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Abstract
This thesis brings together three thematic topics, PageRank of evolving tree graphs, stopping criteria 
for ranks and perturbed Markov chains with damping component. The commonality in these topics 
is their focus on ranking problems in information networks. In the fields of science and engineering, 
information networks are interesting from both practical and theoretical perspectives. The fascinating 
property of networks is their applicability in analysing broad spectrum of problems and well established 
mathematical objects. One of the most common algorithms in networks' analysis is PageRank. It 
was developed for web pages’ ranking and now serves as a tool for identifying important vertices 
as well as studying characteristics of real-world systems in several areas of applications. Despite 
numerous successes of the algorithm in real life, the analysis of information networks is still challenging. 
Specifically, when the system experiences changes in vertices /edges or it is not strongly connected or 
when a damping stochastic matrix and a damping factor are added to an information matrix. For these 
reasons, extending existing or developing methods to understand such complex networks is necessary.

Chapter 2 of this thesis focuses on information networks with no bidirectional interaction. They are 
commonly encountered in ecological systems, number theory and security systems. We consider certain 
specific changes in a network and describe how the corresponding information matrix can be updated 
as well as PageRank scores. Specifically, we consider the graph partitioned into levels of vertices and 
describe how PageRank is updated as the network evolves.

In Chapter 3, we review different stopping criteria used in solving a linear system of equations and 
investigate each stopping criterion against some classical iterative methods. Also, we explore whether 
clustering algorithms may be used as stopping criteria.

Chapter 4 focuses on perturbed Markov chains commonly used for the description of information 
networks. In such models, the transition matrix of an information Markov chain is usually regularised 
and approximated by a stochastic (Google type) matrix. Stationary distribution of the stochastic matrix 
is equivalent to PageRank, which is very important for ranking of vertices in information networks. 
Determining stationary probabilities and related characteristics of singularly perturbed Markov chains 
is complicated; leave alone the choice of regularisation parameter. We use the procedure of artificial 
regeneration for the perturbed Markov chain with the matrix of transition probabilities and coupling 
methods. We obtain ergodic theorems, in the form of asymptotic relations. We also derive explicit upper 
bounds for the rate of convergence in ergodic relations. Finally, we illustrate these results with numerical 
examples.
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Populärvetenskaplig sammanfattning 

Ett nätverk är ett system av sammankopplade enheter eller objekt. Objekten 

representeras av hörn och sammankopplade av kanter (länkar) som representerar 

relationer mellan dem. En matematisk modell härledd från ett nätverk är ett av de 

främsta sätten att modellera komplexa system. 

     I sådana modeller kräver användare normalt en handfull information från ett  stort 

dataset. Att identifiera inflytelserika enheter i ett nätverk har många 

användningsområden:-folkhälsofrämjande och medvetenhet, cancer-genidentifiering, 

utvärdera forskningsavtryck och ekologisk förvaltning, för att bara nämna några. 

PageRank-algoritmen är ett av de mest kända verktygen för rangordning av webbsidor 

i ett informationsnätverk. Den utvecklades för att hitta relativ betydelse för webbsidor; 

emellertid har den anpassats till många applikationer. 

      Avhandlingen inleds med beskrivning av metoder för uppdatering av PageRank 

för ett riktat träddiagram under utveckling. Sådana informationsnätverk förekommer 

ofta i citat och ekologiska nätverk. Att hitta viktiga noder i ekologiska nätverk är 

viktigt när ekologer vill undvika utrotning av kritiska arter eller fragmentering i 

systemet. Dessutom presenterar avhandlingen ett rankningsproblem som är associerat 

med konvergensen mellan PageRank och rangordningar, en uppgift som är nödvändig 

när rangordningen av objekt väger mer än att hitta korrekta PageRank-poäng. Till 

exempel i sport är fotbollsfans intresserade av en lista över bästa spelare eller lag i en 

viss liga, inte numeriska poäng kopplade till varje spelare eller lag. 

      Diskreta slumpmässiga processer är vanliga i verkliga livet och det återspeglar vårt 

naturliga sätt att hänvisa till tidigare, nuvarande och framtida ögonblick. Om framtida 

händelser av en slumpmässig process beror på nutiden men inte det förflutna, uppvisar 

processen vad som kallas Markov-egenskapen. En process med en sådan egenskap har 

många tillämpningar inom teknik och modellering av komplexa system. Vid rankning 

av noder i ett informationsnätverk är det vanligt att introducera en dämpande term i 

sådana Markov modeller (kort sagt, störda Markov modeller). Avhandlingen beskriver 

proceduren för inbäddning av en sådan Markov-kedja i modellen för regenerativ 

process (det vill säga en process som startar om sig själv), i sin tur, leder till 

förnyelsestypsekvationer som är enklare att hantera. För detta ändamål erhålls vissa 

egenskaper som är användbara för att fatta beslut. Några egenskaper hos störda 

Markov-kedjor såsom konvergenshastighet (hastighet) och asymptotiska förhållanden 

för övergångssannolikheter i tid och dämpningsparameter för Markov-kedjor med 

dämpningskomponent diskuteras. 
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           Popular science summary 

A network is a system of interconnected entities or objects. The objects are represented 

by vertices and interconnected by edges (links) which signify relations between them. 

A mathematical model derived from a network is one of the foremost means of 

modeling complex systems. In such models, users normally require a handful of 

information from a large dataset. Identifying influential entities in a network has many 

applications:- public health promotion and awareness, cancer-gene identification, 

evaluating research footprint and ecological management, to name but a few. One of 

the most well known tools for ranking webpages of an information network is the 

PageRank algorithm. It was developed for finding relative importance of web pages; 

however, it has been adapted to many applications. 

     The thesis begins with description of methods of updating PageRank of an evolving 

directed tree graph. Such information networks are commonly encountered in citation 

and ecological networks. Finding important nodes in ecological networks is vital when 

ecologists want to avoid extinction of critical species or fragmentation in the system. 

Furthermore, the thesis discusses convergence of PageRank and ranks, a task that is 

essential when ranks of objects weigh more than finding accurate PageRank scores. 

For example, in sport, soccer fans are interested in a list of best players or teams in a 

particular league, not numerical scores attached to each player or team. 

      Discrete time random processes are common in real life and it reflects our natural 

way of referring to past, present and future moments. If the future occurrences of a 

random process depend on the present but not the past, then the process exhibits what 

is called the Markov property. A process with such a property has many applications 

in engineering as well as modeling of complex systems. When ranking nodes in an 

information network, it is common to introduce a damping term in such Markov 

models (in short, a perturbed Markov models). The thesis describes the procedure of 

embedding such a Markov chain in the model of discrete time regenerative process 

(that is, a process that restarts itself), in turn, lead to renewal type equations that are 

simpler to handle. To this end, some quantities that are useful in making decision are 

obtained. For instance, some characteristics of the perturbed Markov chains such as 

the rate (speed) of convergence and asymptotic relations for transition probabilities in 

time and damping parameter for Markov chains with damping component are 

discussed. 
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The following papers are not included in the thesis:

� Pitos Seleka Biganda, Benard Abola, Christopher Engström, Sergei
Silvestrov, PageRank, connecting a line of nodes with multiple com-
plete graphs, Proceedings of the 17th Applied Stochastic Models and
Data Analysis International Conference with the 6th Demographics
Workshop. London, UK, 2017. ISAST: International Society for the
Advancement of Science and Technology, 2017, 113–126.

