
invented years back and used in different tasks but rarely used in medical
applications. This thesis investigated fourmain attentionmechanisms; Squeeze
and Excitation, Dual Attention Network, Pyramid Attention Network, and
Attention UNet to be used in medical image segmentation. Also, different
hybrid architectures proposed by the author were tested. Methods were
tested on a kidney tumor dataset and against UNet architecture as a baseline.
One version of Squeeze and Excitation attention outperformed the baseline.
Original Dual Attention Network and Pyramid Attention Network showed
very poor performance, especially for the tumor class. Attention UNet
architecture achieved close results to the baseline but not better. Two more
hybrid architectures achieved better results than the baseline. The first is
a modified version of Squeeze and Excitation attention. The second is
a combination between Dual Attention Networks and UNet architecture.
Proposed architectures outperformed the baseline by up to 3% in tumor Dice
coefficient. The thesis also shows the difference between 2D architectures and
their 3D counterparts. 3D architectures achieved more than 10% higher tumor
Dice coefficient than 2D architectures.

Keywords
AttentionNetworks, Squeeze and Excitation, Dual AttentionNetworks,Medical
Image Segmentation, UNet
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Sammanfattning
Under de senaste åren har segmenteringsarkitekturer baserade på djupinlärning
uppnått lovande resultat. Å andra sidan så uppfanns attention-baserade nätverk
för många år sedan, och de har använts för olika uppgifter men sällan för
medicinska tillämpningar. Den här masterexamensuppsatsen undersöker 4
huvudsakliga attention-mekanismer. Squeeze and Excitation, Dual Attention
nätverk, Pyramid Attention nätverk och Attention Unet. Bortsett från dessa
testades även hybridarkitekturer föreslagna av författaren. Metoder testades
på ett dataset med njurtumörer och mot en Unet arkitektur som fungerade som
referenslösning. En version av Squeeze and Excitation överträffade referenslöningen.
De ursprungliga Dual Attention och Pyramid Attention nätverken presterade
väldigt dåligt, framförallt för tumörklassen. AttentionUnet-arkitekturen åstadkom
resultat nära referenslösningen, men resultaten överträffade inte den senare.
Ytterligare två hybridarkitekturer åstadkombättre resultat än referenslösningen.
Den första är en modifierad version av Squeeze and Excitation. Den andra
är en kombination av Dual Attention nätverk och UNet arkitekturen. De
föreslagna arkitekturerna presterade bättre än referenslösningen med upp till
3% i Dice-värde för tumörklassen. Studien undersöker även skillnaden mellan
2D arkitekturer och deras 3-dimensionella motsvarigheter. 3D-arkitekturerna
uppnådde Dice-värden för tumörklassen som var mer än 10% högre än 2D
arkitekturerna.

Nyckelord
Attention Networks, Squeeze and Excitation, Dual Attention nätverken ,
Medicinsk bildsegmentering , UNet
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Chapter 1

Introduction

Deep Learning has achieved very promising results in the medical imaging
field as it eliminates the need for manual feature engineering and manual
feature extraction. Promising results are reported in different tasks such as
disease classification and image segmentation.

However, some drawbacks need to be addressed. Some of these drawbacks
are related to the model architecture itself and some are related to the nature
of the problem/field. Two main problems are most common in the medical
imaging field. First, the object of interest exists in a small region of the
input image while the rest of the image can be considered as non-informative
for the target task. Second, objects of interest exist in different scales
in the input data. These two problems confuse the most commonly used
classification/segmentation architectures and prevent them from achieving
high accuracy on some medical image analysis tasks.

These problems also exist outside of the medical imaging field. For
example in the scene segmentation problem in self-driving cars, a pedestrian
can appear very small in the input image while the rest of the image is
dominated by cars, trees, and the street. Another example is when some cars
are close, so they look bigger in the recorded image than the further cars, but
they are from the same class. In the medical imaging field these two problems
happen, objects of interest (such as vessels, tumors, and even organs) either
appear in a very small region while the rest of the image is dominated by other
objects or they appear in multiple scales in the dataset.

Researchers have tried to overcome these problems by using attention
networks to force the architecture to focus on informative locations (object of
interests) in the input and neglect non-informative ones. Attention networks
appeared first in machine translation to force the architecture to focus on
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a specific input word while producing a specific output word. Attention
networks are also introduced for images in image captioning problem to force
the architecture to focus on a specific part of the input image while producing
a specific output word (more information is mentioned in appendix A). There
are different types of soft attention networks used for images. Squeeze-
based attention tries to summarize information in either channel dimension
or spatial dimension and find non-linear relationships among the summarized
information, then use it as a weighting tensor. Correlation-based attention tries
to understand the relationship among components either in channel dimension
or spatial dimension and use this relation to support informative features and
suppress non-informative ones. More information about different attention
architectures are mentioned in appendix A.

Attention networks have been used a lot outside the medical imaging field,
however, they are rarely used in the medical imaging field. So, this study aims
to:

• Adapt state-of-art attention networks to medical image segmentation.

• Study and compare attention networks performance on kidney tumor
segmentation in CT images.

• Explore ways to combine different attention mechanisms and propose a
better architecture for medical image segmentation.
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Chapter 2

Methods

The methods section will present the dataset used during the project and the
motivation behind using it. Then, it will explain how training is conducted in
terms of training-validation relation, the number of epochs, and evaluation
metrics. Next, UNet will be explained as the baseline and the backbone
for various attention mechanisms. Afterward, original attention architectures
adopted from the state of the art will be presented. Finally, hybrid architectures
invented by the author to enhance the performance of attention will be
presented.

2.1 Dataset and Motivation
The kidney tumor dataset [13]was published for the kits challenge (https://kits19.grand-
challenge.org/home/). The dataset contains CT volumes of 300 patients. 210
of the 300 are published with ground truth and the rest is kept as a testing
set. The dataset is composed of CT volumes of some of the patients who
underwent partial or radical nephrectomy for one or more kidney tumors at the
University of Minnesota Medical Center between 2010 and 2018. Enhancing
segmentation results for such a dataset will help in developing advanced
surgical planning.

There are two versions of the dataset. The original version of the data with
its original spacing at which it was captured. As inconsistent data is not ideal
for deep learning, an interpolated version is provided at the median pixel width
(0.78162497mm) and slice thickness (3.0mm). So, the interpolated version
was used for this project. Width and height are different across all the volumes
in both versions. Resizing width and height to 160 x 160 was a trade-off used
by the author to fit as much data as possible in the GPUs with enough details
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for the models to solve the task. For prediction, volumes were resized again to
their original size.

One of the main features of this dataset is a class imbalance. This appears
clearly when we expand each volume to 2D slices. It will show that the
background class exists in 100% of the slices, the kidney class exists in about
45% of the slices, and the tumor class exists in about 20% of the slices.

The image intensity values of all images are truncated to the range of [-79,
304] HU to remove the irrelevant details. Then, truncated intensity values are
subtracted by 101, then divided by 76.9.

2.2 Training Setup
At the beginning of the project, the author was using 200 patients as a training
set and 10 patients as a validation set and testing on the competition website
with 90 patients. However, given the variation in the dataset, the validation
results were not exactly as the testing results. Besides, the experimental nature
of the project needs a lot of testing which is not allowed by the competition
website. As a result, 5 fold cross-validation is being used which will give more
accurate results with a mean and a standard deviation.

