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Abstract: The introduction of nonlinearities into energy harvesting in order to improve the
performance of linear harvesters has attracted a lot of research attention recently. The potential
benefits of nonlinear harvesters have been evaluated under sinusoidal or random excitation. In this
paper, the performances of electromagnetic energy harvesters with linear and nonlinear springs are
investigated under real vibration data. Compared to previous studies, the parameters of linear and
nonlinear harvesters used in this paper are more realistic and fair for comparison since they are
extracted from existing devices and restricted to similar sizes and configurations. The simulation
results showed that the nonlinear harvester did not generate higher power levels than its linear
counterpart regardless of the excitation category. Additionally, the effects of nonlinearities were only
available under a high level of acceleration. The paper also points out some design concerns when
harvesters are subjected to real vibrations.
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1. Introduction

Recently, scavenging energy from the ambient environment has become a more attractive research
topic due to its wide range of applications. Electrical energy can be extracted from a wide variety
of sources such as solar, chemical, thermal, radio frequency, and vibration. Among those, vibration
energy harvesting (VEH) is a promising alternative due to the availability of vibration sources in many
application environments [1,2]. VEH converts the ambient mechanical vibration into electrical energy.
Based on the transduction mechanism, the VEH can be further classified into three main categories.
They include electrostatic energy harvesters, electromagnetic energy harvesters, and piezoelectric
energy harvesters. Each one has its own advantages and drawbacks. Thanks to the robustness
and low-cost design, the electromagnetic energy harvester has attracted considerable attention from
researchers [3,4].

The majority of previous research has focused on linear resonant energy harvesters [5-7]. For this
type of design, the output power of the harvester can reach the optimal value when the resonant
frequency of the oscillator matches the dominant frequency of the ambient vibration. Thus, such a linear
device requires high precision during its manufacturing process. It also places critical performance
limitations, especially when the excitation frequency in applications changes over time. The reason
is that the output power drops significantly when the external excitation frequency deviates from
resonance conditions.

Prior works have proposed some solutions to broaden the frequency spectrum. Ooi et al. [8]
utilized a novel dual-resonator method consisting of two separate resonator systems to improve the
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frequency response range. Cammarano et al. [9] examined the ability to tune a resonant energy
harvester by coupling it to variable generalized electrical loads. Another widely popular approach
is to utilize nonlinear effects in mechanical oscillators. The nonlinearities can be broadly classified
into being monostable, bistable, or multistable, depending on the number of stable equilibrium states.
The most common method to design such nonlinear systems is the introduction of a nonlinear restoring
force through mechanical structures or permanent magnets. Mann et al. [10] proposed a nonlinear
energy harvester using a permanent magnet sandwiched between two other permanent magnets.
This monostable nonlinearity is obtained from the effect of magnetic levitation. Under harmonic
base excitation, the frequency response of the nonlinear system expands over a wider bandwidth.
The monostable harvester utilizing magnetic levitation effect was further modified by using a magnetic
rolling pendulum [11] to enhance performance in both the primary and subharmonic resonance
regions. Cottone et al. [12] introduced a bistable electromagnetic energy harvester, which employs a
clamped-clamped buckled beam working as a nonlinear spring to achieve a large bandwidth response.
This bistable configuration was shown to produce higher power as compared with monostable regimes
under an optimal acceleration level. Lan and Qin [13] added a small magnet at the middle of two
fixed magnets in a bistable energy harvester to reduce the barrier and improve the performance
under random excitations. In order to achieve multistability, cantilever beams with tip magnet [14-16]
or magnetic levitation [17] can be utilized. Due to shallower potential wells, tri- and quadstable
systems can easily achieve interwell oscillations at lower frequency ranges and weaker base excitations
compared to bistable systems. Recently, Nammari et al. [18] presented an enhanced design that
combines both mechanical and magnetic springs to introduce additional stiffness nonlinearities.
Non-dimensional analyses demonstrated that the proposed design results in more harvested power
than the linear version. Another approach proposed by Wang et al. [19] utilized preloading and
mechanical stoppers to introduce a piecewise linear stiffness in vibration systems. The multiple
nonlinear effects were proven to have significant influences on the system response.