� Pitos Seleka Biganda, Benard Abola, Christopher Engström, John
Magero Mango, Godwin Kakuba, Sergei Silvestrov, Traditional and
lazy PageRanks for a line of nodes connected with complete graphs,
Stochastic Processes and Applications (S. Silvestrov, M. Ranc̆ić, A.
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Chapter 1

Introduction

Information retrieval refers to a process of representing, storing, organis-
ing and accessing information from documents, web pages and many others.
The process of retrieving relevant information that satisfies users’ need can
be traced back about 5 millennia years ago [12, 13, 119]. In that era, pieces
of information were documented in either papyrus rolls or clay tablets, and
accessing relevant information was a great challenge [13, 88, 98]. This has
persisted up to the present time. In view of [5], filtering information from a
web-graph is complicated because the environment can not be controlled. In
some instances, one needs to pay attention to redundant attributes, compo-
sition of the structure(s), users’ behaviour and partial or overall changes in
the network [1, 2, 8, 35,36,38].

Currently, the need for easy access to relevant information within optimal
time is great. The demand seems to overweigh the existing classical meth-
ods of information retrieval such as Boolean, vector space models and text
frequency-inverse document frequency and the probabilistic method [5, 77].

To deal with the challenge of ranking or retrieving relevant pieces of infor-
mation in graph models, PageRank algorithm, developed by Brin and Page
in late 1990s for Google search engine [23], is one of the most preferred. The
novelty of Brin and Page’s search algorithm forms one of the greatest appli-
cations of Markov chains, pioneered by Andrei A. Markov [130]. Importantly,
research areas of Markov chain and semi Markov chain processes, perturbed
stochastic processes and their applications have been extensively investigated
for decades [103]. However there is still much more to be done.

Essentially, perturbed Markov chains have applications in engineering
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Perturbed Markov Chains with Damping Component and
Information Networks

such as communication, reliability and queuing. The stationary distribution
and related characteristics of the aforementioned systems vary with time
as well as the perturbation parameter, resulting in triangular array mode
which is challenging to understand. The problem gets more complicated for
perturbed Markov chains with finite phase space, where interaction within a
subsystem is stronger than between subsystems [103,139].

In addition to the above, updating the stationary distribution of Markov
chains when edges or vertices of such a system change comes with numerical
computational bottlenecks. However, such Markov chain models have various
applications in internet search engines, biology, finance, transport, queuing
networks and telecommunications [3, 4, 23, 33,36,47,76,125].

To contribute to information network analysis, this thesis focuses on:

1. PageRank of evolving tree graphs,

2. Evaluation of stopping criteria for ranks in solving a linear system of
equations,

3. Perturbed Markov chains with damping component.

The thesis is organised as follows: Chapter 1 introduces the general his-
toric background, applications and recent advances in PageRank and net-
works. This will be equipped with numerous concepts of graph partition,
properties of non-negative matrices, discrete time Markov process, coupling
methods for Markov chains and PageRank computation.

Chapter 2, which is composed of Papers A,B and C, gives the explicit
formulae to update transition matrices of evolving directed tree graphs. In
addition, the chapter presents algorithms of updating a matrix of transition
matrices and PageRank of an evolving tree graph.

Chapter 3, which is based on Paper D, explores the numerical experi-
ments on stopping criteria in solving linear systems with link-based ranking
problem. Also, the chapter illustrates how the clustering algorithm can be
used as a stopping criterion.

Chapter 4, which is based on Papers E,F,G and H, focuses on per-
turbed Markov chain models applied in description of information networks
and PageRank. We describe coupling explicit estimates for the rates of con-
vergence in ergodic theorems for Markov chains with damping component.
Furthermore, discusses ergodic theorems for Markov chains with damping
component in triangular array mode. We illustrate with numerical examples
some of the results.
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PageRank and its Applications

1.1 PageRank and its Applications

This subsection presents a brief historical background, applications, some
advances in the computation of PageRank as well as the common variants of
PageRank.

PageRank is an algorithm that uses link structure of the web to assign
relative importance to each web page. According to [23, 93], a web page is
assumed to be important if some other important pages point to it.

Since the related work on the World Wide Web Worm by McBryan Oliver
A. in the early 1990s [89], research on web search engines has attracted con-
siderable attention among scientific communities. One noticeable research
work in this direction was the development of the Google search engine al-
gorithm. The ranking algorithm is referred to as PageRank and the main
idea of the algorithm is to determine the stationary distribution (Perron vec-
tor) of the Google matrix. The rank algorithm outperforms other centrality
measures because it is based on a natural perception that an object is more
important (relevant) if it is referenced by other important objects, for exam-
ple in opinion leader detection [94]. Importantly, in biological systems, the
stability of the algorithm has attracted attention because it gives a modest
number of false positives and false negatives [64]. Additionally, the algorithm
can be used to compare the ranks of two disconnected networks, where cen-
trality measures such as an eigenvector cannot be applied. We recommend
the following papers and books where details of these mathematical objects
are discussed [5, 38,76,92,102,120–122].

1.1.1 Methods of computing PageRank

In many instances, PageRank problem is approached as an eigenvector prob-
lem and can be computed using the power method. Because of other technical
issues, for instance, when damping factor c is very close to 1, convergence of
the power method slows down [137]. Besides, such a value of c can not be
applied in fast–changing Markov chains or processor-shared queues [69, 70].
Most commonly, the damping factor c = 0.85 is recommended for web graphs.
With this choice of c, power method can effectively be used.

Several computational methods have been developed, namely Power se-
ries [5], Monte Carlo methods [10], aggregation/disaggregation method [19],
the inner-outer methods [48], adaptive method [66], extrapolation method
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[67] and Arnoldi-type algorithm [137]. We would like to mention the fol-
lowing recent research papers [37, 55], where PageRank algorithm has been
improved. Specifically, in [55] an algorithm, known as Arnoldi-Inout can effi-
ciently compute the PageRank vector in a case where damping factor is close
to 1, while [37] developed a new method that handles changing networks.

1.1.2 The applications and variants of PageRank

Recently, several applications of PageRank have been identified, for example,
in natural language processing and biology [33], green supply chain manage-
ment [40], number theory [43], video object tracking [49], ecology and dynam-
ical systems [47] community detection [61], complex products and systems
in mechanical engineering design [80], gene prioritization in biological net-
works [132] and combating web spam [54,141]. These signify that PageRank
algorithm has plentiful of applications in real life.

Not withstanding, there are several variants of PageRank, namely per-
sonalized PageRank [60], topical PageRank [58], Ranking with backstep
[123, 124], Query-Dependent PageRank [46], lazy PageRank [26] and many
others. It should be pointed out that algorithms that are similar to PageR-
ank exist. For instance, EigenTrust algorithm [68], DeptRank algorithm [15]
and PageRank-based vulnerable transmission lines screening algorithm [84].
As indicated in [17], bibliography concerning different aspects of PageRank
exist in literature.

1.1.3 Forms of information networks

It is well known that information networks take several forms. Networks such
as citation, social networks, protein-protein interaction and communication
include either strongly connected components or connected acyclic compo-
nents or both. On the other hand, there are systems that are modeled as tree
graphs. For example networks of integers, ecological systems and triangular
network coding [38,126].

