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1 Introduction

For the first time it has become possible to study a black hole-counting index [1, 2] both

in a Cardy-like limit [3–5] and in a large-N limit [6]. In the present work we further study

the asymptotics of this so-called 4d N = 4 index [2], finding that the two limits shed light

not only on each other, but also on new black objects in the dual AdS5 theory.

Our work is motivated by the important recent discovery [6, 7] that by varying the

fugacity parameters of the index, its large-N asymptotics exhibits a Hawking-Page-type

deconfinement transition [8, 9] from a multi-particle phase — already observed in [2] — to

a long-anticipated black hole phase [10–15].

Here we argue that by varying the chemical potentials in the index, its Cardy-like

asymptotics displays “infinite-temperature” Roberge-Weiss-type first-order phase transi-

tions [16] between the fully-deconfined phase associated to black holes [10–15], and confined

or partially-deconfined phases, with the latter possibly associated to new multi-center black

objects. Guided by this Cardy-limit analysis, we revisit the large-N asymptotics of the in-

dex and argue that by including some previously neglected contributions in the asymptotic

analysis of [6] it is possible to see the partially-deconfined phases in the large-N limit as well.

In the rest of this introduction, we present a more precise description of our framework,

as well as a brief outline of our new technical results. Section 2 spells out our terminology

regarding various “phases” of the index. There we outline a correspondence with N =

1∗ theory, which turns out to yield surprisingly powerful insight into the Bethe Ansatz

approach discussed later in the paper. In section 3 we study the Cardy-like limit of the index

using its expression as an integral over holonomy variables [2, 17], extending previous partial

results by one of us in [5]. For the SU(2) case we explain that varying the chemical potentials

triggers an “infinite-temperature” Roberge-Weiss-type transition [16] between a confined

phase where the center-symmetric (i.e. Z2-symmetric) holonomy configuration dominates

the index, and a deconfined phase where two center-breaking holonomy configurations take

over. For N = 3 we establish a similar behavior with a Z3 center-breaking pattern, while for

N = 4 we encounter a partially deconfined phase with a Z4 → Z2 center-breaking pattern.

We also consider the SU(N > 4) cases, and in particular argue that taking the large-N limit

after the Cardy-like limit should yield various partially-deconfined infinite-temperature

phases. Our investigation of this double-scaling limit leads up to a conjecture for the leading

asymptotics of the index as displayed in (3.19). This is the main result of our paper: the

asymptotics of the index is expressed in (3.19) as a sum over infinitely many exponential

contributions, each presumably corresponding to a gravitational saddle in the bulk.

In section 4 we study the index using its expression as a sum over solutions to a system

of elliptic Bethe Ansatz Equations (eBAEs) [18, 19]. First we review the Bethe Ansatz

formula for the 4d N = 4 index. Then we study the Cardy-like asymptotics of the index in

this approach. It turns out that compatibility with the same partially-deconfined infinite-

temperature phases observed in the integral approach requires the existence of new solutions

to the eBAEs, which are not covered in [20]. We find a vast number of such new solutions

in this work; in most cases numerically, in some low-rank cases asymptotically, and in one

case exactly! The exact solution comes from the remarkable correspondence with N = 1∗
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theory, discussed in section 2. The correspondence also gives powerful insight into continua

of eBAE solutions which exist for N ≥ 3. The existence of such continua of solutions

implies in fact that the Bethe Ansatz formula in its current form [18, 19] as a finite sum is

incomplete for N > 2, and calls for an integration with a so-far unknown measure, which we

leave unresolved. Finally we move on to the large-N limit of the index, extending previous

results by Benini and Milan in [6]. Section 5 summarizes our main findings by placing them

in the context of recent literature, and also outlines a few important related directions for

future research. The appendices elaborate on some technical details used in the main text.

1.1 Setup

The 4d N = 4 index [2]

I(p, q, y1,2,3) = Tr
[
(−1)F pJ1qJ2yQ1

1 yQ2
2 yQ3

3

]
, (1.1)

is expected to be a meromorphic function of five complex parameters p, q, y1,2,3 subject to

y1y2y3 = pq, on the domain |p|, |q| ∈ (0, 1) and y1,2,3 ∈ C∗ — cf. [17, 21]. For simplicity,

throughout this paper we restrict ourselves to the special case where y1, y2 are on the unit

circle; alternatively, we define σ, τ , ∆a through p = e2πiσ, q = e2πiτ , ya = e2πi∆a and take

∆1,2 ∈ R. Then, for the SU(N) case, the index can be evaluated as the following elliptic

hypergeometric integral [17]:

I(p, q, y1,2,3) =

(
(p; p)(q; q)

)N−1

N !

3∏
a=1

ΓN−1
e

(
ya
) ∮ N−1∏

j=1

dzj
2πizj

i 6=j∏
1≤i,j≤N

∏3
a=1 Γe

(
ya

zi
zj

)
Γe
(
zi
zj

) , (1.2)

with the unit-circle contour1 for the zj = e2πixj , while
∏N
j=1 zj = 1; the xj variables

(satisfying
∑N

j=1 xj ∈ Z) will be referred to as the holonomies. The two special functions

(·; ·) and Γe(·) ≡ Γ(·; p, q) are respectively the Pochhammer symbol and the elliptic gamma

function [22]:

(p; q) :=
∞∏
k=0

(1− pqk), (1.3)

Γ(z; p, q) :=
∏
j,k≥0

1− z−1pj+1qk+1

1− zpjqk
. (1.4)

Finally, we assume p, q /∈ R and ∆1,2,3 /∈ Z, so that the index exhibits fast asymptotic

growth — cf. [5, 23].

Further defining b, β through τ = iβb−1

2π , σ = iβb
2π , the Cardy-like [24] limit of our

interest corresponds to [3]

the CKKN limit: |β| → 0, with b ∈ R>0, ∆a ∈ R \ Z, 0 < | arg β| < π

2
fixed. (1.5)

1More precisely, the unit-circle contour works if one uses an iε-type prescription of the form ∆1,2 ∈
R + i0+, or one lets y1,2 approach the unit circle from inside in the Cardy-like limit (as in [5]). If ∆1,2

are kept strictly real, then the contour should be slightly deformed. This seems to be a technicality of no

significance for our purposes in the present work though, so we neglect it for the rest of this paper.
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Figure 1. The qualitative behavior of the pairwise potential for the holonomies, as a function of

the pair’s separation, for fixed ∆1,2 and fixed arg β ∈ (0, π/2), in the two complementary regions

−1 < ∆1,∆2,−1−∆1 −∆2 < 0 (lower-left) and 0 < ∆1,∆2, 1−∆1 −∆2 < 1 (upper-right) of the

space of the control-parameters ∆1,2 (taken to be inside R). The M and W wings switch places if

arg β is taken to be inside (−π/2, 0) instead — cf. [5].

Throughout this paper, unless otherwise stated, by the “high-temperature” or “Cardy-like”

limit, we always mean the CKKN limit (1.5).

It turns out [4, 5] that b does not control the leading asymptotics of the index in the

CKKN limit, and arg β controls its qualitative behavior only through its sign. On the other

hand ∆3 is redundant thanks to the “balancing condition” y1y2y3 = pq. Therefore we end

up with only two control-parameters ∆1,2 for each sign of arg β.

Since ∆1,2 are defined mod Z, we can focus on a fundamental domain. It turns out to

be useful [5] to take the fundamental domain to consist of the two wings 0 < ∆1,∆2, 1 −
∆1 −∆2 < 1 (upper-right) and −1 < ∆1,∆2,−1−∆1 −∆2 < 0 (lower-left) of a butterfly

in the ∆1-∆2 plane. When arg β > 0, the effective pairwise potential for the holonomies in

the Cardy-like limit, given explicitly in (3.6) below, is M-shaped on the upper-right wing of

the butterfly, while on the other wing it is W-shaped — and conversely for arg β < 0. See

figure 1 for a representation of the fundamental domain along with the M and W wings.

Throughout this paper, the M wing (resp. W wing) denotes the part of the fundamental

domain where the effective pairwise potential for the holonomies is M-shaped (resp. W-

shaped).

The asymptotics of the index on the M wings was obtained in [5]. On the M wings

because of the shape of the pairwise potential the holonomies condense in the Cardy-like

limit, and the “saddle-points” with xij(:= xi − xj) = 0 dominate the matrix-integral ex-

pression (1.2) for the index. As reviewed in subsection 3.1 the resulting asymptotics allows
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making contact with the entropy SBH(J1,2, Qa) of the bulk BPS black holes. On the other

hand, the asymptotics on the W wings has been an open problem. In this work we discover

a host of interesting phenomena, most importantly partial deconfinement, on the W wings.

As a complementary approach to that based on the integral representation (1.2) of the

index, we also study it via the Bethe Ansatz type formula of [18, 19]. In this approach we

limit ourselves for simplicity to p = q, in which case the formula takes the form

I(q, q, y1,2,3)
?
=

∑
û∈eBAEs

I(û; ∆1,2,3, τ), (1.6)

for some rather elaborate special function I spelled out in subsection 4.1, involving the

elliptic gamma function. Here û ∈ eBAEs means that we have to sum over the solutions to

the elliptic Bethe Ansatz equations of the SU(N) N = 4 theory spelled out in section 4.1,

involving Jacobi theta functions. Prior to the present work, only a set of isolated solutions

to the eBAEs were known. These were derived in [20], and we will refer to them as “the

standard solutions”. They are labeled by three non-negative integers {m,n, r} subject to

mn = N , 0 ≤ r < n, and correspond to perfect tilings of the torus with modular parameter

τ . In this work we discuss various new solutions, which we refer to as “non-standard”.

In particular, we will argue that for N > 2 there are continua of such solutions. The

Bethe Ansatz formula for the index then breaks down, and needs to be reformulated to

incorporate such continua; hence the question mark above the equal-sign in (1.6).

Despite the said shortcoming of the Bethe Ansatz approach for N > 2, we will still

utilize it in section 4 by temporarily neglecting the continua of eBAE solutions. This way

we study the CKKN limit (with b = 1) of the index, and will compare the result with that

obtained in section 3 from the integral expression.

Up to the same caveat, we will also utilize the Bethe Ansatz formula in section 4 to

study the large-N limit of the index. Taking the Cardy-like limit after the large-N limit, we

obtain an answer that we will compare with the asymptotics of the index in the Cardy-like

before the large-N limit, analyzed in section 3.

1.2 Outline of the new technical results

For readers interested in specific technical results, here we provide a list of the new findings

of the present paper, with reference to the appropriate section where they are discussed.

• Relation between the N = 1∗ theory and the N = 4 theory.

The correspondence between vacua of the N = 1∗ theory and solutions to the N = 4

eBAEs is spelled out in subsection 2.1.1. It leads to Conjecture 2 in section 4 stating

that for N ≥ (l + 1)(l + 2)/2, there are l-complex-dimensional continua of solutions

to the SU(N) N = 4 eBAEs.

• The Cardy-like asymptotics of the index.

We studied the Cardy-like asymptotics of the index for generic ∆1,2 ∈ R and arg β 6= 0

using the elliptic hypergeometric integral form in section 3. For N = 2, 3, 4, it is

presented for the first time in subsections 3.2.1 and 3.2.2. Some earlier studies had
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considered only the xij = 0 saddle-point in the matrix-integral, which is incorrect on

the W wings. For N →∞, a lower bound for the index is obtained in (3.17), wherein

Cmax can be taken to infinity. This lower bound along with Lemma 1 establishes that

the index is partially deconfined all over the W wings in the double scaling limit. This

finding encourages Conjecture 1 that the said lower bound is actually optimal and

therefore gives the large-N after the Cardy-like asymptotics of the index. Using this

asymptotic expression for the index and assuming Qa ∈ CZ, we find critical points of

the Legendre transform of (logarithm of) the index yielding micro-canonical entropies

SC(J1,2, Qa) = SBH(J1,2, Qa)/C for C = 2, 3, 4, 5; these presumably correspond to

entropies of new (possibly multi-center) black objects in the bulk. (What happens

to the micro-canonical entropy for C > 5 is not clear to us; see the comment at the

end of section 3.)

We studied the same index using the Bethe Ansatz form in subsection 4.2. Com-

patibility with the results from the elliptic hypergeometric integral form implies the

existence of new eBAE solutions that were not covered in [20]. We indeed found such

solutions numerically (analytically in the Cardy-like limit) for some simple cases and

reproduced the lower bound (3.17). Conjecture 1 would imply that in the Bethe

Ansatz approach the other eBAE solutions, which we have not fully figured out, will

not contribute to the leading Cardy-like asymptotics of the index at large N .

• “Non-standard” eBAE solutions.

