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Abstract
Boundedness of the maximal operator and the Calderón–Zygmund singular integral
operators in central Morrey–Orlicz spaces were proved in papers (Maligranda et al.
in Colloq Math 138:165–181, 2015; Maligranda et al. in Tohoku Math J 72:235–259,
2020) by the second and third authors. Theweak-type estimates have also been proven.
Here we show boundedness of the Riesz potential in central Morrey–Orlicz spaces
and the corresponding weak-type version.
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Central Morrey–Orlicz spaces · Weak central Morrey–Orlicz spaces
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1 Orlicz spaces and central Morrey–Orlicz spaces

First of all, we recall the definition of Orlicz spaces onRn and some of their properties
to be used later on (see [24] and [26] for details).

B Evgeniya Burtseva
evgeniya.burtseva@ltu.se

Lech Maligranda
lech.maligranda@put.poznan.pl

Katsuo Matsuoka
katsu.m@nihon-u.ac.jp

1 Department of Engineering Sciences and Mathematics, Luleå University of Technology,
SE-971 87 Luleå, Sweden
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A function � : [0,∞) → [0,∞) is called an Orlicz function, if it is an increasing
continuous and convex functionwith�(0) = 0. Each such a function� has an integral
representation�(u) = ∫ u

0 �′+(t) dt , where the right-derivative�′+ is a nondecreasing
right-continuous function (see [24, Theorem 1.1]). We will write below estimates
for everywhere differentiable Orlicz function �, but then using the above integral
representation, these estimates will be true for almost all u > 0with its right-derivative
�′+ instead of derivative �′. Of course, we have estimates

�(u) ≤ u �′(u) ≤ �(2u) for all u > 0. (1)

If we want to include in the Orlicz spaces, for example, spaces L∞(Rn), L p(Rn)∩
L∞(Rn) and L p(Rn) + L∞(Rn) for 1 ≤ p < ∞, then we need to consider a broader
class of functions than Orlicz functions, the so-called Young functions. A function
� : [0,∞) → [0,∞] is called a Young function, if it is a nondecreasing convex
function with limu→0+ �(u) = �(0) = 0, and not identically 0 or ∞ in (0,∞). It
may have jump up to ∞ at some point u > 0, but then it should be left continuous
at u.

Let (�,�,μ) be a σ -finite complete nonatomic measure space and L0(�) be the
space of all μ-equivalent classes of real-valued and �-measurable functions defined
on �.

For any Young function�, the Orlicz space L�(�), which contains all f ∈ L0(�)

such that
∫
�

�(ε| f (x)|) dμ(x) < ∞ for some ε = ε( f ) > 0 with the Luxemburg–
Nakano norm

‖ f ‖L� = inf

{

ε > 0 :
∫

�

�
( | f (x)|

ε

)
dμ(x) ≤ 1

}

, (2)

is a Banach space (cf. [24, pp. 70–71], [26, pp. 15–16], [27, pp. 125–127] and [38, pp.
67–68]). The fundamental function of the Orlicz space L�(�) is

ϕL�(�)(t) = ‖χA‖L�(�) = ‖χ[0,μ(A)]‖L�([0,∞)) = 1/�−1(1/t),

where χA is the characteristic function of the set A ⊂ �, t = μ(A) and �−1 is the
right-continuous inverse of � defined by �−1(v) = inf {u ≥ 0 : �(u) > v} with
inf ∅ = ∞.

To each Young function � one can associate another convex function �∗, i.e., the
complementary function to �, which is defined by

�∗(v) = sup
u>0

[uv − �(u)] for v ≥ 0.

Then �∗ is also a Young function and�∗∗ = �. Note that u ≤ �−1(u)�∗−1
(u) ≤ 2u

for all u > 0.
We say that a Young function � satisfies the 	2-condition and we write shortly

� ∈ 	2, if 0 < �(u) < ∞ for u > 0 and there exists a constant D2 ≥ 1 such that

�(2u) ≤ D2�(u) for all u > 0. (3)
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In this paper we consider Orlicz spaces L�(Rn) on R
n with the Lebesgue mea-

sure. Then we define the Morrey–Orlicz spaces M�,λ(Rn) and central Morrey–Orlicz
spaces M�,λ(0). In the 2000s, several authors (for example, F. Deringoz, V. S. Guliyev,
J. J. Hasanov, T. Mizuhara, E. Nakai, S. Samko, Y. Sawano, H. Tanaka and others)
defined Orlicz versions of the Morrey space, i.e., Morrey–Orlicz spaces, and investi-
gated the boundedness for theHardy–Littlewoodmaximal operator and other operators
on them (see, for example, [11, 19, 20, 34, 39] and the references therein). The Orlicz
version of central Morrey spaces, i.e., central Morrey–Orlicz spaces were defined in
papers by the second and third authors. They investigated boundedness on central
Morrey–Orlicz spaces of the Hardy–Littlewood maximal operator in paper [28] and
also boundedness of the Calderón–Zygmund singular integral operators on them in
paper [29]. In this paper we present conditions under which the Riesz potential is
bounded on central Morrey–Orlicz spaces.

For any Young function �, number λ ∈ R, a set A ⊂ R
n with 0 < |A| < ∞ and

for f ∈ L0(Rn) let

‖ f ‖�,λ,A = inf
{
ε > 0 : 1

|A|λ
∫

A
�
( | f (x)|

ε

)
dx ≤ 1

}
,

and the corresponding (smaller) expression

‖ f ‖�,λ,A,∞ = inf
{
ε > 0 : sup

u>0
�(

u

ε
)

1

|A|λ d( f χA, u) ≤ 1
}
,

where d( f , u) = |{x ∈ R
n : | f (x)| > u}|. Note that ‖ f ‖�,λ,A,∞ ≤ ‖ f ‖�,λ,A

provided that the expression on the right is finite. In fact, if ‖ f ‖�,λ,A < c, then for
arbitrary u > 0 we have

1 ≥ 1

|A|λ
∫

A
�

( | f (x)|
c

)

dx ≥ 1

|A|λ
∫

{x∈A : | f (x)|>u}
�

( | f (x)|
c

)

dx

≥ 1

|A|λ �
(u

c

)
d( f χA, u),

and ‖ f ‖�,λ,A,∞ ≤ c. Hence, ‖ f ‖�,λ,A,∞ ≤ ‖ f ‖�,λ,A.
Using these notions and considering open balls B(x0, r) with a center at x0 ∈ R

n

and radius r > 0, i.e. B(x0, r) = {x ∈ R
n : |x − x0| < r}, and also open balls

B(0, r) = Br with a center at 0 we can define Morrey–Orlicz spaces M�,λ(Rn) and
weak Morrey–Orlicz spaces W M�,λ(Rn):

M�,λ(Rn) =
{

f ∈ L1
loc(R

n) : ‖ f ‖M�,λ = sup
x0∈Rn ,r>0

‖ f ‖�,λ,B(x0,r) < ∞
}

(4)

and

W M�,λ(Rn) =
{

f ∈ L1
loc(R

n) : ‖ f ‖W M�,λ = sup
x0∈Rn ,r>0

‖ f ‖�,λ,B(x0,r),∞ < ∞
}

. (5)

123



   22 Page 4 of 26 E. Burtseva et al.

Similarly, we can define central Morrey–Orlicz spaces M�,λ(0) and weak central
Morrey–Orlicz spaces W M�,λ(0):

M�,λ(0) =
{

f ∈ L1
loc(R

n) : ‖ f ‖M�,λ(0) = sup
r>0

‖ f ‖�,λ,Br < ∞
}

(6)

and

W M�,λ(0) =
{

f ∈ L1
loc(R

n) : ‖ f ‖W M�,λ(0) = sup
r>0

‖ f ‖�,λ,Br ,∞ < ∞
}

. (7)