The potential benefits of introducing nonlinearity to VEH designs have been evaluated in previous
studies. However, most of the works have been done with the assumption that the input excitations
are sinusoidal, colored noise, or Gaussian white noise [20-22]. Only a limited number of studies have
focused on the harvester performance under real-world ambient vibrations [23-25]. Beeby et al. [23]
presented the comparison of output power from linear and nonlinear harvesters under vibration
data taken from measurements of a diesel ferry engine, heat and power pump, car engine, and white
noise vibration. The parameters in their paper were chosen quite freely and, thus, are not linked to a
concrete harvester implementation. Green et al. [24] assessed the effectiveness of current nonlinear
harvesters subjected to human motion and bridge vibrations only. It was concluded in their paper that
the potential benefits of nonlinear energy harvester solutions are sensitive to the nature of ambient
vibration sources. Rantz and Roundy [25] considered a broad range of real vibrations and provided a
comparative analysis of the theoretical maximum output power that linear and nonlinear harvester
architectures can reach under these inputs. These optimal values may not be obtained in the real
devices with design restrictions.

The present study extracts the parameters from actual linear and monostable nonlinear
electromagnetic energy harvester implementations and numerically analyzes their performance
under a wide range of real vibration excitations. The monostable energy harvester with Duffing-type
nonlinearities is of particular interest here. The goal is to evaluate the performance of the monostable
Duffing-type harvester compared to its linear counterpart when subjected to inputs of different
characteristics, i.e., the number of dominant frequencies, the stationary, or the noise effects.
The vibration signals were collected with several types of acquisition kits and can be downloaded
from The NiPS Laboratory “Real Vibration” database [26]. Two electromagnetic energy harvester
designs, including linear and nonlinear, as reported by Mallick et al. [27] were under investigation for
comparison. These two designs were restricted in the same sizes and similar configurations for a fair
comparison. The rest of the paper is organized as follows. Section 2 describes the device configurations
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and modeling of the electromagnetic energy harvesters. The classification and properties of selected
real vibration signals are presented in Section 3. The simulation results and discussions are shown in
Section 4. Finally, Section 5 concludes the paper.

2. Electromagnetic Energy Harvester

This section presents the electromagnetic energy harvester configuration used for examination.
The total energy harvester system is modeled and simulated in Matlab/Simulink environment.
The system responses under sinusoidal signal with frequency sweep and amplitude sweep are
also included.

2.1. Device Configuration

The device configuration used for the investigation in this paper was proposed by Mallick et al. [27].
It consists of four main parts: spring, magnets, copper coil, and frame. The magnets are attached
to the center top of the spring structure while the coil is assembled on the glass slide of the frame,
which is separated from the spring by the spacers as shown in Figure 1. When the magnets move up
and down under external vibration, the relative displacement between the magnets and coil changes.
As a result, voltage is induced into the coil according to Faraday’s law of induction. Depending on the
spring structure, the resonator can be linear or nonlinear. Figure 2 displays two spring designs used
for comparison. The clamped-free configuration shown in Figure 2a results in only the linear term,
while the fixed-fixed spring arms configuration shown in Figure 2b causes nonlinear stretching. For a
fair comparison, both linear and nonlinear harvesters have the same spring size, similarly oriented
magnets, and the same proof mass sizes.

Coil

Spacers Spring

Magnets

Figure 1. Electromagnetic energy harvester device proposed by Mallick et al . [27].

