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Abstract

This research discusses a decision support system that includes different
machine learning approaches (e.g. ensemble learning, decision trees)
and a symbolic reasoning approach (e.g. argumentation). The purpose
of this study is to define an ensemble learning algorithm based on for-
mal argumentation and decision trees. Using a decision tree algorithm
as a base learning algorithm and an argumentation framework as a de-
cision fusion technique of an ensemble architecture, the proposed sys-
tem produces outcomes. The introduced algorithm is a hybrid ensemble
learning approach based on a formal argumentation-based method. It
is evaluated with sample data sets (e.g. an open-access data set and
an extracted data set from ultrasound images) and it provides satisfac-
tory outcomes. This study approaches the problem that is related to an
ensemble learning algorithm and a formal argumentation approach. A
probabilistic argumentation framework is implemented as a decision fu-
sion in an ensemble learning approach. An open-access library is also
developed for the user. The generic version of the library can be used in
different purposes.
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1 Introduction

Machine learning approaches have a considerable contribution to develop different types of
decision support systems. Learning algorithms are important for classifying data and pre-
dicting outcomes based on training data [27]. A learning algorithm is an algorithm used in
machine learning to assist applications to imitate the human learning process [14]. It can
learn something new from a given situation. On the other hand, the symbolic reasoning is
an operation of cognition that allows rules, axioms, facts, etc to generate new knowledge
from existing knowledge [1]. The combined effort of the learning algorithms and symbolic
reasoning can produce better outcomes [7] [18]. Whereas, it is not possible for a single
approach. Many studies have been done for developing decision support systems in medi-
cal science. Several artificial intelligence techniques and machine learning approaches, for
instance, neural network, decision tree algorithm, multi-agents system, etc are implemented
to develop a system that can easily detect dangerous diseases [15] [22] [19]. Nevertheless,
there are some limitations, e.g., produce conscious outcomes, produce outcomes in case of
data overlapping. The general problem statement of this research is to develop a system
for the sake of resolving the limitations of previous researches that can produce conscious
and satisfactory outcomes for practical usage, e.g., medical decision support systems, by
implementing an ensemble architecture that includes different approaches. The research
presented by Kahneman et al. (2010) introduces system 1 and system 2 [17] where system
1 produces unconscious outcomes based on training data and system 2 produces conscious
outcomes through a decision making process. In this research, a learning algorithm and
a probabilistic argumentation framework (PAF) are implemented as the learning approach
and symbolic reasoning approach in an ensemble architecture. The learning approach and
symbolic reasoning approach are implemented as system 1 and system 2 respectively. An
ensemble learning algorithm (ELA) usually executes a base learning algorithm multiple
times and creates a voting classifier for the resulting hypothesis [5]. ELA provides more
accurate outcomes than any of its component models. It is beneficial to implement an en-
semble learning approach in this specific problem. An ensemble learning approach produces
better outcomes than any single learning algorithm [24].

In this thesis, a data set of ultrasound images is used to evaluate the introduced ELA ap-
proach. Moreover, decision tree algorithms (DTA) are used as the base learning algorithm
of ELA that generates outcomes by classifying data set and PAF generates more accurate
outcomes from the existing outcomes. DTA classifies data set from ultrasound images and
generates satisfactory output with the help of the probabilistic argumentation framework.
Sample data set such as an open access data set is used for evaluation of the introduced
ensemble learning approach. DTA classifies data set into three different groups. Classifica-
tion is a process to divide data into several groups or categories based on different decision
rules. Data classification is important to categorize data set for prediction. The proposed
system of combining ELA and PAF is designed to diagnosis cardiovascular diseases. Car-
diovascular disease atherosclerosis is a life-threatening disease. It amasses plaque in the
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carotid and coronary corridor divider, which can prompt dangerous conditions, for exam-
ple, brain stroke and heart stroke [16]. It is important to develop an efficient system that
can recommend the specific diagnosis to a patient by analyzing data set from ultrasound
images of carotid and coronary arteries. Machine learning is useful for solving problems
in the medical sector that provide promising outcomes. It is interesting to implement an
argumentation approach and an ensemble learning algorithm in medical science for solving
puzzles. An argumentation approach has been used for modeling aggregation and decision
making [20]. The combining effort of both approaches produces accurate outcomes that are
essential for medical decision support systems. Furthermore, it is an innovative idea to im-
plement ELA and PAF in medical decision support systems. On the other hand, It is difficult
to get accurate outcomes by implementing only machine learning approaches for detecting
stroke diseases by analyzing images of the carotid and coronary arteries. The accuracy of
the system depends on the machine learning model and data set.

The proposed system implements DTA for classifying the sample data set. The different
approaches of DTA work like different models and they produce different outcomes. PAF
generates an outcome combining the outcomes of different models. The main concern of
this study is to combine the outcomes from several models of a learning algorithm (DTA)
and produce feasible outputs through an argument process (PAF). The PAF works combined
with DTA to generate more accurate outcomes. Both of the learning algorithm and the argu-
mentation framework are crucial for this research. PAF produces more accurate output by
using the outcomes from different models of DTA. The contribution of this research is to in-
tegrate PAF with ELA for obtaining feasible outcomes. The different models of DTA work
like a multi-agents system and the agents argue through PAF for producing an accurate and
satisfactory result. A pipeline architecture is implemented to combine the learning algo-
rithm and the argumentation framework. An argumentation framework works as a decision
fusion in the ensemble learning approach that combines outcomes from multiple models.

1.1 The aim of this research

This study aims to introduce a probability argumentation approach as a decision fusion in
an ensemble architecture. The probability argumentation approach combines outputs gen-
erated from different models of an ensemble learning approach and produces final outputs.
The research question is given below.

Research question: How to define an ensemble learning approach based on formal argu-
mentation?

1.2 Organization of this research

The rest of the paper is designed as follows: chapter 2 presents the working procedure
of ELA, DTA, and PAF; chapter 3 describes some related works in the literature; chapter
4 presents a pipeline architecture and the algorithm being used; chapter 5 analyzes the
experimental results; chapter 6 discusses an open-access library, chapter 7 discusses the
discussion and finally, chapter 8 presents conclusions and future work.
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2 Background

This chapter discusses different approaches of ELA, DTA, and PAF. It also explains the
working procedure of each approach.

2.1 Ensemble Learning Algorithm (ELA)

An ensemble learning algorithm (ELA) conducts a base learning algorithm multiple times
and produces an outcome. A decision fusion technique such as a voting classifier helps
to elect the optimal outcome. ELA follows a different approach such as it finds a set
of hypotheses rather than finding a best hypothesis to explain the data and the hypothe-
ses participate in a voting process [5]. The voting process selects an optimal hypothesis
to illustrate the data. More definitely, an ensemble approach constructs a set of hypoth-
esis {ki,ka,....,kn }, picks a set of weight {w,w,...,w,} and constructs a voting process
H(x) = {wiki(x) + ... + wpk,(x) }. If H(x) > 0 then the voting process will return +1 other-
wise, it will return -1. The base learner components generate the hypotheses by executing
a base learning algorithm which can be neural network, decision tree, or other kinds of
machine learning algorithms [28]. A number of base learners can be constructed in a par-
allel or sequential style. The efficiency of an ensemble method depends on the outcomes
of base learners. The outcomes should be more exact and more diverse as possible. Sev-
eral processes are available such as cross-validation, hold-out test, etc for calculating the
accuracy of the outcomes. There are two distinct ways to design ELA. The first way is to
construct the hypotheses independently that the resulting set of hypotheses is accurate and
diverse. That is why each hypothesis has a low error rate for making predictions. Such an
ensemble of hypotheses ensures a more accurate prediction than any of its component clas-
sifiers. According to the second way, to construct the hypotheses in a coupled fashion that
the weighted vote of the hypotheses provides a better structure to the data. Breiman(1996)
introduces a method called Bagging (Bootstrap Aggregation) [5] [24] [2]. In this method,
there is a given data set m. The different samples of data set {d;.....d,} will be provided to
the different models (base learners) {m;.....m,} of the base learning algorithm. The size of
each sample data set {d,.....d, } is less than the source data set m. The models generates a
set of result {r.....r,}. The generated result from each model or base learner will be con-
sidered a vote. Then the voting classifier combines all of the different votes from several
models and produces a final result. The result from the voting classifier is finalized based
on the majority of the voting [2]. The following example explains, how does the voting
classifier produce an output. For instance, five different models (m,my,m3,ms, ms) exist in
an ensemble approach. The models predict outcomes based on classified data and training
data. The class label contains two different values, one is YES and the other is NO. A total
of three models (m;,m3,ms) predict YES as outcomes and the rest of the models (my,m4)
predict NO as outcomes. The voting classifier calculates the majority of voting and it pro-
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duces YES as an output. The number of the vote as YES is greater than NO and that is why
it generates Y ES as an output.

2.2 Decision Tree Algorithm (DTA)

Decision tree algorithm (DTA) is a tree-shaped diagram used to determine a course of action
and each branch of the tree represents a possible decision. DTA is suitable for recommend-
ing and predicting based on training data set. In generally, DTA constructs a training model
which can use to predict class label or value of target variables. A training model consists
of a set of training data and a set of decision rule and the model predicts value by learning
decision rules. A training data set 7S = {(x1,y1), (x2,¥2), ..., (Xn,yn) }, where, x; € X and
vi€Y (i=1,....,n). DTA starts processing from the root node for predicting a class label.
It compares the values of the root attribute with the record’s attribute. Then the algorithm
follows the branch corresponding to that value and jumps to the next node. It also compares
the record’s attribute values with other internal nodes of the decision tree. The process will
be continued until reach the leaf node. The leaf node contains predicted class value. A deci-
sion tree follows a disjunctive normal form that presents the sum of product. Every branch
from the root node to the leaf node has the conjunction (product of values) class and differ-
ent branches ending in the disjunction (sum) class. The greatest challenge in DTA is to find
out the attribute as a root node. Different attribute selection techniques such as information
gain, Gini index, and so on can be implemented to identify the root node at each level. In
the proposed research entropy is implemented as an attribute selection technique.