Motivated by applications of directed tree graphs and drawbacks usually
encountered during updating PageRank when changes occur in the infor-
mation network, developing an algorithm that focuses on such a structure
should be of interest. We propose an algorithm for recalculating PageRank
of evolving tree graphs. Specifically, an algorithm that relies on the levels
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PageRank Scores and Ranks

of vertices to update PageRank. This way one can update PageRank of the
affected vertices only. We also look at how to maintain cyclic components
in an evolving tree graph. The discussion on these subjects is presented in
Chapter 2.

1.2 PageRank Scores and Ranks

It is well known that PageRank is a solution of a large sparse linear system.
While many iterative schemes to handle such systems exist, such numerical
computations are becoming demanding [22]. Moreover, only a small number
of relevant pages are provided by search engines, which is termed as ranking
of web pages [71]. Several researchers have questioned the need to determine
accurate PageRank scores [19,22,49,57,134–136].

In the view of Haveliwala [57], if the PageRank vector is to be used for
establishing the importance of pages, the convergence should be measured
based on how the ordering changes as the number of iterations increases.
While Berkhin [19] questioned the sense to iterate beyond the accuracy that
establishes the order of the pages in a search engine analysis.

Boldi, Santini and Vigna [22] pointed out that it is the relative order of
pages for PageRank that is interesting for search engines not the accuracy
of the PageRank vector itself. This seems to suggest that rank-ordering as
an algorithm should provide a few number of iterations that are sufficient
for identifying important web pages. Consequently, the time complexity of
the algorithm can be drastically reduced. As a matter of fact, paying much
attention to the accurate solution of a linear system underscores the practical
significance for ranking in areas where it is applied. This motivates the need
to evaluate stopping criteria concerning ranks. In Chapter 3, we propose
clustering algorithms as stopping criteria.

1.3 Perturbed Markov Chains with Damping

Component

Perturbed Markov chains are important objects of study in the theory of
Markov processes and their application to stochastic networks, queuing and
reliability models, bio-stochastic systems and many other stochastic models.

23

PageRank Scores and Ranks

of vertices to update PageRank. This way one can update PageRank of the
affected vertices only. We also look at how to maintain cyclic components
in an evolving tree graph. The discussion on these subjects is presented in
Chapter 2.

1.2 PageRank Scores and Ranks

It is well known that PageRank is a solution of a large sparse linear system.
While many iterative schemes to handle such systems exist, such numerical
computations are becoming demanding [22]. Moreover, only a small number
of relevant pages are provided by search engines, which is termed as ranking
of web pages [71]. Several researchers have questioned the need to determine
accurate PageRank scores [19,22,49,57,134–136].

In the view of Haveliwala [57], if the PageRank vector is to be used for
establishing the importance of pages, the convergence should be measured
based on how the ordering changes as the number of iterations increases.
While Berkhin [19] questioned the sense to iterate beyond the accuracy that
establishes the order of the pages in a search engine analysis.

Boldi, Santini and Vigna [22] pointed out that it is the relative order of
pages for PageRank that is interesting for search engines not the accuracy
of the PageRank vector itself. This seems to suggest that rank-ordering as
an algorithm should provide a few number of iterations that are sufficient
for identifying important web pages. Consequently, the time complexity of
the algorithm can be drastically reduced. As a matter of fact, paying much
attention to the accurate solution of a linear system underscores the practical
significance for ranking in areas where it is applied. This motivates the need
to evaluate stopping criteria concerning ranks. In Chapter 3, we propose
clustering algorithms as stopping criteria.

1.3 Perturbed Markov Chains with Damping

Component

Perturbed Markov chains are important objects of study in the theory of
Markov processes and their application to stochastic networks, queuing and
reliability models, bio-stochastic systems and many other stochastic models.

23

23



Perturbed Markov Chains with Damping Component and
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We refer here to some recent books and papers devoted to perturbation
problems for Markov type processes, [3,4,6,7,9,11,21,31,35,45,52,53,56,72–
74,85,90,91,95,106,109,112,114–118,120–122,138,140].

In particular, we would like to mention works [9, 53, 114, 115], where ex-
tended bibliographies of works in the area and the corresponding method-
ological and historical remarks can be found. We are especially interested
in models of Markov chains commonly used for description of information
networks. In such models, an information network is represented by the
Markov chain associated with the corresponding node-link graph. Stationary
distributions and other related characteristics of information Markov chains
usually serve as basic tools for ranking of nodes in information networks.

The ranking problem may be complicated by singularity of the corre-
sponding information Markov chain, where its phase space is split into several
weakly or completely non-communicating groups of states. In such models,
the matrix of transition probabilities P0 of the information Markov chain
is usually regularised and approximated by a matrix Pε = (1 − ε)P0 + εD,
where D is a so-called damping stochastic matrix with identical rows and all
elements positive, while ε ∈ [0, 1] is a damping (perturbation) parameter.

Power method is one of the most convenient and robust methods to ap-
proximate the corresponding stationary distribution ~πε by rows of the matrix
Pn
ε , for some n ≥ 1. The damping parameter ε should be chosen neither too

small nor too large. In the first case, where ε takes too small values, the
damping effect will not work against absorbing and pseudo-absorbing ef-
fects, since the second eigenvalue for such matrices (determining the rate
of convergence in the above mentioned ergodic approximation) takes values
approaching 1. In the second case, the ranking information (accumulated by
the matrix P0 via the corresponding stationary distribution) may be partly
lost, due to the deviation of the matrix Pε from matrix P0.

This actualises the problem of estimating rate of convergence for per-
turbed stationary distribution ~πε with respect to damping parameter ε, as
well as studies of asymptotic behaviour of matrices Pn

ε in triangular array
mode, where ε → 0 and n → ∞, simultaneously. We would like to mention
some works [95, 105–111], which have results related to ergodic theorems in
triangular array mode and the so–called quasi-stationary ergodic theorems
for perturbed regenerative processes, Markov chains and semi-Markov pro-
cesses.
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Preliminaries

1.3.1 Google matrix and damping parameter

It is well known that associated to a set of web pages of an information
network is the Google matrix denoted by G [9, 23, 33, 34, 76]. The matrix
of transition probabilities is usually defined as G = cP + (1 − c)E, where
P is an m×m row-stochastic matrix (also called hyperlink matrix), E (the
damping matrix) is the m × m rank-one stochastic matrix and c ∈ (0, 1)
is the damping parameter. We refer you to the following papers [5, 59, 77]
and a classical textbook by Langville and Meyer [76], where properties of the
matrices G and P are presented. Note that if c = 1, then P corresponds
to G. The analysis of Google matrix of information networks can become
challenging when the links of networks are very large and damping parameter
is close to 1 [20,38,44].

The damping factor c may be denoted and interpreted differently depend-
ing on the model being studied. For instance, a model of Markov chain with
restart is considered in [11], where parameter p is the probability to restart
the move and 1 − p is the probability to follow the link according to the
corresponding transition probability of the above Markov chain. Hence, one
can argue that the parameter p has the same interpretation as the damping
factor in Google’s PageRank problem.

Our representation of perturbed Markov chains is traditional for per-
turbed stochastic processes. In Chapter 4, the damping factor commonly
denoted as c is rewritten as perturbation parameter ε = 1 − c. Also, we
denote the damping matrix E previously mentioned by D. Hence, It is es-
sential to point out here that, representation of information network model by
a Markov chain with a matrix of transition probabilities Pε = (1−ε)P0 +εD
should not create any confusion to readers.