All these spaces are Banach ideal spaces on R
n (sometimes they are {0}, that is,

they contain only all functions equivalent to 0 on R
n). Moreover, we have contin-

uous embeddings M�,λ(Rn)
1

↪→ W M�,λ(Rn), M�,λ(0)
1

↪→ W M�,λ(0) and also

M�,λ(Rn)
1

↪→ M�,λ(0), W M�,λ(Rn)
1

↪→ W M�,λ(0).
Let us recall that the normed subspace X = (X , ‖ · ‖X ) of L0(�) is an ideal space

on �: if f , g ∈ X with | f (x)| ≤ |g(x)| for μ-almost all x ∈ �, and g ∈ X , then
f ∈ X and ‖ f ‖X ≤ ‖g‖X . Here and further, for two Banach ideal spaces X and Y ,
we use the symbol X ↪→ Y rather than X ⊂ Y for continuous embedding. Moreover,

the symbol X
C

↪→ Y indicates that X ↪→ Y with the norm of the embedding operator
not bigger than C , i.e., ‖ f ‖Y ≤ C ‖ f ‖X for all f ∈ X .

Note that Morrey–Orlicz spaces and central Morrey–Orlicz spaces are generaliza-
tions of Orlicz spaces and Morrey spaces (on R

n). In particular, we can obtain the
following spaces (see [28] for more details):

(i) (Orlicz and weak Orlicz spaces) If λ = 0, then

M�,0(Rn) = M�,0(0) = L�(Rn) and

W M�,0(Rn) = W M�,0(0) = W L�(Rn).

(ii) (Beurling–Orlicz and weak Beurling–Orlicz spaces) If λ = 1, then

M�,1(Rn) = B�(Rn) and W M�,1(Rn) = W B�(Rn).

As for B�(Rn) and W B�(Rn), see [28].
(iii) (Classical Morrey, weak Morrey, central Morrey and weak central Morrey

spaces) If �(u) = u p, 1 ≤ p < ∞ and λ ∈ R, then M�,λ(Rn) =
M p,λ(Rn), W M�,λ(Rn) = W M p,λ(Rn) and M�,λ(0) = M p,λ(0),
W M�,λ(0) = W M p,λ(0).
Here M p,λ(Rn), W M p,λ(Rn), M p,λ(0), W M p,λ(0) are the classical Morrey,
weak Morrey, central Morrey and weak central Morrey spaces, respectively.

We want to note that M p,λ(Rn) = {0} if and only if 0 ≤ λ ≤ 1 (see [6, Lemma
1]) and M p,λ(0) = {0} if and only if λ ≥ 0 (see [4, 6, 7]). Moreover, M p,0(Rn) =
M p,0(0) = L p(Rn) and M p,1(Rn) = L∞(Rn) (see [25, Theorem 4.3.6]). However,

L∞(Rn)
1

↪→ M p,1(0) and the inclusion is strict. For example, in one-dimensional case
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f (x) =∑∞
n=0 2

n/pχ[n,n+2−n ](|x |) ∈ M p,1(0)\L∞(R1). Of course, for 0 ≤ λ ≤ 1 the

inclusion M p,λ(Rn)
1

↪→ M p,λ(0) holds and is strict for 0 < λ ≤ 1 (a suitable example
we can find in [22, p. 156]). It is also true that if 1 ≤ p < q < ∞, 0 ≤ μ < λ < 1
and 1−λ

p = 1−μ
q , then

Mq,μ(Rn)
1

↪→ M p,λ(Rn) and Mq,μ(0)
1

↪→ M p,λ(0). (8)

Both inclusions are proper (see, for example, [21]); the second embedding in (8) is
also true for 1 < λ < μ. The embeddings (8) follow by the Hölder–Rogers inequality
with q

p > 1, since for any x0 ∈ R
n we have

∫

B(x0,r)

| f (x)|p dx ≤
(∫

B(x0,r)

| f (x)|q dx

)p/q

|B(x0, r)|1−p/q

=
(

1

|B(x0, r)|μ
∫

B(x0,r)

| f (x)|q dx

)p/q

|B(x0, r)|1−p/q+μp/q

=
(

1

|B(x0, r)|μ
∫

B(x0,r)

| f (x)|q dx

)p/q

|B(x0, r)|λ,

and from the fact that 1 − p/q + μp/q = (μ − 1) p/q + 1 = −(1 − λ) + 1 = λ.
If the supremum in definitions (4)–(7) is taken over all r > 1, then we will

have corresponding definitions of non-homogeneous Morrey–Orlicz spaces, non-
homogeneous weak Morrey–Orlicz spaces, non-homogeneous central Morrey–Orlicz
spaces and non-homogeneous weak central Morrey–Orlicz spaces.

2 The Riesz potential in Lebesgue, Orlicz andMorrey spaces

The Riesz potential of order α ∈ (0, n) of a locally integrable function f ∈ L0(Rn) is
defined as

Iα f (x) =
∫

Rn

f (y)

|x − y|n−α
dy, for x ∈ R

n . (9)

The linear operator Iα plays a role in various branches of analysis, including potential
theory, harmonic analysis, Sobolev spaces andpartial differential equations. Therefore,
investigations of the boundedness of the operator Iα between different spaces are
important.

The classical Hardy–Littlewood–Sobolev theorem states that if 1 < p < q < ∞,
then a Riesz potential Iα is of strong-type (p, q), that is, bounded from L p(Rn)

to Lq(Rn) if and only if 1/q = 1/p − α/n. For p = 1 < q < ∞ Zygmund
proved that Iα is of weak-type (1, q), that is, bounded from L1(Rn) to W Lq(Rn),
where 1/q = 1 − α/n. The weak-Lq space W Lq(Rn) = Lq,∞(Rn), called also the
Marcinkiewicz space, consists of all f ∈ L0(Rn) such that the quasi-norm ‖ f ‖q,∞ =
supt>0 t |{x ∈ R

n : | f (x)| > t}|1/q is finite. The proofs of these results we can find in
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the books [15, pp. 125–127], [16, pp. 2–5], [40, pp. 117–121], [41, pp. 150–154] and
[42, pp. 86–87].

The boundedness of Iα from an Orlicz space L�(Rn) to another Orlicz space
L(Rn) was studied by Simonenko (1964), O’Neil (1965) and Torchinsky (1976)
under some restrictions on the Orlicz functions � and . In 1999 Cianchi [10] gave a
necessary and sufficient condition for the boundedness of Iα from L�(Rn) to L(Rn)

and from L�(Rn) to weak Orlicz space W L(Rn). Another sufficient conditions for
boundedness of the Riesz operator Iα (and even for a generalized fractional operator
Iρ) were given in 2001 by Nakai [32, 33]. Then in 2017, Guliyev–Deringoz–Hasanov
in [20, Theorem 3.3], gave more readable necessary and sufficient conditions for the
boundedness of Iα from L�(Rn) to W L(Rn) and from L�(Rn) to L(Rn).