Each architecture is trained for 65 epochs. Although, 65 epochs are not
enough for the baseline nor the candidate architectures. Given the limited
computational power assigned for the project, 65 epochs are used as a trial for
the architecture to give a glimpse of the behavior of the architecture whether
it will need more training or it is better to use the resources with different
architecture. Then, for the candidate architectures, they will be trained for 300
epochs.

The mean Dice Coefficient (DC) of the kidney and the tumor is used as an
evaluation metric for the competition. However, for this project, the tumor DC
is more important than kidney DC. So, it will take more of our attention during
experimentation. More information about evaluation metrics are presented in
section A.1.2. DC is defined as follows:

DC =
2|X ∩ Y |
|X|+ |Y |

(2.1)

Where X and Y denote the output segmentation map and the target mask
respectively.

At the beginning of the project, Tensorflowwas used as building experimental
models can easily be done using Keras version of Tensorflow. However,
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after some time Pytorch has been used mainly as most of the state of the
art architectures are published using Pytorch. Moreover, from the author’s
perspective, Pytorch gives more control over the architecture as Keras is more
of an upper layer and does not help for more sophisticated architectures.

2.3 UNet Baseline and Backbone
This section discusses UNet [14] architecture that is used as a baseline and
also used as a backbone for different attention mechanisms.

UNet architecture is the most common architecture used for segmentation
in the medical imaging field. Given the nature of UNet architecture, it collects
low-level features that are responsible for collecting information about the
shape of each class, and high-level features that are responsible for using
collected information to decide which class that each position belongs to. And
it uses both (low-level and high-level features) to restore the spatial dimension
of the original input with each location classified to the right class. Figure
A.1b shows UNet architecture.

There are a lot of parameters to be decided in the UNet architecture which
could either improve or hurt the results and the decision about each parameter
differs between different datasets. For example, the base number of channel
features in the first convolution layer which will be doubled when moving
from a level to the next one. Increasing the base gives a more powerful model
but at the same time it will be harder to fit in the GPU and it will take more
time and it could cause overfitting. The same way is increasing the number
of levels. The number of layers at each level could be a constant for all
levels, could be increasing or decreasing. Having a contraction path that can
contain enough low-level and high-level features with the minimum number
of layers as possible is a target. Having an expansive path that can retrieve
the original shape with the minimum number of layers as possible is also a
target. Normalization type is one of the parameters that affect the architecture.
Batch normalization uses all the images in the batch to calculate the mean and
the standard deviation and uses them to normalize the batch. On the other
hand, instance normalization uses only the pixels in each image to calculate
its mean and standard deviation and uses them to normalize that image and
repeat the same process with each image in the batch. Furthermore, using
deep supervision could be beneficial to the training process. Deep supervision
is to combine feature maps from different layers from the expansive path
to produce the prediction. Deep supervision helps the flow of the gradient
through architecture layers.
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3D UNet uses 3D convolution layers, so instead of collecting information
only over the spatial dimension, it also includes channel dimension in the
calculation. There is a trade-off while using 3D convolution layers. From
one side, their ability to gather information over 3D and connect information
from different channel layers. On the other side, they need more computation
power and memory space than 2D convolution layers. As in the case of
3D convolution, the input and the middle tensors will be 5D tensors with a
shape of Batch Size x Channels x Height x Width x Depth. However, for 2D
convolutions, the input and middle tensors will be 4D tensors with a shape of
Batch Size x Channels x Height x Width.

2.4 Attention Architectures
This section discusses original attention architectures/mechanisms adopted
from the state of the art to the medical segmentation task. The choice of
attention architectures/mechanisms to be investigated out of the state of the
art was based on the popularity of the architecture within the community of
deep learning (measured by the number of citation), the technology used for
architecture design and how it will be easy to use it within the project, and
clarity of the intuition behind the architecture.

2.4.1 Squeeze and Excitation Attention
Squeeze and excitation block apply the two operations on spatial and channel
dimensions. The choice of the dimension used for the squeeze and the
dimension used for the excitation produce different blocks. Squeeze operation
summarizes information along the dimension it is applied to. And excitation
operation discovers non-linearity along the dimension it is applied to.

spatial Squeeze and channel Excitation (SE)/(cSE)

Squeeze and Excitation (SE) block [2] also known as spatial Squeeze and
channel Excitation (cSE) is applied after convolution operation and it tries to
emphasize channels that contain informative features and suppresses the other
ones. SE applies squeeze operation over the spatial dimension, so the tensor
will be represented in a vector where each number represents a channel. Then,
in excitation operation non-linearity is applied over the vector to catch the non-
linear dependency between the channels. Finally, this vector is multiplied by
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the original tensor as a weighting for its channels. Figure A.3 shows graphical
explanation to squeeze and excitation operations.

channel Squeeze and spatial Excitation (sSE)

The idea of squeeze and excitation operation is applied again. However,
this time the squeeze operation is applied over channel dimension, and the
excitation operation is applied to the spatial dimension. The authors of [3]
show that sSE blocks are better for segmentation results than normal SE/cSE
blocks. Figure A.4 shows sSE block and other types of squeeze and excitation
types.

Concurrent spatial and channel Squeeze and Excitation (scSE)

The same authors also suggest that using both blocks together usingmaximization
function could be beneficial than using only one of them. That will give the
network the ability to emphasize the informative features in both channel and
spatial dimensions.

2.4.2 Dual Attention Network (DANet)
DANet [6] is one of the correlation-based attention networks. DANet tries to
integrate local features with its global dependencies to capture rich contextual
relationships to solve the intra-class problem. DANet uses the ability of a
powerful ResNet [15] with multiple dilations as a backbone for the architecture
to reach high-level features. Then, it applies the Position Attention Module
(PAM) andChannel AttentionModule (CAM) and sums them to reach the final
segmentation result. Figure A.8 shows an overview of DANet architecture.

What DANet tries to do is to share information between two different
positions as long as they belong to the same class. In PAM, it does that by
summing all the features at each position to the current position but with a
weighted sum. These weights depend on the correlation between the current
position and every other position. If they have feature similarities, the weight
is high and vise versa. As a result, any two positions with similar features
can contribute to mutual improvement regardless of their distance in the
spatial dimension. For CAM, the same idea applies to capture the channel
dependencies between any two-channel maps, and update each channel map
with a weighted sum of all channel maps.
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2.4.3 Pyramid Attention Network (PAN)
PAN [5] follows the same steps as UNet. It consists of contacting path,
bottleneck, and expansive path. Where the contraction path contains low-
level features, the bottleneck sums high-level features, and the expansive path
restores the spatial dimension and produces the segmentation output. Figure
A.7 shows an overview of PAN architecture. PAN has different components
than normal UNet. For example, PAN uses ResNet [15] as a contraction
path, Feature Pyramid Attention (FPA) as a bottleneck, and Global Attention
Upsample (GAU) as an expansive path. Figure A.6a and A.6b show graphical
explanation of FPA and GAU respectively. ResNet is used as a powerful
backbone to the network. FPA is a pyramid structure that uses different
convolution layers with different kernel sizes to extract the context from
different scales. GAU is a form of attention mechanisms, however, it is not
a self-attention as squeeze and excitation or dual attention. GAU uses one
block to attend different blocks. In the pyramid attention network, GAU uses
high-level features from the bottleneck (FPA) to weight low-level features from
the contraction path. We can think of it as GAU tries to use high-level features
from the bottleneck as guidance to low-level features from the contraction path.
GAU applies spatial squeeze and channel excitation (cSE). So, it applies global
pooling to the high-level features tensor, so each channel is represented as
one number in a vector, then excitation operation is applied over the vector
to discover non-linear relation between the channels. Then, this vector is
multiplied to low-level tensor as a weighting vector.