1.4 Preliminaries

In this section, we will highlight some key definitions, notations and concepts
necessary for readers to follow-up the thesis. Material presented here is partly
based on [24,27–29,62,78,131,133]. We begin with useful concepts in graph
theory.
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1.4.1 Some basic definitions in graph theory

The terms graph and information network will be used interchangeably. Mod-
eling information networks using graphs is common and ranges from simple
to complex graphs, directed or undirected graphs depending on the assign-
ments on the edges. However, we are interested in directed graphs, unless
otherwise specified.

An example of a directed graph is a transition diagram of a Markov
chain where the vertices and edges represent the states and transition from
one state to another, respectively. In this case, each edge is assigned a
transition probability (weight) if there is a direct edge from one state to
the neighbouring state. Such directed information networks have various
applications in modern information systems.

Let G := (V,E) be a directed graph, a set of vertices and edges are
denoted by V and E, respectively. Hereafter, any graph with loops or cyclic
components will be denoted by G and a graph without cycles will be denoted
by T . We represent the number of vertices by |V |.

A path consists of a sequence of distinct vertices v1, v2, . . . , vl such that
for any two vertices vi and vi+1 there is an edge starting from vi and ending
at vi+1. Suppose u = v1 and v = vl such that in the sequence v1, v2, . . . , vl,
we have u = v, then the subgraph consisting of these vertices and edges is a
cycle.

Definition 1.4.1. A directed graph G is called strongly connected if for
every pair of vertices (vi, vj), there is an edge from vi to vj and an edge from
vj to vi.

On the other hand, a directed graph is said to be a directed acyclic graph
(DAG) if it does not contain cycles. In other words, DAG is a finite directed
graph with no directed cycles. In a case where two vertices do not have an
edge from either direction then it is disconnected.

1.4.2 Graph partition

A subgraph G1 = (V1, E1) of G is said to be a maximal strongly connected
component if after removal of one of its edges, the subgraph ceases to be
a strongly connected component. That is to say, every subgraph G1 ⊂ G
is a strongly connected component if it is a maximal strongly connected
subgraph. Obviously, by maximal property each vertex belongs to a single
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strongly connected component (SCC). Take a case where a vertex vs belongs
to two SCCs G1 and G2, then the union is a SCC (by definition of strongly
connected component of a graph).

On the other hand, if we assume that a graph G consists of strongly
connected components G1 and G2, where there is an edge from G1 to G2, this
could only happen if there exist at least one vertex vs ∈ G1, vt ∈ G2 and
vs 6= vt. It turns out that the corresponding graph G is a directed acyclic
graph. For more discussion, one is referred to [33,51].

A strongly connected graph G = (V,E) can be partitioned into a finite
number of subgraphs G1,G2, . . . ,Gr, for r ≥ 1 such that the corresponding
sets of vertices are ordered as V1, V2 . . . , Vr, where Vi

⋂
Vj = ∅, for i 6= j.

In the case where G has several SCCs, the components can be ordered
as a directed acyclic graph, such that each component is represented by a
single vertex, that is, we merge a subset of vertices of each component into
one vertex.

The overall adjacency matrix associated to G takes a block triangular
form A as in relation (1.1) [127].

A =



A11 A12 A13 · · · A1r

0 A22 A23 · · · A2r

...
. . . . . . . . .

...
...

...
. . . . . . Ar−1r

0 0 · · · 0 Arr


, (1.1)

where Aii, i = 1, . . . , r are block square matrices corresponding to strongly
connected components, Aij, for i < j, i, j = 1, . . . , r are not square matrices
and 0 is a matrix with all entries zero.

The case where Aij = 0, for i < j, i, j = 1, . . . , r, in relation (1.1), implies
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A = A11 indicates that the graph consists of only one strongly connected
component. Clearly, A11 is linked to sub-matrices Aii, i = 2, . . . , r − 1,
however the sets of vertices V2, V3 . . . , Vr are disjointed. Such a matrix rep-
resentation is common in Markov diagrams.

Essentially, any matrix can be partitioned as matrix A provided it is de-
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in computing sparse matrices, finding inverses as well as determining eigen-
values [18, 51, 101]. We use this reordering technique to study evolving tree
graphs and perturbed Markov chains with damping component in Chapter
2 and Chapter 4, respectively.

In a directed tree graph, the associated information matrix is nilpotent.
For such a graph, a vertex with no incoming edge is called a root and a
vertex with no outgoing edge is referred to as a leaf (dangling vertex, as
usually called in PageRank problem).

Note that reordering vertices of a graph leads to grouping vertices into
levels. If a graph consists of connected components such as SCCs and con-
nected acyclic components (CACs), then we talk of level of a component
because all the vertices that form the component have the same level. On
the other hand, if a graph consists of connected 1-vertex SCCs, it is appro-
priate to say level of a vertex. To shed light on what a level of a vertex is,
let us define the term connected acyclic component [36].

Definition 1.4.2. Let G be a simple directed connected graph. A connected
acyclic component (CAC) of G is a subgraph G1 of G such that its vertices
are not part of a non-loop cycle in G and the underlying graph is connected.
Furthermore, any edge in G that exist between any two vertices in G1 belong
to G1. A vertex in the CAC with no edge to any other edge in the CAC, we
refer to it as a leaf of the CAC.

Partitioning a graph into SCCs/CACs have the following features:- each
vertex v ∈ G belongs to one and only one component. If each component
is merged into a single vertex, the resultant directed graph forms a directed
acyclic graph. This is a connected directed graph with no loop. Further-
more, since the vertices of DAG correspond to components of G, any edge
between any two of such vertices corresponds to edges between associated
components. In this case, the edges between the components should have
the same direction as in DAG. Based on Definition 1.4.2, a CAC can be
viewed as a linked graph of 1-vertex SCCs which is essentially a tree.

Definition 1.4.3. A level of a component LC of a graph G is the length
of the longest path in the underlying DAG starting in component C to any
other components. On the other hand, a level of a vertex L(vi) of a graph
G is the length of the longest path in the underlying DAG starting at vi to
any other vertices.
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To determine levels of vertices of a graph from another vertex with a
known level can be achieved as follows:

Example 1.4.1. Assume that vertices vs and vt belong to a tree graph
T (V,E). Suppose the level of the vertex vt is known, L(vt), say. Let us
denote the length of the longest path from vt to vs by k(≥ 0). In this case,
the level of vs is expressed as

L(vs) = min(L(vt), L(vt)− k), for L(vt) ≥ k.

We would like to remark that negative levels are also possible.

1.4.3 Some properties of nonegative matrices

We present some properties of nonnegative matrices and explore connections
between such matrices and corresponding graphs.

A matrix A of order m × m is referred to as nonnegative if each entry
aij ≥ 0, i, j = 1, 2, . . .m. This class of matrices has many applications in
real life, for instance economics [18], internet search engines [23, 77, 93] and
biological fields [33].

Significant progress in the field of nonnegative matrices has been accred-
ited to Perron-Frobenius theory [75, 76] and combinatorial properties, such
as irreducibility and primitivity [24]. An example of a nonnegative matrix in
practice is the transition matrix of a Markov chain. A nonnegative matrix
derived from a directed network can be a stochastic or sub-stochastic matrix.
A sub-stochastic matrix arises if some vertices do not have outgoing edges.
The following definition gives a scaled adjacency matrix.