Results concerning boundedness of the Riesz potential between Morrey spaces
were first obtained by Spanne with the Sobolev exponent 1/q = 1/p − α/n, and this
result was published in 1969 by Peetre [36]: if 0 < α < n, 1 < p < n(1− λ)/α, 0 <

λ < 1, 1/q = 1/p−α/n and λ/p = μ/q, then the Riesz potential Iα is bounded from
M p,λ(Rn) to Mq,μ(Rn). Then in 1975 a stronger resultwas obtained byAdams [1], and
reproved by Chiarenza–Frasca [9]. Adams proved boundedness of Iα from M p,λ(Rn)

to Mq1,λ(Rn) with a better exponent q1, namely 1/q1 = 1/p − α/[n(1− λ)]. Adams
result is stronger than the Peetre–Spanne theorem because q < q1 and (1 − μ)/q =
(1 − λ)/q1, from which follows the embedding Mq1,λ(Rn)

1
↪→ Mq,μ(Rn) and this

means that the target space Mq1,λ(Rn) is smaller than target space Mq,μ(Rn) in the
Peetre–Spanne result. Central Morrey spaces M p,λ(0) were first introduced in [14, p.
607] and in [2, p. 5] (see also [8, p. 257] and [13, p. 500] for λ = 1). Further studies
of the central Morrey spaces and their generalizations were investigated, for example,
in [6, 17, 18, 37].

Result on the boundedness of the Riesz potential in these spaces was proved by Fu–
Lin–Lu [12, Proposition 1.1]: if 1 < p < n(1 − λ)/α, 0 < λ < 1, 1/q = 1/p − α/n
and λ/p = μ/q, then the Riesz potential Iα is bounded from M p,λ(0) to Mq,μ(0)
(see also [5, 17, 18]). Komori-Furuya and Sato [23, Proposition 1] showed that Adams
type result on boundedness in central Morrey spaces does not hold. They showed that
if 1−μ

q = 1−λ
p − α

n and α/n < 1/p − 1/q < α/[n(1 − λ)], then Iα is not bounded

from M p,λ(0) to Mq,μ(0) because μ/q = λ/p − (1/p − α/n − 1/q) < λ/p.
We will generalize the last results to central Morrey–Orlicz spaces. In Theorem 2,

the necessary conditions for boundedness of Iα are given, and in Theorem3 – sufficient
conditions are presented.

In the proof of boundedness of the Riesz potential in the central Morrey-Orlicz
spaces we will need some necessary estimates. We will present them in the next
section.

3 Some technical results

To prove the main results of this paper, we need some technical calculations. In order
not to hide the main ideas in proofs of the main results we collect such calculations in
Lemma 1 below.
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Lemma 1 Let � be a Young function, �∗ its complementary function, 0 ≤ λ ≤ 1 and
r > 0. Then

(i)
∫

Br
| f (x)g(x)| dx ≤ 2 |Br |λ ‖ f ‖�,λ,Br ‖g‖�∗,λ,Br .

(ii) ‖χB(x0,r0)‖�∗,λ,Br ≤ |Br ∩B(x0,r0)|
|Br |λ �−1

( |Br |λ
|Br ∩B(x0,r0)|

)
, where Br ∩B(x0, r0) =

∅ for x0 ∈ R
n and r0 > 0.

In particular, ‖χBr ‖�∗,λ,Br ≤ �−1
(|Br |λ−1

)

|Br |λ−1 .

(iii) ‖χBt ‖�,λ,Br = 1/�−1
( |Br |λ

|Br ∩Bt |
)

and ‖χBt ‖M�,λ(0) = 1

�−1(|Bt |λ−1)
for any

t > 0.

(iv) ‖χBt ‖�,λ,Br ,∞ = 1/�−1
( |Br |λ

|Br ∩Bt |
)

and ‖χBt ‖W M�,λ(0) = 1

�−1(|Bt |λ−1)
for

any t > 0.

Proof (i) This estimate was proved in [29, Lemma 2.6].

(ii) Since for u > 0 we have �∗
(

u
�−1(u)

)
≤ u (cf. Lemma 2.6 in [29]) it follows

for u = |Br |λ
|Br ∩B(x0,r0)| that

∫

Br

�∗
⎛

⎝ χB(x0,r0)(x)|Br |λ
�−1

( |Br |λ
|Br ∩B(x0,r0)|

)
|Br ∩ B(x0, r0)|

⎞

⎠ dx

=
∫

Br ∩B(x0,r0)
�∗
⎛

⎝ |Br |λ
�−1(

|Br |λ|Br ∩B(x0,r0)| )|Br ∩ B(x0, r0)|

⎞

⎠ dx

≤ |Br |λ
|Br ∩ B(x0, r0)|

∫

Br ∩B(x0,r0)
dx = |Br |λ.

Hence, ‖χB(x0,r0)‖�∗,λ,Br ≤ �−1
( |Br |λ|Br ∩B(x0,r0)|

) |Br ∩B(x0,r0)|
|Br |λ , and (ii) follows.

(iii) Let t > 0. Since �(�−1(u)) ≤ u for any u > 0 it follows that

∫

Br

�

(

χBt (x)�−1(
|Br |λ

|Br ∩ Bt | )
)

dx =
∫

Br ∩Bt

�

(

�−1
( |Br |λ

|Br ∩ Bt |
))

dx

≤
∫

Br ∩Bt

|Br |λ
|Br ∩ Bt |dx = |Br |λ,

and so ‖χBt ‖�,λ,Br ≤ 1/�−1
( |Br |λ

|Br ∩Bt |
)
. On the other hand,

1 ≥ 1

|Br |λ
∫

Br

�

(
χBt (x)

‖χBt ‖�,λ,Br

)

dx = �

(
1

‖χBt ‖�,λ,Br

) |Br ∩ Bt |
|Br |λ ,
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or

|Br |λ
|Br ∩ Bt | ≥ �(

1

‖χBt ‖�,λ,Br

).

Since u ≤ �−1(�(u)) for any u > 0 such that �(u) < ∞ we obtain

�−1
( |Br |λ

|Br ∩ Bt |
)

≥ �−1
(

�(
1

‖χBt ‖�,λ,Br

)

)

≥ 1

‖χBt ‖�,λ,Br

,

which togetherwith theprevious estimate gives equality‖χBt ‖�,λ,Br = 1/�−1
( |Br |λ|Br ∩Bt |

)
.

Thus,

‖χBt ‖M�,λ(0) = sup
r>0

‖χBt ‖�,λ,Br = sup
r>0

1

�−1
( |Br |λ

|Br ∩Bt |
)

= max
[
sup
r≤t

1

�−1
( |Br |λ

|Br ∩Bt |
) , sup

r≥t

1

�−1
( |Br |λ

|Br ∩Bt |
)
]

= max
[
sup
r≤t

1

�−1
(|Br |λ−1

) , sup
r≥t

1

�−1
( |Br |λ

|Bt |
)
]

= 1

�−1(|Bt |λ−1)
,

and point (iii) of the lemma has been proved.
(iv) For t > 0 we have

sup
u>0

�(
u

ε
)

1

|Br |λ |{x ∈ Br : χBt (x) > u}|

= sup
0<u<1

�(
u

ε
)
|Br ∩ Bt |

|Br |λ = �(
1

ε
)
|Br ∩ Bt |

|Br |λ .

Thus,

‖χBt ‖�,λ,Br ,∞ = inf

{

ε > 0 : �

(
1

ε

) |Br ∩ Bt |
|Br |λ ≤ 1

}

≤ inf

{

ε > 0 : 1

ε
≤ �−1

( |Br |λ
|Br ∩ Bt |

)}

≤ 1/�−1
( |Br |λ

|Br ∩ Bt |
)

,

because 1/ε ≤ �−1(�(1/ε)). On the other hand, since 1 ≥ �( 1
‖χBt ‖�,λ,Br ,∞ )

|Br ∩Bt |
|Br |λ

it follows that

1

‖χBt ‖�,λ,Br ,∞
≤ �−1

(

�(
1

‖χBt ‖�,λ,Br ,∞
)

)

≤ �−1
( |Br |λ

|Br ∩ Bt |
)

,

which together gives the first equality in (iv). The second equality in (iv) has the same
proof as the second equality in (iii). ��
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4 On the norm of the dilation operator in central
Morrey–Orlicz spaces

For any a > 0 and x ∈ R
n we define the dilation operator Da by

Da f (x) = f (ax), f ∈ L0(Rn).