DTA has two approaches for implementation one is decision tree classifier and another is
decision tree regression [23]. In the classification approach, the target variable can be a
discrete set of values. Furthermore, the tree produces a categorical solution like true or
false, yes or no, 0 or 1 and in regression, the tree predicts values analyzing the values from
previous states. In the regression approach, the target variable can take continuous val-
ues. Algorithms like Naive Bayes, Logistic Regression, K-Means can work in classification
problems. These algorithms are perfect for working with simpler data [12]. However, DTA
is suitable to work in a classification problem with large and complex data sets. It is simple
to understand, interpret, visualize and little effort required for data preparation. Decision
Trees can deal with both numerical and the group of data [23]. The decision tree algorithm
follows the greedy approach [27]. It uses a top-down recursive method for tree construc-
tion. The ID3 algorithm is implemented in the proposed research. The algorithm constructs
decision trees implementing a top-down greedy search approach. The tree has several deci-
sion nodes and each decision node has two or more branches. It starts with the sample data
set as the root node. Then it calculates the entropy of each attribute. It selects the attribute
based on the highest or lowest entropy. The selected attribute splits the sample data set into
smaller subsets. It is a recursive process. The algorithm always selects the attributes that
never selected before. The leaf node represents a decision.

2.2.1 Entropy

Entropy is an important term in DTA. Entropy is the measurement of randomness and un-
predictability in the data set. It is high in the decision or root nodes of the Decision Tree
and it decreases gradually in the child nodes [23]. Entropy ensures the splitting points of a
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data set. DTA picks a node with the highest information gain to construct or split a decision
Tree. Entropy helps to select the right attribute or node for constructing a decision tree.

The lowest entropy is calculated by the following equation (2.1).

e
Entropy =Y Pi(—logaP,) @2.1)

i=1
Let P; be a discrete random variable that takes values in the domain {P;,..., P, }.

The overall entropy is calculated by the following equation (2.2).

2
OverallEntropy = Z Pj(lowestEntropy) (2.2)
j=1

The overall entropy determines the best splitting nodes.

2.3 Argumentation Framework

Argumentation is the process of how decisions can be decided through logical reasoning.
It includes deliberation and negotiation that are important for a decision-making process.
Two or more agents can participate in an argumentation process and finally, a decision
can be made through an argumentation process. The strength of an argument depends on
the social values and one argument attacks another. The success of an argument depends
on the comparative strength of the values [1]. The argumentation framework is a pair of
arguments and attacks. AF = (AR, attacks) where AR is a set of arguments and attacks is
a binary relation AR [6]. For example, there are two arguments A and B. The meaning of
attacks(A,B) is that A attacks on B. A set of arguments S attacks on B that means B is
attacked by an argument that exists in the arguments set S. The important thing is whether a
given argument should be accepted or unaccepted [6]. The example below (Fig.1) illustrates
more clearly the working method of an argumentation approach. For instance, A is a set of
abstract elements, and R is a set of attacks. The argumentation system S = (A, R), where,
A ={a,b,c,d}, and R = {(a,b),(b,c),(d,c)} (Fig.1). A contains four arguments and R
contains three attacks (a attacks b, b attacks c, d attacks c¢). An argument a € A is acceptable
with respect to E € A if E defends a, that is Vb € A such that (b,a) € R, 3¢ € E such that
(c,b) € R. A set of argument E is conflict-free if there is no attack between its arguments
Va,b € E, (a,b) ¢ R. An argument set E is admissible if and only if it is conflict-free and
all its arguments are acceptable with respect to £. Argument labeling is a way to express
the status of an argument such as where it is accepted (in), rejected (out), or undefined
(undec). The following statements explain the status of an argument. Ya € A, L(a) = in
if and only if Vb € A such that (b,a) € R, L(b) = out. Ya € A, L(a) = out if and only if
3b € A such that (b,a) € R, L(b) = in. Ya € A, L(a) = undec if and only if L(a) # in and
L(a) # out. L is a set of arguments labeling that consists of a set of arguments and labeling,
L = (arguments,labeling). There are different labels and the outcomes of the last example
L ={(a,in),(b,out),(c,out),(d,in)}.

An argumentation approach is suitable to take an accurate decision in a complex situation.
Multiple agents can argue to establish their ideas through an argumentation process. This
approach provides optimal results in case of data conflicting or overlapping. That is why
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Figure 1: There are four nodes a, b, ¢, and d define four arguments and the edges presents
the attacking relation between arguments.

it is fruitful to implement an argumentation approach for generating more reliable results.
In the proposed system, an argumentation approach is implemented as a decision fusion
approach instead of a voting classifier.

2.3.1 Probabilistic Argumentation Framework (PAF)

Probabilistic argumentation defines different formal frameworks regarding probabilistic logic.
There are different approaches of the probabilistic argumentation frameworks [8]. In the
probabilistic argumentation process, qualitative aspects can be handled by an underlying
logic and quantitative aspects can be captured by probabilistic measures. The underlying
logic can be different rules and the probabilistic measure can be the probability, weight, or
other measurements. The process can be divided into the constellations approach and the
epistemic approach [9] [26]. In the constellations approach, the probabilities of arguments
and attacks are considered as probabilistic assessments. The probabilistic assessments eval-
uate the acceptability of arguments. In the epistemic approach, one believes more in an ar-
gument rather than an argument attacking it. This approach is modeling beliefs and agents.
The agents are unable to change or directly add in the argumentation graph. The probabili-
ties of arguments are denoting as the belief that an argument is acceptable. P is a probability
function and A is an argument, P(A) > 0.5 denotes that the argument is believed, P(A) < 0.5
denotes that the argument is disbelieved, and P(A) = 0.5 denotes that the argument is nither
believed or disbelieved [9]. The arguments in the graph that are believed to be acceptable
to some degree (i.e. P(A) > 0.5). Figure 2 illustrates an argumentation process where A,
B, C are three arguments. The attacking relation of arguments is defined according to the
rules of the admissible arguments framework. {A,C} is an admissible argument set. An
argument A attacks an argument C because {A,C} is conflict-free and they satisfy the rules
of the admissible argumentation framework. Whereas, {A,B} and {B,C} are not conflict
free, A directly attacks B and C directly attacks B.

Figure 2: There are three nodes A, B, and C defines three arguments and the edges presents
the attacking relation between arguments.

In the proposed study, two approaches of DTA namely decision tree classifiers (DTC) and
decision tree regressors (DTR) work as two models component of ELA. The two different
result sets from DTC and DTR act like two nodes and each node acts as an argument. A and
B are the two different sets of arguments. In admissible arguments, A does not attack itself,
but A attacks B and B attacks A. Figure 3 illustrates the admissible arguments, where {A, B}
is a set of arguments and they attack each other based on the probabilities of the arguments.
In this scenario, Attacks is defined in a different way in the settings of ELA. The accuracy
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of an argument is calculated by different probability functions that are discussed in the
Evaluation chapter. The accuracy works as the probability of an argument. The probability
values of arguments define attacking relations. It decides which argument will attack whom.
The argument with high probability attacks the argument with less probability.

Figure 3: There are two nodes A and B defines two arguments and the edges presents the
attacking relation between two arguments.

AF = (AR, Attacks) 2.3)

According to the Figure 3, AR = {A, B} and Artacks = {(A,B)}or{(B,A)}. The attacking
relations depend on the probabilities of the arguments. An argument with high probability
attacks the argument that holds less probability. For example P(A) = 0.8 and P(B) = 0.46
that means P(A) attacks P(B) and P(B) can defend. In this example, P(A) > 0.5 which
means L(A) = in. L(A) is the labeling status of argument A. L(A) = in means A is accepted.
Let’s discuss another example, where P(A) = 0.48 and P(B) = 0.76 that means P(B) attacks
P(A) and P(A) can defend. In this example, P(B) > 0.5 which means L(B) = in. L(B) is
the labeling status of argument B. L(B) = in means B is accepted. On the other hand,
P(A) < 0.5 and L(A) = out that mean A is unaccepted.

If the probabilities of both arguments are above 0.5 then the argument with high probability
will be accepted and the other one will be defeated. If the values of both arguments are
similar then they will not attack each other (an extended rule that is implemented in the
proposed system). The number of arguments nodes depends on the number of models of
ELA. The outcomes from each model act as arguments. If the number of models is 3 then the
number of arguments node will be 3 such as A, B, C. In case of more than two arguments, an
argument with maximum probability attacks an argument that holds minimum probability
and the accepted argument attacks an argument that holds the next maximum probability.
The attacking process will be continued until the last argument in the process. For example
P(A)=0.8, P(B) =0.46 and P(C) = 0.66. In this scenario, P(A) attacks P(B) and P(B) can
defend. P(A) > 0.5 which means L(A) = in. L(A) = in means A is accepted. Then, P(A)
attacks P(C) and P(A) > P(C), L(A) = in that means A is accepted. There are different
labels such as in, out, and undec. The labels depend on the status (accepted, unaccepted, and
undefined) of arguments. The proposed system implements modified rules of probabilistic
argumentation framework in the settings of ELA for producing better outcomes.

A pipeline architecture is discussed in chapter 4 that implements the concepts of an en-
semble learning architecture. In this architecture, decision tree classifiers and decision tree
regressors are implemented as models and a probabilistic argumentation framework is im-
plemented as a decision fusion technique.
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3 Related Works

This chapter discusses previous researches that are related to ensemble architectures, learn-
ing algorithms, and argumentation approaches.