Definition 1.4.4. Let G = (V,E) be a directed graph with the total number
of vertices m = |V | and |E| the number of vertices and edges, respectively.
A weighted adjacency matrix A = [aij], for i, j = 1, . . . ,m, of G is the m×m
matrix with elements

aij =

{
1
di
, if (vi, vj) ∈ E,

0, otherwise,

where di is the number of outgoing edges from vertex vi and (vi, vj) denotes
an edge from vertex vi to vj in E.
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Thus, the quantity aij denotes a chance that a random walker starting
from a vertex vi follows an edge to vj and aij = 0, otherwise. If the matrix
A takes the form of one of the block matrices Aii, for i = 1, . . . , r in relation
(1.1), then it is an irreducible matrix. In such a matrix, the corresponding
graph consists of strongly connected components. Notably, it has been proven
that a square matrix is irreducible if and only if its directed graph is strongly
connected [51]. Specifically, a matrix A in (1.1) is reducible. Such a partition
indicates that the associated graph is not strongly connected. In other words,
some vertices can not be reached when a random walk is performed [39].

The property of irreducibility of nonnegative matrices has been intensively
studied [5, 23, 24, 51, 75, 97, 122]. One very important mathematical result in
the study of nonnegative matrices is the Perron-Frobenius theorem.

Theorem 1.4.1 (The Perron-Frobenius theorem [86]). Suppose Am×m ≥ 0
and irreducible. Then each of the following is true.

(i) Eigenvalue λ = ρ(A) and λ > 0, where ρ(A) is the spectral radius of
A.

(ii) Algebraic multiplicity of λ, alg multA(λ) = 1.

(iii) There is an eigenvector ~π > 0 such that A~π = λ~π.

(iv) The unique vector defined by

A~ν = λ~ν, ~ν > ~0 and ‖~ν‖1 = 1. (1.2)

is called Perron vector. There are no nonnegative eigenvectors for A
except for positive multiples of ~ν, regardless of the eigenvalues.

(v) The Collatz-Wielandt formula, λ = max
x∈N

f(~x),

where f(~x) = min
1≤i≤n
xi 6=0

[A~x]i
xi

and N = {~x ∈ Rn | ~x ≥ 0, and ~x 6= 0}.

Theorem 1.4.1 reveals important spectra properties of irreducible ma-
trices. We discuss the properties in the context of nonnegative stochastic
matrices.

Assume that the matrix A in Definition 1.4.4 is an irreducible row stochas-
tic. Then by appropriate norm, one can note that it is bounded above by
a spectral radius ρ(A) = 1, such that for any eigenvalue λ̄ of A, inequality
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|λ̄| ≤ 1 holds. This is the implication of Collatz-Wielandt formula in Theo-
rem 1.4.1. Hence, the eigenvalue (Perron root) 1 is the dominant eigenvalue
of A with a corresponding dominant positive eigenvector. On the other hand,
if the matrix A is stochastic, the positive eigenvector corresponding to the
dominant eigenvalue is a stationary distribution.

Essentially, it is not enough to assume irreducibility of the matrix but also
to ensure that the algebraic multiplicity of ρ(A) for a nonnegative matrix
A to be equal to 1. In other words, one can not guarantee one eigenvalue
only on the spectral circle of radius 1 unless algebraic multiplicity of ρ(A)
is 1. For this reason, in addition to nonnegative irreducible matrices, one
needs to further classify such matrices as primitive and imprimitive. Non-
negative irreducible matrix A, which is classified as a primitive matrix, has
only one dominant eigenvalue, λ = ρ(A), on its spectral circle. Otherwise, it
is imprimitive.

Consequently, if a stochastic matrix A is primitive, then by Perron-
Frobenius theorem, one can show that limn→∞An exists. It is well known
that long term behaviour defined by large enough n of primitive matrix A
converge to the product of right eigenvector ~e and left eigenvector ~π> > ~0
of A, that is, limn→∞An = ~e~π> [24, 75, 92]. Let N and S denote the set
of natural numbers and a countable set, respectively. Suppose n ∈ N and
i1, · · · , in−1 ∈ S, then the entries of An take the form

anij =
∑

i1,··· ,in−1∈S
aii1ai1i2 · · · ain−1j > 0. (1.3)

The above relation (1.3) holds only if the directed graph of A is strongly
connected.

1.5 Discrete Time Markov Processes

Here, we present informally discrete time Markov chains and construction of
Markov chains. The purpose is to keep the presentation simple for different
categories of readers. For more discussion, we refer you to the following
textbooks [28,78,79,97,102,131].

Definition 1.5.1. [28] Denote a set of phase space of a Markov chain by Y.
A process {Yn}n∈N is a discrete time Markov chain if

P{Yn = j |Yn−1 = i, Yn−2 = in−2, . . . , Y0 = i0} = P{Yn = j |Yn−1 = i}, (1.4)
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for states i0, i1, . . . , in−1, i, j, ∈ Y, n ≥ 1.

Let us denote relation (1.4) by pij, then the corresponding matrix of
transition probabilities is P = [pij]i,j∈Y, i, j = 1, · · · ,m. The matrix P is
row stochastic if ∑

j∈Y
pij = 1,

while P is substochastic if
∑
j∈Y

pij < 1, for at least one j. Following relation

(1.4), the states i and j are thought of as a current and future states at times
n − 1 and n, respectively. The stochastic processes that possess property
(1.4) are said to have Markov property. In the case where equality

P{Yn = j |Yn−1 = i} = P{Y1 = j |Y0 = i}

holds, the Markov chain is referred to as homogeneous Markov chain. Through-
out this thesis, whenever we mention Markov chains we mean homogeneous
Markov chains.

It is a common practice to derive a matrix of transition probabilities
of a Markov chain from a directed graph by arguing from the traditional
random walk perspective [33]. By traditional random walk, we refer to a
user starting at a particular node and randomly jumps to any vertex with
uniform probability if the vertex has no outgoing edges, otherwise chooses
with uniform probability one of the outgoing edges and goes to the target
vertex. However, this does not occasionally address practical or technical
issues as in the case of PageRank. For example, it may not be feasible to
guarantee the ergodic theorem for Markov chains. To this end, a matrix of
transition probabilities is regularised by a damping matrix that has a positive
transition probability between any pair of vertices. Hence, it is natural to
ask: Is it possible to get a Markov chain associated with such a particular
transition matrix? If it is possible; How does one construct such a Markov
chain?

1.5.1 Construction of a Markov chain

It is well known that Markov chains can be constructed by some recursive
relations. A simple way of constructing a Markov chain is as follows. Suppose
{Yn}n∈N is a sequence of stochastic processes on a finite phase space Y such
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that
Yn = g(Yn−1,Wn), n ≥ 1, (1.5)

where real valued function g : Y ×W → Y, Wn, n ≥ 1 are independent,
uniformly distributed random variables, in interval W = [0, 1]. In this for-
mulation, one can obtain Yn if the previous value of Yn−1 is known.

Following relation (1.5), we note clearly that Yn−1 is a function of
(Y0,W1, . . . , Yn−2,Wn−1), which is independent of Wn, and the conditional
probabilities pij = P{Yn = j/Yn−1 = i} = P{g(i,Wn) = j}, for i, j ∈ Y
possess the Markov property. Useful discussion on the content can be found
in [97].

1.5.2 Decomposition of finite state space

Let us have a look at how the phase space Y of an information network can
be decomposed. If a matrix of transition probabilities corresponding to a
network is irreducible, then it cannot be decomposed any more. This is the
same as saying that the phase space of the Markov chain consists of a single
communicative class. Generally, two classifications of states of Markov chain
can be achieved.