The dilation operator is bounded in central Morrey–Orlicz spaces M�,λ(0) and we
will calculate its norm. For this purpose quantity s�−1 is needed for the Orlicz function
�:

s�−1(t) = sup
s>0

�−1(st)

�−1(s)
, t > 0. (10)

Theorem 1 If � is an Orlicz function, 0 ≤ λ ≤ 1 and a > 0, then the operator norm
of Da is

‖Da‖M�,λ(0)→M�,λ(0) = s�−1

(
an(λ−1)

)
. (11)

Proof By definition of s�−1 , for any s > 0, a > 0, we have

�−1
(

an(λ−1)s
)

≤ s�−1

(
an(λ−1)

)
�−1(s),

and so

�

(
�−1

(
an(λ−1)s

)

s�−1
(
an(λ−1)

)

)

≤ �
(
�−1(s)

)
= s.

For an(λ−1)s = �(u) we have u = �−1
(
an(λ−1)s

)
and

�

(
u

s�−1
(
an(λ−1)

)

)

≤ an(1−λ)�(u), for any u > 0. (12)

Therefore, from (12) it follows that for any f ∈ M�,λ(0) and r > 0,

∫

Br

�

(
|Da f (x)|

s�−1
(
an(λ−1)

) ‖ f ‖M�,λ(0)

)

dx

=
∫

Br

�

(
| f (ax)|

s�−1
(
an(λ−1)

) ‖ f ‖M�,λ(0)

)

dx

= a−n
∫

Bar

�

(
| f (y)|

s�−1
(
an(λ−1)

) ‖ f ‖M�,λ(0)

)

dy
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≤ a−nan(1−λ)

∫

Bar

�

(
| f (y)|

‖ f ‖M�,λ(0)

)

dy ≤ a−λn|Bar |λ

= a−λnvλ
n (ar)λn = |Br |λ,

which means that ‖Da f ‖M�,λ(0) ≤ s�−1
(
an(λ−1)

) ‖ f ‖M�,λ(0). Here, vn = |B1|.
To show that (11) holds we consider the characteristic function χBt (x) of the ball

Bt , t > 0. Note that DaχBt (x) = χBt/a (x). Moreover, by Lemma 1(iii) we get

sup
t>0

‖DaχBt ‖M�,λ(0)

‖χBt ‖M�,λ(0)
= sup

t>0

�−1(|Bt |λ−1)

�−1(|Bt/a |λ−1)
= sup

t>0

�−1(vλ−1
n tn(λ−1))

�−1
(
vλ−1

n ( t
a )n(λ−1)

)

= sup
s>0

�−1(s)

�−1(an(1−λ)s)
= sup

s>0

�−1(san(λ−1))

�−1(s)
= s�−1(an(λ−1)).

This brings us to (11). ��

5 The Riesz potential in central Morrey–Orlicz spaces—necessary
conditions

We begin to study the boundedness of the Riesz potential, first finding the necessary
conditions for its boundedness.

Theorem 2 Let 0 < α < n,�,  be Orlicz functions and 0 ≤ λ,μ < 1.

(i) If the Riesz potential Iα is bounded from M�,λ(0) to M,μ(0), then there are
positive constants C1, C2 such that

(a) u
α
n �−1(uλ−1) ≤ C1 −1(uμ−1) for any u > 0.

(b) s−1(uμ−1) ≤ C2 u
α
n s�−1(uλ−1) for any u > 0.

(ii) If there exists a small constant c > 0 such that c ≤ v
λ/μ
n

vn−1
with v0 = 1 and

lim inf
t→∞

�−1(ctλ)

−1(tμ)
= ∞,

then Iα is not bounded from M�,λ(0) to M,μ(0).

Proof (i) (a) Let t > 0 and x ∈ Bt . In this case we have

IαχBt (x) =
∫

Bt

|x − y|α−n dy ≥ (2t)α−n|Bt | = vn2
α−ntα

or

tα χBt (x) ≤ 2n−α

vn
IαχBt (x) χBt (x).
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Then

‖tα χBt ‖M,μ(0) ≤ 2n−α

vn
‖IαχBt ‖M,μ(0) ≤ 2n−α

vn
C ‖χBt ‖M�,λ(0),

and by the Lemma 1 (iii) we obtain

tα

−1(|Bt |μ−1)
≤ 2n−α

vn
C

1

�−1(|Bt |λ−1)
,

which means

tα

−1(v
μ−1
n t (μ−1)n)

≤ 2n−α

vn

C

�−1(vλ−1
n t (λ−1)n)

.

Thus,

tα/n�−1(vλ−1
n tλ−1) ≤ 2n−α

vn
C −1(vμ−1

n tμ−1),

which by a simple change of variables can be rewritten as

uα/n�−1(uλ−1) ≤ C1 −1(uμ−1) for any u > 0,

where C1 = 2n−αv
α/n−1
n C .

(i) (b) First, note that we have identity

Iα(Dt f )(x) = t−α Dt (Iα f )(x) for any t > 0.

In fact,

Iα(Dt f )(x) =
∫

Rn

f (t y)

|x − y|n−α
dy = t−α

∫

Rn

f (y)

|y − t x |n−α
dy = t−α Dt (Iα f )(x).

Now, let f ∈ M�,λ(0). Using the above identity and applying Theorem 1 we obtain

‖Iα(Dt f )‖M,μ(0) = t−α ‖Dt (Iα f )‖M,μ(0) = t−α s−1(tn(μ−1)) ‖Iα f ‖M,μ(0).

Assumption of boundedness of Iα and reuse of Theorem 1 gives

‖Iα f ‖M,μ(0) = tα

s−1(tn(μ−1))
‖Iα(Dt f )‖M,μ(0)

≤ tα

s−1(tn(μ−1))
C ‖Dt f ‖M�,λ(0)

= C
tα

s−1(tn(μ−1))
s�−1(tn(λ−1)) ‖ f ‖M�,λ(0),
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or

‖Iα f ‖M,μ(0) ≤ C
uα/ns�−1(uλ−1)

s−1(uμ−1)
‖ f ‖M�,λ(0) for any u > 0.

Thus,

‖Iα f ‖M,μ(0) ≤ C inf
u>0

uα/ns�−1(uλ−1)

s−1(uμ−1)
‖ f ‖M�,λ(0).

We must have that infu>0
uα/ns

�−1 (uλ−1)

s
−1 (uμ−1)

= c > 0 since otherwise Iα f = 0 and we

get a contradiction. Therefore,

s−1(uμ−1) ≤ C

c
uα/ns�−1(uλ−1) for any u > 0.

(ii) We follow the same argument as in [23, Proposition 1]. Let R ≥ 1, xR =
(R, 0, ..., 0) ∈ R

n and fR(x) = χB(xR ,1)(x). Then

‖ fR‖M�,λ(0) = sup
r>0

inf
{
ε > 0 : 1

|Br |λ
∫

Br

�
(χB(xR ,1)(x)

ε

)
dx ≤ 1

}

= sup
r>0

inf
{
ε > 0 : 1

|Br |λ
∫

Br ∩B(xR ,1)

�

(
1

ε

)

dx ≤ 1
}

= sup
r>0

inf
{
ε > 0 : |Br ∩ B(xR, 1)|

|Br |λ �

(
1

ε

)

≤ 1
}

= sup
r>R−1

inf
{
ε > 0 : |Br ∩ B(xR, 1)|

|Br |λ �

(
1

ε

)

≤ 1
}
,

because if 0 < r ≤ R − 1 then |Br ∩ B(xR, 1)| = 0. Thus,

‖ fR‖M�,λ(0) = sup
r>R−1

1

�−1(
|Br |λ

|Br ∩B(xR ,1)| )
.