2.4.4 Attention UNet
Attention UNet [10] follows the same steps as PAN as it uses high-level
features to weight low-level features. Low-level features are scaled with
attention coefficients (α) computed inside Attention Gate (AG) module. The
attention coefficient is computed using both high-level features and low-level
features summed together followed by non-linearity. Then, a grid resampling
is applied using trilinear interpolation. AG module is a proposed solution to
solve the multi-scale problems as it learns to focus on target structures of
varying shapes and sizes without the need for explicit localization module
and cropping an ROI between networks. Figure A.12a shows a graphical
explanation of the AG module. From the architecture name, Attention UNet
uses UNet as a base architecture to benefit from its structure. Then, it adds
AG modules to each layer in the expansive path. Figure A.12b shows the
integration of the AG module with UNet architecture.
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2.5 Hybrid Attention Mechanisms
As it will be explained in the results chapter 3, vanilla DANet and PAN
performance is worse than the baseline UNet model, especially for the tumor
class. From the author’s perspective, DANet has a problem with combining
low-level featureswith high-level features. More specifically, ResNet backbone
produces a very powerful representation for low-level features that include
spatial information for each object, and the summation of PAM and CAM
modules produce a very powerful representation for high-level features that
include the semantic meaning of the input. However, there is no way of
connection between those two representations to restore the spatial dimension
of the input with the semantic segmentation of the objects. As for the pyramid
attention, the FPAmodule does not represent a powerful bottleneck, especially
for the kidney tumor dataset. Especially that the input has a shape of 160 x 160
and by reaching to the bottleneck (FPA module), it will have a shape of 10 x
10. So, this subsection discusses different architectures created by the author
based on the UNet baseline in addition to different parts of attention modules.
For each architecture, the intuition behind the architecture will be explained.

2.5.1 Concatenated spatial and channel Squeeze and
Excitation

The original concurrent spatial and channel squeeze and excitation (scSE) uses
max function between cSE and sSE. From the author’s point of view, using
information from both modules concatenated could give better results as the
next convolution layer in the architecture will attend to informative features
out of the whole tensor and neglect non-informative ones.

2.5.2 DANet Head as UNet Bottleneck
Instead of using the normal convolution block as a bottleneck for UNet
architecture, using DANet head could be more beneficial as it will add
the powerful representation of PAM and CAM modules to the architecture.
And at the same time, the contraction path and expansive path of UNet
architecture will solve the problem of combining low-level features with high-
level features. Four combinations could be used here; using only PAM,
only CAM, PAM and CAM with summation, and PAM and CAM with
concatenation.
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2.5.3 DANet Head as Attention UNet Bottleneck
The same idea could be applied to Attention UNet architecture. Using DANet
head as the bottleneck for attention UNet will give a powerful representation
to high-level features. The contraction and the expansive paths are the same
ones at the original attention UNet architecture.

2.5.4 FPA as UNet Bottleneck
To make sure of the assumption mentioned above, a double check needs to
be done. Isolating FPA only from the pyramid attention network and using it
as a bottleneck for UNet architecture will show whether the FPA module is
beneficial or not.

2.5.5 FPA as UNet Contraction Layer
From a different point of view, using the FPA module as a layer in the
contraction path of UNet could be beneficial as it uses the pyramid structure
with different kernel sizes to sum different information from the input which
could be beneficial for low-level features.

2.5.6 GAU as UNet Expansive Layer
Instead of using normal convolution blocks for the expansive path in the UNet,
using the GAU module at each layer could be an addition to the network
as high-level features from the bottleneck will be used to weight low-level
features from the contraction path.

2.5.7 GAU with sSE as UNet Expansive Layer
Normal GAUmodule uses spatial squeeze and channel excitation (cSE) to use
high-level tensor to weight low-level tensor. However, as discussed earlier
in the squeeze and excitation section, channel squeeze and spatial excitation
(sSE) shows better results. So what if we can use sSE inside the GAU module
instead of cSE.
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Chapter 3

Experiments and Results

3.1 UNet Configurations
Multiple properties were tested to reach to a UNet baseline. For example,
number of channels for the base layer, number of layers for each level whether
increasing, decreasing or constant, number of layers for the bottleneck, number
of levels for contraction and expansive paths, batch size, using dropout, using
deep supervision, normalization type; batch versus instance, activation type;
relu versus leaky relu, down-sampling using convolution layer versus max-
pooling layer, and loss function; cross-entropy in addition to Dice score versus
Dice score only. Table ?? shows each criterion and the value that gave the best
results.

Table 3.1 – Hyper-parameters of UNet baseline
Criteria Value

Channels/Base Layer 32
Number of Layers Constant, 3 layers/level
Bottleneck Layers 5 layers
Number of Levels 4

Batch Size 64
Dropout 0

Deep Supervision False
Normalization Instance
Activation Relu

Down Sampling Layer Max Pooling
Loss Function Only Dice loss
Learning Rate 0.0001

3.2 2D Architectures
Table 3.2 shows that channel squeeze and spatial excitation, concatenated
spatial and channel squeeze and excitation, UNet with PAM bottleneck,
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and UNet with DANet head (PAM and CAM) bottleneck achieved higher
tumor DC than the baseline after training for 65 epochs. Other architectures
mentioned in the table also show comparable results to the baseline.

After 300 epochs training, results have changed. Table 3.3 shows that
spatial squeeze and channel excitation, concatenated spatial and channel
squeeze and excitation, and UNet with concatenated DANet head as bottleneck
achieved higher tumor DC than the baseline.

Notes about 2D architectures

• Although sSE shows better results than cSE after 65 epochs, cSE
achieved better results after 300 epochs.

• This difference between the results after 65 epochs and 300 epochs
shows that different architectures could behave the same way for the
short term training, however, they might have a big difference in the
long term training.

• Although Attention UNet is based on the UNet architecture and tested
against the medical dataset, it did not show better results than the
baseline UNet.

• 2D cSE, concatenated scSE, and UNet with concatenated DANet head
as bottleneck outperformed the baseline from .3% to 3% in tumor DC.

Table 3.2 – Results of 2D architectures after training with 65 epochs.

Model ID Kidney Dice Tumor Dice
2D UNet Baseline 0.93037± 0.01195 0.46387± 0.06258

2D cSE 0.93070± 0.00842 0.45206± 0.05029
2D sSE 0.93591± 0.00750 0.47777 ±0.08819

2D Concatenated scSE 0.93859± 0.00431 0.49458 ±0.04756
2D Attention UNet 0.92742± 0.00582 0.45831± 0.03156

2D UNet with PAM Bottleneck 0.93192± 0.00662 0.47435 ±0.06146
2D UNet with CAM Bottleneck 0.93066± 0.00744 0.45480± 0.049102

2D UNet with DANetHead Bottleneck 0.93023± 0.00756 0.48356 ±0.06141
2D UNet with Concatenated DANet Head Bottleneck 0.93261± 0.00531 0.46068± 0.03123
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Table 3.3 – Results of 2D architectures after training with 300 epochs.