We discuss various new SU(N) eBAE solutions that were not covered in [20], referred

to as “non-standard” solutions. In subsection 4.3.1, we employ elementary elliptic

function theory to establish the existence of one such solution (two if we count the

different signs) for N = 2, and present its asymptotics. In subsection 4.3.2 we discuss

numerical evidence that for N = 3 there is a one-complex-dimensional continuum of

eBAE solutions. We further discuss this continuum in the low- and high-temperature

limits. It turns out that a member of this continuum can be captured exactly (i.e. at

finite temperature). This is thanks to the correspondence of subsection 2.1.1 with the

N = 1∗ theory, which allows us to borrow a result of Dorey [25]. We present analytic

evidence that this exact non-standard solution is indeed a member of a one-complex-

dimensional continuum. This is achieved via a beautiful three-term theta function

identity presented as Lemma 2, which establishes that the associated Jacobian factor

of the eBAE solution vanishes. Finally we discuss numerical evidence for Conjecture 2

for N ≤ 10: in particular, we found numerical evidence for two and three complex

dimensional continua of solutions to the SU(N) eBAEs for N = 6 and N = 10

respectively. These findings imply that the Bethe Ansatz formula for the 4d N = 4

index is valid in its currently available form only for N = 2; for higher N it needs to

be reformulated to take the continua of Bethe roots into account.

• The large-N asymptotics of the index.

In subsection 4.4 we estimated the large-N limit of the index, extending previous

results in [6]. In particular, the leading Cardy-like asymptotics of the improved large-
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N limit of the index turns out to match the large-N after the Cardy-like asymptotics

of the index (3.19), with a couple of subtle issues discussed in details in the main

text. This suggests that the asymptotic behavior of the index in the double-scaling

limit is captured by Conjecture 1 regardless of the order of the Cardy-like limit and

the large-N limit.

2 High-temperature phases of the 4d N = 4 index

The 4d N = 4 index (just as any Romelsberger index [1] for that matter) can be computed

as a partition function on a primary Hopf surface [26] with complex-structure moduli τ, σ.

To gain intuition on these moduli, we work with b, β instead, defined through τ = iβb−1/2π,

σ = iβb/2π. When b, β are positive real numbers, the Hopf surface is S3
b ×S1, with a direct

product metric, and with β = 2πrS1/rS3 , while b becomes the squashing parameter of the

three-sphere. Then, in analogy with thermal quantum physics, one can interpret the S1 as

the Euclidean time circle, and hence think of β as inverse-temperature in units of rS3 .

More generally, the complex-structure moduli of the Hopf surface could be such that

β becomes complex. Then the Hopf surface is still topologically S3 × S1, but metrically

it is not a direct product anymore. This situation would correspond to having a “complex

temperature”.

From a field theory perspective, allowing β to become complex simply amounts to

extending the territory of exploration, with potentially new behaviors of the index to be

discovered in the extended domain. For example, as we will recollect in subsection 5.1,

general Romelsberger indices seem to exhibit a much faster and much more universal

Cardy-like growth in subsets of the complex-β domain [27, 28].

From a holographic perspective, on the other hand, complexifying β finds a distinctly

significant meaning through its relation with rotation in the bulk — cf. [26, 29]. This

relation arises because the non-direct product geometry of the boundary can be filled in

only with rotating spacetimes. This observation in turn explains why studies of the Cardy-

like limit of the 4d N = 4 index prior to CKKN [3] found a much slower growth than that

required by the bulk black holes: earlier studies had focused on real β, while the bulk BPS

black holes have rotation and require complex β. (As we will recollect in subsection 5.1, a

second important novelty of the limit studied by CKKN was considering complex yk.)

In this work we study various “phases of the 4d N = 4 index at high (complex)

temperatures”. What we mean by this is as follows. First of all, since the Hopf surface

the index corresponds to is compact, in order to have a notion of “phase” (associated to

various “saddle-points” dominating the partition function) we need to take some limit of

the index. When a large-N limit is taken, one can speak of high- (complex-) temperature

phases of the index when |β| is small enough — smaller than some finite critical value for

instance. For finite N on the other hand, to have a notion of phase we go to “infinite-

(complex-) temperature” |β| → 0 (with | arg β| ∈ (0, π/2) fixed). We can then classify

various behaviors of the index in those limits as various “phases”. The control-parameters

∆1,2 in turn would often allow Roberge-Weiss type [16] transitions between such phases.

– 7 –
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There appear to be two particularly natural classification schemes in the present con-

text, and we now explain both in some detail. In particular, two different notions of partial

deconfinement arise from the following classifications. When discussing partial deconfine-

ment in the following sections, it should be clear from the context which of the two notions

we are referring to. (A “sub-matrix deconfinement”, different from partial deconfinement

in the senses elaborated on below, has been recently discussed in [30–33].)

2.1 Classification via center symmetry

A first classification scheme arises if following in the footsteps of Polyakov [34] one considers

patterns of center-symmetry breaking by the dominant holonomy configurations in the

index.

In section 3 we will discuss various center-breaking patterns in the Cardy-like limit of

the index. The Cardy-like limit is analogous to the infinite-temperature limit of thermal

partition functions. We will speak of partial deconfinement in a sense similar to that of

Polyakov, when a dominant holonomy configuration breaks the ZN center to a subgroup

(possibly an approximate one for large N , in a sense elaborated on in subsection 3.2.3). For

C > 1 a divisor of N , a useful order-parameter for a single critical holonomy configuration

x∗ is the C-th power of the Polyakov loop TrPC |x∗ =
∑N

j=1 e
2πiCx∗j , which condenses (i.e.

becomes nonzero) in a phase where ZN → ZC . We say the index is in a “C-center phase”

if a dominant holonomy configuration is C-centered, with C packs of N/C condensed (i.e.

collided) holonomies distributed uniformly on the circle, so that
∣∣TrPC |x∗

∣∣ = N ; summing

over all critical holonomies recovers the center symmetry of course:
∑

x∗ TrPC |x∗ = 0.

Partial deconfinement in this sense has been discussed earlier (see e.g. [35]) in the more

conventional thermal, non-supersymmetric context with R3 as the spatial manifold; there a

sharper notion of an order-parameter exists, since on non-compact spatial manifolds cluster

decomposition forbids the analog of summing over all x∗.

The one-center phase, as one would expect, is the fully deconfined one where all the

holonomies condense at a given value (either 0, or 1
N , . . . , or N−1

N , due to the SU(N)

constraint). However, in principle this is not the only pattern for a full breaking of the ZN
center. For example, a random distribution of the holonomies on the circle would also com-

pletely break the center. When the dominant holonomy configurations x∗ break the ZN
center completely (or more generally to ZC), but are not one-centered (or more generally C-

centered), we say the high-temperature phase of the index is “non-standard”; the Polyakov

loop then may or may not condense (and more generally
∣∣TrPC |x∗

∣∣ < N). We will en-

counter such non-standard phases in the Cardy-like limit of the N = 4 index for N = 5, 6 in

section 3; they correspond to the holes in figure 4, and in the Bethe Ansatz approach they

would arise when non-standard eBAE solutions take over the index in the Cardy-like limit.

In section 4 we will demonstrate how partial deconfinement in a similar sense can occur

in the large-N limit of the index as well. The large-N limit will be analyzed for τ = σ via

the Bethe Ansatz approach, where the behavior of the index depends on which solution of

the eBAEs dominates the large-N limit. Such solutions can be thought of as complexified

holonomy configurations, whose τ -independent parts correspond to the Polyakov loops. At

finite β, they also have τ -dependent parts though, that are analogous to ’t Hooft loops.
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There is hence also an analog of “magnetic” ZN center at finite β, which has in fact

appeared in the Bethe Ansatz context already in [20]. Therefore the high-temperature

phases at finite β and large N , can be classified via subgroups of ZN × ZN , in a picture

that is in a sense dual to ’t Hooft’s classification of phases of SU(N) gauge theories [36–38].

We now proceed to expand on this duality — or correspondence — below.

2.1.1 Correspondence with vacua of compactified N = 1∗ theory

There is a regime of parameters where we expect close connection between high-

temperature phases of the N = 4 index and low-energy phases of the N = 1∗ theory

on R3 × S1. This is the regime where i) β → 0 and β ∈ R>0, such that in the rS1 → 0

“direct channel” one is probing high-temperature phases on S3×S1, while in the rS3 →∞
“crossed channel” one is probing low-energy phases on R3×S1; ii) the chemical potentials

∆1,2,3 are small enough that their periodicity and balancing condition are not significant.

Even then, the ∆k are real masses for the adjoint chiral multiplets of compactified N = 4

theory, while N = 1∗ theory has complex masses for its adjoint chirals. Nevertheless, based

on the channel-crossing argument one might expect at least some resemblance between po-

tential high-temperature phases of the N = 4 index and possible low-energy phases of

compactified N = 1∗ theory, and interestingly enough closer inspection reveals not just a

resemblance, but a precise quantitative correspondence, aspects (though not all) of which

extend even to finite complex β and arbitrary ∆1,2 ∈ R.

First, the proper identification between the complex-structure modulus τ of the N = 4

index and the complexified gauge coupling τ̃ of the N = 1∗ theory seems to be as follows:2

τ̃ ←→ −1

τ
. (2.1)

Alternatively, the electric and magnetic loops are swapped in the two pictures — i.e. the

Polyakov loops in the direct channel correspond to the ’t Hooft loops in the crossed channel

and the ’t Hooft loops in the direct channel correspond to the Wilson loops in the crossed

channel. The identification (2.1) can be motivated through the crossed-channel relation

between the two pictures, but a more satisfactory derivation of it would be desirable.

Once the identification is accepted though, one can compare the vacua of compactified

N = 1∗ theory as determined via Dorey’s elliptic superpotential [25], with the possible high-

temperature phases of the N = 4 index as determined via solutions to the elliptic BAEs.

A particularly interesting aspect of the correspondence which survives at finite complex

β and finite ∆1,2,3, is the connection between the massive phases of the compactified N =

1∗, and the standard solutions to the N = 4 eBAEs:

massive vacua ←→ standard eBAE solutions, (2.2)

valid for arbitrary N . Specifically, the vacuum associated to the subgroup F ′r of ZN ×
ZN generated by (0, n), (Nn , r) in the Donagi-Witten terminology [41], corresponds to the

2For an analogous duality swapping the gauge coupling and the inverse temperature see [39]. See also [40]

where a similar correspondence is discussed in the τ → i0+ limit for generic N = 1 gauge theories with a

U(1)R symmetry.
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{Nn , n, r} standard eBAE solution [20] spelled out in subsection 4.1 below. Moreover, just

as the massive phases are permuted via S duality in N = 1∗ theory, the standard solutions

to the N = 4 eBAEs are permuted via an SL(2,Z) acting on τ [20].

Most strikingly for our purposes, the Coulomb phase of the SU(3) N = 1∗ theory

corresponds to a continuous set of non-standard solutions to the SU(3) N = 4 eBAEs.

This yields in particular an exact non-standard SU(3) eBAE solution via the corresponding

N = 1∗ vacuum given by Dorey [25]. We will discuss this exact non-standard solution in

section 4. The continua that this exact non-standard eBAE solution is part of is found

analytically both in the high-temperature (|τ | � 1) and in the low-temperature (|τ | � 1)

limits, as well as numerically in the intermediate regime with generic τ ; see subsection 4.3.2.

We suspect that more generally for any N > 2, for general τ in the upper-half plane, and

at least for an appropriate range of ∆1,2, there is a correspondence

Coulomb vacua ←→ continua of non-standard eBAE solutions, (2.3)

though the precise map might quite non-trivially depend on the chosen ∆1,2. A further

bridge, due to Dorey [25], is expected to connect the vacua on R3 × S1 to those on R4.3

Based on this correspondence and available knowledge (see e.g. [44]) on semi-classical

Coulomb vacua on R4, we expect that for N ≥ (l + 1)(l + 2)/2 there are l-complex-

dimensional continua of eBAE solutions for the SU(N) N = 4 theory. We have numeri-

cally checked that this expectation pans out (at finite τ) for N = 4 through 10 as well:

the N = 4, 5 cases, just like for N = 3, contain one-complex-dimensional continua of

non-standard eBAE solutions, while in the N = 6 case for the first time a two-complex-

dimensional continuum of solutions arises. This persists for N = 7, 8, 9, and then a new

three-complex-dimensional family of solutions appears at N = 10. These continua of

solutions present a serious difficulty for the Bethe Ansatz formula for the 4d N = 4 in-

dex [18, 19], which is derived assuming only isolated eBAE solutions. We will comment

more on this point in section 4.

An example of phenomena arising for finite complex τ or large ∆1,2 that are outside the

regime of validity of the correspondence is presented by the isolated non-standard SU(2)

eBAE solution u∆ discussed in subsection 4.3. For ∆1,2 so large that the lower branch

of (4.32) becomes relevant, even in the β → 0 limit the non-standard solution u∆ does not

correspond to an SU(2) N = 1∗ vacuum.