We will consider two cases: R − 1 < r < R and r ≥ R. In the first case, using
calculations from [6, p. 161], we can prove that for n ≥ 2

|Br ∩ B(xR, 1)| ≤ 2
n
2 vn−1

( r

R

)n
,

and so

|Br |λ
|Br ∩ B(xR, 1)| ≥ vλ

nrλn Rn

2
n
2 vn−1rn

≥ vλ
n

2
n
2 vn−1

Rλn >
vλ

n

2n vn−1
Rλn .
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For n = 1 and R − 1 < r < R with v0 = 1 we have

|Br |λ
|Br ∩ B(xR, 1)| = (2r)λ

r − R + 1
= 2λrλ−1

1 − R−1
r

>
2λ Rλ−1

1 − R−1
r

= 2λ Rλ

R − R(R−1)
r

> 2λ Rλ = vλ
1 Rλ >

vλ
1

2 v0
Rλ.

In the second case, |Br ∩ B(xR, 1)| ≤ |B(xR, 1)| = vn and

|Br |λ
|Br ∩ B(xR, 1)| ≥ vλ

nrλn

vn
≥ vλ−1

n Rλn .

Thus,

‖ fR‖M�,λ(0) ≤ max

[
1

�−1
(

vλ
n

2n vn−1
Rλn
) ,

1

�−1(vλ−1
n Rλn)

]

.

Since vn−1
vn

≥
√

n
2π with v0 = 1 (see [3, Theorem 2]), it follows that 2n vn−1

vn
≥ 1 and

then vλ
n

2n vn−1
≤ vλ−1

n , which gives

‖ fR‖M�,λ(0) ≤ 1

�−1
(

vλ
n

2n vn−1
Rλn
) .

Next, we will estimate Iα fR . If x, y ∈ B(xR, 1) then |x − y| ≤ 2 and we obtain

Iα fR(x) =
∫

Rn

χB(xR ,1)(y)

|x − y|n−α
dy =

∫

B(xR ,1)

|x − y|α−n dy

≥ 2α−n|B(xR, 1)| χB(xR ,1)(x) = 2α−nvn χB(xR ,1)(x).

Thus,

‖Iα fR‖M,μ(0) = sup
r>0

‖Iα fR‖,μ,Br ≥ ‖Iα fR‖,μ,BR+1

= inf

{

ε > 0 :
∫

BR+1



( |Iα fR(x)|
ε

)

dx ≤ |BR+1|μ
}

.

Since x ∈ B(xR, 1) and BR+1 ∩ B(xR, 1) = B(xR, 1) it follows that

‖Iα fR‖M,μ(0) ≥ inf

{

ε > 0 :
∫

B(xR ,1)∩BR+1



(

2α−nvn/ε

)

dx ≤ |BR+1|μ
}
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= 2α−nvn

−1
( |BR+1|μ

|B(xR ,1)|
) = 2α−nvn

−1
(
v

μ−1
n (R + 1)μn

)

≥ 2α−nvn

−1
(
v

μ−1
n 2μn Rμn

) .

Making the substitution tμ = v
μ−1
n 2μn Rμn we obtain

‖Iα fR‖M,μ(0)

‖ fR‖M�,λ(0)
≥ 2α−n vn

�−1
(

vλ
n

2nvn−1
Rλn
)

−1(v
μ−1
n 2μn Rμn)

= 2α−n vn

�−1

(
v

λ
μ
n

2n+λn vn−1
tλ
)

−1(tμ)

≥ 2α−n vn

2n+λn

�−1

(
v

λ
μ

n
vn−1

tλ
)

−1(tμ)
≥ 2α−2n−λn vn

�−1
(
c tλ
)

−1(tμ)
,

and

lim inf
R→∞

‖Iα fR‖M,μ(0)

‖ fR‖M�,λ(0)
≥ 2α−2n−λn vn lim inf

t→∞
�−1(ctλ)

−1(tμ)
= ∞.

Thus, the operator Iα is not bounded from M�,λ(0) to M,μ(0). ��

6 The Riesz potential in central Morrey–Orlicz spaces – sufficient
conditions

We want to prove boundedness of the Riesz potential Iα between two different central
Morrey–Orlicz spaces. The following lemmas are important for proving the main
result.

Lemma 2 Let 0 < α < n,� be an Orlicz function and 0 ≤ λ < 1. If f ∈ M�,λ(0),
then there exists a constant C3 > 0 such that

∫

Rn\Br

| f (y)|
|y|n−α

dy ≤ C3 ‖ f ‖M�,λ(0)

∫ ∞

|Br |
tα/n�−1(tλ−1)

dt

t

for all r > 0.

Proof We prove this lemma using the same arguments as in the proof of Theorem 7.1
in [35] and Lemma 2.5 in [29]. From the Lemma 1 (i) and (ii) it follows that

∫

Rn\Br

| f (y)|
|y|n−α

dy =
∞∑

j=1

∫

B2 j r \B2 j−1r

| f (y)|
|y|n−α

dy ≤
∞∑

j=1

1

(2 j−1r)n−α

∫

B2 j r

| f (y)| dy
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= 2n−αv
1−α/n
n

∞∑

j=1

1

|B2 j r |1−α/n

∫

B2 j r

| f (y)| dy

≤ 2n−α+1v
1−α/n
n

∞∑

j=1

|B2 j r |λ−1+α/n‖ f ‖�,λ,B2 j r
‖1‖�∗,λ,B2 j r

≤ C ′
3

∞∑

j=1

|B2 j r |λ−1+α/n‖ f ‖�,λ,B2 j r

�−1(|B2 j r |λ−1)

|B2 j r |λ−1

= C ′
3

n ln 2
‖ f ‖M�,λ(0)

∞∑

j=1

|B2 j r |α/n�−1(|B2 j r |λ−1)

∫ |B2 j r |

|B2 j−1r |
dt

t

≤ C ′
3

n ln 2
2α ‖ f ‖M�,λ(0)

∞∑

j=1

∫ |B2 j r |

|B2 j−1r |
tα/n�−1(tλ−1)

dt

t

≤ C3 ‖ f ‖M�,λ(0)

∫ ∞

|Br |
tα/n�−1(tλ−1)

dt

t
,

where C ′
3 = 2n−α+1v

1−α/n
n and C3 = 2α

n ln 2C ′
3. Thus, we arrive to the assertion of

Lemma 2. ��
Next, we show the following well-definedness of Iα f when f ∈ M�,λ(0).

Lemma 3 Let 0 < α < n, � be an Orlicz function and 0 ≤ λ < 1. If the integral∫∞
|Br | tα/n�−1(tλ−1) dt

t is convergent for any r > 0 and f ∈ M�,λ(0) then the Riesz
potential Iα f is well-defined.

Proof We will prove this lemma using the same arguments that were presented in the
proof in [30, Theorem 2.1]. Let f ∈ M�,λ(0), r > 0 and x ∈ Br , and let

Iα f (x) = Iα( f χB2r )(x) + Iα( f (1 − χB2r ))(x). (13)

Since f χB2r ∈ L1(Rn), the first term is well-defined. Indeed, in view of [31, Theorem
1.1, Chapter 2] the requirement Iα| f χB2r | ≡ ∞ for any f ∈ M�,λ(0) and r > 0 is
equivalent to

∫

B2r

(1 + |y|)α−n| f (y)| dy < ∞.