Model ID Kidney Dice Tumor Dice
2D UNet Baseline 0.93704± 0.01153 0.52219± 0.06730

2D cSE 0.93648± 0.00788 0.53486 ±0.03134
2D sSE 0.93562± 0.00875 0.49967± 0.00875

2D Concatenated scSE 0.94121± 0.00953 0.55332 ±0.03820
2D Attention UNet 0.93438± 0.00690 0.51647± 0.02858

2D UNet with PAM Bottleneck 0.93820± 0.01122 0.50655± 0.05990
2D UNet with DANet Head Bottleneck 0.93713± 0.01075 0.50720± 0.01214

2D UNet with Concatenated DANet Head Bottleneck 0.93906± 0.00724 0.52575 ±0.05575

3.3 3D Architectures
Table 3.4 shows that all 3D architectures achieved higher tumor DC than the
baseline for the short term training (65 epochs).

After 300 epochs training, results have changed. Table 3.5 shows that
spatial squeeze and channel excitation, concatenated spatial and channel
squeeze and excitation, and UNet with concatenated DANet head as bottleneck
achieved higher tumor DC than the baseline.

Notes about 3D architectures

• Moving from 2D architectures to 3D counterparts increase both tumor
and kidney DC.

• It is noticeable that summation used to combine PAM and CAM does
not add value than using only one of the modules.

• Concatenated scSE and concatenatedDANet head confirm the hypothesis
that concatenation achieves better results than summation andmaximization.

• 3D cSE, concatenated scSE, and UNet with concatenated DANet head
as bottleneck outperformed the baseline with about 1.4% tumor DC.
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Table 3.4 – Results of 3D architectures after training with 65 epochs.

Model ID Kidney Dice Tumor Dice
3D UNet Baseline 0.93606± 0.00459 0.46918± 0.03436

3D cSE 0.93966± 0.00598 0.52216± 0.02404
3D sSE 0.94008± 0.00703 0.55540± 0.04218
3D scSE 0.93962± 0.00710 0.51104± 0.08760

3D Attention UNet 0.93501± 0.00452 0.50741± 0.03023
3D Concatenated scSE 0.94102± 0.00456 0.56091± 0.02421

3D UNet with PAM Bottleneck 0.93638± 0.00871 0.54239± 0.05350
3D UNet with CAM Bottleneck 0.93619± 0.00750 0.51862± 0.03404

3D UNet with DANet Head Bottleneck 0.93699± 0.00284 0.50891± 0.05308
3D UNet with Concatenated DANet Head Bottleneck 0.93700± 0.00834 0.50550± 0.03249

3D Attention UNet with Concatenated DANet Head Bottleneck 0.93614± 0.00597 0.50652± 0.02369

Table 3.5 – Results of 3D architectures after training with 300 epochs.

Model ID Kidney Dice Tumor Dice
3D UNet Baseline 0.94779± 0.00547 0.60485± 0.06661

3D cSE 0.94880± 0.00260 0.61046 ±0.05282
3D sSE 0.94590± 0.00982 0.58594± 0.02809
3D scSE 0.94765± 0.00509 0.59450± 0.06255

3D Attention UNet 0.94753± 0.00459 0.59836± 0.03098
3D Concatenated scSE 0.94836± 0.00349 0.61817 ±0.02241

3D UNet with PAM Bottleneck 0.94505± 0.00447 0.58524± 0.05351
3D UNet with CAM Bottleneck 0.94810± 0.00723 0.59019± 0.03783

3D UNet with DANet Head Bottleneck 0.94631± 0.00454 0.58642± 0.04119
3D UNet with Concatenated DANet Head Bottleneck 0.94959± 0.00330 0.61133 ±0.02006

3D Attention UNet with Concatenated DANet Head Bottleneck 0.94575± 0.00614 0.58845± 0.03320

3.4 Qualified Architectures
In this section, a comparison shows the behavior of the architectures that
outperformed the baseline (cSE, concatenated scSE, andUNetwith concatenated
DANet Head Bottleneck) in two additional metrics; namely precision and
recall. Precision and recall were calculated batch-wise for kidney and tumor
classes simultaneously.

After new experiments, table 3.6 shows that 2D qualified architectures
outperformed the baseline in the tumor DC and the precision, achieved very
close results to the baseline in the kidney DC, and under-performed the
baseline in the recall.

For 3D qualified architectures after new experiments, they outperformed
the baseline in the tumor DC and the recall, achieved close results to the
baseline in the kidney DC, and under-performed the baseline in the precision.
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Table 3.6 – Results of 2D qualified architectures after trainingwith 300 epochs.

Model ID Kidney Dice Tumor Dice Precision Recall
2D UNet Baseline 0.93301± 0.00706 0.52380± 0.02869 0.91496± 0.00742 0.90807± 0.01467

2D cSE 0.93158± 0.01424 0.52665± 0.03789 0.91937± 0.00643 0.90332± 0.02083
2D Concatenated scSE 0.93586± 0.00849 0.55100± 0.03865 0.92520± 0.00886 0.90666± 0.01494

2D UNet with concatenated DANet Head Bottleneck 0.93355± 0.00733 0.53629± 0.02990 0.92437± 0.00667 0.90271± 0.01489

Table 3.7 – Results of 3D qualified architectures after trainingwith 300 epochs.

Model ID Kidney Dice Tumor Dice Precision Recall
3D UNet Baseline 0.94265± 0.00460 0.56475± 0.06214 0.92569± 0.00740 0.92062± 0.01205

3D cSE 0.94345± 0.00985 0.60011± 0.06106 0.92247± 0.01444 0.93134± 0.01254
3D Concatenated scSE 0.94304± 0.00760 0.58919± 0.05052 0.92230± 0.01319 0.92589± 0.01578

3D UNet with concatenated DANet Head Bottleneck 0.94282± 0.00675 0.58434± 0.04960 0.92390± 0.01142 0.92360± 0.01225

3.5 Unsuccessful Architectures
Table 3.8 shows 2D architectures that failed to achieve noticeable results
compared to the baseline. Although using only cSE or sSE achieve good
results, concurrent scSE does not performwell, at least it should have achieved
results similar to the max of both techniques. This confirms that maximization
is not an ideal technique of combining information. Table 3.8 also shows
that original PAN and DANet perform extremely bad for the tumor class.
Moreover, It shows that FPA and GAU modules achieve worse than normal
convolution block in the UNet architecture.

Table 3.8 – Results of unsuccessful architectures after training with 65 epochs.

Model ID Kidney Dice Tumor Dice
2D UNet Baseline 0.93037± 0.01195 0.46387± 0.06258

2D scSE 0.93019± 0.00430 0.30828± 0.06225
2D DANet 0.84548± 0.01675 0.02261± 0.01618
2D PAN 0.81300± 0.02260 0.16205± 0.08633

2D UNet with FPA Bottleneck 0.92410± 0.01033 0.43478± 0.03435
2D UNet with FPA Contraction 0.85851± 0.03128 0.28439± 0.03114
2D UNet with GAU Expansive 0.92008± 0.01299 0.40650± 0.05642
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Chapter 4

Discussion

4.1 Attention Impact on Segmentation
The results (chapter 3) show that cSE, concatenated scSE, and concatenated
DANet head as a bottleneck outperformed the baseline UNet in kidney and
tumor DC for both 2D and 3D versions.

Results also show that DANet head itself is a powerful representation of
the high-level features represented as a bottleneck especially the concatenated
version that concatenates PAM and CAM modules together. However, results
also show that some components work in some context but do not work in a
different one. For example, adding concatenated DANet head as a bottleneck
to the UNet architecture achieved higher results, however, that was not the case
when it is added to the Attention UNet architecture.

Although 2D and 3D spatial attention achieved better results than 2D and
3D channel attention respectively in the short term training (65 epochs) as
claimed in [3], channel attention outperformed spatial attention in the long
term training (300 epochs).