3.1 Implementation of Learning Algorithm

The learning algorithm is implemented for data classification. The algorithm classifies data
based on different class labels for prediction. It predicts the outcomes based on classified
data and training data. The research presented by [13] explains a robust technique for diag-
nosing brain diseases such as ischemic stroke, hemorrhage and hematoma and tumor from
brain magnetic resonance (MR) and computerized tomography (CT) images. The system
aims to help the physicians to detect different types of diseases for further treatments. It is
implemented in a decision tree classifier to classify the data set. The data set is sent to the
decision tree classifier and the classifier optimizes the data set for generating classification
results. CT scan images of the brain are used for constructing training and testing data set.
The classifier classifies data based on the training data set. The proposed system provides
a better solution to the physicians to identify the actual diseases. The article provides a
tangible idea to implement a decision tree algorithm for the proposed study.

The paper discusses three decision support systems and implemented machine learning ap-
proaches. [3]. The first decision support system helps an individual to select a hospital. The
system makes the decision to suggest the appropriate hospital to the individual based on
mortality, complication, and travel distance. Machine learning and optimization techniques
help the system to make an appropriate decision. The second system assists an individual by
suggesting the diagnostic test based on the types of diseases. The system can accelerate the
diagnostic process, decrease the overuse of medical tests, save costs, and improve the accu-
racy of diagnosis. The third decision support system recommends the best lifestyle changes
for an individual to minimize the risk of cardiovascular diseases (CVD). This system also
uses machine learning and optimization techniques for recommendation. This research is an
example of implementing different approaches of a decision tree algorithm for performing
different tasks. In the proposed study, two approaches of a decision tree algorithm namely
decision tree classifier (DTC) and decision tree regressor (DTR) are implemented.

3.2 Multi-Agents System

The research presented by [19] explains a multi-agents system where each agent remains in
the network and represents a formal argumentation approach to take a consensus decision.
A model-based architecture ensures reflective capabilities among the surrounding environ-
ments and the agents. The model is more successful for the agents to achieve their goals.
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The model will be updated when the observations of an agent’s surroundings indicate that
the model is inaccurate. The agents can communicate with each other and share informa-
tion among them. Moreover, the agents can alter their model to reflect the model aspect.
The argumentation framework provides a consistent truth in case of conflicting and over-
lapping situations. In the multi-agents system (MAS), each agent has a Bayesian Network
as a model and all of the agents unitedly construct a consistent network. The formal ar-
gumentation framework plays an important role to construct a consistent network. Several
models of the agents argue through the formal argumentation framework and consequently,
a consensus network is developed. Different models represent their joint model through the
argumentation framework that works like a joint domain knowledge. The idea of working
with multi-agents and argumentation framework is inspirational for the proposed research.
In the proposed research, DTC and DTR work like multi-agents and the probabilistic argu-
mentation framework (PAF) combines the outcomes from different agents and conducts an
argumentation process.

3.3 Data Mining Techniques

The research introduced by [10] illustrates a decision tree-based approach for cardiovascu-
lar diagnosis. Data mining helps to find out the unknown patterns of the data exploring a
large data set. The data set contains heart bit rate, blood pressure, mental stress, breathing
rate and so on. There are three phases namely data pre-processing, data modeling, and data
post-processing are applied for data processing and pattern recognition. The decision tree
algorithm creates a model that learns simple decision rules from the data features and pre-
dicts outcomes. The ID3 algorithm is implemented to develop the system and the C4.5 algo-
rithm ensures some improvements that enhance the performance of the ID3 algorithm. The
algorithm smartly conducts some crucial tasks such as choosing appropriate attributes, han-
dling training data with missing attribute values, managing attributes with different costs,
pruning the decision tree, and operating continuous attributes. The algorithm constructs a
decision tree from the training data set using the concept of entropy. It follows the divide
and conquers approach for tree construction. This research is an excellent example of a
decision tree implementation for cardiovascular diagnosis. This article provides a mature
knowledge to use data mining techniques for data preparation. Furthermore, it explains the
decision tree construction process for detecting a particular disease.

3.4 Argument Mining

Argument mining research presented by [4] explains the process of extracting arguments
component and the predicting relations (attack and support) between the participant argu-
ments. The research is implemented neural network models for performing an argument
mining approach. It mentions several neural network architectures for predicting the attack-
ing or supporting relations between the arguments based on different data sets. The neural
network models use a binary classification approach to classify the data sets. A neural net-
work determines parent and child relation between the arguments. Four types of features
namely embeddings, textual entailment, sentiment features, and syntactic features are cal-
culated to define the parent and child relation. The parent and child arguments pass through

9(43)



different layers and generate outputs. This research is an inspiration to work simultaneously
with learning algorithms and an argumentation approach.

3.5 Summary

Several studies follow different approaches for solving classification problems. The pre-
vious studies implement different approaches such as decision tree algorithms, neural net-
works, arguments mining, and so on to classify data set for predicting outcomes. The data
sets are pre-processed by different data mining techniques before transmitting to different
approaches.

After all, the performance (e.g. accuracy and F-score) of a classification system is important
and one should not neglect the fact that explainable outcomes might be of great importance
for practical usage in e.g. medical decision support systems.

To the best of our knowledge, no previous study exists which uses an ensemble learning
algorithm with an argumentation approach for analyzing classification problem. Although
previous studies have analyzed similar assessment tasks by using classification algorithms
or artificial intelligence (Al) approaches.
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4 Theoretical Framework

This chapter introduces a pipeline architecture that integrates DTC, DTR, and PAF. It also
introduces a formal algorithm of the proposed system.

4.1 The formal integration between decision tree and probabilistic argumen-
tation

This study introduces a pipeline architecture of an ensemble learning approach. The ar-
chitecture consists of different models of a learning algorithm (DTA) and a probabilistic
argumentation framework. Several data mining techniques such as data fusion, data pre-
processing, learning method, and decision fusion are important for pattern recognition of a
data set extracted from ultrasound images. A decision tree algorithm (DTA) is implemented

d1,d2...dn
> DTC

EIC

PAF

d1,d2...dn DTR

Figure 4: Represent the pipeline architecture of the proposed system where D is a data
source that transmits different subsets of data, e.g., di,d,...,d,, to the models
DTC and DTR. The size of the subsets should be less than or equal to the size of
the data source. R1 and R2 contain the outputs generated by DTC and DTR. R1
and R2 send the outputs to the probabilistic argumentation framework (PAF) and
PAF generates the final output.

as a learning algorithm in the proposed system. Two different approaches of DTA namely
decision tree classifier (DTC) and decision tree regressor (DTR) work as two different learn-
ing models. DTC and DTR classify the sample data set for prediction. Each model splits
the sample data set into training and testing data set and predicts the output based on train-
ing data set. The models always update their knowledge base through a learning process
for future prediction. They learn from various types of data sets and situations. The pre-
dicted outputs from the models will be performed as inputs of a probabilistic argumentation
framework (PAF). A classical ensemble learning algorithm implements a voting classifier
as a decision fusion approach. The proposed architecture is implemented PAF instead of
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a voting classifier. PAF generates outcomes through a decision-making process where the
predicted outcomes from different models can argue. Furthermore, PAF helps to generate
a consistent outcome in complex situations such as conflicting and overlapping information
[19]. Figure 4 illustrates the pipeline architecture of the proposed system. According to
Figure 4, D is a data source that contains a sample data set. The data source D divides the
data set into subsets d,d>, ...,d,. D transmits different subsets of data, e.g., d;,d>, ...,d;, to
the models namely DTC and DTR. The size of a subset is less than or equal to the size of the
source data set. DTC and DTR classify the given subsets of data and predict different out-
puts R1 and R2. The PAF conducts an argumentation process to produce an output. R1 and
R2 are the participant arguments in the argumentation process and they attack each other.
A probability function decides the attacking relation (which argument attacks to whom).
If the values of both arguments are similar then they will not attack each other. The ac-
cepted argument will be produced as an output. The combined effort of the models and PAF
generates a reliable output.

The prototype of the proposed system is designed in Python language. Anaconda and
Jupyter notebook is the integrated development environment for implementation.

4.2 Algorithm and analysis

Algorithm 1 illustrates the implemented algorithm of the proposed system. According to
Algorithm 1 it analyses a sample data set S, target variables T, and attributes art. S, T, att,
and estimator (number of models) are the parameter of the main function. § is a data set
(e.g. test.csv) that contains numerical or categorical values. T and att are numpy array type
of variables. estimator is an integer variable. le ft and right are boolean variables. S should
not be empty and att should be greater than 0. “createNode” function creates nodes for all
models based on the sample data set and target variables. It creates a new node by checking
the availability of the left and right branches of a node. The newly created nodes will be
converted into root nodes if the condition will be satisfied. “classify” function classifies
the data set for the created nodes according to the different class labels. “findBestSplit”
function calculates the best splitting points by calculating the entropy of different attributes.
It selects an attribute as the best splitting point that holds the lowest entropy. The entropy
calculation method is described in the Background chapter. Each root node has two or more
child nodes. A child node can be converted into a root node by satisfying the condition
of a root node. It is a recursive process. The process will be continued until finding the
leaf nodes. A leaf node holds a decision. MR is an array that holds the outcomes from
different models. “prediction” function predicts the outcomes of different models based on
training TR and testing 7'S data sets. The “argumentation” function generates outcomes
using MR as a set of arguments and the probabilities (P) of arguments. An argument that
contains maximum probability attacks an argument that holds minimum probability. If
the values of both arguments are equal then they will not attack each other. The labeling
status (L) of an argument depends on the probability function. If the probability of an
argument is greater than 0.5 then the labeling status will be accepted. If the probability of
an argument is less than 0.5 then the labeling status will be unaccepted. If the probability of
an argument is equal to 0.5 then the labeling status will be undecided. “prediction” function
sends the predicted outcome sets (MR) of different models to “argumentation” function as a
parameter. The values of MR argue in “argumentation” function based on probabilities and
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the accepted value is considered as an output. Algorithm 2 represents the “argumentation”
function. It is a simple probabilistic argumentation process. “argumentation” checks the
probability of arguments. If there are more than two arguments in the process then an
argument with maximum probability attacks the argument that holds the next maximum
probability. The process will be continued. The experimental results of the algorithm are
explained in the Evaluation chapter.
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Algorithm 1 Ensemble Argumentation algorithm