Fixed

Guided
End End
Free )
Fixed
End End

(a) (b)

Figure 2. Different spring structures: (a) Linear spring. (b) Nonlinear spring. [27].
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2.2. Model

The energy harvester can be modeled as a spring-mass-damper system with base excitation.
The governing differential equation of the electromechanical system is given by

mi +cx + F(x) + 4l = —mz 1)

where m is the inertial mass, x is the relative displacement between the mass and the frame, c is the
mechanical damping ratio, F(x) is the generalized spring force, -y is the electromagnetic coupling
coefficient, I is the induced current, and z is the input vibration. For a linear harvester, the storing
force is proportional to displacement

F(x) =kx (2)

where k is the linear stiffness coefficient. In the case of the nonlinear harvester, it was shown in the
study of Mallick et al. [27] that the storing force can be modeled as the nonlinear spring force similar
to the hardening-spring Duffing oscillator

F(x) = kx + kpx® ©)]

where k, is the nonlinear stiffness coefficient. Then, Equation (1) can be rewritten as
mx + 2mpwox + kx + knx® + 4l = —mz 4)

where p is the mechanical damping coefficient, and wy is the resonant frequency. For the linear system,
the term with the nonlinear stiffness will be ignored. The induced current can be modeled in the
following electrical circuit:

LI+RI—7%=0 )

where L is the electromagnetic inductance, and R is the total resistance combining the coil resistance
R¢ and the load resistance Ry . Neglecting the inductance of the coil, which is commonly accepted for
low frequencies, the following equation can be derived from Equations (4) and (5)
72
mi + 2mpwox + fy'c+kx+knx3 = —mZ (6)
The voltage across a load resistance R} and the corresponding load power generated in the system

are given by
Ry

Vi(t) = ’Yx(m) ()
and )
Pu(p) = LY ®

Figure 3 shows the overall model implemented in the Matlab/Simulink environment.
The parameters used in the model were obtained from Mallick et al. [27] and are listed in Table 1.
All simulations were run with the ode45 solver. The variable-step was chosen with a maximum step
size of 1 x 107 and a relative tolerance of 10~°.

Table 1. Parameters of the nonlinear electromagnetic energy harvester proposed by Mallick et al. [27].

Parameters Value Units
Linear stiffness k 185.66 N-m~!
Nonlinear stiffness k; 356 x10° N-m™3
Electromagnetic coupling coefficient y 0.035 Wb-m~!
Inertial mass m 16 x 107> Kg

Mechanical damping coefficient p 0.015
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Figure 3. Simulink model.

Figure 4 shows the output power of linear and nonlinear transducers under linear frequency up
and down sweeps with different levels of acceleration amplitude. The frequency of the sinusoidal
input signal was swept from 140 to 240 Hz during 120 s for each sweeping direction. Then, the average
output power for each 1.2 s time interval was calculated as the output power at the corresponding
frequency. Under a low acceleration level, linear and nonlinear systems had similar responses.
However, when acceleration increased, the frequency response of the nonlinear transducer divided
into two different branches for up and down sweep, respectively. The up-sweep curve has a wide
bandwidth while the down-sweep curve has a narrow bandwidth. This behavior is similar to that
of the Duffing oscillator. Bifurcation occurs over the region where multiple stable roots occur in the
steady-state equation. Depending on the sweep rate and initial conditions, the frequency response
can either follow the high- or the low-energy branch. It can be seen that the nonlinear harvester can
broaden the bandwidth compared to the linear response at the expense of the output power in the

down-sweep case.

20 0.4¢, linear ]

10 .
. 0.4g, nonlinear, up sweep
% 0.4g, nonlinear, down sweep
S0 2
8. —0.01g, linear
=1 ——0.01g, nonlinear, up sweep
%1076 — -0.01g, nonlinear, down sweep
(@)

140 160 180 200 220 240
Frequency (Hz)
Figure 4. Frequency-response curves for the linear and nonlinear transducer under frequency up and

down sweep.

Similar phenomena can be observed when the acceleration amplitude is swept, as shown in
Figure 5. In this case, the output power is simulated under amplitude up and down sweep with
different values of frequency. At a certain frequency, the hysteresis in the nonlinear harvester can
be detected.
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Figure 5. Amplitude-response curves for the linear and nonlinear transducer under amplitude up and
down sweep.