Decomposition of a finite phase space Y is usually as follows:

Y = Y(0)
⋃(

h⋃
g=1

Y(g)

)
, (1.6)

where Y(0) is set of transient states and Y(g), g = 1, . . . , h are disjoint closed
communicative classes of states.

In Chapter 4, we will consider the following cases:

(1) There is no class of transient states
(
Y(0) = ∅

)
and h ≥ 1

(2) There is a class of transient states
(
Y(0) 6= ∅

)
and h ≥ 1.

Equivalently, case (1) corresponds to one or several disjoint strongly con-
nected components, while case (2) represents a weakly connected subgraph
plus several disjoint strongly connected components. More precisely, the
phase space consists of one (or several) strongly connected components to-
gether with a set of phase states corresponding to transient states. The exis-
tence of limiting probability distribution in case of (2) can be sophisticated.

33

Discrete Time Markov Processes

that
Yn = g(Yn−1,Wn), n ≥ 1, (1.5)

where real valued function g : Y ×W → Y, Wn, n ≥ 1 are independent,
uniformly distributed random variables, in interval W = [0, 1]. In this for-
mulation, one can obtain Yn if the previous value of Yn−1 is known.

Following relation (1.5), we note clearly that Yn−1 is a function of
(Y0,W1, . . . , Yn−2,Wn−1), which is independent of Wn, and the conditional
probabilities pij = P{Yn = j/Yn−1 = i} = P{g(i,Wn) = j}, for i, j ∈ Y
possess the Markov property. Useful discussion on the content can be found
in [97].

1.5.2 Decomposition of finite state space

Let us have a look at how the phase space Y of an information network can
be decomposed. If a matrix of transition probabilities corresponding to a
network is irreducible, then it cannot be decomposed any more. This is the
same as saying that the phase space of the Markov chain consists of a single
communicative class. Generally, two classifications of states of Markov chain
can be achieved.

Decomposition of a finite phase space Y is usually as follows:

Y = Y(0)
⋃(

h⋃
g=1

Y(g)

)
, (1.6)

where Y(0) is set of transient states and Y(g), g = 1, . . . , h are disjoint closed
communicative classes of states.

In Chapter 4, we will consider the following cases:

(1) There is no class of transient states
(
Y(0) = ∅

)
and h ≥ 1

(2) There is a class of transient states
(
Y(0) 6= ∅

)
and h ≥ 1.

Equivalently, case (1) corresponds to one or several disjoint strongly con-
nected components, while case (2) represents a weakly connected subgraph
plus several disjoint strongly connected components. More precisely, the
phase space consists of one (or several) strongly connected components to-
gether with a set of phase states corresponding to transient states. The exis-
tence of limiting probability distribution in case of (2) can be sophisticated.

33

33



Perturbed Markov Chains with Damping Component and
Information Networks

However, if certain assumptions are made, then one can use probabilistic
ideas to obtain the asymptotic distribution and other characteristics of per-
turbed Markov chains with damping component as it will be described in
Chapter 4.

1.5.3 Discrete time renewal processes and regenerative
processes

We would like to mention that renewal equations have several applications
in science and engineering [42]. The concept was first introduced by Doob
in the late 1930s. Since then, a considerable amount of work has been done.
For instance, in [42] discrete time and continuous time renewal processes
are discussed in detail; perturbed renewal equations by Silvestrov, D. [104,
110, 111], and more works on the subject can be found, for example, in the
following books and papers [14, 32,52,90,91,95].

A renewal process is the process where some so-called recurrent events
occur at random times and inter-event times are independently and iden-
tically distributed, while a regenerative process is that process where there
exist a sequence of random times such that after one of the random times,
the system restarts itself and the future of the process is independent of the
past.

More formally, a regenerative process is understood as follows [97]:

Definition 1.5.2. A discrete time stochastic process Yτ , τ = 0, 1, . . . with
a measurable phase space X is referred to as regenerative if there exists Tn
such that

1. {Tn} is a renewal process, that is, Tk =
∑k

i=1 Si, k ≥ 0, where Si, i ≥
1 are positive integer valued independent and identically distributed
random variables,

2. the process {YTk+τ : τ ≥ 0} is independent of {Yτ : τ < Tk}, for every
k ≥ 1,

3. the process {YTk+τ : τ ≥ 0} is stochastically equivalent to process
{Yτ , τ ≥ 0}, for every k ≥ 1.

By stochastically equivalence, we mean that the corresponding processes have
the same finite–dimensional distributions.
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Let us denote the probability that a recurrent event {Yn ∈ A} (A is a
measurable subset of X) occurs at moment n by p(n). Suppose f(n) is the
probability that the first regenerative time T1 = n, where

∑∞
n=1 f(n) = 1.

That is, {f(n)} is the probability distribution of the first regenerative time T1.
Then the sequences {p(n)} and {f(n)} are connected by following recurrent
relation

p(n) = q(n) +
n∑
l=1

p(n− l)f(l), n ≥ 0, (1.7)

where q(n) = P{Yn ∈ A, T1 > n} is the probability that the recurrent event
{Yn ∈ A} occurs at moment n and the first regenerative time T1 takes a value
larger than n.

Relation (1.7) is referred to as renewal equation. In our case, the stochas-
tic process Y is a Markov chain with finite state space and recurrence times
are inter-regenerative moments. The asymptotic behavior and other proper-
ties of (1.7) are discussed in the textbooks by Feller [41, 42].

1.5.4 Coupling methods for Markov chains

Coupling methods first appeared in the probability domain in the late 1930s.
The idea was introduced by Wolfgang Doeblin [30]. A paper by Lindvall [83]
presents a collection of Doeblin’s works. The method was advanced by several
researchers [50,65,79,81,82,96,113,129], and it is one of the important math-
ematical objects in analysing Markov chains and other stochastic processes.
We also want to make reference to the work by Baxendale [16], Roberts [99],
Rosenthal [100] and Silvestrov, D. [104], where coupling Markov renewal pro-
cesses and related algorithms have been investigated.

By coupling of two Markov chains, we mean two independent chains are
constructed on the same probability space. The Markov chains are allowed
to evolve simultaneously but independently until they both hit the same
state, then the chains combine and move on as a single process, see Figure
1.1. The evolution of the two processes commences with different probability
measures ~π and ~p, where ~π and ~p are stationary and initial distributions of
the Markov chain, respectively. The time instance might occur if the two
states have an inclination to get in contact. It is well known that coupling
method is one of the important tools in ergodic theory and determining the
rate of convergence of stochastic processes.
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~π

~p

t0 t1 t2 · · · τ (coupling time)

Time

Figure 1.1: Coupling Markov chains initiated at two distinct states with initial dis-
tributions ~p and ~π.

It is worth noting that there are several constructions of coupling in lit-
erature [25, 50, 128, 129]. For instance, distributional coupling is preferred
when dealing with some continuous time stochastic processes. In Chapter
4, we use a maximal coupling type algorithm to determine effective upper
bounds for the rate of convergence of perturbed Markov chains with damping
component.