The last inequality is true since ‖(1 + |y|)α−n‖�∗,λ,B2r ≤ (1+2r)α−n

(�∗)−1(|B2r |λ−1)
and by

Lemma 1 (i) we obtain

∫

B2r

(1 + |y|)α−n| f (y)| dy ≤ 2|B2r |λ‖ f ‖�,λ,B2r ‖(1 + |y|)α−n‖�∗,λ,B2r

≤ 2|B2r |λ (1 + 2r)α−n

(�∗)−1(|B2r |λ−1)
‖ f ‖M�,λ(0) < ∞.
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For the second term for any x ∈ Br we have

|Iα( f (1 − χB2r ))(x)| ≤
∫

Rn\B2r

| f (y)|
|x − y|n−α

dy ≤ 2n−α

∫

Rn\B2r

| f (y)|
|y|n−α

dy.

Since the integral
∫∞
|Br | tα/n�−1(tλ−1) dt

t is convergent for any r > 0 and f ∈ M�,λ(0)
it follows from Lemma 2 that Iα( f (1 − χB2r ))(x) is well-defined for all x ∈ Br .

Further, since for 0 < s < r ,

f χB2s + f (1 − χB2s ) = f χB2r + f (1 − χB2r ),

it follows that for x ∈ Bs ⊂ Br ,

Iα( f χB2s )(x) + Iα( f (1 − χB2s ))(x) = Iα( f χB2r )(x) + Iα( f (1 − χB2r ))(x).

This shows that Iα f is independent of Br containing x . Thus, Iα f is well-defined on
R

n . ��
Now we will present sufficient conditions on spaces so that the operator Iα is

bounded between distinct central Morrey–Orlicz spaces. In the proofs of these esti-
mates we will use estimates from [28] for the Hardy–Littlewood maximal operator.
The Hardy–Littlewood maximal operator M is defined for f ∈ L1

loc(R
n) and x∈ R

n

by

M f (x) = sup
r>0

1

|B(x, r)|
∫

B(x,r)

| f (y)| dy.

Then, for anOrlicz function� and 0 ≤ λ ≤ 1, this operator M is bounded on M�,λ(0),
provided �∗ ∈ 	2, that is, there exists a constant C0 > 1 such that

‖M f ‖M�,λ(0) ≤ C0 ‖ f ‖M�,λ(0) for all f ∈ M�,λ(0) (14)

(see [28, Theorem 6(i)]). Moreover, M is bounded from M�,λ(0) to W M�,λ(0), that
is, there exists a constant c0 > 1 such that ‖M f ‖W M�,λ(0) ≤ c0 ‖ f ‖M�,λ(0) for all
f ∈ M�,λ(0) (see [28, Theorem 6(ii)]).

Theorem 3 Let 0 < α < n,�, be Orlicz functions and either 0 < λ,μ < 1, λ = μ

or λ = μ = 0. Assume that there exist constants C4, C5 ≥ 1 such that

∫ ∞

u
t

α
n �−1(tλ−1)

dt

t
≤ C4 −1(uμ−1) for all u > 0 (15)

and

∫ ∞

u
t

α
n �−1(

rλ

t
)

dt

t
≤ C5 −1(

rμ

u
) for all u > 0 and for all r > 0. (16)
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(i) If �∗ ∈ 	2, then Iα is bounded from M�,λ(0) to M,μ(0), that is, there
exists a constant C6 ≥ 1 such that ‖Iα f ‖M,μ(0) ≤ C6 ‖ f ‖M�,λ(0) for all
f ∈ M�,λ(0).

(ii) The operator Iα is bounded from M�,λ(0) to W M,μ(0), that is, there exists
a constant c6 ≥ 1 such that ‖Iα f ‖W M,μ(0) ≤ c6 ‖ f ‖M�,λ(0) for all f ∈
M�,λ(0).

Remark 1 The same conclusions hold for non-homogeneous versions of M�,λ(0) and
M,μ(0).

Remark 2 From the estimate (15) we get the inequality (a) in Theorem 2(i). Namely,
using the concavity of the function �−1 we get

∞∫

u

t
α
n �−1(tλ−1)

dt

t
≥

2u∫

u

t
α
n �−1(tλ−1)

dt

t
≥ u

α
n �−1((2u)λ−1) ln 2

≥ ln 2

21−λ
u

α
n �−1(uλ−1).

Remark 3 Note that if either λ = μ > 0 or λ = 0 and μ > 0, then estimate (16)
doesn’t hold.

Remark 4 If λ = μ = 0, then inequalities (15) and (16) are the same. Moreover,
condition (15) in this case is a sufficient condition for boundedness of Iα from Orlicz
space L�(Rn) to weak Orlicz space W L(Rn), and if additionally �∗ ∈ 	2 then Iα
is bounded from Orlicz space L�(Rn) to Orlicz space L(Rn) (proof we can find, for
example, in [20, Theorem 3.3]).

In the proof of Theorem 3 the following lemma plays a crucial role.

Lemma 4 Let 0 < α < n,�, be Orlicz functions, �∗ ∈ 	2 and either 0 < λ,μ <

1, λ = μ or λ = μ = 0. If the estimate (16) holds, then there exists a constant C7 ≥ 1
such that

∫

Br



⎛

⎜
⎜
⎝

∫
B2r

| f (y)|
|x − y|n−α

dy

C7 ‖ f ‖M�,λ(0)

⎞

⎟
⎟
⎠ dx ≤ |Br |μ, for all f ∈ M�,λ(0) and r > 0.

Proof Let f ∈ M�,λ(0). We write Iα( f χB2r ) as follows

Iα( f χB2r )(x) =
∫

B2r

| f (y)|
|x − y|n−α

dy =
∫

|x−y|≤δ

| f (y)χB2r (y)|
|x − y|n−α

dy

+
∫

|x−y|>δ

| f (y)χB2r (y)|
|x − y|n−α

dy =: J1 f (x) + J2 f (x),
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where δ > 0 will be defined later on. It is known that

J1 f (x) ≤ C8 |Bδ| α
n M( f χB2r )(x),

where C8 = 2α

2α−1 C ′
3. Note that for any parameters u > 0 and r > 0 we have

∞∫

u

t
α
n �−1

(
rλ

t

)
dt

t
≥

2u∫

u

t
α
n �−1

(
rλ

t

)
dt

t

≥ ln 2 u
α
n �−1

(
rλ

2u

)

≥ ln 2

2
u

α
n �−1

(
rλ

u

)

.

Thus, applying (16) we obtain

J1 f (x) ≤ 2

ln 2
C5 C8

−1
( |B2r |μ|Bδ |

)

�−1
( |B2r |λ|Bδ |

)M( f χB2r )(x).

Following Hedberg’s method we get for J2 f (x)

J2 f (x) =
∞∑

k=1

∫

2k−1δ<|x−y|≤2kδ

| f (y)χB2r (y)|
|x − y|n−α

dy

≤
∞∑

k=1

(2k−1δ)α−n
∫

|x−y|≤2kδ

| f (y)χB2r (y)| dy

=
∞∑

k=1

(2k−1δ)α−n
∫

B2r

| f (y)χB(x,2kδ)(y)| dy.