Furthermore, experiments show that PANmodules do not work as expected.
For example, using FPA as a bottleneck or a contraction layer did not achieve
good results, but it was better as a bottleneck than a contraction layer. Also
using the original GAU module or the modified version with sSE instead of
cSE as an expansive layer did not achieve good results as expected.

4.2 2D Architectures vs 3D Architectures
The end goal of the thesis is to reach to a 3D architecture that uses attention
networks to enhance segmentation results. Nevertheless, the plan was to
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navigate through different 2D architectures first as in general they are easier to
tune than 3D ones, and that suits the given computational power to the project.
After experimenting with 2D architectures (taking into consideration the class
imbalance problem), the results were less promising than expected (as it is
shown in results chapter 3). This led to a visual and a numerical inspection
of the dataset which shows an imbalance inside the imbalance. Tumor class
exists in three different sizes; big, moderate, and small. And each type appears
with a different percentage of a 2D slice out of the 3D volume. The big tumor
exists in 164 patients out of 200. And the tumor slices appear in 20%-40%
of 2D slices out of the 3D volume. The moderate tumor exists in 11 patients
out of 200. And the tumor slices appear in 10% of 2D slices out of the 3D
volume. The small tumor exists in 35 patients out of 200. And the tumor slices
appear in 5% of 2D slices out of the 3D volume. Figure 4.1 shows example of
each tumor size. After inspecting this problem visually and numerically, 3D
architectures are better suited for this problem.

(a) Example of big
tumor

(b) Example of
moderate tumor

(c) Example of small
tumor

Figure 4.1 – Example for different tumor sizes

Experiments and Results (chapter 3) shows that just moving from 2D
architectures to their counterparts 3D architectures has increased kidney DC
with about 1% to 2% and increased tumor DC with about 11%.

4.3 Concatenation vs Summation vsMaximization
Combining the information in deep learning models has taken different forms;
summation, concatenation, and maximization. Experimentation showed that
concatenation usually achieves better results than summation andmaximization,
whether this concatenation is used inside the bottleneck or to combine low-
level features and high-level features through the expansive path. Two out of
the winning architecture use concatenation inside its modules (concatenated
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scSE and concatenated DANet head as a bottleneck). Furthermore, the
base UNet uses concatenation to combine low-level features with high-level
features.

4.4 Future Work and Guidelines for Similar
Work

Both the 3D version of DANet and PAN are worth to be tested. Also adding
skip layers to the original DANet architecture to connect low-level features
with high-level features could contribute to solving the performance problem
of the architecture. Moreover, trying each architecture within a cascaded
version could show a huge jump in the performance especially for the tumor
DC.

Trying different attention architecture in the beginning and getting a
glimpse of their behavior may be worth testing rather than sticking with one
architecture and trying to improve it. In parallel to having a high-performance
baseline, it is worth working on other architectures at the same time to get an
overview of the complete picture. Given the author’s experience with medical
data, it is worth trying 3D architectures as soon as possible as they have much
higher performance than 2D architectures. Before implementation, it is better
to choose the same technology used in similar work to speed your performance.
Finally, trying other architectures that are not based onUNet architecture could
show different results and conclusions.

4.5 Limitations
Finally, the architectures that have been tested were limited by the assigned
GPUs for the project (2 GPUs: GeForce RTX 2070 8GB). In contrast to the
same dataset, other authors were using GPUs with 32 GB which allows for
more complex architectures.
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Chapter 5

Conclusion

Through this project, the author investigated the effect of the attention networks
in the medical image segmentation using a kidney tumor dataset. Experiments
showed that not all attention architectures used outside the medical field can be
used directly in the medical field. For example, original architectures of Dual
Attention Network (DANet) and Pyramid Attention Network (PAN) achieved
bad results, especially for the tumor class. However, architectures from the
medical field like Attention UNet or attention modifications on the original
UNet architecture achieved comparable results to the UNet baseline. One
of the original attention architectures, namely spatial Squeeze and channel
Excitation (cSE), achieved higher results than the baseline in both 2D and
3D versions. And two hybrid architectures proposed by the author, namely
concatenated spatial and channel squeeze and excitation and concatenated
DANet head as UNet bottleneck, achieved higher results than the baseline in
both 2D and 3D versions.

Although three attention architectures achieved higher results than the
baseline, they did not show much improvement in solving the multi-scale
problem and the problem of the existence of the object of interest in a small
region.
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Appendix A

State of the Art

Segmentation of liver vessels is an important task for surgical planning and
computer-aided diagnosis. Automatic and accurate segmentation of the liver
with severe diseases from Computed Tomography (CT) is considered to be a
challenging task due to the small size of the vessel structure. The problem is
still under research as better models are still required.

The hepatic vessel segmentation is a special case of semantic segmentation.
The research started with classical methods then moved to machine learning
and deep learning models. Classical methods are based on engineered
features, for example, an adaptive threshold, covariance analysis, branch
detection, corner detection, intensity-based features, and edge estimation.
Then, in the deep learning era, automated deep learning models have been
developed which superseded classical methods. However, researchers believe
that there is room for the development of semantic segmentation models which
would lead to better results. One of these development leads is the usage of
attention mechanisms.

This chapter of the thesis will present first a quick literature study for
semantic segmentation techniques; from classical methods to deep learning
methods. Then, a literature study for attention networks that contains an
introduction to attention networks and different categories of attention networks.
The attention networks introduction will explain the idea behind attention
networks with examples, and it will show the value of using attention networks
for the vessel segmentation problem.

Although attention networks are one type of semantic segmentation techniques,
the author preferred to present it in a stand-alone section as it should be the
core method/solution used for this project.
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A.1 Semantic Segmentation
Semantic segmentation is the task to split a digital image into multiple
segments where each segment represents a certain object. For semantic
segmentation, multiple objects of the same class are not distinguished differently,
which is not the case for instance segmentation. This report is focused on
semantic segmentation. This section will discuss different methods used for
semantic segmentation starting with classical methods then moving to deep
learning models.

A.1.1 Classical Methods
Manual Thresholding

This method depends mainly on a threshold value that splits the image to a
binary image where each pixel is either zero or one. Multiple thresholds are
needed when the number of classes is larger than two. This method needs
expert interaction to define those thresholds and it also lacks generality as it is
impossible to define a threshold for each class.

Clustering Methods

Clustering is to group similar pixels into the same cluster/label. There are
different algorithms for clustering. However, the most known algorithm is
called K-means where ’K’ represents the number of clusters in the image. The
algorithm is based on the iterative method as it assumes k centroids at the
beginning of the k clusters. Then, it tries to find pixels that belong to each
cluster by calculating the distance between all the pixels and the centroids of
the clusters. The distance function is the difference between the pixels values.
When two pixels have similar grayscale values, the distance between themwill
be small. This indicates that these two pixels should be clustered into the same
cluster. On the other hand, when the distance is large, it indicates that these
two pixels belong to different clusters. Finally, it calculates new k centroids
according to the pixels in each cluster. The cluster centroid is the average
grayscale value of the pixels in this cluster. The loop goes over and over until
it saturates when centroids do not change. This method also lacks generality
as it needs variable k to be defined for each image. Moreover, it might produce
the wrong results because of bad initialization.



26 | Appendix A: State of the Art

Histogram-Based Methods

A histogram is built using all pixels of the image, then peaks and valleys make
it easier to distinguish different objects. The algorithm could be applied to
multiple images at the same time in the same way. However, it becomes harder
to split the image to classes when there are no peaks or valleys or they are in a
small range.