procedure ENSEMBLEARGUMENTATION(S, 7', att, estimator)
file S = sampledataset
array T = targetvariable
array att = attributes
integer estimator = numberofmodel
boolean le ft = leftbranchofnode

boolean right = rightbranchofnode

s#0&art >0

function createNode () do
node=null
if left or right then
node = root
return node
end if
return node
end function
function findBestSplit(S, art) do
maxGain < 0
splitS < null
e < entropy.att
for all ¢ in S do
gain + infogain (a,e)
if (gain > maxGain) then
maxGain < gain
splitS < a
end if
end for
end function
for all es in estimator do
if stopcondition(S,7)! = 0 then
leaf = createNode ()
leaf .classLabel = classify ()
return leaf
end if
rootNode = createNode ()
rootNode.condition = findBestSplit ( S, att )
N = {n|n outcome of rootNode.condition}
for all nin N do
S, = {s|rootNode.condition s € S}
child =S,
root < child
end for
end for
array MR = estimator.prediction(7TR,T'S)
array selectedarg = argumentation (MR, P)
return selectedarg
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Algorithm 2 Function: argumentation()

function argumentation(MR,P) do

ajj € MR

a; = max

aj = nextmax

if value(a;) = value(a;) then
No attack

end if

if value(a;)! = value(a;) and P(a;) = max then
max(P(ai)) attacks min(P(aj))

end if

if value(a;)! = value(a;) and P(a;) = max then
max(P(aj)) attacks min(P(a;))

end if

if P(a,-70,,j) > 0.5 then
L(ai’0,7j) =in

end if

if P(ai,m’j) < 0.5 then
L(ai or,j) = out

end if

if P(ai’(,h]’) = 0.5 then
L(ai or,j) = undec

end if

return L(a; o ;)

end function

=0




5 Evaluation

The implementation of the argumentation-based ensemble learning algorithm and the ex-
perimentation with different data sets such as an extracted data set from ultrasound images
and an open-access data set are discussed in this chapter.

5.1 An argumentation-based ensemble learning algorithm

ELA is defined for implementing the proposed system that can predict the result sets based
on training data sets. Two kinds of data sets were used to evaluate the proposed system.
One is an open-access data set and the other is an extracted data set from ultrasound images.
Figure 5 illustrates the open-access data set. The data set contains 5500 rows of data and
a total of 11 attributes (Age, Sex, cp, testbps, chol, fbs, thalach, exang, oldpeak, num, and
classlabel). The “classlabel” is a dependant variable and the rest of the attributes are the
independent variables. The dependant variable contains three class labels such as 1, 2, and
3 which are equivalent to C1, C2, and C3. The values of the dependant variable depend on
the values of the independent variables.

Age Sex cp trestbps chol fbs thalach exang oldpeak num class_label

0 23 1 2 130 132 0 185 0 0.0 0 1
1 29 1 2 120 243 0 160 0 0.0 0 1
2 29 1 2 140 230 0 170 0 0.0 0 2
330 0 1 17e 237 0 170 0 0.0 0 2
4 M o 2 100 219 0 150 0 0.0 0 3

Figure 5: An open-access data set with a total of 11 attributes where classlabel is a de-
pendant variable and the rest of the attributes are the independent variable. The
dependant variable holds three class labels such as 1, 2, and 3.

Figure 6 illustrates the extracted data set from ultrasound images. The ultrasound images
contain information and it is important to extract the information from ultrasound images to
construct a data set. The data set contains 4900 rows of data and a total of eleven attributes.
The classlabel attribute is the dependant variable that contains three values 1, 2, 3 that are
equivalent to C1, C2, C3 and the rest of the attributes are the independent variables.

The image segmentation approach helps to extract important information as a data set from
ultrasound images. Several image filtering techniques namely Gabor, Robert, Sobel, Pre-
witt, Gaussian s3, Gaussian s7, Scharr, and Median s3 applied to filter the ultrasound images
for constructing the data set (Figure 6). The implemented filter techniques are used in image
processing for feature extraction, stereo disparity estimation, texture analysis, and analysis
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Median s3  Gabord Gabor16 Roberts Canny Edge Gaussian s3 Gaussian s7  Prewitt Scharr  Gabor21 classlabel

0081211 0070196 0.057516 0.035077 0.005462 0.024048 0.023561 002277 0023089 0.018623 3
0088611 0071198 0.051516 0.039763 0.005462 0.024148 0.023392 002347 0025389 0.018574
0.071211 0.070996 0.059816 0.031763 0.005432 0.023645 0.022770 002276 0023089 0.005462
0.081311 0070193 0.051616 0.035077 0.005463 0.024048 0.023561 002277 0023149 0.009243

B

0.081211 0072196 0.052516 0.035077 0.005452 0.023048 0.023392 0.02347 0024089 0.013574

Figure 6: An extracted data set from ultrasound images with a total of 11 attributes where
classlabel is a dependant variable and the rest of the attributes are the independent
variable. The dependant variable holds three values such as 1, 2, and 3.

of complex oscillation. The filtering techniques extract features from ultrasound images.
The values of theta, sigma, lambda, and gamma are calculated in the implementation of the
Gabor filtering technique. The Robert, Sobel, Prewitt, Gaussian, Scharr, and Median are
the building image filtering techniques of the scikit-image (skimage). The system can work
both the open-access data set and ultrasound images. The decision tree algorithm (DTA)
is used as a base learning algorithm in the ensemble learning architecture. DTA classifies
the data set (sample data set or extracted data set from images) for prediction. There are
three different groups of ultrasound images such as C1, C2, and C3. Figure 7 illustrates
the ultrasound images based on different groups. Two approaches of DTA namely decision
tree classifier (DTC) and decision tree regressor (DTR) act like two models. The models
split the data set into two different data sets, one is the training data set and the other is the
testing data set.

C3

Figure 7: Ultrasound images have three different class such as C1, C2 and C3. Each class
represents different information. For instance, C1, C2 and C3 represent the heath
conditions of a patient such as good, bad and serious successively.

The 20% of randomly selected data from the sample data set constructs the testing data set
and the rest of them construct the training data set. Entropy helps to locate the splitting point
of a data set. The algorithm analyzes data from the training data set and produces outputs
based on analyzed data. It learns from various situations and updates the training data set.
DTC and DTR fit the training and testing data set for prediction. The models predict class
labels based on the training data set. The testing data set is used as input. whereas, the
training data set works as the knowledge base. Both models namely DTC and DTR take
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testing data set as input and produce different result sets analyzing the input data set. The
testing data set (input data set) is similar for both models. The knowledge base (training
data set) helps to analyze the input data set for predicting a result set. The result set contains
several class labels regarded as values. The values of two result sets can be similar or not
and each value has its own accuracy. DTC and DTR send the result sets to the Probabilistic
argumentation framework (PAF) for producing an output. The predicted results from both
models argue in PAF. Each result act as an argument. Arguments of both models can attack
each other. The accuracy function calculates the accuracy of each argument that also works
as a probability in PAF. The attacking relation of arguments depends on the probabilities
of arguments. An argument holding high probability attacks an argument that contains low
probability. One argument is accepted through the argumentation process. On the other
hand, the other is rejected. The accepted argument is regarded as a final output.

5.2 Evaluation of the theoretical framework

The results sets of the experiment are varied with different testing data sets. In this scenario,
the system takes 20% of testing data sets as input and predicts outcomes. The outcomes
from different models and PAF are explained below.

Figure 10 illustrates a predicted outcome set and graphical representation of DTC model.
The outcome set (Fig.8) contains a total of 980 values and three class labels such as 1, 2, and
3. Outcomes from the outcome set of DTC act as arguments in PAF. For instance, the index
positions 0, 1, 2, 3 of the outcome set contain 3, 3, 2, 3 as the outcomes, and they argue
with the outcomes at index positions 0, 1, 2, 3 in the outcome set of DTR. The graphical
illustration (Fig.9) depicts the graphical view of the outcome set generated from DTC. The
X-axis illustrates the index positions of existing outcomes. The Y-axis illustrates the class
labels (outcomes 1, 2, 3). The graph represents 980 outcomes. For example, index positions
0,1,2,3,4,5, 6,7, 8 present the class labels 3, 3, 2, 3, 1, 2, 1, 2, 2 respectively.

Figure 13 illustrates a predicted outcome set and graphical representation of DTR model.
The outcome set (Fig.11) contains a total of 980 values and three class labels such as 1, 2,
and 3. Outcomes from the outcome set of DTR also act as arguments in PAF. For instance,
the index positions 0, 1, 2, 3 of the outcome set contain 3, 2, 3, 2 as the outcomes, and
they argue with the outcomes at index positions 0, 1, 2, 3 in the outcome set of DTC. The
graphical illustration (Fig.12) depicts the graphical view of the outcome set generated from
DTR. The X-axis illustrates the index positions of existing outcomes. The Y-axis illustrates
the class labels (outcomes 1, 2, 3). The graph represents 980 outcomes. For example, index
positions 0, 1, 2, 3, 4, 5, 6, 7, 8 present the class labels 3, 2, 3, 2, 3, 3, 1, 1, 1 respectively.