From Lemma 1 (i) and (ii) it follows that

J2 f (x) ≤ 2 |B2r |λ‖ f ‖�,λ,B2r

∞∑

k=1

(2k−1δ)α−n‖χB(x,2kδ)‖�∗,λ,B2r

≤ 2n−α+1‖ f ‖�,λ,B2r

∞∑

k=1

(2kδ)α−n|B2r ∩ B(x, 2kδ)|

· �−1
( |B2r |λ

|B2r ∩ B(x, 2kδ)|
)

.
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Taking into account that u�−1(1/u) is increasing and |B2r ∩ B(x, 2kδ)| ≤ |B(x, 2kδ)|
we obtain

J2 f (x) ≤ 2n−α+1‖ f ‖�,λ,B2r

∞∑

k=1

(2kδ)α−n�−1
( |B2r |λ

|B(x, 2kδ)|
)

|B(x, 2kδ)|

= 2n−α+1vn ‖ f ‖�,λ,B2r

∞∑

k=1

(2kδ)α�−1
( |B2r |λ

|B2kδ|
)

= C ′
3

n ln 2
‖ f ‖�,λ,B2r

∞∑

k=1

|B2kδ|
α
n �−1

( |B2r |λ
|B2kδ|

) |B2k δ
|∫

|B2k−1δ
|

dt

t

≤ C ′
3

n ln 2
‖ f ‖�,λ,B2r

∞∑

k=1

|B2kδ|
α
n

|B2k δ
|∫

|B2k−1δ
|
�−1

( |B2r |λ
t

)
dt

t

≤ C3 ‖ f ‖�,λ,B2r

∞∫

|Bδ |
t

α
n �−1

( |B2r |λ
t

)
dt

t

≤ C5 C3 ‖ f ‖M�,λ(0)
−1
( |B2r |μ

|Bδ|
)

.

Now we choose δ > 0 such that

M f (x)

C0 ‖ f ‖M�,λ(0)
= �−1

( |B2r |λ
|Bδ|

)

,

where the constant C0 is from (14). Then

J1 f (x) ≤ 2

ln 2
C5 C8 C0 ‖ f ‖M�,λ(0) −1

( |B2r |μ
|Bδ|

)

,

and

∫

B2r

| f (y)|
|x − y|n−α

dy = J1 f (x) + J2 f (x)

≤
(

2

ln 2
C5 C8 C0 + C5C3

)

‖ f ‖M�,λ(0) −1
( |B2r |μ

|Bδ|
)

Thus, with C9 = 2C5 max
( 2
ln 2C0C8, C3

)
we obtain

∫

B2r

| f (y)|
|x − y|n−α

dy ≤ C9‖ f ‖M�,λ(0)
−1

(

|B2r |μ−λ�

(
M f (x)

C0‖ f ‖M�,λ(0)

))

.
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Then



⎛

⎜
⎜
⎝

∫
B2r

| f (y)|
|x − y|n−α

dy

C9‖ f ‖M�,λ(0)

⎞

⎟
⎟
⎠ ≤ |B2r |μ−λ �

(
M f (x)

‖M f ‖M�,λ(0)

)

= 2n(μ−λ) |Br |μ−λ �

(
M f (x)

‖M f ‖M�,λ(0)

)

.

Finally, with C7 = 2n(μ−λ)C9 we get

1

|Br |μ
∫

Br



⎛

⎜
⎜
⎝

∫
B2r

| f (y)|
|x − y|n−α

dy

C7 ‖ f ‖M�,λ(0)

⎞

⎟
⎟
⎠ dx ≤ 1

|Br |λ
∫

Br

�

(
M f (x)

‖M f ‖M�,λ(0)

)

dx ≤ 1

and we arrive to the statement of this lemma. ��
Proof of Theorem 3 (i) Let 0 < α < n and 0 < λ < 1, 0 < μ < 1. Let also
f ∈ M�,λ(0) and r > 0. Since Iα f is well-defined by Lemma 3, we prove only that

‖Iα f ‖M,μ(0) ≤ C6 ‖ f ‖M�,λ(0).

Now, by (13), for C6 = 2 max(C7, 2n−αC3 C4), it follows that

∫

Br



(
|Iα f (x)|

C6 ‖ f ‖M�,λ(0)

)

dx

≤ 1

2

∫

Br



(
|Iα( f χB2r )(x)|
C7‖ f ‖M�,λ(0)

)

dx + 1

2

∫

Br



(
|Iα( f (1 − χB2r ))(x)|
2n−α C3 C4 ‖ f ‖M�,λ(0)

)

dx

=: 1

2
(I1 + I2) .

From Lemma 4 we get that I1 ≤ |Br |μ for all r > 0 .
Next, we estimate I2. Since for x ∈ Br and |y| ≥ 2r we have |x | < r ≤ |y|

2 and

|x − y| ≥ |y| − |x | >
|y|
2 , it follows that

|Iα( f (1 − χB2r ))(x)| ≤
∫

Rn\B2r

| f (y)|
|x − y|n−α

dy ≤ 2n−α

∫

Rn\B2r

| f (y)|
|y|n−α

dy. (17)

By Lemma 2 and the estimate (15) we obtain



⎛

⎜
⎜
⎝

∫
Rn\B2r

| f (y)|
|y|n−α

dy

C3 C4 ‖ f ‖M�,λ(0)

⎞

⎟
⎟
⎠ dx ≤ 

(
1

C4

∫

|B2r |
tα/n�−1(tλ−1)

dt

t

)
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≤ 
(
−1(|B2r |μ−1)

)
≤ |B2r |μ−1.

Thus, for x ∈ Br

I2 ≤
∫

Br



⎛

⎜
⎜
⎝

∫
Rn\B2r

| f (y)|
|y|n−α

dy

C3 C4 ‖ f ‖M�,λ(0)

⎞

⎟
⎟
⎠ dx ≤ |B2r |μ−1 · |Br | < |Br |μ.

Hence,

1

|Br |μ
∫

Br



(
|Iα f (x)|

C6 ‖ f ‖M�,λ(0)

)

dx < 1,

and so

‖Iα f ‖M,μ(0) ≤ C6 ‖ f ‖M�,λ(0).

(ii) Similarly to the previous case, by (13), we obtain for u > 0



(
|Iα f (x)|

c6 ‖ f ‖M�,λ(0)

)

≤ 1

2


(
|Iα( f χB2r )(x)|
c7 ‖ f ‖M�,λ(0)

)

+ 1

2


(
|Iα( f (1 − χB2r ))(x)|

2n−α+1 C3 C4 ‖ f ‖M�,λ(0)

)

=: 1

2
(I3 + I4) ,

with c6 = 2 max(c7, 2n−α+1 C3 C4), c7 = 2n(μ−λ)+1c9 and c9 = 2C5 max
( 2
ln 2c0

C8, C3
)
.

Since (u) d(g, u) = v d(g, −1(v)) = v d((g), v) for any u > 0 with v =
(u) and

d

(



(
|Iα f (x)|

c6‖ f ‖M�,λ(0)

)

, u

)

≤ d (I3, u) + d (I4, u) ,

it follows that

sup
u>0

(u)

|Br |μ d

(
|Iα f (x)|

c6‖ f ‖M�,λ(0)
, u

)

≤ sup
u>0

u

|Br |μ d (I3, u) + sup
u>0

u

|Br |μ d (I4, u) .

From the proof of Lemma 4 for all r > 0

I3 = 

(
|Iα( f χB2r )(x)|
c7 ‖ f ‖M�,λ(0)

)

≤ 1

2
|Br |μ−λ �

(
M f (x)

‖M f ‖W M�,λ(0)

)
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and

sup
u>0

u

|Br |μ d (I1, u) ≤ sup
u>0

u

|Br |μ d

(
1

2
|Br |μ−λ�

(
M f (x)

‖M f ‖W M�,λ(0)

)

, u

)

= 1

2
sup
u>0

u

|Br |λ d

(

�

(
M f (x)

‖M f ‖W M�,λ(0)

)

, u

)

= 1

2
sup
u>0

�(u)

|Br |λ d

(
M f (x)

‖M f ‖W M�,λ(0)
, u

)

≤ 1

2
.