1.6 PageRank Computation

PageRank is an algorithm to measure the relative importance of web pages
[23,26,77,93]. It originated as a mathematical tool for Google search engine
and has since then, gained great fame as it is the basic algorithm that re-
veals how the search engine weighs the information value of different websites
against each other. In the last two decades, several research directions have
emerged, which can be categorised into three, namely methods of computa-
tion, applications and variants of PageRank. Computing PageRank in web
information retrieval is implicated by the rapid growth of the size of data
and change of the web structure such as edges and vertices [5].
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PageRank Computation

In some applications, PageRank is viewed as the stationary distribution of
the matrix of transition probabilities of a directed graph G = (V,E). In [23]
and [77], this version of PageRank is referred to as normalised PageRank.
In [33] non-normalised PageRank has been discussed and its advantages have
been pointed out. The followings are common to both variants: they require
a weighted adjacency matrix P and random walk theory. The idea of using
random walk in PageRank problem is traditional as stated by the pioneers
of PageRank [23,26].

Let us denote by Y a set of all vertices in a directed graph G. To construct
a matrix of transition probabilities (the so-called hyperlink matrix) P, whose
elements are probabilities denoted by pij is carried out as follows. A random
walker at vertex vi moves one step to the new vertex vj, if the weight of
an edge vi → vj is given by aij, then the one-step transition probability is
expressed as

pij =
aij∑
j∈Y aij

. (1.8)

For aij = 1 and
∑

j∈Y aij = d(vi), for i = 1, . . . ,m, relation (1.8) simplifies
to Definition 1.4.4 and P = [pij], i, j = 1, . . . ,m is the matrix of transition
probabilities.

Suppose P is sub-stochastic matrix because of dangling vertices, a remedy
is to add artificial edges from dangling vertices to all vertices in the graph.
This is the same as adding a sub-stochastic matrix ~g~u>, where ~g is a non-
negative column vector with entries defined as follows:

gk =

{
1, if k ∈ YD,

0, otherwise,
(1.9)

where YD is a set of dangling vertices in Y and ~u> is a row vector with
entries equal to 1

m
. The new matrix P + ~g~u> is stochastic but may not

have a unique stationary distribution. To ensure primitivity, a damping
(teleportation) matrix D = ~u~e>, where ~e> is a row vector of ones, is added
to P + ~g~u>. The resulting matrix takes the form

G = c
(
P + ~g~u>

)>
+ (1− c)D, (1.10)

where c ∈ (0, 1) is the probability of following an outgoing edge (in short c is
called the damping parameter), 1−c is the probability that a web user jumps
randomly to an arbitrary web page (vertex) according to the teleportation
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matrix D. The matrix G is stochastic matrix, aperiodic and irreducible [10]
therefore by Perron-Frobenius theorem, the dominant eigenvalue is 1 with
corresponding positive eigenvector (stationary distribution) ~π [75, 76].

In the case where YD = ∅, relation (1.10) reduces to

G = cP> + (1− c)D. (1.11)

Relation (1.11) is, for instance, the same as a Google matrix of irreducible
matrix P>. Since G is a primitive matrix, then by Perron-Frobenius the-
orem, the dominant eigenvalue is 1. Note that D = [dij]i,j=1,...,m (with el-

ements dij = dj) is a stochastic matrix with ~d = 〈dj, j ∈ Y〉 as stationary
distribution.

Let us look at another variant of PageRank, that is, non-normalised
PageRank.

Definition 1.6.1. Consider a random walk on a graph described by P, which
is the adjacency matrix weighted such that the sum over every non-zero row
is equal to one. In each step with probability c ∈ (0, 1), move to a new
vertex from the current vertex by traversing a random outgoing edge from the
current vertex with a probability equal to the weights on the corresponding
edge. With probability 1 − c or if the current vertex has no outgoing edge
we stop the random walk. Then PageRank πj for a single vertex vj can be
written as

πj =

wj +
∑

vi∈V, vi 6=vj
wipij

 ∞∑
k=0

(pjj)
k , (1.12)

where pij is the probability to hit vertex vj in a random walk starting in
vertex vi and wj is the weight of vertex vj . This can be seen as the expected
number of visits to vj if we do multiple random walks, starting in each vertex
once and weighting each of these random walks by vector ~w [33].

1.6.1 PageRank as a solution to a linear system

We describe briefly some classical techniques in solving a linear system of
equations. PageRank algorithm can be formulated as a linear system, and
a resourceful textbook is by Langville and Meyer [76]. We also recommend
textbooks [63, 87, 120–122] for further treatments of numerical techniques
associated with Markov chains and linear system of equations.
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We will focus on four classical techniques of solving large linear system of
equations in ranking problems, namely, power series, Jacobi, power method
and successive-over relaxation methods. The first, second and third methods
are closely related, that is, power method can be rewritten as the Jacobi
method and power series. On the other hand, the formulation of power
series of PageRank is related to Definition 1.6.1, which we will mainly use in
Chapter 2 of this thesis.

The stochastic matrix G in (1.10) is irreducible and aperiodic, there-
fore by Perron–Frobenius theorem, it has a unique stationary distribution
(PageRank vector) ~π such that the following equality holds.

~π = G~π, (1.13)

Clearly, (1.13) is an eigenvector problem which can be rewritten as a linear
system of equations. Therefore, substituting (1.10) into (1.13), we get

~π =
(
c(P + ~g~u>)> + (1− c)D

)
~π (1.14)

= cP>~π + ~u
(
c~g> + (1− c)~e>

)
~π

= cP>~π + η~u, (1.15)

where η = 1− ‖cP>‖1 and ~e> is a row vector with all entries equal to 1 [5].
Note that ‖~y‖1 =

∑n
k=1 |yk|.

Set ~υ = η~u, then (1.15) becomes

(I− cP>)~π = ~υ, (1.16)

where I is an identity matrix of order m and P> is an information (a hy-
perlink) matrix. Relation (1.16) can be solved by any numerical methods.
However the matrix P> is usually very large such that applying a direct
method is practically impossible. A better approach is to use iterative meth-
ods for a linear system of equations. Note that the solution ~π in (1.16) is not
necessarily normalised PageRank, but this can easily be done by dividing the
solution by ‖~π‖1.

Let us assume that a network corresponding to matrix P has no self loop,
then by splitting technique, the matrix (I− cP>) takes the form

I− cP> = N−M, (1.17)

where N is a non-singular matrix of same order as P. The conditions for
the choice of N can be found in [63]. With arbitrary initial vector ~π(0), the
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iterative scheme of the linear system (1.16) takes the form

~π(k) = N−1M~π(k−1) + N−1~v. (1.18)

The convergence of relation (1.18) depends on the spectral radius of N−1M.
The advantage of using (1.18) is the sparsity of the matrix P> can be ex-
ploited and it is not necessary to adjust for dangling nodes or sinks.

Observing that the matrices N = I − L and M = U, where L and U
are strictly lower and upper triangular matrices of cP>, respectively. The
matrix splitting of (I− cP>) becomes

(I− cP>) = I− L−U. (1.19)

We remark that if P> has no self-loop, then the matrices N and M in relation
(1.18) correspond to I and (L + U)>, respectively. It turns out that for the
Jacobi method, L + U = cP>. Therefore, the iterative scheme becomes

~π(k) = cP>~π(k−1) + ~υ. (1.20)

In the case where self loops are not ignored, (1.20) becomes

~π(k) = cD−1
0 (L + U)>~π(k−1) + D−1

0 ~υ, (1.21)

where D0 = N is the diagonal of (I− cP>) and (L + U)> = M.