Figure 16 illustrates the similar index positions and outcomes. Figure 14 illustrates the in-
dex positions of the outcome sets of DTC and DTR where they produce similar outcomes.
Figure 15 represents similar outcomes according to similar index positions (Fig.14). Both
outcome sets contain 346 similar outcomes according to similar index positions. Further-
more, the outcomes will not attack each other. For example, at index positions 0, 6, 9, 10,
12, 14, 15, 19, 20 the outcome sets of DTC and DTR hold the outcomes 3, 1, 2, 1, 2, 1, 2,
1, 1 successively.

Figure 17 illustrates the graphical presentation of both result sets generated from DTC and
DTR. The light blue color indicates the outcomes of DTR whereas the red color indicates
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Outcomes from DTC:
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Figure 8: Represent the generated outcome set from DTC that contains 980 values. The
outcome set contains three class labels such as 1, 2, 3.
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Figure 9: Represent the graphical representation of the generated output set from DTC.
X-axis and Y-axis illustrate the index number and the class label of the available
outcome successively.

Figure 10: Represent the outcome set of DTC and graphical representation of the outcome
set.

the outcomes of DTC. The X-axis and Y-axis depict the index number of existing values
in the result sets and the class labels respectively. The two graphs locate some points in
the same locations that imply the values of the identical location are similar. Both outcome
sets contain the same class labels in the identical location and they will not attack each
other. There are 346 similar values that exist in similar positions of both outcome sets. For
example, index positions 0, 6, 9, 10, 12, 14, 15, 19, 20 present the class labels 3, 1, 2, 1, 2,
1, 2, 1, 1 respectively for both of the models (DTC and DTR).

Figure 18 illustrates the accepted outcome set of PAF. The outcome set contains a total of
639 values and three class labels such as 1, 2, 3. The outcome set of PAF is different from
the outcome from DTC and DTR. The outcomes from two different outcome sets (DTC and
DTR) participate in an argument process through PAF. They argue among themselves for
finalizing outcomes (accepted outcomes). PAF produces an outcome set that contains only
accepted outcomes. For example, The outcome sets of DTC and DTR hold the outcomes 3
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Outcomes from DTR:
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Figure 11: Represent the generated outcome set from DTR that contains 980 values. The
outcome set contains three class labels such as 1, 2, 3.
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Figure 12: Represent the graphical representation of the generated output set from DTR.
X-axis and Y-axis illustrate the index number and the class label of the available
outcome successively.

Figure 13: Represent the outcome set of DTR and graphical representation of the outcome
set.

and 2 respectively at index position 1. The outcomes 3 and 2 argue among themselves based
on probability. Finally, 3 is considered as an acceptable outcome.The accepted outcome 3
locates the index position 0 in the outcome set of PAF. Figure 19 depicts the graphical view
of the accepted outcome set generated from PAF. The X-axis illustrates the index positions.
The Y-axis illustrates the class labels. The outcome set has three different class labels such
as 1, 2, 3. The graph represents 639 outcomes. For example, index positions 0, 1, 2, 3, 4, 5,
6, 7, 8 present the class labels 3, 2, 3, 1, 2, 2, 2, 3, 1 respectively.

Figure 20 illustrates the attacking relations of the outcomes of different models. It represents
only 12 values from the experimented outcome sets (DTC, DTR, PAF) to illustrate the
attacking relations based on different probabilities and conditions. The outcome sets contain
class labels such as, 1, 2, and 3. The outcomes of both models act as arguments and they
attack based on probability. An outcome with a high probability attacks the outcome that
contains less probability. PAF decides which argument is accepted. If the same index

20(43)


Istiak
Markering

Istiak
Markering


Similar Position:

[ © 6 9 18 12 14 15 19 28 22 23 27 32 36 39 41 44 45
483 58 52 56 57 59 61 64 65 68 69 7@ V5 76 79 B8O B8 89
98 94 95 99 181 186 118 111 113 114 116 119 128 122 125 126 127 129

138 134 148 142 146 150 151 154 155 157 159 165 166 173 174 175 179 188

198 191 195 281 288 289 213 218 228 221 224 229 231 232 242 243 244 249

251 254 256 259 261 262 278 277 279 288 281 282 291 296 297 385 386 308

311 314 321 327 332 335 336 339 341 345 346 352 353 357 358 363 364 365

368 375 376 381 384 385 387 395 3938 480 482 484 485 412 415 417 418 424

425 426 427 430 431 433 434 440 441 442 445 446 449 455 456 461 463 464

466 475 483 484 486 488 489 494 496 498 582 518 512 513 517 525 532 533

535 536 539 544 545 546 554 556 557 558 559 562 563 565 566 567 572 573

574 575 577 579 588 582 583 584 588 598 591 594 596 597 599 688 685 686

613 622 626 632 634 635 641 642 645 646 647 649 653 654 658 659 6608 663

678 672 673 679 682 683 688 689 699 691 693 694 696 784 718 715 724 735

728 729 735 748 744 751 754 757 758 763 764 766 767 778 775 782 786 798

792 793 796 797 8@@ 302 384 3@8 811 817 818 821 822 823 826 829 830 831

835 837 839 841 842 844 845 851 856 858 868 861 865 866 868 871 875 878

881 882 883 884 887 889 390 894 895 396 398 B899 9@3 9@7 989 919 921 924

926 928 938 931 934 935 936 938 948 941 945 946 948 956 957 963 964 970

972 974 975 9771]

Figure 14: Represent the index positions of similar outcomes from both outcome sets.

Similar Value:

[3121213111313333133313331221331233132
332223233223 2132131211121121112131211
3132131332323 1331231231323233333312131
3232132313321 232132212221223112311123
2223233131222 2332332223333323323332311
322233221223 32232112312223211233233313
233211331233 23332332222222323323333323
2333332312332 2331211232223222311333311
2121212222123 1111332223233321233313323
222131221312 3]

Figure 15: Represent similar outcomes based on the similar index position from both out-
come sets.

Figure 16: Represent the sets of similar index positions and similar outcomes from both
models (DTC and DTR).

position of both outcome sets holds similar values then they will not attack. For example,
the index positions 0, 6, 9, 10 of both outcome sets hold 3, 1, 2, 1 as the similar outcomes
respectively and they do not attack. At index position 1, the outcomes sets of DTC and
DTR hold 3, 2 as the outcomes. The probability of outcome 3 is 0.72, whereas, it is 0.63
for outcome 2. Outcome 3 attacks outcome 2. Finally, outcome 3 is accepted through an
argumentation process. The outcome sets of DTC and DTR hold the outcomes 3 and 2
respectively at index position 3. The probability of outcome 2 is 0.88, whereas, it is 0.67 for
outcome 3. The outcome 2 attacks outcome 3 and 2 is regarded as the accepted outcome.
In similarly, The outcome sets of DTC and DTR hold the outcomes 2 and 1 respectively
at index position 7. The probability of outcome 1 is 0.94, whereas, it is 0.92 for outcome
2. The outcome 1 attacks outcome 2 and 1 is regarded as the accepted outcome. Similarly,
the rest of the outcomes of DTC and DTR attack each other based on probability and PAF
produces the outcome set of accepted outcomes.
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Represent the generated output sets from DTC and DTR. Y-axis and X-axis
illustrate the different class labels and the index position of the values suc-

Figure 17

Both of the result sets have some similar values in similar index

cessively.
positions.

Outcomes from PAF:

[3231222313131122113221123333221332111
1131331232231111312321122211113211333
23132132131112322313133312132133221122
2331222121112223233123323323322331322
3322212333223211131332221112123113311
1132111331231212112121332313331331133
2331211333322312121123221213212132321
3213133122123113332323121113321332333
3333233312231333112133321123232122133
2333333323112212323333123331132112122
12313123233131311231212231313213121533
12313133132122133113111333212313233122
1331211323223233133132211311322323132
2113211222232221331322231323322331132
3133333122232132222112332122123221333
1331312212131212133231322123312131323
2221321332212312111332123213332311222

311 23]

Represent the accepted outcome set of PAF that contains 639 values. The out-

come set contains three class labels such as 1, 2, 3.

Figure 18
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Represent the generated accepted output set from PAF. Y-axis and X-axis illus-

trate the different class labels and the index number respectively.

Figure 19



5.2.1 Probability function and accuracy

This section discusses two probability equations that are implemented to calculate the prob-
ability of an argument.

(s=n)
Probabilityl : (y,5) = (n+s) Y, 1(F=) 5.1
i=0

n = number of match element
s = number of sample element (a total number of element)
i = index number of element

Equation 5.1 illustrates a probability equation where n, s, i define number of match element,
number of sample element, and index number of element successively. The probability of
result sets from different models is calculated by the probability equation.