2.2 Classification via asymptotic growth

Deconfinement in a second sense can be associated with the asymptotic growth of Re log I
(or more generally Re log of a partition function, with the Casimir-energy piece removed),

either as |β| → 0 for finite N , or as N →∞. This is a more general sense as it does not rely

3The correspondence put forward in the present subsection essentially boils down to one between sta-

tionary points of elliptic Calogero-Moser Hamiltonians [25] associated to compactified N = 1∗, and a subset

of solutions to the N = 4 elliptic Bethe Ansatz equations. So although mathematically intriguing (with

potential connections to [42, 43]), it might not bear conceptual lessons for QFT. Dorey’s correspondence

with R4 [25] on the other hand, seems to require navigating rather deep waters of quantum gauge theory

to make complete sense of. We leave a more thorough investigation of these connections to future work.
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on a center symmetry. In the case of the 4d N = 4 index, an O(1/|β|2) growth as |β| → 0,

or an O(N2) growth as N →∞ [9] could count as “deconfinement” in this second sense.

So far these criteria do not distinguish between the fully-deconfined and partially-

deconfined phases, as classified in the first sense. A more refined classification is possible

in the present context though, due to the presence of the first-order Roberge-Weiss type

transitions [16]. Let us consider the specific case of the SU(4) N = 4 theory in the Cardy-

like limit as an illustrative example. In figure 3 we see three high-temperature “phases” of

the index separated by first-order transitions. Each phase can be labeled according to its

fastest growth, say by its

s := sup

(
lim
|β|→0

|β|2Re log I
)
, (2.4)

which is proportional to the maximum height of its corresponding curve in figure 3. Then we

get an ordering of the phases with s > 0: although no longer a fully-deconfined or a confined

phase in an absolute sense, we still get a “maximally deconfined” and (possibly) a “mini-

mally deconfined” phase in a relative sense, as well as other “partially deconfined” phases

in the middle. Phases with s ≤ 0 might more appropriately be called “non-deconfined”.

Figure 3 displays a clear correlation between this and the previous sense of deconfine-

ment: the curves corresponding to larger center-breaking have higher maxima and therefore

faster maximal growth. Also, note that the blue curve which would correspond to a confined

(i.e. center-preserving) phase in the Polyakov sense, is associated to a “minimally decon-

fining” phase in the sense of asymptotic growth. On the other hand, the non-standard

phases arising for N ≥ 5, exhibit intermediate asymptotic growth, so would be partially

deconfined in the second sense, even though their dominant holonomy configurations might

break the center completely.

In the large-N limit, besides a similar ordering of the deconfined phases via

s̃ := sup

(
lim
N→∞

Re log I/N2

)
, (2.5)

there is also a useful notion of a “confined” phase [9] where Re log I = O(N0). In similar

problems, there could of course be various other phases with intermediate scaling as well.

3 Cardy-like asymptotics of the index

Following [5], the elliptic gamma functions can be expanded in the CKKN Cardy-like

limit (1.5), so that the index (1.2) simplifies as

I(p, q, y1,2,3)
in the CKKN limit−−−−−−−−−−−→

∫ 1/2

−1/2
e−2πi

Qh(x;∆a)

τσ dN−1 x, (3.1)

with the integral over the N − 1 independent holonomies corresponding to the maximal

torus of SU(N). Here

Qh(x;∆1,2) :=
1

12

3∑
a=1

(N−1)κ(∆a)+
∑

1≤i<j≤N
κ(∆a+(xi−xj))+κ(∆a−(xi−xj))

 ,
(3.2)
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where

κ(x) := {x}(1− {x})(1− 2{x}) with {x} := x− bxc. (3.3)

Note in particular that κ(x) is compatible with the unit periodicity of the holonomies. Note

also that on the r.h.s. of (3.2) every ∆3 can be replaced with −∆1 − ∆2; this is because

the balancing condition y1y2y3 = pq fixes ∆3 = τ + σ − ∆1 − ∆2 mod Z, and since we

are interested in the leading Cardy-like asymptotics, we can neglect τ and σ in ∆3. (To

capture the subleading effects a generalization of κ(x) to complex domain is needed [5] —

cf. (4.15) below.)

Since we are interested in the |τσ| → 0 limit, the integral in (3.1) is dominated by the

global maximum of the real part of the exponent, or alternatively the global minimum of

Re(iQh/τσ). Moreover, this limit is well defined since κ(x) is continuous and bounded and

the integration domain is compact. As a result, the leading asymptotic behavior of the

index is given by

I(p, q, y1,2,3)
in the CKKN limit−−−−−−−−−−−→ e−2πi

Qh(x∗;∆a)

τσ , (3.4)

where x∗ is the holonomy configuration corresponding to the global minimum.4 Taking

the parametrization τ = iβb−1

2π and σ = iβb
2π , and noting that Qh is a real function, we see

that x∗ corresponds to the global minimum of

Veff := − sin(2 arg β)Qh(x; ∆a). (3.5)

From the x-dependent part of Qh we see that minimizing Veff is equivalent to minimizing

a potential of the form
∑

1≤i<j≤N V
Q(xij ; arg β,∆1,2), with the pairwise part explicitly

reading

V Q(xij ; arg β,∆1,2) = −sign(arg β) ·
3∑

a=1

(κ(∆a + xij) + κ(∆a − xij)) . (3.6)

Figure 1 above shows the qualitative behavior of this pairwise potential.

3.1 Behavior on the M wings

As figure 1 shows, on the M wings the pairwise potential (3.6) is minimized at xij =

0.5 Consequently the overall potential Veff also takes on its global minimum when all

holonomies are identical. Taking SU(N) into account, there are N possible configurations,

namely all xi = k/N with k = 0, 1, . . . , N − 1. These configurations are dominant in the

4If there are degenerate minima, x∗ can be taken to correspond to any one of them, as the added

degeneracy factor is subleading in the CKKN limit.
5This was found in [5] by numerically scanning the space of the control-parameters. In [4] an analytic

proof was suggested for an M-type behavior all over the parameter-space when arg β > 0; however, as

pointed out in the Added Note of [5], the proof actually applies only to the upper-right wing of figure 1,

and the oddity of the potential under ∆1,2 → −∆1,2 establishes in fact the W-type behavior on the lower-left

wing when arg β > 0. The two wings of course switch places for arg β < 0.

– 12 –



J
H
E
P
0
7
(
2
0
2
0
)
0
7
3

Cardy-like limit and completely break the ZN center. Here we have complete deconfine-

ment [5] (see also [3, 4]), as the index exhibits “maximal” asymptotic growth

I(p, q, y1,2,3) ∼ exp

(
− iπ

6τσ
(N2 − 1)

3∑
a=1

κ(∆a)

)
= exp

(
−iπ(N2 − 1)

∆1∆2∆
(±1)
3

τσ

)
,

(3.7)

with ∆
(±1)
3 = ±1 − ∆1 − ∆2, where the sign should be taken to be the same as that of

arg β. (More precisely, it is after appropriate tuning of ∆1,2 that the maximal asymptotic

growth is achieved in this fully deconfined phase; see figure 2.)

This “grand-canonical” asymptotics in (3.7), when translated to the micro-canonical

ensemble, yields the expected entropy SBH of the bulk AdS5 black holes [15, 45]. (The

original work [15] showed this last statement for the minus sign, and [45] later established

it for the plus sign as well.)

Our focus in this work is on the W wings though, to which we now turn.

3.2 Behavior on the W wings

The W wings are characterized by the feature that the minimum of the pairwise poten-

tial (3.6) is displaced away from xij = 0. In particular, it is located either at xij = 1/2

mod 1 or in a flat region around this point. The issue now is that, except for special case

of SU(2), it is impossible to center the differences xij around 1/2 mod 1 for all i and j.

As a result, the global minimum of Veff cannot correspond to the individual minima of all

the individual pairwise potentials, and the extremization problem then becomes quite chal-

lenging. For this reason, it has been an open problem to find the Cardy-like asymptotics of

the index on the W wings (cf. Problem 1 in section 5 of [5]). In this section we completely

address the problem for N ≤ 4, and take steps towards addressing it for N > 4.

3.2.1 SU(2) and infinite-temperature confinement/deconfinement transition

The W-wing behavior is easy to determine for the SU(2) case, as the minimum at x12 = 1/2

along with the SU(2) condition x1 +x2 = 0 is trivially solved by the “confining” holonomy

configuration x1 = −x2 = 1/4. This leads to the W-wing asymptotics

I W wings−−−−−→ exp

(
− iπ

6τσ

3∑
a=1

(
κ(∆a) + 2κ(∆a + 1/2)

))
. (3.8)

Note that i) the chosen dominant holonomy configuration on the W wings respects the

Z2 center symmetry generated by xi → xi + 1/2, and ii) as already discussed in [5], the

fastest asymptotic growth of the index on the W wings is slower than the fastest asymptotic

growth on the M wings, as expected.

3.2.2 SU(N) for finite N > 2

For N > 2 it is no longer possible to have all xij equal to 1/2, and finding the global

minimum of the effective potential becomes a difficult problem. Nevertheless, we can

– 13 –



J
H
E
P
0
7
(
2
0
2
0
)
0
7
3

obtain lower bounds on the asymptotic growth by examining special sets of holonomy

configurations. In particular, we note that

I(p, q, y1,2,3) & e−2πi
Qh(x0;∆a)

τσ , (3.9)

for any set of holonomies x0 on the maximal torus. This bound is saturated when x0 = x∗,

but is suboptimal otherwise. Our goal is then to pick a family of configurations {x0,i} and

optimize over this family. Because the potential is exponentiated, we can in fact write

I(p, q, y1,2,3) &
∑
i

e−2πi
Qh(x0,i;∆a)

τσ , (3.10)

which is a convenient way to package the lower bound on the asymptotic growth.

The choice of holonomy configurations to optimize over will of course determine how

optimal the bound will be. As a compromise between simplicity and robustness of the esti-

mate, we consider the family based on grouping the N holonomies into packs of d collided

holonomies (x1 = x2 = · · · = xd, xd+1 = xd+2 = · · · = x2d, etc.) where d is a divisor of N .

There are a total of N/d distinct packs, and they are then distributed uniformly on the pe-

riodic interval [−1/2, 1/2] in such a way that they satisfy the SU(N) condition
∑

j xj ∈ Z.

This latter condition gives rise to d discrete configurations (which we collectively denote by

xd), signalling a partial breaking ZN → ZN/d of the center. These special configurations

were shown in [28] to be saddle point solutions for real holonomies in the large-N limit.

Alternatively, they arise as the hyperbolic (or “high-temperature”) reduction of the set of

eigenvalue configurations found in [20]; we will comment more on this point below.

For a given divisor d, since there are C := N/d packs distributed evenly on the periodic

unit interval, the spacing between packs is 1/C. As a result, the configuration xd yields

Qh(xd; ∆1,2) =
1

12

3∑
a=1

(
(N − 1)κ(∆a) +N(d− 1)κ(∆a)

+ d2
C−1∑
J=1

J

(
κ

(
∆a +

J

C

)
+ κ

(
∆a −

J

C

)))
.

(3.11)

Here the second term is the contribution of the d(d − 1)/2 collided holonomy pairs inside

a single pack, with xij = 0, and the third term is the contribution of the holonomy pairs

between the different packs, with xij = J/C.

To simplify (3.11) further, we use the remarkable identity

n−1∑
J=1

J

(
κ

(
∆a +

J

n

)
+ κ

(
∆a −

J

n

))
=
κ(n∆a)

n
− nκ(∆a), (3.12)

which can be derived with Mathematica’s aid. Applying this to (3.11) and substituting in

d = N/C then gives

I &
∑
C|N

exp

(
− iπ

6τσ

3∑
a=1

(
N2

C3
κ(C∆a)− κ(∆a)

))
. (3.13)
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Figure 2. The functions C−3
∑3

a=1 κ(C∆a) for C = 1 (brown), C = 2 (green), C = 3 (yellow),

and C = 6 (blue).

The symbol & emphasizes that the r.h.s. is only a lower bound on the asymptotic growth

of I in the CKKN limit. While we are mainly interested in the W wings, derivation of

this bound is independent of the wings. In particular, this bound is optimal on the M

wings, where the optimal term is given by C = 1, corresponding to the condensation of

all holonomies into a single pack. On the W wings, however, except for N = 2 where it

reduces to (3.8), the bound (3.13) is not necessarily optimal, as we will argue below.

Although the bound (3.13) is written as a sum over ‘trial’ configurations, generically,

depending on where exactly we are on the W wings, only one term would dominate the

sum. The question of which divisor C provides the strongest bound then boils down to the

comparison of

1

C3

3∑
a=1

κ(C∆a), (3.14)

for various divisors C of N . For N a prime number, there are only two divisors, namely

C = 1 and C = N . In this case, the answer is simple: the “confined” C = N term dominates

the sum in (3.13) on the W wings, while the “fully deconfined” C = 1 term dominates on

the M wings. For composite N , however, other divisors (besides 1 and N) may give the

dominant contribution to the sum in (3.13) on the W wings. For example, for N = 6,

figure 2 shows that while on the M wing the fully condensed C = 1 term is dominant, on

the W wing there are regions where the other divisors take over the sum in (3.13).
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As already emphasized, the sum in (3.13) gives us a lower bound, but not necessarily

the true asymptotic growth of the index. Nevertheless, we conjecture that at least on

subsets of the regions where various divisors become dominant in (3.13), the corresponding

term in the sum actually gives the true asymptotics. In other words, that for any finite N

there are confining or partially deconfining phases on the W wings.