3. Real Vibration Database

The NiPS Laboratory [26] provides a website of a digital database for real vibration signals.
The vibrations are collected from everyday life activities of cars, trains, airplanes, and even human
beings. The database is recorded with various devices. There are three axes of vibration data for
each signal in the database. Rantz and Roundy [28] have presented several approaches to categorize
these signals. One of those is based on their spectrograms. To facilitate the classification procedure,
Rantz and Roundy [28] have filtered the spectrogram by considering only frequency content with the
values of A%/w greater than 1/2 the maximum value of A?/w in each FFT frame, where A is the input
acceleration amplitude and w is the input frequency. Then, classification is based on the dominant
frequency number of the filtered spectrogram. In this paper, some representative signals are selected
to examine the performance of the linear and nonlinear harvesters. These signals cover typical types of
vibration data such as signals with one dominant frequency, signals with two dominant frequencies,
and stochastic signals. For each signal, the ordinary and the filtered spectrograms are displayed for
classification. The spectrograms and properties are shown in the following.

3.1. One-Dominant-Frequency Signals

Figure 6 shows the spectrogram for the signal with the title “airplane passenger table” in the
Y direction. The acquisition kit used to collect the signal is an iPhone with a sampling frequency of
100 Hz. As can be seen, over the length of the signal, there was one dominant frequency at 27 Hz.
The acceleration amplitude of the data at the dominant frequency varied over time, and we also saw
some noise. The signal had a low acceleration level with the maximum acceleration amplitude value
of just 10 mg.

Another one-dominant-frequency signal displayed in Figure 7 is the one with the title “car in
highway” in the X direction. This dominant frequency was not constant as in the previous signal but
varied during the first 80 s. After the start-up time, the signal was stable and the dominant frequency
reached 19 Hz. In terms of acceleration degree, the car-in-highway signal had a higher level than that
of the airplane passenger table signal.

3.2. Two-Dominant-Frequency Signals

The air-pump signal in the Z direction and the aquarium signal in the X direction both consist of
two dominant frequencies as shown in Figures 8 and 9. The acceleration amplitudes of these dominant
frequencies also changed over time. The main differences between these two signals are that the two
dominant frequencies in the second signal were closer to each other as compared to that in the first
signal, and the acceleration intensity of the first signal was much higher than that of the second one.
For the air-pump signal, two dominant frequencies were apparent, which occurred at 35 and 44 Hz,
and the maximum acceleration amplitude reached 400 mg. Otherwise, two dominant frequencies
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of the aquarium signal were observed at 44 and 46 Hz, and the maximum amplitude had a value of
25 mg only.
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Figure 6. Spectrogram of the airplane passenger table signal (Y direction): (a) Original. (b) Filtered.
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Figure 7. Spectrogram of the car-in-highway signal (X direction): (a) Original. (b) Filtered.
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Figure 8. Spectrogram of the air-pump signal (Z direction): (a) Original. (b) Filtered.
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Figure 9. Spectrogram of the aquarium signal (Z direction): (a) Original. (b) Filtered.

3.3. Stochastic Signals

Figures 10 and 11 show signals with the stochastic property. It is hard to see any dominant
frequency from the original spectrograms. Even with the assistance of the filtered spectrograms, it is
difficult to classify these signals in terms of the dominant frequency number. The vibration content
with significant levels covers a broad band of frequencies. The signal titled “Acoustic guitar” was
recorded by an EVAL-ADXL345Z acquisition kit with a sampling rate of 100 Hz. Its spectrogram
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shows that the frequency content varied over the whole bandwidth of 50 Hz. For the signal from the
bike, a slam stick [29] was used to collect the data at a sampling rate of 3134 Hz. It is clear from its
spectrogram that the band of significant frequencies appeared at the lower part of the bandwidth.
It was also noted that different degrees of acceleration can be seen from these two samples.