Probability2 : p= (TP+TN)/(TP+FP+FN+TN) (5.2)
T P = true-positive
TN = true-negative

F P = false-positive

Index Outcomes | Outcomes | Probability | Probability Attacks Accepted
Position (DTC) (DTR) (DTC) (DTR) Outcomes
0 3 3 0.82 0.74 NO Attack -
1 3 2 072 0.63 3 Attacks 2 3
2 2 3 0.51 0.77 3 Attacks 2 3
3 3 2 067 0.88 2 Attacks 3 2
4 1 3 0.92 0.76 1 Attacks 3 1
5 2 3 0.82 0.66 2 Attacks 3 2
6 1 1 0.92 0.87 Mo Attack -
7 2 1 0.92 0.594 1 Attacks 2 1
8 2 1 0.86 0.89 1 Attacks 2 1
9 2 2 0.93 0.91 No Attacks -
10 1 1 0.82 0.71 Mo Attacks -
11 3 1 0.85 0.69 3 Attacks 1 3

Figure 20: Represent the attacking relation between different arguments based on the prob-
ability and shows the final accepted outcomes.
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FN = false-negative

Equation 5.2 illustrates a probability equation where TP, TN, FP, FN define true-positive,
true-negative, false-positive, and false-negative successively. True-positive means the actual
condition is positive, but it is truly predicted as positive. Whereas, true-negative defines the
actual condition is negative and it is truly predicted as negative. False-positive means the
actual condition is negative, but it is falsely predicted as positive. Whereas, false-negative
denotes the actual condition is positive, but it is falsely predicted as negative. The probabil-
ity of result sets from different models is also calculated by the probability equation. It is a
common equation for calculating the accuracy of a decision tree algorithm. Both equations
are applied for calculating the accuracy of results. The accuracy of a result is regarded as
the probability of an argument. The probability of arguments plays a significant role in
the probabilistic argumentation framework for data mapping. In this scenario, equation 5.1
performs better than equation 5.2. The accuracy of equation 5.1 is comparably higher than
equation 5.2.

Figure 21 explains the accuracy of DTC and DTR based on the amount of splitting data and
probability function. Two different probability equations (eq.(5.1) and eq.(5.2)) are applied
for calculating the accuracy of different models. Using eq.(5.1) in the case of 20% split
data, the accuracy of DTC is 0.54 whereas it is 0.51 for DTR. On the other hand, it is 0.49
for DTC and 0.52 for DTR by using eq.(5.2). Using eq.(5.1) in the case of 100% split data,
the accuracy of DTC is 0.89 whereas it is 0.87 for DTR. In contrast, it is 0.78 for DTC
and 0.72 for DTR by using eq.(5.2). The accuracy increases with the increasing amount
of splitting data. Analyzing the data from Figure 21 it can be said that, the efficiency of
eq.(5.1) is better than eq.(5.2) for calculating accuracy.

Split Data Probability Accuracy | Accuracy of

of DTC DTR
eq. (5.1) 0.54 0.51

20%
eq. (5.2) 0.49 0.52
eq. (5.1) 0.61 0.66

40%
eq. (5.2) 0.66 0.59
eq. (5.1) 0.84 0.79

80%
eq. (5.2) 0.80 0.74
eq. (5.1) 0.89 0.87

100%
eq. (5.2) 0.78 0.72

Figure 21: Represent the accuracy of two models namely DTR and DTC based on differ-
ent probability functions (eq.(5.1) and eq.(5.2)). The accuracy varies with the
amount of splitting data.
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5.2.2 Evaluation of the open-access data set

This section presents the evaluation of the open-access data set. In this scenario, the system
takes 20% of testing data sets as input and predicts outcomes. The outcomes from different
models (DTC and DTR) and PAF are explained below.

Figure 22 illustrates a predicted outcome set of DTC model. The outcome set contains a
total of 919 values and three different class labels such as 1, 2, and 3. Outcomes from the
outcome set of DTC act as arguments in PAF. For instance, the index positions 0, 1, 2, 3 of
the outcome set contain 2, 3, 3, 3 as the outcomes, and they argue with the outcomes at index
positions 0, 1, 2, 3 in the outcome set of DTR. Figure 23 depicts the graphical view of the
outcome set generated from DTC. The X-axis illustrates the index and the Y-axis illustrates
the class labels. The graph represents 919 outcomes. For example, index positions 0, 1, 2,
3,4,5, 6,7, 8 present the class labels 2, 3, 3, 3, 3, 3, 1, 1, 3 respectively.
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Figure 22: Represent the generated outcome set from DTC that contains 919 values. The
outcome set contains three class labels such as 1, 2, 3.

Figure 24 illustrates a predicted outcome set of DTR model. The outcome set contains a
total of 919 values and three different class labels such as 1, 2, and 3. The outcome set of
DTR is different than DTC. Outcomes from the outcome set of DTR also act as arguments
in PAF. For instance, the index positions 0, 1, 2, 3 of the outcome set contain 2, 2, 1, 2 as
the outcomes, and they argue with the outcomes at index positions 0, 1, 2, 3 in the outcome
set of DTC. Figure 25 depicts the graphical view of the outcome set generated from DTR.
The X-axis illustrates the index positions of existing values in the outcome set. The Y-axis
illustrates the class labels. The outcome set contains three different class labels such as 1,
2, 3. The graph represents 919 outcomes. For example, index positions 0, 1, 2, 3,4, 5, 6, 7,
8 present the class labels 2, 2, 1, 2, 1, 1, 2, 2, 1 respectively.

Figure 26 illustrates the similar index positions of the outcome sets of DTC and DTR where
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Represent the graphical illustration of the generated output set from DTC. Y-
axis and X-axis illustrate the different class labels and the index number suc-

cessively.

Figure 23

Outcomes from Regressor model:

[2212112212213313112233213321221221312

2221313312121233121232311231132211121
223322232123231231312321332123123333232
3111323223132322123232322332311232212
3231312113112113332133223332232123312
2313233322323322333322333333233123333
3322111333232232322323212111221323121
33213133123 323212222232223121222231223
3232223113212131233132123133333232321
323222111333323332233322312113223231222
22231222333332332123133313131111222223
1223323211112123322323321212333132323
33313133122123322132233232212323231223
1223333321112323112112313211213123331
3211211213321222332222233222223311321
3121123332323322233322321332132322323
1131121322231122133111223321312233232
3321122223131323123123323333311221133
11323231321111312322233333133331323321
2233323333231213132113323333133232113
3132222133332321121321331212112312332
31233322331232313123121233312311213312
1123231131323333111332211133122123233
23312133133332222323113312232333221211

12322232323232121121231322232112]

Represent the generated outcome set from DTR that contains 919 values. The

outcome set contains three class labels such as 1, 2, 3.

Figure 24

they produce similar values. Figure 27 represents similar values according to similar index

positions (Fig.26). Both of the outcome sets contain 285 similar values according to similar

index positions. Furthermore, the values are not attack each other. For example, at index
positions 0, 11, 16, 19, 23, 24, 25, 27, 34 the outcome sets of DTC and DTR hold the

outcomes 2, 1,1,2,1,3,3,1, 3.

Figure 28 illustrates the graphical illustration of both outcome sets generated from DTC and
DTR. The light blue color indicates the result set of DTR whereas the red color indicates

the result set of DTC. The X-axis and Y-axis depict the index number and the class labels
respectively. The two graphs locate some points in the same locations that imply the values
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Figure 25: Represent graphical illustration of the generated output set from DTR. Y-axis
and X-axis illustrate the different class labels and the index number respectively.
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Figure 26: Represent the index positions of similar values from both outcome sets.
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Figure 28: Represent the graphical presentation of the generated output sets from DTC
and DTR. Y-axis and X-axis illustrate the different class labels and the index
position successively. Both of the result sets have some similar values in some
points.

Figure 29 illustrates the accepted outcome set of PAF. The outcome set contains a total of
634 values. The outcome set of PAF is different from the outcome sets of DTC and DTR.
The outcomes from two different outcome sets (DTC and DTR) participate in an argument
process through PAF. They argue among themselves for finalizing outcomes (accepted out-
comes). PAF produces an outcome set that contains only accepted outcomes. For example,
The outcome sets of DTC and DTR hold the outcomes 3 and 2 respectively at index posi-
tion 1. The outcomes 3 and 2 argue among themselves based on probability. Finally, 3 is
considered as an acceptable outcome. The accepted outcome 3 locates the index position
0 in the outcome set of PAF. Figure 30 depicts the graphical view of the accepted outcome
set generated from PAF. The X-axis illustrates the index positions. The Y-axis illustrates
the class labels. The data set has three different class labels such as 1, 2, 3. The graph
represents 634 outcomes. For example, index positions 0, 1, 2, 3, 4, 5, 6, 7, 8 present the
class labels 3, 3, 3, 3, 3, 1, 1, 3, 1 respectively.

Figure 31 represents only 12 data from the experimented outcome sets of DTC, DTR, and
PAF and presents the attacking relations and accepted outcomes. It shows where the argu-
ments attack each other based on probability and different conditions. An argument with
high probability attacks the argument that holds less probability. If the similar index posi-
tions of both outcome sets (DTC and DTR) hold similar values then they will not attack.
For example, at index positions 0, 11, both of the outcome sets hold 2,1 as outcomes and
they do not attack. At index position 2, the outcomes sets of DTC and DTR hold 3, 1 as the
outcomes. The probability of outcome 3 is 0.77, whereas, it is 0.57 for outcome 1. Outcome
3 attacks outcome 1. Finally, outcome 3 is accepted through an argumentation process. The
outcome sets of DTC and DTR hold the outcomes 3 and 1 respectively at index position
4. The probability of outcome 1 is 0.92, whereas, it is 0.76 for outcome 3. The outcome
1 attacks outcome 3 and 1 is regarded as the accepted outcome. In similarly, The outcome
sets of DTC and DTR hold the outcomes 3 and 1 respectively at index position 8. The
probability of outcome 1 is 0.89, whereas, it is 0.86 for outcome 3. The outcome 1 attacks
outcome 3 and 1 is regarded as the accepted outcome. Similarly, the rest of the outcomes of
DTC and DTR attack each other based on probability and PAF produces the outcome set of
accepted outcomes.
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Outcomes of PAF:
[3333311311222233223113231233312231232

2312312323332223333323132232131321131
2321231223131323131132213332213331322
1332132223232231213123212132233211211
1132221111311132323232132311312231123
3121112213311311111313332121211212222
1313233221211323111331233311112331122
2211121223322133213123323213211131321
2221121222213231223111313132321222212
2232231232332111321221323222332133213
1132312321113112132211331131233112233
3333323332223212121223222333331313231
3321222223133122333332131113222311121
1333312112322322223113212122231313321
3232213123323122113122112222323223313
2121121222232132311333233121311213112
1111113211333121333111313232333331311
311 21]

Figure 29: Represent the accepted outcome set of PAF that contains 634 values. The out-
come set contains three class labels such as 1, 2, 3.
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Figure 30: Represent the graphical illustration of the accepted output set of PAF. Y-axis and
X-axis illustrate the different class labels and the index number successively.