For small values of N we can attack the extremization problem numerically of course,

and make more precise statements. This is what we will do next. For example, for

N = 6 we establish that on a subset of the region in figure 2 where the green curve

takes over, the dominant holonomy configuration is indeed the partially-deconfining

(Z6 → Z2) configuration xd=3, that on a subset of the “yellow region” the dominant

holonomy configuration is the partially-deconfining (Z6 → Z3) configuration xd=2, and

that on a subset of the “blue region” the dominant holonomy configuration is the confining

(Z6-symmetric) configuration xd=1.

A remarkable surprise of the numerical investigation discussed below is that for

N = 3, 4 the bound (3.13) is in fact optimal! Therefore (3.13) gives the exact leading-

order asymptotics of the index in these cases. For larger values of N on the other hand,

the numerical analysis shows that there are indeed regions on the W wings where the

bound (3.13) is not optimal.

SU(3): infinite-temperature confinement/deconfinement transition. Our nu-

merical investigation shows that for N = 3 the bound (3.13) is optimal to within two

parts in 1015 — which is essentially the machine precision. We therefore conclude that the

exact leading asymptotics of the index in this case reads

ISU(3) ∼ e−
8iπ
6τσ

∑3
a=1 κ(∆a) + e−

iπ
6τσ

∑3
a=1( 1

3
κ(3∆a)−κ(∆a)). (3.15)

Hence, just as in the SU(2) case, we have infinite-temperature confinement/deconfinement

transitions moving from the W wings to the M wings. On the M wings the first term on

the r.h.s. of (3.15) dominates, and on the W wings the second term.

Before moving on to richer cases, once again we emphasize that in the present paper

we are studying the asymptotics on generic points of the parameter-space. On non-generic

points where ∆a ∈ Z or τ, σ ∈ iR+, the asymptotic growth would be slower, and a more

involved analysis is required; cf. section 3 of [5].

SU(4): infinite-temperature partial deconfinement. In this case as well, the nu-

merical investigation shows that the bound (3.13) is optimal to within two parts in 1015.

We therefore conclude that the exact leading asymptotics of the index for N = 4 reads

ISU(4) ∼ e−
15iπ
6τσ

∑3
a=1 κ(∆a) + e−

iπ
6τσ

∑3
a=1(2κ(2∆a)−κ(∆a)) + e−

iπ
6τσ

∑3
a=1( 1

4
κ(4∆a)−κ(∆a)). (3.16)

The first and the third terms on the r.h.s. come respectively from the fully-deconfined

(C = 1) and the confined (C = N = 4) holonomy configurations. But here we have also

the first instance of infinite-temperature partial deconfinement in the superconformal index:

the middle term on the r.h.s. of (3.16) takes over on the middle triangle of the W wings

as shown in figure 3. This term corresponds to C = 2, and signals a Z4 → Z2 breaking of
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Figure 3. The functions C−3
∑3

a=1 κ(C∆a) for C = 1 (brown), C = 2 (green), and C = 4 (blue).

The take-over of the green curve signifies the partially deconfined phase in that region when N = 4.

the center symmetry in the Cardy-like limit. This qualifies as a partially deconfined phase,

not only because of its partial-breaking pattern of the center symmetry, but also because

of its “partial liberation of the constituents” as signified by the fact that the height of the

green curve lies between those of the blue (C = 4, confined) curve and the brown (C = 1,

fully-deconfined) curve.

SU(5) and SU(6): insufficiency of the divisor configurations. In these cases the

numerical analysis shows that there are regions on the W wings where none of the divisor

configurations xd minimizes Veff . Fixing arg β > 0 for concreteness, we see from figure 4

that in the SU(5) case there is a relatively large such region, but for SU(6) there are rather

small subsets of the W wing where this happens. Hence the bound (3.13) seems much more

efficient in the SU(6) case. This is to be expected of course, as there are three contributing

trial configurations (C = 2, 3, 6) on the W wings when N = 6, while there is only one such

configuration (C = 5) when N = 5.

3.2.3 Taking the large-N limit

The bound on the asymptotic growth of the index, (3.13), was derived using a family of

holonomy configurations based on divisors C of N . This bound can of course be improved

by enlarging the family of trial configurations. One way to do this is to divide the N

holonomies into C collided packs with the packs evenly distributed on the periodic interval
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Figure 4. The difference (scaled by a factor of 12) between the numerically maximized Qh, and the

Qh maximized over the divisor configurations xd, on the arg β > 0 W wing, forN = 5 on the left, and

for N = 6 on the right. When the result is zero, it means the divisor configurations are maximizing

Qh (hence minimizing Veff). Note the big hole in the middle for N = 5, and the small holes for

N = 6, signalling the failure of the divisor configurations to maximize Qh (hence to minimize Veff).

for all integer C = 1, 2, . . . , N . In general, each pack cannot have the same number of

holonomies unless C is a divisor of N . Nevertheless, we can make the packs nearly uniform

by first distributing bN/Cc holonomies into each of the C packs. This leaves N mod C

holonomies left over, which can then be distributed in some prescribed manner in the

packs. This set of trial configurations would in principle improve the bound given in (3.13).

However, the resulting bound would be sensitive to the particular distribution of the left

over N mod C holonomies, and can no longer be expressed in such a compact manner.

Although the refined bound that is obtained by splitting the eigenvalues into C packs

for all integers C does not admit a simple expression for finite N , it nevertheless simplifies

in the large-N limit, at least for the leading order growth of the index. The idea here is

that, instead of taking C = 1, 2, . . . , N , we cut off the set of trial configurations at some

large but finite Cmax that is independent of N . For a given C, we then start with C packs

of bN/Cc holonomies and compute Veff for this subset of CbN/Cc holonomies. This is

of course incomplete, but we can add in the remaining pairwise potentials, (3.6), between

these uniform holonomies and the N mod C remaining ones (as well as those among the

remaining holonomies themselves). These interactions between O(C) objects and O(N)

objects (as well as those among the remaining O(C) objects) add a correction of at most

O(N) since we keep the cutoff on C fixed. Alternatively, starting with CbN/Cc instead of

N holonomies also leads to a correction of the same order. As a result, the leading O(N2)

behavior of the index is captured by (3.13) with the modification that the sum is taken
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over all integers up to the cutoff:

IN→∞ &
Cmax∑
C=1

exp

(
− iπN

2

τσ

3∑
a=1

κ(C∆a)

6C3

)
. (3.17)

Since we have dropped terms of O(N) or smaller, this asymptotic bound is only valid when

considering the O(N2/τσ) growth of the index. In this case, in fact because the bound

applies for any finite Cmax ∈ N, we can remove the Cmax cutoff and instead take the sum

to infinity.

Note that the large-N bound, (3.17), confirms that the finite N bound, (3.13), is not

optimal in general! For N a large prime, for example, the finite N bound would consist

of a sum over only the C = 1 and C = N terms, with the C = N (or “confining”) term

winning on the W wings. But we know (cf. figure 2) that for large enough N , at least

on subsets of the W wings, the C = 2, 3, . . . terms in the large-N bound (3.17) dominate

over the confining term. This is of course a simple result of enlarging the set of trial

configurations to include more general C collided packs of holonomies for all integer C,

whether C divides N or not.

Returning to the large-N analysis, we see that as long as at least one term in (3.17)

has a positive real part in the exponent, the index will exhibit O(N2) growth in the

Cardy-like limit. This corresponds to either full deconfinement when the C = 1 term

dominates, or partial deconfinement when some C > 1 term dominates. As discussed

above, the C = 1 term always dominates in the M wings, even at finite N , with the

resulting behavior given by (3.7). On the other hand, the situation is more elaborate in

the W wings. Let us fix arg β < 0 for concreteness; then the W wing consists of all ∆1,2

subject to 0 < ∆1,∆2, 1−∆1 −∆2 < 1. The question then becomes whether for any such

∆1,2 we can find a C ∈ N such that
∑

a κ(C∆a) < 0. We now argue that this is the case! In

fact since κ(C∆a) is periodic under ∆1,2 → ∆1,2 + 1/C, we can simply focus on the square

0 < ∆1,2 < 1/C. Now, it follows from the scaling ∆a → ∆a/C that on this square the sign

of
∑

a κ(C∆a) is positive (resp. negative) if the representatives {C∆1,2}/C of ∆1,2 on the

square 0 < ∆1,2 < 1/C lie on the lower triangle with vertices (0, 0), (0, 1/C), (1/C, 0) (resp.

the upper triangle with vertices (0, 1/C), (1/C, 0), (1/C, 1/C)). Hence the question boils

down to whether we can find a C such that the representatives are on the upper triangle

where {C∆1}/C + {C∆2}/C > 1/C. (The interested reader might find that a simple

drawing of the said triangles would render the previous sentences obvious.) The following

lemma answers this question in the positive.

Lemma 1 For every pair of real numbers x, y subject to 0 < x, y, 1 − x − y < 1, there

exists a natural number C > 1 such that {Cx}+ {Cy} > 1.

An elementary proof of this lemma can be found in the appendix.6 Here we instead

point out that it follows from a much stronger result, often associated7 to the names

6We learned the proof, as well as the following remark regarding the Kronecker-Weyl theorem, from

David E Speyer, a mathematician at University of Michigan.
7See https://mathoverflow.net/questions/162875/reference-for-kronecker-weyl-theorem-in-full-

generality.
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Kronecker and Weyl, that if there is no integer relationship between x, y (i.e. no solution

to ax+ by + c = 0 in integers other than (a, b, c) = (0, 0, 0)) then the points ({Cx}, {Cy})
are dense in the unit torus. (In our case, even if there is such an integer relationship

between ∆1,∆2, we can always establish our desired result by applying the Kronecker-

Weyl theorem to ∆1,∆2 + ε, with a small-enough ε chosen such that there is no integer

relationship between ∆1,∆2 + ε.)

Similar arguments apply when arg β > 0. We thus conclude that for all points strictly

inside the W wings, there exists a natural number C > 1 such that the exponent of the

“C-th bound” in (3.17)

IN→∞ & exp

(
− iπN

2

τσ

3∑
a=1

κ(C∆a)

6C3

)
, (3.18)

has positive real part, and hence the index is partially deconfined.

A “non-deconfined” behavior (i.e. o(N2)/τσ growth for log I as N → ∞ after the

Cardy-like limit) might appear in the non-generic situations where arg β = 0 (cf. section 3

of [5]), or ∆a ∈ Z. In such cases, subdominant terms of O(N) or smaller may be important

in order to fully pin down the behavior of the index.

With some optimism, this genericity of partial deconfinement on the W wings can be

taken as a sign that it would be consistent to conjecture that the large-N bound (3.17),

with the cut-off removed, gives not just a lower bound but the actual leading asymptotics

of the index.

Conjecture 1 The leading asymptotics of the superconformal index (1.2) of the 4d N = 4

theory with SU(N) gauge group, in the CKKN limit (1.5), simplifies as N →∞ to

IN→∞ ∼
∞∑
C=1

exp

(
− iπN

2

τσ

3∑
a=1

κ(C∆a)

6C3

)
, (3.19)

with the error such that logarithms of the two sides differ by o(N2/τσ).

This conjecture is motivated in part by the following two observations: i) that in the

N →∞ limit there are infinitely many trial configurations, and hence increasing chance of

their sufficiency; ii) that already for N as small as 6, as witnessed by figure 4, the divisor

configurations go a long way towards minimizing Veff on the W wings.

Note that Lemma 1 implies that for generic ∆1,∆2 at least one of the exponentials on

the right-hand side of (3.19) has absolute value greater than one. The stronger Kronecker-

Weyl theorem implies that there are actually infinitely many such exponentials on the

right-hand side of (3.19). Therefore the infinite sum in (3.19) is not actually convergent,

but should be considered as an asymptotic expression, with only one term in the infinite

sum dominating for generic ∆1,∆2.
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Entropy of the partially deconfined phases. Let us now focus on the C-th term

in (3.19), and see what entropy it bears.8 First, we rewrite the C-th term explicitly as

exp

(
− πiN2

τσ

3∑
a=1

κ(C∆a)

6C3

)
= exp

(
− πiN2

τσ

〈C∆1〉〈C∆2〉〈C∆3〉
C3

)
, (3.20)

where we have defined 〈C∆a〉 as

〈C∆a〉 =

{
{C∆a} − 1 if {C∆1 + C∆2} = {C∆1}+ {C∆2} − 1;

{C∆a} if {C∆1 + C∆2} = {C∆1}+ {C∆2}.
(3.21)

The corresponding entropy SC(J1,2, Qa) is obtained by performing a Legendre transform

of (3.20), which requires adding −2πi(σJ1 + τJ2 +
∑

a ∆aQa) in the exponent, and then

extremizing. The first step can be written explicitly as

exp[ŜC(J1,2, Qa; ∆a, σ, τ)] (3.22)

= exp

[
−2πi

C

(
N2

2(Cτ)(Cσ)
〈C∆1〉〈C∆2〉〈C∆3〉+ (Cσ)J1 + (Cτ)J2 +

3∑
a=1

〈C∆a〉Qa

)]
,

where we have replaced C∆a with 〈C∆a〉 in the last term; this replacement is allowed as-

suming Qa ∈ CZ, which we do for simplicity, because then since the difference between C∆a

and 〈C∆a〉 is an integer it would not change the exponential when multiplied by −2πiQa/C.