Amplitude (mg)
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Time (s)
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g E
[&] [}
530 E
s g
£ 20 <

0
20 40 60 80 100 120 140 160
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(b)
Figure 10. Spectrogram of the acoustic guitar signal (Z direction): (a) Original. (b) Filtered.
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Figure 11. Spectrogram of the bike signal (Z direction): (a) Original. (b) Filtered.
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4. Results and Discussion

In this section, different scenarios are set up to investigate the performance of the linear and
nonlinear harvesters under the real vibration signals described in the previous section. The simulation
results for each situation are presented and discussed. Throughout the simulations, the frequency
range of the real vibrations was modified by changing their sampling frequency in order to match
the harvester configuration. The following procedure was used to define the center frequency of the
vibration data. The center frequency of dominant signals was chosen to be the frequency of the most
significant amplitude. For those with stochastic properties, the center frequency was considered as
the frequency component in the middle of the relevant frequency range. For example, the significant
frequency content for the bike signal was in the range of 0-41 Hz; thus, a frequency of 20.5 Hz, which is
in the middle of this frequency range, should be chosen as the center frequency. The output power
generated from the simulations is the average load power over the length of the signal.

Table 2 expresses the output power of the linear and nonlinear harvesters when the center
frequency of the input vibration data is adjusted to match the linear resonant frequency. It can be seen
that in this case, the linear harvester and the nonlinear harvester had similar output powers under a
low level of acceleration, regardless of the vibration data category. It is also observed that when the
input acceleration amplitudes increased, the linear harvester produced more output power than the
nonlinear harvester.

Table 2. Simulation results of output power of the linear and nonlinear harvesters at resonant frequency.

Vibration Data/Direction Maximum Acceleration  Center Freq. # Dominant Linear Output Nonlinear Output

Amplitude (mg) (Hz) Frequencies Power (W) Power (W)
Airplane passenger table/Z 10 27 1 7.49 x 10712 7.49 x 10712
Car in highway /X 80 19 1 3.92 x 10710 3.82 x 10710
Aquarium/Z 25 44 2 3.26 x 10711 3.26 x 1071

Air pump/Z 400 44 2 1.53 x 108 6.6 x 1077
Bike/Z 450 20.5 NA 2.05 x 1077 1.51 x 107?
Acoustic guitar/Z 28 25 NA 437 x 10712 437 x 10712

While under a small excitation amplitude, linear and nonlinear harvesters behaved similarly and
generated the peak output power at the resonant frequency; this was not true under high acceleration
amplitude. When higher acceleration was applied, the frequency response of the nonlinear systems
bent to the right and reached the maximum point at the frequency differing from the linear resonant
frequency. The optimal point depends on the acceleration level and the initial state of the system.
Since real vibrations have varied frequency and amplitude over time, it is difficult to determine the
frequency at which the optimal output power of the nonlinear harvester can be reached. Thus, it is
of interest to investigate the output power of the linear and nonlinear harvesters when the center
frequency of the vibration data with high acceleration is swept through a frequency range around the
linear resonant frequency. The simulation results for this scenario are presented in Figures 12-14. It is
shown that the center frequency at which the nonlinear system produces the maximum output power
was higher than the linear resonant frequency. It is also noted that this peak output power was still
lower than the optimal value from the linear harvester in all cases. This can be explained by the fact
that the frequency response of the nonlinear system was not kept on the high-energy branch all the
time. Due to the complexity of the real vibration, the system may follow either a high- or low-energy
branch, in which the output power is significantly reduced in the case of the lower branch.

When subjected to signals with low acceleration levels such as the airplane passenger seat signal,
aquarium signal, and acoustic guitar signal, there was no difference between output response of the
linear and nonlinear harvesters. Therefore, it may be beneficial to examine the maximum output
power from these two harvesters when the vibration amplitude is scaled by a factor. The first step
is to multiply the vibration data by an element and then to sweep the center frequency of these
data over a range similar to previous simulations. The optimal output powers of the linear and
nonlinear harvesters are collected for each scale factor, and the final results are plotted in Figures 15-17.
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From these figures, we can see that the higher the scale factor is, the more different the peak output
power values of the linear and nonlinear systems are. When the scale factor increases, the linear
harvester generates more output power than the nonlinear one. For vibrations that have dominant
frequencies, these observations are more obvious compared to those with the stochastic property.
This is because the stochastic signals have frequency contents that cover a broader range than the
signals with dominant frequencies.
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Figure 12. The average output power response for the linear and nonlinear prototypes under
car-in-highway excitation when the center frequency of the excitation is swept.
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Figure 13. The average output power response for the linear and nonlinear prototypes under air-pump
excitation when the center frequency of the excitation is swept.
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Figure 14. The average output power response for the linear and nonlinear prototypes under bike
excitation when the center frequency of the excitation is swept.
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Figure 16. Maximum output power response for the linear and nonlinear prototypes under center
frequency sweeping aquarium excitation when the acceleration amplitude is scaled by a factor.
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Figure 17. Maximum output power response for the linear and nonlinear prototypes under center
frequency sweeping acoustic guitar excitation when the acceleration amplitude is scaled by a factor.