5.2.3 Evaluation of without an argumentation framework

This section represents the evaluation of an ensemble learning algorithm without an argu-
mentation framework. A classical ensemble algorithm (CELA) [21], e.g., a random forest,
is evaluated with an open-access data set. The 20% of randomly selected data from the
data set constructs the test data set and the rest of the data constructs the training data set.
The algorithm has two models (Decision tree classifiers) and it generates a different set of
outcomes. Figure 32 illustrates the final outcome set. The outcome set contains 980 values.
It contains the class labels 1, 2, and 3. Figure 33 presents the graphical representation of
the outcome set, where the X-axis and Y-axis represent the index position and class labels
successively. The graph represents 980 outcomes. For example, index positions 0, 1, 2, 3,
4,5, 6,7, 8 present the class labels 3, 1, 1, 3, 1, 2, 2, 3, 3 respectively.

The produced outcome set of CELA is different from the outcome set of an ensemble learn-
ing algorithm with an argumentation approach. The accuracy of CELA is less than an
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ensemble learning algorithm with an argumentation approach. The accuracy of CELA is
79%, whereas the accuracy of an ensemble learning algorithm with an argumentation ap-
proach is 88%. The evaluation will be extended with different data sets in future work. An
argumentation approach works as a decision fusion to combining the outcomes from differ-
ent models. The integration of an argumentation approach improves the performance of an

ensemble learning approach.

Index Qutcomes | Outcomes | Probability | Probability Attacks Accepted
Position (DTC) (DTR) (DTC) (DTR) Outcomes
0 2 2 0.82 0.84 NO Attack
1 3 2 0.72 0.63 3 Attacks 2 3
2 3 1 077 0.57 3 Attacks 1 3
3 3 2 0.67 0.88 2 Attacks 3 2
4 3 1 0.78 0.92 1 Attacks 3 1
5 3 1 0.82 0.66 3 Attacks 1 3
6 1 2 0.92 0.87 1 Attacks 2 1
7 1 2 0.94 0.91 1 Attacks 2 1
3 3 1 0.86 0.89 1 Attacks 3 1
9 1 2 053 0.51 1 Attacks 2 1
10 1 2 0.82 0.71 1 Attacks 2 1
1 1 1 0.85 0.69 No Attack

Figure 31: Represent the attacking relations between different arguments based on the

probabilities of the arguments and shows the final accepted values.
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Output of CELA:

[3113122332233111222132312232312131322

2232231121133 313322311113232321313133
233232123311223231223231211313212223212
1212213222222223332131232211333211231
2113132131222322131221333231232323313
3321133231111232232312313332223212222
3322213113321321112331132321322111312
2131222211223211321123222133133231331
2322322231223232323331333232323321212
1221131232231232223113231311312331323
1313332321231313221113332221132332331
2223332332111322322123323333132212131
2322121223122333331132223213531322133312
1131232223132213131313123222222112333
1112213233311222232133311133231123221
2123133313112112231133233221233231311
3233121223313113332111311332323222221
3211332331313 3323131231222311113123231
1111332223312311323232322232231233313
2322323322123333323321221222211311233
3113213331313 122231222312223132332221
13213232232331331231312231211321232212
1223212233213113313231213231113232131
321133232213 2333122131123123333333222
2121233322133 2222222313211133111222233
1322123312123232332222133313332112133

111223311322321133]

Represent the outcome set of a classical ensemble learning algorithm. The

outcome set contains 980 outcomes.

Figure 32

CELA

1000

800

600

400

200

A
=~
—

19qe] ssey

=
o
—

A
]
|

100

Index Number

Represent the graphical representation of the outcome set of a classical ensem-

Figure 33

ble learning algorithm, where the X-axis and Y-axis represent the index position

and class labels successively.



6 Open Access Library

This chapter introduces a newly developed open-access library of the proposed system
namely Basicensembleargumentation. The functionality and user manual of the library
are explained in this chapter. The library is available at “pypi.org” and “github.com”.

Github Link: https://github.com/Istiak1992/BasicEnsemble Argumentation. git

6.1 Functionality
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The library has several methods namely Classi fiers, Regressors,Argumentation,andPlotGraph.

Classifiers method classifies a data set and predicts outcomes using a decision tree classifier
algorithm. Regressors method classifies a data set and predicts outcomes using a decision
tree regressor algorithm. Argumentation method conducts an argumentation process and
generates accepted outcomes. It also represents the data set of similar values and index po-
sitions. Classifiers and Regressors methods act like two different models and they produce
different sets of outcomes. Argumentation method receives the produced sets of outcomes
as input parameters and pursues an argumentation process. In the argumentation process,
outcomes of different models attack each other based on the probability function. If the
outcomes of both models are similar, then they will not attack each other. The probability
function also plays a crucial role to select the status of an argument. There are three kinds
of status e.g accepted, unaccepted, and undecided. PlotGraph method generates a total of
four graphs. The first graph represents the outcomes of the decision tree classifier model.
The second graph represents the outcomes from the decision tree regressor model. The third
graph and fourth graph illustrate the outcomes from both models and the accepted outcomes
from PAF respectively. The third graph also presents the attacking relations of arguments
that participate in the argument process. Furthermore, the library package contains files such

as setup.txt, README .md , MANIFEST.in, LICENSE .txt, CHANGELOG .txt, requirement .txt,

and ensembleArgument.py. setup.txt file contains all kinds of setup and installation require-
ments. LICENSE .txt file contains the license policy provided by MIT. MANIFEST .in file
helps to work with different types of files (e.g. .txt, .py). README .md file explains the user
manual and requirements to use the library. CHANGELOG. .txt file represents information
about the release date and version of the library. requirement .txt file contains the required
Python packages. ensembleArgument.py file contains the definition of all of the methods.

6.2 User Manual

The user needs to set up the environment for using the library. Python 3.5 (minimum ver-
sion), pandas, numpy, matplotlib, and sklearn are the required packages for the environment.
A user needs to follow the following steps to use the library.
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e Set up the environment with the required packages (panda, numpy, matplotlib, and
sklearn).

o Install the library package.
Command Line: pip install Basicensemblelearningargumentation (Figure 34).

BEX Kommandotolken

umentation

Figure 34: Install the library package typing the command line in the command interpreter.

e Import packages in the python file (Figure 35).

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import classification_report
from sklearn.model_selection import traln_test_split
from sklearn.tree 1mport DecisionTreeClassifier

from sKlearn.tree import DecisionTreeRegressor

from skKlearn.metrics import accuracy_score

Figure 35: Import the packages in the test python file (e.g.text.py).

e Import an additional package (Figure 36).

from EnsembleArgumentationBasic import ensembleArgument

Figure 36: Import an additional packages in the test python file (e.g.test.py).

e Upload a data set using pandas (Figure 37).

dataset = pd.read_csv("C:/Users/Istiak/Desktop/Research/iris.csv")

Figure 37: Upload a data set (e.g. variableName = pd.read_csv(“directory/fileName”)).

e Define the independent and dependant variables. (Figure 38).

o Call the two functions namely Classifiers and Regressors and instantiate the two func-
tions into two different variables such as c1 and c2. (Figure 39).
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x = dataset.drop('class_label', axis=1)
y = dataset['class_label']

Figure 38: Represent the independent (x) and dependant (y) variables. “class _label” is the
last column name of the data set that contains class labels.

cl=ensembleArgument.Classifiers(x,y)
c2=ensembleArgument.Regressors(x,y)

Figure 39: Assign the outcomes of two models into two different variables e.g. c1, c2.

e Call the Argumentation function with the required parameters (e.g.cl, c2). Instantiate
the function in a variable (e.g. ¢3) (Figure 40).

c3=ensembleArgument. Argumentation(cl,c2)
Figure 40: Represent how to call the Argumentation function with the required parameters
and instantiate in a variable.

e Call the PlotGraph function with the required parameters (e.g.c1, ¢2, ¢3) (Figure 41).

ensembleArgument.PlotGraph(cl,c2,c3)

Figure 41: Represent how to call the PlotGraph function with the required parameters.

o Call the show() function to represent the graphical views (Figure 42).

plt.show()

Figure 42: Represent how to call the show() function to represent the graphical views.

6.3 Example

The following example (Figure 43) helps the user about using the library. To use the library
user should install the required packages (section User Manual). The user should create a



python file e.g. test.py and import all of the required packages in the python file (test.py).
In the next step, the user should upload a data set (Figure 37) by using pandas and define
the dependant and independent variables. Call two building functions namely Classifiers
and Regressors with the required parameters. Then the user should call Argumentation
and PlotGraph functions with the required parameters to generate reliable outcomes and
graphical representation of the outcomes successively. The user should call the show()
function for the sake of representing the graphical views. The outcomes of Classifiers and
Regressors functions should be placed as parameters in the Argumentation function.