Extremizing the function ŜC(J1,2, Qa; ∆a, σ, τ) in (3.22) with respect to the chemical po-

tentials ∆a, σ, τ under the constraint
∑

a ∆a − σ − τ ∈ Z determines the entropy as

SC(J1,2, Qa) = ŜC(J1,2, Qa; ∆C
a , σ

C , τC), (3.23)

where ∆C
a , σC , and τC denote the critical points under the aforementioned constraint.

With an appropriate relation between J1,2, Qa the resulting entropy will be a real

number [3], and hence acceptable.

Note that the expression inside the round bracket in (3.22) with general C reduces to

the expression with C = 1 under 〈C∆a〉 → 〈∆a〉, Cσ → σ, and Cτ → τ . In other words,

this simple replacement maps the present problem to that of the C = 1 (single-center)

black hole entropy problem. We thus find

SC(J1,2, Qa) = SBH(J1,2, Qa)/C, (3.24)

as alluded to in section 1.

Using the same property, we can also figure out the critical points with general C

directly from the known ones with C = 1. Since our analysis is restricted to real ∆1,2,

however, we should focus on the equal-charge case where all Qa’s are equal to each other

8Even if Conjecture 1 turns out to be incorrect for generic ∆1,2, it might very well be correct in the

vicinity of the critical points we find below, and this would be enough for the following entropy calculation

to be valid.
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(cf. the end of section 2 in [5]). In that case, the critical points with C = 1 have been

already known as

〈∆C=1
a 〉 = ±1

3
⇔ (∆C=1

1 ,∆C=1
2 ) =

(
± 1

3
, ±1

3

)
, (3.25)

with the signs the same as that of arg β. The critical points with general C are then

determined as

〈C∆C
a 〉 = ±1

3
⇔ (∆C

1 ,∆
C
2 ) =

(
± 1

3C
+
j

C
, ± 1

3C
+
k

C

)
, (3.26)

where j, k are arbitrary integers. For C = 2 as an example, fixing arg(β) > 0 for concrete-

ness, we have the critical point at (∆1,∆2) = (−1
3 ,−

1
3) on the W wing. The interested

reader is encouraged to locate the C = 3 critical points in figure 2.

An interesting question is whether at the critical point the C-th term in (3.17) is

indeed dominant; otherwise the entropy derivation would not be self-consistent. Curiously,

a numerical investigation shows that the answer is positive for C ≤ 5, and negative for

general C > 5. The interpretation of this result is not yet clear to us.

4 Comparison with the Bethe Ansatz type approach

It was argued in [18, 19] that the index (1.1) can be rewritten as a Bethe Ansatz type

formula. One advantage of this reformulation is that the integral over the Coulomb branch

in (1.2) is replaced by a sum over solutions to a set of Bethe Ansatz like equations. This

was the approach used in [6] to obtain the black hole microstate counting in the large-N

limit. Here we briefly review the Bethe Ansatz approach (BA approach) to the index and

then demonstrate how the partially deconfined phases identified in the previous section

emerge in this approach.

4.1 The Bethe Ansatz type expression for the index

For simplicity, we restrict to p = q (i.e. τ = σ = iβ
2π ) in the index. In this case, the Bethe

Ansatz type formula reads [6, 19]

I(q, q, y1,2,3) = αN (τ)
∑

û∈eBAEs

Z(û; ∆a, τ)H(û; ∆a, τ)−1, (4.1)

where αN (τ) = 1
N !

∏∞
k=1(1 − e2πikτ )2(N−1) and û = {u1, · · · , uN} denotes all possible

solutions to the following system of elliptic Bethe Ansatz equations (eBAEs),

1 = Qi(û; ∆a, τ) := e2πi(λ+3
∑
j uij)

N∏
j=1

θ0(uji + ∆1; τ)θ0(uji + ∆2; τ)θ0(uji −∆1 −∆2; τ)

θ0(uij + ∆1; τ)θ0(uij + ∆2; τ)θ0(uij −∆1 −∆2; τ)
,

(4.2)

under the SU(N) constraint
∑N

i=1 ui ∈ Z+τZ and the abbreviation uij = ui−uj . The third

chemical potential ∆3 is constrained via ∆3 = 2τ −∆1 −∆2 (mod Z) as in the previous
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section. Note that λ is a free parameter independent of i. Here we have introduced

Z(û; ∆a, τ) and H(û; ∆a, τ) as

Z(û; ∆a, τ) =

(
3∏

a=1

Γ̃N−1(∆a; τ, τ)

)
N∏

i,j=1 (i 6=j)

∏3
a=1 Γ̃(uij + ∆a; τ, τ)

Γ̃(uij ; τ, τ)
, (4.3a)

H(û; ∆a, τ) = det

[
1

2πi

∂(Q1, · · · , QN )

∂(u1, · · · , uN−1, λ)

]
, (4.3b)

and the elliptic functions θ0(u; τ) and Γ̃(u; τ, σ) are defined as (z = e2πiu, q = e2πiτ , p =

e2πiσ)

θ0(u; τ) = (1− z)
∞∏
k=1

(1− zqk)(1− z−1qk), (4.4)

Γ̃(u;σ, τ) = Γ(z; p, q). (4.5)

Note that H(û; ∆a, τ) has to be evaluated at the solutions to the eBAEs after taking the

partial derivatives of Qi’s with respect to ui’s.

Since the right-hand side of (4.1) is summed over all possible solutions to the

eBAEs (4.2), the first step towards the computation of the index (4.1) is to find the most

general solutions to the eBAEs (4.2). Here we find it convenient to use the relation

θ1(u; τ) = −ie
πiτ
4 (eπiu − e−πiu)

∞∏
k=1

(1− e2πikτ )(1− e2πi(kτ+u))(1− e2πi(kτ−u))

= ie
πiτ
4 e−πiu

∞∏
k=1

(1− e2πikτ )θ0(u; τ),

(4.6)

to rewrite the eBAEs (4.2) in terms of the Jacobi theta function θ1(u; τ) as

1 = Qi = e2πiλ
N∏
j=1

θ1(uji + ∆1; τ)

θ1(uij + ∆1; τ)

θ1(uji + ∆2; τ)

θ1(uij + ∆2; τ)

θ1(uji −∆1 −∆2; τ)

θ1(uij −∆1 −∆2; τ)
, (4.7)

These eBAEs are a set of highly non-linear equations, and it seems rather challenging to

find the most general solutions. However, in the form (4.7), these equations coincide with

those for the topologically twisted index of N = 4 SYM on T 2 × S2 [46]. In [20] oddity

and quasi-periodicity of θ1(u; τ) with respect to the first argument

θ1(u; τ) = −θ1(−u; τ),

θ1(u+ l + kτ ; τ) = (−1)le−2πikue−πik
2τθ1(u; τ), (k, l ∈ Z)

(4.8)

were used to find a large set of solutions to (4.7). These solutions are denoted in terms of

three non-negative integers {m,n, r} with N = mn and r = 0, 1, . . . , n − 1, and have the

ui’s distributed as

û{m,n,r} =

{
uĵk̂ = ū+

nĵ + rk̂

N
+
k̂

n
τ

∣∣∣∣N = mn, 0 ≤ r < n, (ĵ, k̂) ∈ Zm × Zn

}
, (4.9)

– 23 –



J
H
E
P
0
7
(
2
0
2
0
)
0
7
3

where ū is determined by the SU(N) constraint
∑

ĵ

∑
k̂ uĵk̂ ∈ Z + τZ. In essence, these

{m,n, r} solutions correspond to regular distributions of the N holonomies over the fun-

damental domain of the torus specified by (1, τ).9 We will refer to these as the standard

solutions to the eBAEs (4.2) and refer to the ui’s as holonomies in analogy to the holonomies

xi in the integral representation of the index.

It turns out, however, that the standard solutions, (4.9), are in fact not the most

general solutions to the eBAEs. In a way, this is not particularly surprising because of the

non-linear nature of the equations. We will refer to the additional solutions that do not

fall into the class of (4.9) as non-standard solutions. Such solutions will not correspond

to a periodic tiling of the fundamental domain and moreover may depend on the chemical

potentials ∆k. The Bethe Ansatz form for the index is then a sum over standard and

non-standard solutions, which we denote schematically as

I(q, q, y1,2,3) =
∑
n|N

n−1∑
r=0

I{N/n,n,r}(∆a, τ) +
∑

non-standard û

Iû(∆a, τ). (4.10)

Note that the contribution from the standard solutions to the index, dubbed as

I{m,n,r}(∆a, τ) in (4.10), can be written explicitly as

I{m,n,r}(∆a, τ) (4.11)

=
αN (τ)

∏3
a=1 Γ̃N−1(∆a; τ, τ)

H(û{m,n,r}; ∆a, τ)

(ĵ,k̂) 6=(ĵ′,k̂′)∏
(ĵ,k̂),(ĵ′,k̂′)∈Zm,Zn

∏3
a=1 Γ̃( ĵ−ĵ

′

m + k̂−k̂′
n (τ + r

m) + ∆a; τ, τ)

Γ̃( ĵ−ĵ
′

m + k̂−k̂′
n (τ + r

m); τ, τ)
,

by substituting (4.9) into (4.1, 4.3a).

4.2 The Cardy-like limit of the index

In section 3, we were able to bound the asymptotic growth of the index in the Cardy-like

limit based on a set of trial holonomy configurations with the N holonomies distributed

among C packs of collided holonomies. For finite N , we took C to be a divisor of N so that

all packs contain an equal number N/C of holonomies and arrived at the bound (3.13).

This bound can be improved in the large-N limit by removing the requirement that N/C is

an integer; the O(N2) behavior of the index is then governed by (3.17). In this subsection

we reproduce the same results in the BA approach.

4.2.1 Standard solutions and the asymptotic bound (3.13)

At first it may not be obvious how (3.13) can be obtained in the BA approach. However,

the connection can be made by taking the τ → 0 limit of the standard solutions for the

holonomies, given in (4.9). They reduce in this hyperbolic (or “high-temperature”) limit to

û{m,n,r} =

{
uĵk̂ = ū+

nĵ + rk̂

N

∣∣∣∣(ĵ, k̂) ∈ Zm × Zn

}
. (4.12)

9When gcd(m,n, r) = 1, these distributions are equivalent to those labeled by (m′, n′) with û(m′,n′) =

{ui = ū+(m′τ+n′)i/N | gcd(m′, n′, N) = 1, 0 ≤ i < N} considered in the saddle point analysis of [47], with

m = N/n = gcd(N,m′) and r = n′b (mod n) where the integers a, b are determined by 1 = na+ (m′/m)b.
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This distributes the N holonomies in the unit interval spaced in multiples of 1/N . In fact, it

is not difficult to see that periodicity of the holonomies ensures that (4.12) is equivalent to

the N holonomies distributed evenly into C distinct packs of N/C collided holonomies with

C =
N

gcd(n, r)
. (4.13)

(In the special case r = 0 we define gcd(n, 0) := n.) This indeed corresponds directly

to the holonomy configurations considered in section 3 which led to the asymptotic

bound, (3.13), for the finite-N index in the Cardy-like limit.

To derive (3.13) in the BA approach more explicitly, we compute the contributions

from the standard solutions to the index, namely I{m,n,r}(∆a, τ) given in (4.11), in the

Cardy-like limit. The result, whose derivation we now outline, confirms that they saturate

the asymptotic bound in (3.13). First, since we are interested in the 1/|τ |2 leading behavior

of log I, the contribution logαN (τ) from the prefactor is negligible. Next, the Jacobian

determinant H(û{m,n,r}; ∆a, τ) involves derivatives of theta functions which are of order

O(e−1/|τ |) [20] in general10 and therefore − logH(û{m,n,r}; ∆a, τ) does not contribute to

the 1/|τ |2 leading order of log I. Hence the leading contribution to log I comes entirely

from logZ{m,n,r}(∆a, τ), which can be estimated using the following asymptotic formula

for the elliptic gamma function:

log Γ̃(u; τ, τ) = − πi

6τ2
κτ (u) +O

(
1

|τ |

)
, (4.14)

where κτ (u) is defined as

κτ (x) = {x}τ (1− {x}τ )(1− 2{x}τ ) with {x}τ = x− bRex+ tan(arg β) Imxc. (4.15)

This κτ (x) is a generalization of κ(x) introduced in (3.3) to complex domain [5]. Note that

{x}τ and κτ (x) reduce repectively to {x} and κ(x) for x ∈ R.