From relation (1.16), we see that the power series formulation of PageR-
ank of a graph can be expressed as

~π = (1− c)
∞∑
l=0

(
cP>

)l
~υ. (1.22)

We are aware that different interpretations of (1.22) are given by several
authors, for example [5] and [33]. It is also natural to think of it in a different
way. We give an alternative description of the series using probability ideas,
that is, regenerative and renewal theory as we will see in Chapter 4.

To calculate non-normalised PageRank using (1.22), we replace the in-
finite sum in (1.22) by step k (the number of iterations), which is large
enough. Therefore, a recursive formula of the non-normalised PageRank ~π
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can be expressed as

~π (k) = ~υ +
k∑
l=1

(
cP>

)l
~υ

= ~υ +
(
cP>

) k−1∑
l=0

(
cP>

)l
~υ

= ~υ + cP>~π (k−1). (1.23)

Clearly, (1.20) and (1.23) show that the Jacobi and power series methods have
the same expression for an information network with no dangling vertices and
same initial guess ~π (0).

In Successive over-relaxation (SOR) method, relaxation parameter ω′ is
required and this has to be chosen in such a way that residual errors are
reduced. The splitting matrices N and M are obtained as described in [29].
If we maintain that self loops are ignored, then the iterative scheme associated
to SOR takes the form

~π (k+1) = (I− ω′L)−1 ((1− ω′)I + ω′U)~π (k) + (I− ω′L)−1~υ. (1.24)

However, if we allow for self loops, then we replace the identity matrix I in
(1.24) by the diagonal matrix D0 of (I− cP>).

To guarantee convergence of relations (1.20)–(1.24) for arbitrary initial
guess, the following result holds [29].

Theorem 1.6.1. A necessary and sufficient condition for a stationary iter-
ative method ~z(k+1) = T~z(k) +~b to converge for an arbitrary approximation
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Another iterative scheme of importance is the Power method. Here, we
use iterative matrix G in (1.10) or (1.11), depending on the graph connec-
tivity, and choose initial guess ~π(0). Then the approximate solution ~π(k) at
the kth iterates as follows

~π(k) =
G~π(k−1)

‖G~π(k−1)‖1

. (1.26)

Since the stochastic matrix G is irreducible and aperiodic, (1.26) reduces to
~π(k) = G~π(k−1). Although, G is not sparse, this is essentially a matrix-vector
product which does require storing the vector ~π(k) at every iteration. Adjust-
ing the matrix P> to G has a positive bearing on the quality of PageRank,
since it reduces the effect of dangling vertices or dead ends (loops). More-
over, convergence to stationary distribution is guaranteed. Computing the
stationary distribution with high degree of accuracy can be challenging or
may not be beneficial at all in some applications where the actual order of
the stationary distribution is more preferred. We will look into this problem
in Chapter 3.

In summary, two types of PageRank representation will be considered,
the normalised and non-normalised. The latter fits in the framework of de-
termining ranks as a solution to a linear system of equations, and it will
be used in Chapter 2. We would like to remark that normalised PageRank
has greater potential if one needs to investigate PageRank and its associated
characteristics using probabilistic ideas as we will see in Chapter 4.

1.7 Summaries of the Chapters

1.7.1 Chapter 2

Information networks take several structures, such as those with several
strongly connected components or tree graphs. Authors citation networks,
networks of integers and ecological networks are the typical examples of di-
rected tree graphs. In such a network model, the corresponding weighted
adjacency matrix (matrix of transition probabilities) is nilpotent. The mo-
tivation of studying tree graphs arises from various applications in the real
world and the importance of updating PageRank of such evolving networks.
In this chapter, we describe and discuss common changes in evolving tree
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graphs and analyse the time complexity of the changes, as well as give algo-
rithms for recalculating PageRank of evolving tree graphs.

1.7.2 Chapter 3

PageRank is a popular tool in web information retrieval. It is a solution to
a large sparse linear system derived from an information network such as
social, communication, biological and financial networks. It is an attractive
area of research in the present time. Several iterative schemes aim at finding
an accurate solution to a linear system, making the ranking of nodes of
information network challenging. In many instances, it is the relative order
(rank) of vertices for PageRank, that is interesting to users. Thus, paying
much attention to the accuracy of the solution of such a system underscores
the practical significance of the PageRank algorithm. This chapter presents a
survey of some stopping criteria used in solving a linear system of equations.
Also, we evaluate a clustering algorithm as an alternative stopping criterion
for ranks.

1.7.3 Chapter 4

This chapter focuses on studies of perturbed Markov chain models com-
monly used for describing information networks. In such models, stationary
distribution and other related characteristics of information Markov chains
serve as basic tools for ranking of nodes in information networks. Usually,
a matrix of transition probabilities of an information network is regularised
by adding a special damping matrix multiplied by small damping (pertur-
bation) parameter ε. We describe the procedure of stochastic modeling of
Markov chains with damping component, and the procedure of embedding
such Markov chains in the model of discrete time regenerative processes with
special damping regenerative times. Furthermore, we give explicit coupling
type upper bounds for the rate of convergence in ergodic theorems for Markov
chains with damping component. We also give ergodic theorems for Markov
chains with damping component in triangular array mode. We illustrate with
numerical examples some of the results.
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versity, Väster̊as (2011).

[91] Ni, Y., Silvestrov, D., Malyarenko, A.: Exponential asymptotics for
nonlinearly perturbed renewal equation with non-polynomial pertur-
bations. J. Numer. Appl. Math., 96(1), 173–197 (2008).

52

Perturbed Markov Chains with Damping Component and
Information Networks

[81] Lindvall, T.: On coupling of discrete renewal processes. Z. Wahrsch.
Verw. Gebiete , 48(1), 57-70 (1979).

[82] Lindvall, T.: Lectures on the Coupling Method. Wiley Series in Prob-
ability and Mathematical Statistics: Probability and Mathematical
Statistics. Wiley, New York, xiv+257 pp. (2002) (A revised reprint of
the 1992 original).

[83] Lindvall, T.: W. DOEBLIN 1915-1940. The Annals of Probability,
19(2), 929-934 (1991).

[84] Ma, Z., Shen, C., Liu, F., Mei, S.: Fast screening of vulnerable trans-
mission lines in power grids: A PageRank-based approach. IEEE
Transactions on Smart Grid, 10(2), 1982–1991 (2019).

[85] Mitrophanov, A.Y.: Sensitivity and convergence of uniformly ergodic
Markov chains. J. Appl. Probab., 42(2), 1003–1014 (2005).

[86] Meyer, C.: Matrix Analysis and Applied Linear Algebra. Society
for Industrial and Applied Mathematics (SIAM). Philadelphia, PA,
xii+718 pp. (2000).

[87] Moler, C.B.: Numerical Computing with MATLAB. Society for In-
dustrial and Applied Mathematics (SIAM). Philadelphia, PA, xii+336
pp. (2004).

[88] Murray, S.A.: A Review of The library: An Illustrated History. New
York: Skyhorse Publishing, 310 pp. (2009).

[89] Ng, W.K., Lim, E.P., Huang, C.T., Bhowmick, S., Qin, F.Q.: Web
warehousing: An algebra for web information. Proceedings IEEE In-
ternational Forum on Research and Technology Advances in Digital
Libraries-ADL’98, 228–237 (1998).

[90] Ni. Y.: Nonlinearly Perturbed Renewal Equations: Asymptotic Re-
sults and Applications. Doctoral dissertation 106, Mälardalen Uni-
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