Example 1 (Fig.43) explains: how to implement the library in a python file. An open access
data set (Fig.44) is used for the example.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

from sklearn.metrics import classification_report

from sklearn.model_selection import train_test_split
from sklearn.tree 1mport DecislonTreeClassifier

from sklearn.tree import DecisionTreeRegressor

from sklearn.metrics import accuracy_score

from EnsembleArgumentationBasic import ensembleArgument

dataset = pd.read_csv("C:/Users/Istiak/Desktop/Research/iris.csv")

dataset.drop('classlabel’, axis=1)
y = dataset['classlabel']

cl=ensembleArgument.Classifiers(x,y)
c2=ensembleArgument.Regressors(x,y)
c3=ensembleArgument. Argumentation(cl,c2)

ensembleArgument.PlotGraph(cl,c2,c3)
plLt.show()

Figure 43: The figure represents an example using the library.

sepal.length sepal.width petal.length petal.width classlabel

0 5.1 3.5 1.4 0.2 1
1 49 3.0 1.4 0.2 1
2 a7 3.2 1.3 0.2 1
3 46 3.1 1.5 0.2 1
4 5.0 3.6 1.4 0.2 1

Figure 44: Represent a data set that is used for example.1.
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6.4 Evaluation

This section discusses the generated outcomes by executing example.1 (Figure 43). In this
scenario, the Classifiers model (First model) generates the following result set.
Outcomes of Classifiers model: [2323111333223133321332313312111
2311122212223223211331332132331221133122132332332
1331213331]

Whereas, the Regressors model (Second model) generates a different result set.
Outcomes of Regressors model: [2313312222131223323312322231312
1321221311231331222331221113222211132222212231131
2211312123]

Both models generate some similar results in the same index positions. Similar results will
not attack each other. The similar result set and the index positions of the similar values are
presented below. Similar Values: [23313323231312122331121132223311]

Positions of the similar values: [0 1351516 17 19 21 22 29 32 34 36 39 41 47 50 51 52
56 62 64 65 66 69 70 73 75 78 83 85]
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Argumentation function produces a result set that is different from the result sets of Classi fiers

and Regressors models. The result set of Argumentation function illustrates only the ac-
cepted arguments. The result set is presented below.

Accepted outcomes of PAF: [211333223131313312112112222322311
3323233123113323213323331]

6.4.1 Graphical Representation

This section illustrates the graphical representations of different result sets. In the graph,
X-axis and Y-axis define the index position and the value successively. Figure 45 illustrates
the graphical representation of the result set of Classifiers model. Figure 46 illustrates
the graphical representation of the result set of Regressors model. Figure 47 illustrates the
graphical representation of the result sets of both models. The intersecting points denote
that they will not attack. Figure 48 represents the graphical representation of the accepted
result set generated by an argumentation approach.

6.5 Target User

A user such as a researcher, student, and professional personnel can use the library for
several purposes (data classification, data analysis, prediction, and so on). The user can
generate accurate and reliable outcomes using the library. It saves a lot of time of a user
because a user does not need to write a lot of lines of code. It is necessary, a user should
have a mature skill in Python language or other programming languages to use the library.
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Figure 45: The figure represents a result set of Classifiers model. X-axis and Y-axis rep-
resent index position and class label successively.
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Figure 46: The figure represents a result set of Regressors model. X-axis and Y-axis rep-
resent index position and class label successively.
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Figure 47: The figure represents a result sets of both models. X-axis and Y-axis represent
index position and class label successively.The intersecting points denote that
they will not attack.
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Figure 48: The figure represents the result set generated by an argumentation approach.
X-axis and Y-axis represent index position and class label successively.
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7 Discussion

This study has investigated an approach for classifying the data sets using different models
of learning algorithms (an ensemble learning architecture) and the probabilistic argumen-
tation framework generates reliable outputs by using the outcomes from different models.
ELA usually executes a base learning algorithm multiple times and creates a voting clas-
sifier for the resulting hypothesis [5]. In classical ensemble learning architecture, the data
source provides data sets to the different models of a learning algorithm. Each model gen-
erates a particular result that will be considered a vote. Then the voting classifier combines
all the votes from several models. The result from the voting classifier is finalized based on
the majority of the vote. For example, the algorithm consists of 10 models and the models
generate a total of 10 votes. 6 models produce 1 and 4 models produce O as the vote. In
this scenario, the voting classifiers produce 1 as the final output. On the other hand, the
proposed architecture is different from the classical ensemble learning architecture. It does
not mention the voting classifier. It implements a probabilistic argumentation approach in-
stead of the voting classifier. A data source transmits data sets to the different models of a
decision tree algorithm. There are two models namely decision tree classifier and decision
tree regressor. Both of the models produce results individually and transmit the results to a
probabilistic argumentation framework for finalizing a reliable result.

The classical probabilistic argumentation refers to two aspects namely qualitative and quan-
titative. The qualitative aspects can be captured by the logic and the quantitative aspects
can be accounted for by probabilistic measures. The proposed system uses the concepts
of the classical probabilistic argumentation. It includes simple rules of a probabilistic ar-
gumentation framework in the settings of ELA for enhancing performance. That is why
the implemented probability argumentation framework is a little different than the classical
probabilities argumentation framework. The outcomes from two models of decision tree
algorithms are considered as arguments. Each argument has qualitative aspects. The accu-
racy of outcome acts as the probability. The probability decides the attacking relation of the
arguments. It also determines the status of an argument such as accepted or not accepted.

The previous studies discussed the experimental approaches of data classification in dif-
ferent scenarios. Some studies use only learning algorithms and some use neural network
architecture to predict outcomes by classifying data [13] [3] [19] [10] [4]. The learning
algorithms produce approximate outcomes in complex situations (e.g. data conflicting and
overlapping). An accurate outcome is more desirable rather than an approximate outcome
for practical usage (e.g. medical decision support system). Furthermore, the working pro-
cedure of a neural network is close to classical ensemble architecture [4]. The architecture
uses learning algorithms for prediction and the predicted outcomes from different networks
are merged to generate an outcome. In contrast, the proposed research uses an architec-
ture which includes ELA and PAF. ELA uses learning algorithms for classifying data and
prediction. PAF is an environment where multiple predicted outcomes can argue to final-
ize a outcome. PAF produces accurate outcome resolving data conflicting and overlapping
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in complex situations. The proposed architecture can produce a satisfactory outcome in
normal and complex situations and it is suitable for the medical decision support system.

PAF helps to produce output that is relevant to the ground truth. The produced output
from PAF is different than the output from DTC and DTR. The combined effort of learning
algorithms and argumentation generates fruitful outcomes. For example, DTC and DTR
produce C1 and C2 as outputs successively. C1 means the condition of patient health is
normal and the patient does not require any diagnosis. On the other hand, C2 signifies the
condition of patient health is bad and the patient requires some diagnoses. Then C1 and
C2 argue through PAF and finally, C2 wins in the argument process. C2 is considered the
more reliable output in this scenario. This implementation and evaluation of an ensemble
learning approach based on an argumentation framework provide an answer to the research
question. An argumentation approach successfully works as a decision fusion in an ensem-
ble architecture. A probability argumentation framework produces outcomes by combining
outcomes of DTC and DTR models. The more structured and large data set and extending
the number of models will be increased the accuracy of the proposed system. PAF performs
efficiently with an ensemble learning architecture and the contribution of PAF is more ad-
vantageous than voting classifiers.

The research presented by (Bar-Haim et al. [25]) represents the results on testing data set
using coverage (e.g. the number of claims picked over a total of claims). The research
implements a support vector machine (SVM) for classifying data. In the case of 10% cov-
erage, the accuracy is 0.849. The accuracy is 0.740 for 60% coverage whereas it is 0.632
for 100% coverage. The research presented by (M Khalilia et al. [11]) presents a medical
diagnosis system implementing a random forest algorithm for classifying data sets and pre-
dicting outcomes based on classified data. The overall accuracy of the system is 89.05% .
The research presented by (Chi et al. [3]) represents the total accuracy based on different
thresholds. The research implements a decision tree algorithm for classifying data sets. The
total accuracies for thresholds 0.74, 0.85, and 0.95 are 0.813, 0.852, and 0.847 successively.
The average accuracy of the proposed system with an argumentation approach is 88%. The
overall accuracy of the proposed system is acceptable comparing to the accuracy of other
researches.

The combined effort of the different models of decision tree algorithms and the probabilis-
tic argumentation framework provides reliable outcomes because the outcomes are relevant
to the ground truth. Moreover, the outcomes are produced by an argumentation approach
that implements the probability function and an argumentation process to generate the out-
comes instead of applying the max function (e.g. voting classifiers). The argumentation
framework ensures reliable outcomes through an argumentation approach. The reliability
of outcomes depends on the number of models of a learning algorithm. The number of
arguments depends on the number of models. The increasing number of arguments and
models will require to consider more sophisticated probabilistic argumentation semantics
[4]. A more developed prototype of the system could further test the concept, increasing the
number of models that could have an impact on outcomes.
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8 Conclusion and Future Work

This study introduces a pipeline architecture that contains ensemble learning and argumen-
tation approach. The combined work of ELA and PAF produces outcome and the accuracy
of the outcome is satisfactory. Both approaches play a significant role to generate reliable
outcomes. The different models of ELA produce different sets of outcomes. Then the pro-
duced different sets of outcomes act like different agents in the argumentation system. The
different agents decide the final decision through a decision-making procedure that includes
deliberation and negotiation. The final decision from the argumentation system is consid-
ered as a reliable outcome. The implemented architecture provides a satisfactory result
regarding the specific problem, with an overall accuracy of 88%. Whereas the accuracy of
ELA without an argumentation approach is 79%. Further studies are needed to increase
accuracy and reduce time complexity, as well as increasing the models of ELA with differ-
ent approaches that could have an impact on producing more and more reliable outcomes.
Furthermore, the algorithm should be compared with other existing methods to explore the
possibilities of this approach. A real-time application will be developed where the user can
input data set or ultrasound images and the application produces the outputs based on input.
Different kinds of argumentation semantics can be considered to deal with the probability
argumentation process.
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