The 1/|τ |2-leading order behavior of the index is then obtained from the asymptotic

expansion of (4.3a)

log I(û; ∆a, τ) = − πi

6τ2

∑
a

(N − 1)κτ (∆a) +
∑
i 6=j

κτ (ûij + ∆a)

+O(1/τ), (4.16)

where we made use of the relation κτ (u) + κτ (−u) = 0. The connection to the integral

approach to the index is now manifest, as this reproduces Qh(x; ∆) in (3.2) obtained in the

CKKN limit of (1.2). Of course, here, the holonomies are not integrated over, but rather

are taken to satisfy the eBAEs, (4.2) or equivalently (4.7).

In the hyperbolic limit, the standard solutions all reduce to (4.12), which is equivalent

to dividing them into C distinct packs of collided holonomies. Substituting any one of these

solutions into (4.16) then necessarily gives the same result that was previously obtained in

10We did not rule out the possibility that for some non-generic values of ∆1,2 the Jacobian determinant

evaluated for a standard solution can be exactly zero. This would be rather unnatural, as the standard

solutions are expected to be isolated. At any rate, we exclude such pathological ∆1,2 from our consideration.
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the CKKN limit. In particular, taking ∆1,∆2 ∈ R and noting that κτ (x) reduces to κ(x)

for real arguments, we obtain

log I{m,n,r}(∆a, τ) = − πi

6τ2

3∑
a=1

(
N2

C3
κ(C∆a)− κ(∆a)

)
+O (1/τ) , (4.17)

where C = N/ gcd(n, r).

In the Cardy-like limit, the Bethe Ansatz form of the index, (4.10), then takes the

form

I(q, q, y1,2,3) =
∑
C|N

d(C) exp

(
− πi

6τ2

3∑
a=1

(
N2

C3
κ(C∆a)− κ(∆a)

)
+O (1/τ)

)

+
∑

non-standard û

Iû(∆a, τ), (4.18)

where we have made explicit the degeneracy factor d(C) counting the number of distinct

standard solutions that gives rise to a given C, though it of course does not contribute

to the 1/|τ |2 leading order. If we discard the contributions of any possible non-standard

solutions, then this saturates the asymptotic bound obtained earlier as (3.13). Recall that,

in the integral approach, the bound was obtained by taking a set of trial configurations

corresponding to C equal packs of collided holonomies. Here, the Bethe Ansatz approach

uses the same set of holonomy configurations, so it is no surprise that the final asymptotic

expression for the index is the same. However, in this approach, the holonomy configura-

tions are not just trial configurations, but are exact solutions to the eBAEs, and remain

exact solutions even away from the Cardy-like limit.

4.2.2 Non-standard solutions and the improved asymptotic bound (3.17)

As demonstrated in the CKKN limit of the elliptic hypergeometric integral, the basic

asymptotic bound, (3.13), can be improved by enlarging the set of trial configurations to

encompass C nearly uniform packs of collided holonomies for all integers C, not necessarily

dividing N . In the BA approach, however, we cannot arbitrarily choose trial configurations;

rather we are limited to solutions of the eBAEs. Since the standard solutions only allow

for values of C that divide N , they cannot generate the improved bound, (3.17). This

strongly suggests that the set of standard solutions is in fact incomplete and that we need

non-standard solutions resembling arbitrary C packs where C does not divide N .

As an example, consider the case C = 2. When N is even, this is realized by a

standard solution, which corresponds in the Cardy-like limit to N/2 holonomies taking the

value ui = 0 and another N/2 holonomies taking the value ui = 1/2 (up to a constant

ū shift enforcing the SU(N) condition). Away from the Cardy-like limit, this splits into

two eBAE solutions, the first corresponding to {m,n, r} = {2, N/2, 0}, and the second to

{1, N,N/2}. In both cases, the N/2 holonomies in each pack are evenly distributed along

the periodic τ direction, although in the second solution the two packs are offset by τ/N

while in the first solution they are not.
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The more interesting case is how C = 2 is realized when N is odd. The expectation

here is that there must be a non-standard solution where the holonomies are split into two

packs. Although we cannot equally divide an odd number of holonomies, we can imagine

grouping (N+1)/2 of them into one pack and (N−1)/2 of them in the other. While the first

pack has one additional holonomy, this should become unimportant in the large-N limit.

Nevertheless, we demonstrate that such a non-standard solution exists, even for finite N .

Before describing this non-standard C = 2 solution, recall that we assumed ∆1,∆2 ∈ R
in section 3 so we make the same assumption here. Then, without loss of generality, we

can set 0 < ∆1 ≤ ∆2 ≤ 1 − ∆1 − ∆2 < 1 using the invariance of the eBAEs (4.7)

under ∆1,2 → ∆1,2 + Z and ∆1,2 → −∆1,2 (see appendix C for details). Furthermore, we

assume ∆1,∆2, 1−∆1 −∆2 take different values and are not asymptotically close to each

other (∼ O(|τ |) in the Cardy-like limit, for example) to avoid any potentially complicated

behavior near Stokes lines. Based on this setup, we find that the non-standard C = 2

solution falls into two cases, depending on whether ∆1 + ∆2 ≤ 1
2 or ∆1 + ∆2 >

1
2 .

Case 1. ∆1+∆2 ≤ 1
2
. In appendix C we establish a non-standard solution in the Cardy-

like limit with the chemical potentials satisfying ∆1 + ∆2 ≤ 1
2 . It is given explicitly as

û =

{
i

(N + 1)/2
τ : i = 0, · · · , N − 1

2

}
∪
{

1

2
+

i− 1/2

(N − 1)/2
τ : i = 1, · · · , N − 1

2

}
. (4.19)

This asymptotic non-standard solution satisfies the eBAEs in the Cardy-like limit (as

displayed in (C.22)) up to exponentially suppressed terms. Note that this solution

corresponds to both packs having holonomies equally spaced along the periodic τ direction

and hence can be viewed as a natural odd-N version of the standard C = 2 solution.

Although this solution only satisfies the eBAEs asymptotically, we have demonstrated that

similar solutions continue to exist at finite τ by numerically solving the exact eBAEs (4.7).

As an example, we present a numerical solution with N = 11 in figure 5a. This strongly

implies that there is an exact non-standard solution to the eBAEs (4.7), whose asymptotic

form is given as (4.19). Unlike the standard solutions, however, this non-standard C = 2

solution does not have the holonomies uniformly distributed on the torus, and moreover

generally depends on the potentials ∆a, except in the Cardy-like limit.

It is now straightforward to insert the asymptotic solution, (4.19), into (4.16) to obtain

the contribution to the index

log Iodd-N
C=2 (∆a, τ) = − πi

6τ2

3∑
a=1

N2 − 1

8
κ(2∆a) +O (1/τ) , (4.20)

which can be compared with the standard C = 2 solution

log Ieven-N
C=2 (∆a, τ) = − πi

6τ2

3∑
a=1

(
N2

8
κ(2∆a)− κ(∆a)

)
+O (1/τ) , (4.21)

obtained by taking C = 2 in (4.17). Although these expressions still demonstrate an

even/odd effect at finite N , the leading O(N2/τ2) behavior is identical in the large-N limit.
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0.2 0.4 0.6 0.8 1.0
Re (u)
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0.06
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0.10

Im(u)

(a) (∆1,∆2) = ( 105
517 ,

75
287 ).

0.2 0.4 0.6 0.8 1.0
Re (u)

0.02

0.04

0.06

0.08

0.10

Im(u)

(b) (∆1,∆2) = ( 75
287 ,

152
517 ).

Figure 5. Numerical solutions to the eBAEs (4.7) with N = 11 and τ = 1+23i
230 . Note that (a)

corresponds to Case 1 (∆1 + ∆2 ≤ 1
2 ) and (b) corresponds to Case 2 (∆1 + ∆2 >

1
2 ).

Case 2. ∆1 + ∆2 > 1
2
. We now turn to the second possibility, where the chemical

potentials satisfy ∆1 + ∆2 >
1
2 . Here the non-standard solution takes the asymptotic form

û=

{
±∆1−ε

2

}
∪
{

i

(N−3)/2
τ : i= 0, · · · , N−5

2

}
∪
{

1

2
+

i−1/2

(N−1)/2
τ : i= 1, · · · , N−1

2

}
.

(4.22)

This corresponds to two isolated holonomies along with packs of (N − 3)/2 and (N − 1)/2

holonomies, respectively. Numerically, we can see that, for sufficiently large τ , the first two

holonomies are actually part of a single pack of (N + 1)/2 holonomies, just as in case 1.

However, as Im τ approaches zero, this pair first moves towards the real axis and then

finally towards ±∆1/2 in the Cardy-like limit. The exponentially small deviation ε away

from this endpoint is given by

ε =
τ

2πi
exp

[
−πi
τ

(
−N − 1

2
+ (N − 2)∆1 + (N − 1)∆2

)]
, (4.23)

provided the quantity in the parentheses is positive. This is true for a generic value of

∆1 + ∆2 >
1
2 (not asymptotically close to 1

2) and a sufficiently large N . Although (4.22)

only holds asymptotically, numerical solutions of this type can be obtained for finite τ , and

we provide an example in figure 5b.

Inserting the non-standard solution (4.22) into the asymptotic expression (4.16) then

gives the contribution to the index

log Iodd-N
C=2 (∆a, τ) = − πi

6τ2

[
3∑

a=1

N2

8
κ(2∆a) +

3N

2
(1− 2∆2)(1− 2∆3) (4.24)

+
3

4
− 3∆2 + 3(∆1 + ∆2)(−2∆1 + ∆2 + 2∆1∆2)

]
+O (1/τ) .

Although this expression is more complicated than the corresponding one for Case 1, it

reduces in the large-N limit to the same leading order behavior as all the other C = 2
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cases, namely

log IC(∆a, τ) = −πiN
2

τ2

3∑
a=1

κ(C∆a)

6C3
+O(N logN, 1/|τ |), (4.25)

with C = 2.

While we have focused on non-standard solutions for C = 2, numerical investigations

confirm that similar non-standard solutions exist for arbitrary values of C and N , at least

for N sufficiently large so that it can be divided into nearly equal packs of holonomies.

These non-standard solutions are similar to that with C = 2 in that they are sensitive to

the choice of chemical potentials ∆1 and ∆2, with the simpler configuration, corresponding

to Case 1 above, occurring only when ∆1 + ∆2 ≤ 1/C. In this case, the non-standard

solution in the Cardy-like limit is given by

û =

{
I

C
+

i

(N + C −D)/C
τ : I = 0, · · · , D − 1, i = 0, · · · , N −D

C

}
∪
{
J

C
+

j − 1/2

(N −D)/2
τ : J = D, · · · , C − 1, j = 1, · · · , N −D

C

}
, (4.26)

where N = CbN/Cc + D (D = 1, · · · , C − 1). This satisfies the eBAEs in the Cardy-

like limit (as displayed in (C.22)) up to exponentially suppressed terms. In principle, this

solution can be inserted into (4.16) to obtain the contribution of a given C non-standard

solution to the index. The resulting expressions simplify in the large-N limit, and reduce

to (4.25) as expected.

Although this extension of the Case 1 solution to arbitrary values of C only holds for

sufficiently small ∆1 + ∆2, we expect that generalizations of the Case 2 solution (where

pairs of holonomies may be pulled away from the main packs) exist for other values of the

chemical potentials. We thus conjecture that, at least in the Cardy-like limit, solutions to

the eBAEs exist for all values of C and N with d ≤ N/C < d+1. Here, d corresponds to the

minimum number of holonomies in a single pack that allows the solution to be categorized

as a set of packs instead of individually distributed holonomies. When C divides N , the

solution is standard, but otherwise it is non-standard. For each value of C, the contribution

to the index then takes the form (4.25), regardless of whether the solution is standard or

non-standard. As a result, the Bethe-ansatz type approach to the index reproduces the

improved asymptotic bound (3.17) found above.

4.3 Additional non-standard solutions

As we have seen explicitly, the non-standard solutions (4.19) and (4.22) to the eBAEs (4.7)

for C = 2 and odd N contribute to the index in much the same way as the standard

{2, N/2, 0} solution for even N , at least in the large-N limit. Moreover, such contributions

were crucial to reproduce the improved asymptotic bounds (3.17) with arbitrary integer

C that may or may not divide N . This makes us conclude that we cannot ignore the

non-standard solutions in the Bethe ansatz approach to the index.

While we have focused on non-standard solutions that are similar to the {C,N/C, 0}
solutions since all standard solutions reduce to this form in the Cardy-like limit, we have
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also found numerical evidence for the existence of non-standard solutions at finite τ . This

suggests that many if not all standard {m,n, r} solutions have generalized counterparts as

non-standard solutions. In addition, there may be additional non-standard solutions that

do not fall into any particular classification. Thus it would be nice to understand the full

set of solutions to the eBAEs.

In principle, we would just solve the eBAEs (4.7) to obtain a complete set of standard

and non-standard solutions. However, in practice, this is a rather challenging problem,

even in the asymptotic limits. Therefore, to make the problem tractable, we focus on the

N = 2 and N = 3 cases. Even so, much of the analysis is rather technical, so we relegate

the details to appendix C and only highlight the main results here.