It can also be noted that the excitations from the current investigated database have a relatively
low amplitude, which is in the range of 0-500 mg. Since nonlinear harvesters behave much like
linear harvesters regardless of the excitation types under low excitation, the effect of the nonlinearity
cannot be seen in such conditions. Thus, nonlinear harvesters require the input vibrations with high
acceleration amplitude in order to unlock the nonlinearity and obtain the wider bandwidth.

Moreover, it can be seen that, for the current database, the hardening nonlinear harvester did
not produce higher output power compared to the linear counterpart. This agrees in general with
the results by Beeby et al. [23], where only one case was reported in which the nonlinear harvester
outperformed the linear one. As shown in their paper, under car-engine excitation, the nonlinear
harvester can produce 137 m] of energy compared to the value of 130 m] generated by the linear
harvester. The excitation from the car engine has one dominant frequency, which varied over the range
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of nearly 50 Hz during 45 min of investigation. Most signals from the current database have a shorter
time recording in the range of several hundred seconds. In most application scenarios, frequency
variations as large as the one of a car traveling and varying speeds are not so common.

Finally, it is worth to consider the coexistence of the energy branches for the nonlinear harvesters
under high acceleration. Since the properties of real vibrations are affected by small variations and
do not follow a clear up- or down-sweep, it is difficult to maintain high-energy branch output at all
time. Therefore, there may be much less power collected from the nonlinear harvesters than expected
if the system falls in the low-energy orbit. Several strategies have been proposed to alter the system
orbit. These methods utilize either mechanical impacts [30,31] or electrical perturbation [32-34] to
achieve the desired response. However, these proposed approaches may require precise control, energy
investment, or a complex system to be performed, which has so far not been demonstrated to be
energetically beneficial. Thus, a much simpler and low-power method to capture high-energy orbit is
still under further investigation.

5. Conclusions and Future Study

This paper aimed to investigate the performance of electromagnetic energy harvesters with linear
and nonlinear springs under real vibration data. The parameters for the harvesters were extracted
from actual devices, with restrictions in the size and configurations for a fair comparison. Some typical
signals from the downloaded database were selected, classified, and described. Different modifications
have been made to these signals in order to create various scenarios under which the output power
from the linear and nonlinear harvesters were collected and examined.

The addition of nonlinearities was first introduced to broaden the bandwidth of energy
harvesters [10,35]. However, Daqaq et al. [36] demonstrated that under Gaussian white noise excitation,
stiffness-type nonlinearities did not provide any benefits in terms of output power compared to the
linear harvesters. Our paper shows that the conclusion regarding the devices excited by Gaussian
white noise is still applicable to the specific studied harvesters subjected to real ambient vibrations.
The power from linear and nonlinear harvesters is evaluated under different levels of excitation as
well as under different properties of the dominant frequency. In none of the investigated cases did
the specific investigated nonlinear harvester provide a higher average output power than its linear
counterpart. The presented results are limited to a certain type of nonlinear harvester under the
assumption that electromagnetic induction is neglected. Thus, the conclusion confirmed under these
conditions may need to be investigated further for other types of nonlinear harvesters under more
complicated scenarios.

Furthermore, some properties of the external vibrations and the frequency response of the systems
were discussed in this paper. The ambient vibrations investigated in the collection of real-world signals
have low dominant frequencies and low acceleration amplitude. These factors need to be taken into
account when it comes to the design of relevant harvesters.
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