Edge Detection

Edge detection techniques are used to identify edges in the image. These
techniques are built on heuristics that look for discontinuity in the image.
Although the result is groups of disconnected edges, with some heuristics
they can form objects and shapes. So, these techniques are used as a base for
segmentation. This method depends on heuristics which makes it not viable
for general cases.

A.1.2 Deep learning
Neural Networks

Neural networks are powerful models in machine learning which try to learn
the pattern that connect an inputX with an output Y . The model does this by
stacking layers (hidden layers) between the input features and the prediction
output. These layers consist of a stack of computation units. This idea allows
learning high-level features which are the reason to solve hard problems like
image classification and semantic segmentation. The model starts by applying
a forward pass from the input features to predict the output using the weights
of the hidden layers. Then, it measures a loss function which shows the
discrepancy between the prediction and the ground truth. Finally, it applies a
backward pass that uses the loss gradients according to the weights to update
the weights. These three steps are repeated over and over until a satisfactory
value of the loss function is achieved. The existence of big data and the
availability of high computational power allowed researchers to build, train
and test deeper models.

CNN and Common Network Architectures

For image datasets, using filters is found better than using normal computation
units as filters can learn features that are space invariant. But instead of
developing manual filters, Convolution Neural Networks (CNNs) can be
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learned automatically by the network during the training process using the
gradient of the loss function. These filters vary according to their position
in the network where low-level features try to learn basic information (e.g.
edges, corners, ...) and high-level features learn more semantic information
(texture, shapes, ...). AlexNet [16] and VGG16 [17] were the first to win
ILSVRC classification and object recognition problems using deep CNNs in
their models. Then [18] introduced Inception network which added the idea
of having multiple kernel sizes in the same block to fetch different information
(i.e. local and global) and also introduced 1x1 conv for dimensionality
reduction. [19] introduced ResNet which introduced skip connections that
help to build a deeper network by allowing an easy flow for the gradient.

Architectures for Segmentation

Previous architectures had fully connected layers at the end of the architecture
which can not manage different input sizes. Fully Convolutional Network
(FCN) [20] replaced fully connected layers by conv layers to process different
input sizes and can work faster. The architecture has skip connections that
combine semantic information from deep, coarse layers with appearance
information from shallow, fine layers to produce accurate and detailed segmentations.
Figure A.1a shows a graphical representation for the FCN architecture.

Successful training of deep networks requires thousands of annotated
training samples. However, such big data is not always available in biomedical
tasks. U-Net [14] and its training strategy solve this problem. The training
strategy relies on the strong use of data augmentation to use the available
annotated samples more efficiently. The architecture consists of a contracting
path to capture context information and a symmetric expanding path that
enables precise localization. Figure A.1b shows a graphical representation
of the U-Net architecture.

(a) Fully Convolutional Network
(FCN) [20] (b) U-Net architecture [14]

Figure A.1 – FCN and U-Net architectures, reproduced with permission.
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FCN [20] had different challenges that could be improved for better results.
DeepLab is one of the state of the art models that solved some of these
challenges. Version one [21] solved reduced feature resolution and reduced
localization accuracy by removing down-sampling and using atrous/dilated
convolution instead and using fully connected Conditional Random Field
(CRF) respectively. Dilated convolution is a convolution with a space between
the kernel values, this space is defined as a dilation rate. Version two [22]
introduced Atrous Spatial Pyramid Pooling (ASPP) to solve the existence of
objects at multiple scales. Version three [23] adopted an encoder-decoder with
atrous separable convolution to capture sharper object boundaries.

Evaluation Metrics and Loss Functions

For semantic segmentation, there are some known evaluation metrics and
loss functions used in research and they will be mentioned later for attention
networks research and here is a quick summary of their definitions.

Cross Entropy (CE) is a measure from the field of information theory that
calculates the difference between two probability distributions. It is defined as
follows:

CE(p, p̂) = −(plog(p̂)− (1− p)log(1− p̂)) (A.1)

where p is ground truth and p̂ is the model prediction.
Weighted Cross Entropy (WCE) is used when the dataset is class-

unbalanced (e.g. tumor vs background in CT images). CE would be biased
toward the dominating class, in most cases the background class which is not
the point of interest. WCE can be used to weight the positive class and it is
defined as follows:

WCE(p, p̂) = −(βplog(p̂)− (1− p)log(1− p̂)) (A.2)

where β is a weighting coefficient.
Balanced Cross Entropy (BCE) is an advanced version of WCE to solve

class imbalance problem where negative class is also weighted as positive
class. It is defined as follows:

BCE(p, p̂) = −(βplog(p̂)− (1− β)(1− p)log(1− p̂)) (A.3)

Intersection over Union (IoU) is one of the most used metrics in semantic
segmentation task. IoU is the area of overlap between themodel prediction and
the ground truth divided by the area of union between themodel prediction and
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the ground truth. It is defined as follows :

IoU =
|X ∩ Y |

|X|+ |Y | − |X ∩ Y |
(A.4)

Dice Coefficient (DC) is a very similar metric to the IoU. They are
positively correlated. The only difference is how they penalizewrong prediction
as IoU has harder penalization. DC is defined as follows:

DC =
2|X ∩ Y |
|X|+ |Y |

(A.5)

Dice Loss (DL) is used as a loss function where DC is the intended
evaluation metric. Some researchers tend to use DL as a loss function to
optimize the model on it which might lead to better results. DL could be
defined as follows:

DL(p, p̂) = 1− 2|X ∩ Y |
|X|+ |Y |

(A.6)

Precision and Recall are used for the case of class-imbalance problem
where other metrics might give false indication. They are defined as follows:

Percision =
TruePositive

TruePositive+ FalsePositive
(A.7)

Recall =
TruePositive

TruePositive+ FalseNegative
(A.8)

A.2 Attention Networks
Attention networks were first introduced in Natural Language Processing
(NLP) field. Researchers have found that it is challenging for the models to
deal with long sentences. So, it is better if the model can put its attention to
certain words instead of the whole sentence. Attention has been proposed for
neural machine translation by [24] and [25]. For example, when translating
"I am a student" from English to "Je suis étudiant" in French. It can be
noticed that while the model should output "Je", it doesn’t have to focus/attend
on all the sentence, just the word "I" is enough. However, when it should
output "étudiant", it should focus/attend to two words "a" and "student". In
image captioning problem where the network takes an image as an input and
generates a sentence describing the image as an output. "Show, attend and tell"
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[1] introduced attention networks for image captioning that learned to put its
attention to a certain region while generating a certain word figure A.2. So,
generally, attention networks emphasize informative features and suppress less
informative ones.

Figure A.2 – Example of how attention networks work in image captioning
[1], reproduced with permission.

Mainly, there are two types of attention; soft attention and hard attention.
While using soft attention, the network distributes its attention to all the
regions with certain weights. On the other hand, when using hard attention, the
network uses only one region and discards others. Soft attention networks can
be trained end to end and are differentiable whereas hard attention networks
cannot be trained end to end and use reinforcement learning techniques. Thus,
during this report, the author will put his attention on soft attention networks.
One attractive feature of attention networks is that they showwhat is happening
inside the network and what are the circumstances that made the network
predict a certain class.

So far, we introduced attention networks and why they should be used,
also we gave examples of attention networks in neural machine translation and
image captioning problems. The next sections will present different categories
of attention networks that have been used for semantic segmentation problem.
These categories are split by how attention is made and how it is added to
the main network. Note, these categories are made by the author as a map to
understand attention networks and there is no existence to such categories in
the literature.