4.3.1 Non-standard solutions for N = 2

Since the eBAEs (4.7) depend only on the difference uij = ui − uj of the holonomies, and

since the free parameter λ is unconstrained, the N = 2 eBAEs reduce to a single equation

for a single variable u21

1 =

3∏
a=1

θ1(∆̃a + u21; τ)2

θ1(∆̃a − u21; τ)2
. (4.27)

Here for convenience we have used the real chemical potentials ∆̃1,2,3, which are essentially

the same as ∆1,∆2,−∆1 −∆2, up to simple shifts and reflections such that

0 < ∆̃a < 1,

3∑
a=1

∆̃a = 1. (4.28)

See appendix C for more details.

Since each theta function has a first-order zero, this fraction has six zeros. Furthermore,

since it is elliptic, the fraction takes all values, including unity, six times, and thus the eBAE

has six solutions. Four of them are the familiar ones

u21 =

{
0,

1

2
,
τ

2
,

1 + τ

2

}
, (4.29)

corresponding to the trivial solution and standard {2, 1, 0}, {1, 2, 0} and {1, 2, 1} solutions,

respectively. The other two solutions are non-standard, and since the equation is symmetric

under u21 → −u21, they are negatives of each other

u21 = {u∆, −u∆} (non-standard). (4.30)

It seems challenging to find u∆ in closed form, except in the asymptotic limits, so part of

the investigation will be numerical.

We denote the ‘low-temperature’ limit to be |τ | � 1 and the ‘high-temperature’ limit to

be |τ | � 1 where arg τ ( 6= 0, π) is held fixed for both cases. In either limit, the Jacobi theta

function θ1(u; τ) has a straightforward asymptotic expansion, so the equation (4.27) can

be directly solved. The asymptotic analysis is presented in appendix C, and we summarize

the N = 2 results here.
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Figure 6. Numerical plots of the non-standard N = 2 solution u∆ with arg(τ) = π/4. The figure

on the left corresponds to ∆̃3 < 1/2 while that on the right corresponds to ∆̃3 > 1/2. Note that

the vertical axis is given in units of (complex) τ .

As indicated above, the standard solutions, (4.29), are exact solutions for any ∆̃a

and for all τ , so we only focus on the non-standard solution specified by u∆. In the

low-temperature limit the solution — given in (C.11) — takes the form

u∆(Im τ →∞) =
1

2πi
log

−(1−
∑

a cos 2π∆̃a

2

)
+

√√√√(1−
∑

a cos 2π∆̃a

2

)2

− 1


(4.31)

The high-temperature asymptotic solution splits into two cases, depending on whether ∆̃3

is less than or greater than 1/2. The solution is given by (C.26) and (C.30), which can be

summarized as

u∆(Im τ → 0) =


1

2
+
τ

4
, ∆̃3 <

1

2
;

1− ∆̃3 + i
log 2

2π
τ, ∆̃3 ≥

1

2
.

(4.32)

There does not appear to be a simple analytic solution away from these asymptotic lim-

its. However, numerical investigations demonstrate that the non-standard solutions (4.31)

and (4.32) are indeed continuously connected. Figure 6 shows explicit examples of the

numerical solution for u∆ with both possibilities of ∆̃3.

To be complete, it should be noted that for ∆̃3 ≥ 1/2, the high-temperature limit also

admits a continuous set of solutions

u∆(Im τ → 0) =

{
x+ y τ

∣∣∣∣x ∈ (1− ∆̃3, ∆̃3), y ∈ [0, 1) and ∆̃3 ≥ 1/2

}
, (4.33)

which interestingly correspond to the plateaus of Qh in the integral approach of the previous

section. However, these solutions do not appear to be continuously connected to any

solutions away from the high-temperature limit, so we believe they are only an artifact of

the high-temperature asymptotics, and are not true solutions to the eBAEs once subleading

terms are included.

4.3.2 Non-standard solutions for finite N > 2

The structure of the eBAEs is considerably harder to analyze for N > 2 as there are more

holonomy pairs uij to consider. For any N , note that the product of the N individual
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eBAEs (4.7) gives the condition e2πiNλ = 1 so that e2πiλ is a root of unity (not necessarily

primitive). Focusing next on a single equation, say i = 1, then gives the condition

1 =

3∏
a=1

N∏
j=2

(
θ1(∆̃a + uj1; τ)

θ1(∆̃a − uj1; τ)

)N
. (4.34)

For N = 3, this means we can solve for u31 in terms of u21

3∏
a=1

θ1(∆̃a + u31; τ)

θ1(∆̃a − u31; τ)
= ωk

3∏
a=1

θ1(∆̃a − u21; τ)

θ1(∆̃a + u21; τ)
, (4.35)

where ω = e2πi/3 is a primitive cube root of unity and k = 0, 1, 2. We thus look for non-

standard solutions by picking a given u21 and then (numerically) solving for u31. There are

three solutions up to periodicity for each value of k, giving nine possible roots u31 for a fixed

u21. However, not all of these solutions are valid, as they must solve not just the i = 1 but

all of the eBAEs. Numerically, we find, in addition to the standard solutions which only

exist at discrete values of u21, that two roots of (4.35) with k = 0 in fact solve the complete

set of eBAEs for arbitrary u21. (The third k = 0 root is the trivial solution u31 = −u21,

but it does not generically solve the remaining eBAEs apart from the standard solutions.)

Although we only obtain solutions numerically for intermediate values of τ , analytic

results are possible in the low and high temperature limits. In the low-temperature limit,

we take the two independent holonomies to be u21 and u31 and write z21 = e2πiu21 and

z31 = e2πiu31 . The non-standard solutions then correspond to the two roots of the quadratic

expression, (C.16), which we repeat here for convenience

(1 + z21 + z31)

(
1 +

1

z21
+

1

z31

)
= 3 + 2

∑
a

cos 2π∆̃a. (4.36)

The two roots are related by the map uij → −uij , corresponding to taking zij → 1/zij . The

important feature of this solution is that the eBAEs reduce to a single condition on two com-

plex holonomies. As a result, we end up with a continuous family of non-standard solutions.

To further explore the nature of the non-standard solutions, we consider, for simplicity,

the case where all the chemical potentials are identical to each other, namely ∆̃a = 1/3.

In this case, the right-hand side of (4.36) vanishes, and we find simply

1 + z21 + z31 = 0 or 1 +
1

z21
+

1

z31
= 0. (4.37)

Since the second case can be obtained from the first by taking ui → −ui, we focus on the

first case. The expression 1+z21 +z31 = 0 has a simple interpretation in the complex plane

as a triangle with sides 1, z21 and z31. Since the solution is restricted to |q| ≤ |z21| ≤ 1 and

|q| ≤ |z31| ≤ 1, the space of solutions is given by the intersection of two disks of radius one

centered at 0 and 1, respectively. The continuous family of non-standard N = 3 solutions

is shown schematically in figure 7.
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(a) 1 + z21 + z31 = 0. (b) 1 + 1/z21 + 1/z31 = 0.

Figure 7. The space of non-standard N = 3 solutions in the low-temperature limit with identical

chemical potentials ∆̃a = 1/3. Solutions of the first type, satisfying 1 + z21 + z31 = 0, are shown in

(a), while solutions of the second type, satisfying 1 + 1/z21 + 1/z31 = 0, are shown in (b).

The analysis of the high-temperature asymptotic solutions is rather involved, so we

again focus on the case ∆̃a = 1/3. In addition to the standard solutions, the continu-

ous family of non-standard solutions survives in the high temperature limit, and is given

by (C.34) in appendix C, which we rewrite in terms of u21 = x21+y21τ and u31 = x31+y31τ

u21, u32 ∈
{
u21, u32

∣∣∣∣0 ≤ x21 mod 1 <
1

3
, u21 − 2u31 = Z +

1

3
τ

(
Z +

1

2

)}
∪
{
u21, u32

∣∣∣∣13 < x21 mod 1 <
2

3
, u21 + u31 = Z +

1

3
τ

(
Z +

1

2

)}
∪
{
u21, u32

∣∣∣∣13 < x21 mod 1 <
2

3
, 2u21 − u31 = Z +

1

3
τ

(
Z +

1

2

)}
∪
{
u21, u32

∣∣∣∣23 < x21 mod 1 < 1, u21 − 2u31 = Z +
1

3
τ

(
Z +

1

2

)}
. (4.38)

This indicates that, up to discrete shifts, there is a one-complex dimensional family of

high-temperature solutions. Although the family appears to be split into four branches,

the first and last subset in (4.38) is part of the same branch, as shown in figure 8.

We have verified numerically in several examples that the asymptotic low and high

temperature solutions are continuously connected with each other. This suggests that

the continuous family of non-standard solutions is in fact generic for any value of τ . In

general, the parameter space and the relation between u21 and u31 depends on the chemical

potentials ∆̃a. However, there is an interesting point (up to permutations) in this space of

non-standard solutions with

u21 =
1

2
, u31 =

1

2
τ, (4.39)

which is ∆̃a-independent. This is an exact non-standard solution, whose validity can be

checked using (4.8). We were actually led to it via the correspondence of subsection 2.1.1
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Figure 8. The space of non-standard N = 3 solutions in the high-temperature limit with identical

chemical potentials ∆̃a = 1/3. Here we only show the real components x21 and x31 under the

decomposition uij = xij + yijτ . The parameter space is actually one-complex dimensional, which

would be apparent if we had not suppressed the y21-y31 plane.

with N = 1∗ theory: it corresponds to a Coulomb vacuum of the compactified N = 1∗

theory with SU(3) gauge group, listed in Dorey’s paper [25] as the “fifth” vacuum.

Despite its simple form somewhat reminiscent of the standard solutions, the solu-

tion (4.39) is part of the continuous family, and not isolated. To see this, we look for

vanishing eigenvalues of the Jacobian matrix (∂Qi/∂uj) where the Qi represent the eBAE

expressions as given in (4.7). In general, there are N eBAEs along with N holonomies

uj . However, the constraint
∏
iQi = 1 along with the SU(N) constraint

∑
j uj ∈ Z + τZ

effectively reduces this to an (N − 1)× (N − 1) matrix.

∂Qi
∂uj

= −δij
N∑
k=1

g(uki, ∆̃a; τ) + g(uji, ∆̃a; τ)− g(uNi, ∆̃a; τ), (4.40)

where i, j = 1, · · · , N − 1 and we have defined

g(u, ∆̃a; τ) ≡
3∑

a=1

(
θ′1(u+ ∆̃a; τ)

θ1(u+ ∆̃a; τ)
+
θ′1(−u+ ∆̃a; τ)

θ1(−u+ ∆̃a; τ)

)
. (4.41)

For the present N = 3 case, we find

det

(
∂Qi
∂uj

)∣∣∣∣
(u21,u31)=(1/2,τ/2)

= 12

(
4∏

J=2

3∑
a=1

θ′J(∆̃a; τ)

θJ(∆̃a; τ)

)
4∑
I=2

1∑3
a=1 θ

′
I(∆̃a; τ)/θI(∆̃a; τ)

,

(4.42)

where θ2,3,4 are the standard Jacobi theta functions given explicitly in (B.3). We now make

use of the following result.

Lemma 2 For any τ in the upper-half plane, and any complex ∆̃1,2,3 subject to
∑

a ∆̃a ∈ Z,

we have
4∑
I=2

1∑3
a=1 θ

′
I(∆̃a; τ)/θI(∆̃a; τ)

= 0. (4.43)
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This lemma, combined with (4.42), establishes that the Jacobian matrix indeed has

a vanishing eigenvalue. This establishes the existence of a “zero mode” taking (4.39) to

nearby eBAE solutions. Proof11 of this lemma can be found in appendix B.

Although we have yet to perform an analytic investigation of the non-standard solutions

for N > 3, we have investigated some cases numerically (with finite τ). For N = 4 and 5, in

addition to the isolated standard solutions, we find solutions on which ∂Qi/∂uj has a single

vanishing eigenvalue, suggesting that they are part of one-complex dimensional families of

solutions. More interestingly, for N = 6, 7, 8, and 9 we find evidence for both one and two

complex dimensional families of solutions, the latter signalled by two vanishing eigenvalues

for ∂Qi/∂uj . Similarly for N = 10 we find evidence for one, two, and three complex dimen-

sional families of solutions. These are in agreement with the expectation that the contin-

uous families of solutions correspond to Coulomb vacua of N = 1∗ theory. Based on these

numerical results and the putative correspondence with N = 1∗ theory, we conjecture that

at least the dimensionality of the space of the N = 4 eBAE solutions is captured correctly

by the semi-classical formula for the rank of the Coulomb vacua in SU(N) N = 1∗ theory.

Conjecture 2 For N ≥ (l + 1)(l + 2)/2, generic τ in the upper-half plane, and generic

∆1,2 ∈ C, the SU(N) N = 4 eBAEs in (4.7) have l-complex-dimensional continua of

solutions.

The existence of such flat directions is somewhat unusual, nevertheless, in that it

necessarily demands the existence of non-trivial identities among products of Jacobi theta

functions.