For I4, using Lemma 2 we obtain

I4 = 

(
|Iα( f (1 − χB2r ))(x)|

2n−α+1 C3 C4 ‖ f ‖M�,λ(0)

)

≤ 1

2
|Br |μ−1

and

sup
u>0

u

|Br |μ d (I4, u) ≤ sup
u>0

u

|Br |μ d

(
1

2
|Br |μ−1, u

)

= 1

2
sup
u>0

u d

(
1

|Br | , u

)

≤ 1

2
.

Thus,

sup
u>0

(u)

|Br |μ d

(
|Iα f (x)|

c6‖ f ‖M�,λ(0)
, u

)

≤ 1

and ‖Iα f ‖W M,μ(0) ≤ c6 ‖ f ‖M�,λ(0). ��

Example 1 Let 0 < α < n, 1 < p <
n(1−λ)

α
, 0 ≤ λ < 1, and

�(u) = u p, (u) = uq with 1 < p < q < ∞.

Then �∗(u) = (p − 1) p−p′
u p′

, where 1/p + 1/p′ = 1 and �∗(2u) = 2p′
�∗(u),

that is, �∗ ∈ 	2. The estimate (15) holds since

∫ ∞

u
tα/n�−1(tλ−1)

dt

t
=
∫ ∞

u
t

α
n + λ−1

p
dt

t
= 1

1−λ
p − α

n

u
α
n + λ−1

p

for all u > 0, where the last integral is convergent because p <
n(1−λ)

α
. If 1

q = 1
p − α

n

and λ
p = μ

q , then
α
n + λ−1

p = λ
p − ( 1p − α

n ) = μ
q − 1

q and

∫ ∞

u
tα/n�−1(tλ−1)

dt

t
= q

1 − μ
u

μ−1
q = q

1 − μ
−1(uμ−1),
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that is, the estimate (15) holds. Also estimate (16) holds since for all u, r > 0

∫ ∞

u
t

α
n �−1

(
rλ

t

)
dt

t
= r

λ
p

∫ ∞

u
t

α
n − 1

p
dt

t
= r

λ
p

1
p − α

n

u
α
n − 1

p

= q r
μ
q u−1/q = q −1

(
rμ

u

)

.

From the Theorem 3 we get the Spanne–Peetre type result proved in [12, Proposition
1.1], that is, the Riesz potential Iα is bounded from M p,λ(0) to Mq,μ(0) under the
conditions 1 < p <

n(1−λ)
α

, 0 ≤ λ < 1, 1
q = 1

p − α
n and λ

p = μ
q .

Remark 5 It is easy to see that for 0 ≤ λ < 1 if �1,�2 are two Orlicz functions
and there exists a constant k > 0 such that �2(u) ≤ �1(ku) for all u > 0, then

‖ f ‖�2,λ,A ≤ k ‖ f ‖�1,λ,A provided the right side is finite. Furthemore, M�1,λ(Rn)
k

↪→
M�2,λ(Rn) and M�1,λ(0)

k
↪→ M�2,λ(0). Hence it follows that if two Orlicz functions

�1,�2 are equivalent, i.e. there exist positive constants k1, k2 such that �1(k1u) ≤
�2(u) ≤ �1(k2u) for all u > 0, then M�1,λ(Rn) = M�2,λ(Rn) and M�1,λ(0) =
M�2,λ(0) with equivalent norms.

Example 2 Let 0 < α < n, 0 ≤ λ < 1, 1 < p <
n(1−λ)

α
, a > 0 and

�−1(u) =
{

u
1
p for 0 ≤ u ≤ 1,

u
1
p (1 + ln u)−a for u ≥ 1,

−1(u) = u
1
q with 1 < p < q < ∞.

If 1
q = 1

p − α
n , λ

p = μ
q , then condition (15) is satisfied. Really, for u ≥ 1we have equal-

ity as in the Example 1. If 0 < u < 1, then using the fact that function
(
1 + ln tλ−1

)−a

is strictly increasing of variable t on (0, 1], we get (1 + ln tλ−1
)−a ≤ 1 for 0 < t ≤ 1

and so

∫ ∞

u
tα/n�−1(tλ−1)

dt

t
=
∫ 1

u
t

α
n + λ−1

p (1 + ln tλ−1)−a dt

t
+
∫ ∞

1
t

α
n + λ−1

p
dt

t

≤
∫ ∞

u
t

α
n + λ−1

p
dt

t
= u

α
n + λ−1

p

1−λ
p − α

n

= q

1 − μ
u

μ−1
q

= q

1 − μ
−1(uμ−1),

that is, the estimate (15) holds. Next, we consider condition (16). If u ≥ rλ, then

∫ ∞

u
t

α
n �−1

(
rλ

t

)
dt

t
= r

λ
p

∫ ∞

u
t

α
n − 1

p
dt

t
= r

λ
p

1
p − α

n

u
α
n − 1

p = q r
μ
q u− 1

q = q −1
(

rμ

u

)

.
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Let now 0 < u < rλ. Then, (1+ ln rλ

t )−a ≤ 1 as an increasing function of t on (0, rλ]
and since u < t ≤ rλ, we have

∫ ∞

u
t

α
n �−1

(
rλ

t

)
dt

t
= r

λ
p

∫ rλ

u
t

α
n − 1

p

(

1 + ln
rλ

t

)−a
dt

t
+ r

λ
p

∫ ∞

rλ

t
α
n − 1

p
dt

t

≤ r
λ
p

∫ rλ

u
t

α
n − 1

p
dt

t
+ r

λ
p

∫ ∞

rλ

t
α
n − 1

p
dt

t

= r
λ
p

∫ ∞

u
t

α
n − 1

p
dt

t
= r

λ
p

1
p − α

n

u
α
n − 1

p = q r
μ
q u− 1

q = q −1
(

rμ

u

)

,

that is, the estimate (16) holds. The function�−1 is increasing, unbounded, obviously
concave on (0, 1) and concave for large u. Therefore, there exists a concave function
on (0,∞) which is equivalent to �−1 and so � is equivalent to an Orlicz function.
Also we have equivalence

�(u) ≈
{

u p for 0 ≤ u ≤ 1,

u p (1 + ln u)ap for u ≥ 1.

Moreover, since

s�−1(t) =
{

t1/p(1 − ln t)a for 0 < t ≤ 1,

t1/p for t ≥ 1,

it follows that the Matuszewska–Orlicz index β�−1 = 1
p and so 1 = 1

β�∗ + 1
α�

=
1

β�∗ + β�−1 = 1
β�∗ + 1

p or β�∗ = p
p−1 < ∞, which means that �∗ ∈ 	2 (for

definitions and properties of indices – see [26, pp. 87–89]). Thus, by Remark 5, the
space M�,λ(0) is a Banach space and by Theorem 3 the Riesz potential Iα is bounded
from M�,λ(0) to M,μ(0) = Mq,μ(0).

Example 3 Let 0 < α < n, 0 ≤ λ < 1, 1 < p <
n(1−λ)

α
, 0 ≤ b ≤ a and

�−1(u) = u
1
p (1 + | ln u|)−a and −1(u) = u

1
q (1 + | ln u|)b for u > 0.

If 1
q = 1

p − α
n , λ

p = μ
q , then conditions (a), (b) of Theorem 2(i) and (15), (16) are

satisfied. The calculations are similar to those in Example 2 so we will omit them here.
Observe only that

s�−1(t) = t1/p(1 + | ln t |)a, s−1(t) = t1/q(1 + | ln t |)b.

Then, the functions �−1, −1 are increasing, unbounded and concave near 0 and
for large u, and so the inverses �, are equivalent to Orlicz functions. Thus, by
Remark 5, the spaces M�,λ(0), M,μ(0) are Banach spaces and by Theorem 3 the
Riesz potential Iα is bounded from M�,λ(0) to M,μ(0).
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