A.2.1 Squeezing-Based Attention Added to All Layers
Squeeze and Excitation (SE) block [2] allows the network to learn global
information and selectively emphasize informative features and suppresses
less informative ones. This improves the quality of information presented by
the network. SE block adaptively recalibrates channel-wise feature responses
by explicitly modeling interdependencies between channels. SE block consists
of two operations; squeeze and excitation. The goal of the squeeze operation
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is to produce an embedding of global information. This can be done by
aggregating information on the spatial dimension, so it results in a vector that
represents channel-wise information. The goal of the excitation operation is to
learn the nonlinear interaction between channels and it uses that to emphasize
informative ones and suppress the others. Excitation operation uses global
information produced by squeeze operation to weight/excite the input feature
maps to produce the output of the SE block. The output of the SE block can
be fed directly into subsequent layers of the network. SE block can be applied
to all convolution layers in the network. Although SE block was applied to a
classification task on ImageNet [26] classification dataset, it is presented here
in the beginning as it is considered an inspiration to a lot of upcoming models.
Figure A.3 shows a graphical explanation of SE block.

Figure A.3 – Squeeze and Excitation block [2], reproduced with permission.

The squeeze step could be applied not only on the spatial dimension but
on the channel dimension instead, then the excitation/weighting step will be
applied on the spatial dimension which is defined as channel squeeze and
spatial excitation (sSE) [3]. It followed SE steps to recalibrate the feature
maps to boost meaningful features while suppressing weak ones. It is further
observed that the spatial excitation yields a higher increase in dice score
than the channel-wise excitation, which confirms the hypothesis that spatial
excitation is more important for segmentation. Concurrent spatial and channel
squeeze and excitation (scSE) [3] shows even better results than just using one
of them alone. All these attention blocks can be applied to all convolution
layers in the network. Experiments are evaluated on 2D segmentation datasets;
whole brain segmentation on MRI scans and organ segmentation on whole
body contrast enhanced CT scans and used dice score as their evaluation
metric. Figure A.4 shows different types of squeeze and excitation blocks and
how they can be integrated into the network.
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Figure A.4 – Different types of squeeze and excitation blocks [3], reproduced
with permission.

Previous blocks were applied to 2D images. Project and Excite (PE) [4]
extended sSE to be applied on 3D volumetric images. They justified their
method by arguing that averaging the 4D tensor overall spatial dimensions
to generate a channel descriptor for recalibration leads to a loss of relevant
information, particularly for segmentation, where it is needed to localize
anatomical structures. Therefore, they propose averaging along the three
principal axes of the tensor as indicated in figure A.5a. Thus, they got three
projection-vectors indicating the relevance of the slices along the three axes.
A spatial location is important if all the corresponding slices associated with it
provide higher estimates. So, instead of learning the dependencies of the scalar
values across the channels, they learn the dependencies of these projection-
vectors across the channels for excitation. They observed that placing the
blocks after every encoder, decoder and bottleneck provided the best accuracy.
They used a combined cross-entropy and dice loss with the cross-entropy loss
being weighted using median frequency balancing to tackle the high-class
imbalance. They used the same dataset as [3]. Figure A.5b shows PE module
and its integration with the network.

(a) Projections in PE block
(b) PE module and integration
with the network

Figure A.5 – Project and Excite (PE) [4], reproduced with permission.
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A.2.2 Squeezing-BasedAttentionAdded to theDecoder
of a Model

Pyramid Attention Network [5] exploits the impact of global contextual
information in semantic segmentation, but there are two main challenges.
First, the existence of objects at multiple scales. Second, high-level features
are skilled inmaking category classification, while they areweak in restructuring
original resolution binary prediction. Previously, for the first challenge, SE
block showed great improvements. However, Pyramid Attention Network
includes Feature Pyramid Attention (FPA) as channel-wise attention vector
in SE block is not enough to extract multi-scale features effectively and it
lacks pixel-wise information. The pyramid attention module fuses features
from under three different pyramid scales by implementing aU-shape structure
(namely 3 x 3, 5 x 5, 7 x 7 convolutions in pyramid structure) to better extract
context from different scales. Figure A.6a shows a graphical explanation for
FPA module.

For the second challenge, U-Net [14] showed great results for reconstructing
the original image. However, the authors of Pyramid Attention Network
argued that although the common encoder-decoder networks mainly consider
using different scales of feature information and gradually recover sharp object
boundaries in the decoder path, they lack different scales of low-level feature
map information and could be harmful to recover spatial localization to origin
resolution. Furthermore, they use complicated decoder blocks, which cost
plenty of computation resources. So, Pyramid Attention Network includes
Global Attention Upsample (GAU) module which performs global average
pooling (squeezing) of high-level features to provide a global context vector as
guidance of low-level features to select category localization details. In other
words, they use high-level features to weigh low-level information to select
precise resolution details. Figure A.6b shows a graphical explanation of the
GAU module.



34 | Appendix A: State of the Art

(a) Feature Pyramid Attention
(FPA) module

(b) Global Attention Upsample
(GAU) module

Figure A.6 – FPA and GAU modules [5], reproduced with permission.

Figure A.7 shows an overview of the pyramid attention network with the
FPA module and the GAU module. It can be seen that the FPA module is
used as a center block between encoder and decoder structure, and GAUs
as a decoder path. Even without the GAU module, the FPA module can
provide enough precise pixel-level prediction and class identification. They
used PASCAL VOC 2012 [27] and Cityscapes [28] for experimenting and
evaluated their work using mIoU and Pixel Acc.

Figure A.7 – Overview of Pyramid Attention Network [5], reproduced with
permission.

A.2.3 Correlation-Based Attention Added at the End
of a Model

Dual Attention Network (DANet) [6] is another way to solve the multi-scale
problem and intra-class inconsistency problem. The multi-scale problem
comes into sight because objects may often be affected by scales, occlusion,
and illumination. Therefore, it is necessary to enhance the discriminative
ability of feature representations for pixel-level recognition. Intra-class inconsistency
problems arise because the features corresponding to the pixels with the
same label may have some differences. They argued that previous work used
multi-scale feature fusion to capture contexts. However, DANet adaptively
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integrates local features with their global dependencies. They append spatial
and channel attention modules on top of dilated FCN to model the semantic
interdependencies in spatial and channel dimensions respectively. These
attention modules draw global context over local features generated by a
dilated residual network, thus obtaining better feature representations for
pixel-level prediction.

Unlike SE and sSE, they do not use squeeze operation. The position
(spatial) attention module selectively aggregates the feature at each position
by a weighted sum of the features at all positions. Similar features would be
related to each other regardless of their distances. Meanwhile, the channel
attention module selectively emphasizes interdependent channel maps by
integrating associated features among all channel maps. Figure A.8 shows
a graphical explanation of DANet with ResNet backbone with position and
channel attention modules appended at the end. They used Cityscapes [28],
PASCAL VOC 2012 [27] and COCO Stuff [29] dataset for experimenting and
mIoU as evaluation metric.

Figure A.8 – An overview of Dual Attention Network (DANet) [6], reproduced
with permission.

In [7], the authors proposed another version of attention by correlation.
The main goal is to obtain rich contextual information more effectively and
efficiently. They argued that FCN [20] is inherently limited to local receptive
fields and short-range contextual information, and dilated convolution-based
methods [[22], [23]] collect information from a few surrounding pixels and
can not generate dense contextual information. Furthermore, they argued that
self-attention based methods have high computation complexity and occupy a
huge number of GPUmemory. So, they proposed to use two consecutive criss-
cross attention modules, in which each one only has sparse connections (H +
W 1) for each position in the feature maps. The criss-cross attention module
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aggregates contextual information in horizontal and vertical directions. Figure
A.9a shows a graphical explanation of criss-cross attention module. By
serially stacking two criss-cross attention modules, dissimilar features get low
attention weights and similar ones get high attention weight. As a result,
contextual information from all pixels is collected. This stack of two criss-
cross attention is appended over the pre-trained ResNet model as a backbone.
Figure A.9b shows integration of ciss-cross attention module with. Parameters
are shared between criss-cross attention modules. They used Cityscapes [28],
ADE20K [30] and COCO Stuff [29] datasets for experimenting. They used
GFLOPS, mIOU and Average Precision (AP) as their evaluation metric.

(a) An overview of Criss-cross
attention module

(b) Integration of criss-cross attention
module in the network

Figure A.9 – Criss-cross attention module and its integration [7], reproduced
with permission.

A.2.4 Self-Designed Attention Added at the End of a
Model

One common way to extract multi-scale features is to feed multiple resized
input images to a shared deep network and then merge the resulting features
for pixel-wise classification. [8] proposed an attention mechanism that learns
to softly weigh the multi-scale features at each pixel location. The proposed
attention model allows visualizing the importance of features at different
positions and scales. In the proposed model, they pass the same image with
different scales to backbone FCNs (namely the one from deeplab [22]) with
shared weights. Then, each FCN produces a score map for the input scale. The
score maps are resized to have the same resolution by bi-linear interpolation.
Then, the output of the model is the weighted sum of these score maps. The
weights are the softmax of the last layer outputs before softmax operation
in each FCN. For each scale, the attention model outputs a weight map
that weights features pixel by pixel and the weighted sum of FCN-produced
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score maps across all scales is then used for prediction. Figure A.10 shows
a graphical explanation of the used model. The proposed attention model
visualizes the importance of features at each scale for every image position.
Scale-1 attention (i.e., weight map for scale s = 1) captures small-scale objects,
Scale-0.75 attention usually focuses on middle-scale objects, and Scale-0.5
attention emphasizes on background contextual information. They performed
their evaluation on PASCAL-Person-Part [31], PASCAL VOC 2012 [32] and
a subset of MS-COCO 2014 [29] and used IoU as their evaluation metric.

Figure A.10 – An overview of model architecture [8], reproduced with
permission.

In multi-organ segmentation, segmentation is challenging due to the weak
boundaries of organs, the variable sizes of different organs, the large variations
between inter- and intra-subjects, and image characteristics such as low
contrast of soft tissues. Organ Attention Network (OAN) [9] is a two-stage
network where they use FCN as a backbone for the two stages. The attention
comes when they use the output of the first stage and multiply it with the input
image to construct the input for the second stage. This operation makes the
second stage network focus on discriminative information for the target organs.
They also use Reverse Connection (RC) to pass semantic information back to
lower layers which help to get accurate segmentation for smaller structures.
Figure A.11a shows an overview of two-stage OAN. OAN runs separately on
three different views (axial, sagittal and coronal). They combine the three
outputs using statistical fusion which uses Expectation-Maximization (EM).
Figure A.11b shows a graphical description of the OAN framework. Cross-
entropy is used as a loss for both stages. The whole loss function is a weighted
sum of stage one loss and stage two loss. They used abdominal 3D CT scans
dataset for experimenting and used Dice coefficient and mean surface distance
as their evaluation metric.
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(a) An overview of two-stage
organ attention network (b) OAN framework

Figure A.11 – Organ Attention Network [9], reproduced with permission.

A.2.5 Self-Designed Attention Added to the Decoder
of a Model

As the rest of the attention models, Attention gate (AG) [10] model focuses
on target structures of varying shapes and sizes for medical image analysis.
They justified the usage of attention gates integrated with CNN models (e.g.
U-Net) that it can learn to suppress irrelevant regions and highlight salient
ones. This would eliminate the usage of external localization module which
would save computation and even increase themodel efficiency. Attention gate
uses high-level contextual information to weight location low-level features,
then information is passed to non-linearity followed by normalization. Figure
A.12a shows an overview of the AG model. For integrating AG with U-Net
[14], features form decoder path used as high-level features to weigh low-level
features from the encoder and the result is added to the next decoding layer.
Figure A.12b shows integration of AG with U-Net [14]. They used two large
3D CT abdominal datasets for experimenting and Dice coefficient, precision,
recall, and surface distance as their evaluation metrics.

(a) An overview of Attention Gate
model (b) Integration of AG with U-Net

Figure A.12 – Attention Gate model and its integration with U-Net [10],
reproduced with permission.

Pixel-wise Contextual AttentionNetwork (PiCANet) [11] learns to selectively
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attend to informative context locations for each pixel. PiCANetwas formulated
in both global and local forms to attend to global and local contexts. PiCANet
module is integratedwithU-Net [14]. For aU-Net architecture, they concatenate
a feature map from the encoder with a feature map from the decoder then pass
it either to the global or the local PiCANet, then the output is passed to the
next decoder layer. Figure A.13b shows integration of PiCANet with U-Net.
For the global PiCANet, they wanted to make each pixel be able to “see” the
overall feature map. So, they used four recurrent neural networks to sweep an
image both horizontally and vertically along both directions, to incorporate the
global context. Then the hidden states of each pixel are concatenated, making
each pixel memorize the surrounding contexts. Finally, they used conv with
softmax normalization to shape the output to a certain shape. For the local
PiCANet, they wanted each pixel to “see” the W̄ x W̄ context region. So, they
used conv layers to achieve this purpose. Finally, they used conv with softmax
normalization to shape the output to a certain shape. Figure A.13a shows a
graphical description to global and local PiCANet respectively. They used six
different datasets (e.g. PASCAL VOC 2010 [27]) and used precision, recall,
weighted f, and Mean Absolute Error (MAE) as their evaluation metrics.

(a) Global and Local PiCANet (b) Integration of PiCANet with U-Net

Figure A.13 – PiCANet and its integration [11], reproduced with permission.

In [12], the authors argued thatmost existingmethods of semantic segmentation
still suffer from two aspects of challenges: intra-class inconsistency and
inter-class indistinction. To tackle these two problems, they proposed a
Discriminative Feature Network (DFN), which contains two sub-networks:
Smooth Network to solve intra-class inconsistency and Border Network to
solve inter-class indistinction. Intra-class inconsistency shows upwhen patches
share the same semantic label but they have different appearances. On
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the other hand, inter-class distinction happens when adjacent patches have
different semantic labels but they have similar appearances. They presented
a smooth network based on U-shape to capture a multi-scale context. The
smooth network contains Channel Attention Blocks (CAB) which use high-
level features with semantic prediction to guide low-level features with a
spatial prediction with the global average pooling to capture the global context.
Figures A.14a and A.14b show graphical explanations of channel attention
block. The border network uses low-stage information for accurate edge
detection and high-stage information for semantic information. This focus at
the end on the semantic boundary which separates the classes on two sides
of the boundary. Figure A.14c shows a graphical explanation of Refinement
Residual Block (RRB) used in DFN (Figure A.14d). They used PASCAL
VOC 2012 [32] and Cityscapes [28] dataset for experimenting and mIoU as
evaluation metric.

(a) CAB: Channel Attention
Block

(b) Schematic diagram of Channel
Attention Block

(c) RRB: Refinement Residual
Block (d) DFN: Discriminative Feature Network

Figure A.14 – DFN and its components [12], reproduced with permission.
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