Of particular significance is that the existence of continuous solutions to the eBAEs

poses a serious issue to the full validity of the Bethe ansatz type approach as established

in ref. [19]. The reason is that the rewriting of the index, (1.2), into the Bethe ansatz form

relies on the fact that the general solutions to the eBAEs are isolated so that Cauchy’s

formula may be applied [19]. Hence, if there are continuous families of non-standard solu-

tions, the Bethe ansatz type approach must be reformulated to incorporate such continuous

Bethe roots into the sum over solutions to the eBAEs, (4.10).

4.4 The large-N limit of the index revisited

While we have been motivated by the Cardy-like limit of the index, the appearance of

partially deconfined phases as well as non-standard solutions suggests that we re-examine

the large-N limit at finite τ as investigated in ref. [6]. In this large-N limit, one or at most

a few solutions (if there are any degeneracies) to the BAE would be expected to dominate

in the sum over solutions, (4.10). The focus is then on identifying the dominant solution,

much as one would search for a dominant saddle point contribution.

11We are indebted to Hjalmar Rosengren, a mathematician at Chalmers University, for an instrumental

correspondence regarding the proof.
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The main emphasis in [6] was on the basic solution, corresponding to I{1,N,0}(∆a, τ).

In the large-N limit, the contribution was found to be

log I{1,N,0}(∆a, τ) =
N−1∑

j,j′=0 (j 6=j′)

log

∏3
a=1 Γ̃

( j−j′
N τ + ∆a; τ, τ

)
Γ̃
( j−j′
N τ ; τ, τ

) +O(N logN)

= −πiN2Θ(∆a, τ) +O(N logN), (4.44)

where Θ(xa, τ) is defined as

Θ(xa, τ) ≡
∑3

a=1 κτ (xa)

6τ2
+

3
∑3

a=1{xa}τ (1− {xa}τ )− (1− τ)(1− 2τ)

3τ
−

3∑
a=1

(1− {xa}τ ),

(4.45)

where {x}τ and κτ (x) are defined in (4.15). Using the constraint ∆3 = 2τ −∆1 −∆2, we

can rewrite Θ(∆a, τ) explicitly as

Θ(∆a, τ) =

{
({∆1}τ−1)({∆2}τ−1)(2τ+1−{∆1}τ−{∆2}τ )

τ2 , ({∆1 +∆2}τ = {∆1}τ +{∆2}τ −1);
{∆1}τ{∆2}τ (2τ+1−{∆1}τ−{∆2}τ )

τ2 −1, ({∆1 +∆2}τ = {∆1}τ +{∆2}τ ),

(4.46)

and therefore (4.44) is in fact a function of ∆1, ∆2 and τ only.

While it is clear that the basic solution yields a contribution of (N2), there are poten-

tially many other sources of contributions at the same order. These include other standard

{m,n, r} solutions as well as isolated and continuous families of non-standard solutions.

The conjecture of ref. [6] is that only the set of T -transformed solutions, û{1,N,r}, would

yield additional contributions at O(N2). The resulting large-N index is then argued to

take the form

log I(q, q, y1,2,3) = max
{

log I{1,N,r}(∆a, τ) : r ∈ Z
}

+O(N logN)

= max
{
−πiN2Θ(∆a, τ + r) : r ∈ Z

}
+O(N logN), (4.47)

unless the ∆a’s are located along Stokes lines where the asymptotic expansions of the elliptic

functions fail to converge or where different contributions may compete with each other.

We note that there is some tension between the conjectured large-N index, (4.47),

and our conjectured leading asymptotics in the CKKN limit, namely (3.19). In particular,

the latter, as well as the more rigorous bound, (3.17), include configurations where the

holonomies are split into C nearly equal packs distributed evenly on the circle, and this

is not visible in (4.47). Of course, it is possible that the Cardy-like limit and the large-N

limit do not commute. Nevertheless, this motivates us to ask whether additional solutions

to the eBAEs, either standard or non-standard, may contribute at large N .

4.4.1 A new parametrization of the standard solutions

In the Cardy-like limit, we have seen that standard solutions obtained from C identical

packs of N/C collided holonomies will contribute at O
(
τ−2(N2/C3)

)
. Here we are assum-

ing that C divides N , so this is a standard solution. If the limit is smooth, then we expect
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this behavior to persist even as we move away from the Cardy-like limit. As in (4.13), the

standard {m,n, r} solutions that reduce to C packs of holonomies have gcd(n, r) = N/C.

This can be parametrized as the set of standard solutions{
C

p
, p
N

C
, q
N

C

}
, C|N, p|C, and gcd(p, q) = 1. (4.48)

The set of configurations for a given C all have C packs of holonomies with the packs equally

spaced 1/C apart on the periodic unit circle. The N/C holonomies within each pack are

equally spaced (C/N)τ apart on the periodic τ cycle. To obtain a periodic tiling of T 2,

each subsequent pack is offset by (s/N)τ from the previous one where s = 0, 1, . . . , C − 1,

so there are precisely C distinct standard solutions in the set of configurations for a given

C. In fact, this classification of standard solutions by the number of packs C allows for a

new (but equivalent) parametrization of the standard solutions (4.9), labeled now by

{C, s} where C|N and s = 0, 1, . . . , C − 1. (4.49)

For a given {C, s}, the holonomies solving the eBAEs are

û{C,s} =

{
uâb̂ = ū+

â

C
+
b̂C + âs

N
τ

∣∣∣∣C|N, 0 ≤ s < C, (â, b̂) ∈ ZC × ZN/C

}
. (4.50)

Here â labels the pack and b̂ labels a particular holonomy within that pack.

In the large-N limit, provided C ∼ O(1), the holonomies become dense along the τ cir-

cle, and hence the shift between packs by a fraction s/N does not qualitatively change the

appearance of the solution. This suggests that we can compute I{C,s} in the large-N limit

in a universal manner, provided C ∼ O(1) so that N/C remains large. To do so, we start

with the expression for the standard solution given in (4.11). Ignoring the subleading con-

tributions from the prefactor αN (τ) and the Jacobian H(û{C,s}; ∆a, τ)−1 as in [6] then gives

log I{C,s}(∆a, τ) (4.51)

=

C−1∑′

â,â′=0

N/C−1∑′

b̂,b̂′=0

log

∏3
a=1 Γ̃

(
(â− â′)( 1

C + τ
N/s) + b̂−b̂′

N/C τ + ∆a; τ, τ
)

Γ̃
(
(â− â′)( 1

C + τ
N/s) + b̂−b̂′

N/C τ ; τ, τ
) +O(N logN),

where the primes in the summation symbols indicate that the (â, b̂) = (â′, b̂′) case is

excluded. This can be rewritten as

log I{C,s}(∆a, τ) (4.52)

= C

N/C−1∑′

b̂,b̂′=0

log

∏3
a=1 Γ̃

(
b̂−b̂′
N/C τ + ∆a; τ, τ

)
Γ̃
(
b̂−b̂′
N/C τ ; τ, τ

)
+

C−1∑
â=1

N/C−1∑
b̂,b̂′=0

(C − â) log

∏3
a=1 Γ̃

(
b̂−b̂′
N/C τ + â( 1

C + τ
N/s) + ∆a; τ, τ

)
Γ̃
(
b̂−b̂′
N/C τ + â( 1

C + τ
N/s); τ, τ

)
+ â log

∏3
a=1 Γ̃

(
b̂−b̂′
N/C τ + (â− C)( 1

C + τ
N/s) + ∆a; τ, τ

)
Γ̃
(
b̂−b̂′
N/C τ + (â− C)( 1

C + τ
N/s); τ, τ

)
+O(N logN),
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where on the first line the b̂ = b̂′ case is excluded. In fact, the first line is similar to the

expression (4.44) for the basic {1, N, 0} solution, but with N replaced by N/C and with

an extra prefactor of C. Note that the replacement N → N/C in the large-N formula

is valid since we have assumed C ∼ O(1). The second line can be simplified using the

formulas (for ∆ 6= 0) [6],

N−1∑′

j,j′=0

log Γ̃

(
j − j′

N
τ + ∆; τ, τ

)
= πiN2 (τ − {∆}τ + 1)(τ − {∆}τ + 1/2)(τ − {∆}τ )

3τ2

+O(N), (4.53a)

N−1∑′

j,j′=0

log Γ̃

(
j − j′

N
τ ; τ, τ

)
= πiN2 τ(τ − 1/2)(τ − 1)

3τ2
+O(N logN), (4.53b)

along with (4.44). The result is

log I{C,s}(∆a, τ) = −πiN
2

C

(
C−1∑
â=0

Θ(∆a +
â

C
, τ)− (C − 1)(C(1− 3τ) + 1)

6Cτ

)
+O(N logN), (4.54)

provided that ∆a is not an integer multiple of 1/C. In particular, this demonstrates O(N2)

scaling of the standard {C, s} solution for C ∼ O(1), even away from the Cardy-like

limit. Moreover, this leading-order behavior is independent of the offset s along the τ

circle between adjacent packs of holonomies, thus confirming the intuition that once the

packs are sufficiently dense, the distribution of holonomies within each pack becomes

unimportant, at least at leading order.

The analysis of the large-N limit of the standard solutions is still incomplete, as we

have not considered the case where C scales with N . Nevertheless, the contributions (4.54)

suggests that the conjecture (4.47) must be refined by enlarging the holonomy configura-

tions that need to be considered. In terms of the {C, s} labels, the basic {1, N, 0} solution

is included as {1, 0}, while the T-transformed {1, N, r} solutions fall under {C, s} with

r = qN/C where q and C are relatively prime. Note that this presents a bit of a puzzle

as (4.54) and (4.47) appear to be in conflict except for r = 0.

The resolution of this puzzle is based on two observations. The first is that, for

r ∼ O(1) in the large-N limit, we must have C ∼ N , in which case the expression (4.54)

breaks down. The second is that if instead C ∼ O(1) then r must be large. However,

in this case, the map from the first to the second line of (4.47) breaks down as it is only

valid for r scaling as O(N0). This is because the derivation of Θ(∆a, τ + r) from the

large-N asymptotics of the standard solution (4.11) with {m,n, r} = {1, N, r} was based

on making the shift τ → τ + r. However, shifts with r = O(N) may lead to a modification

to log I{1,N,r}(∆a, τ) that is not captured by simply shifting τ in (4.44).

Provided we only take standard solutions into account, the large-N limit of the index

will be given by maximizing over all {C, s} solutions. Although we are unable to provide

an analytic expression for C ∼ O(N), we nevertheless expect the large-N index to take a
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form along the rough lines of

logI(q,q,y1,2,3) = max
C∼O(1)
r∼O(1)

{
−πiN

2

C

C−1∑
j=0

Θ(∆a+
j

C
,τ+r)− (C−1)(C(1−3(τ+r))+1)

6C(τ+r)

}
+O(N logN), (4.55)

where C divides N for standard solutions. The shift of τ → τ + r in the above allows

us to include T-transformed versions of the {C, s} solutions, and the restriction of this

expression to C = 1 reproduces the conjecture (4.47) of [6].

Of course, this is still expected to be incomplete, as we have not yet accounted for

the non-standard solutions. We know from the Cardy-like limit that isolated non-standard

solutions exist for all integer values of C. Numerically, these solutions are continuously

connected to low temperature solutions, and hence should exist for arbitrary τ . Again,

in the large-N limit, the isolated non-standard solutions correspond to C packs of either

bN/Cc or bN/Cc+1 holonomies distributed along the τ circle. Since we take C ∼ O(1), the

difference between packs shows up as a O(1/N) correction, and hence we expect the leading

O(N2) behavior to be correctly captured by (4.55) where we now drop the restriction that

C divides N .

Finally, we are able to connect the large-N limit of the index, (4.55), to the Cardy-like

limit by taking τ → 0. Looking only at the leading O(1/τ2) order, it is easy to see that all

terms with r 6= 0 will not contribute. Making use of

Θ(∆a, τ) =
1

6τ2

3∑
a=1

κτ (∆a) +O(1/|τ |), (4.56)

along with the identity (3.12) then gives

log I(q, q, y1,2,3) = max
C∼O(1)

{
−πiN

2

τ2

3∑
a=1

κτ (C∆a)

6C3

}
+O(N logN, 1/|τ |), (4.57)

in perfect agreement with the conjecture (3.19) for the leading large-N asymptotics in

the Cardy-like limit. This certainly suggests that the asymptotic behavior of the index

is independent of the order of limits between the Cardy-like limit and the large-N limit.

Of course, in order to remove the conjectures and be more rigorous in the Bethe Ansatz

approach, we have to consider solutions with C ∼ O(N), as well as the issue of continuous

non-standard solutions.

5 Discussion

5.1 Summary and relation to previous work

Several papers investigating asymptotic growth of supersymmetric indices of the 4d N = 4

theory have appeared in the last year. Below we outline how our findings complement

those of the most closely related recent work.
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• Cardy-like asymptotics of the N = 4 index. Choi-Kim-Kim-Nahmgoong

(CKKN) [3], Honda [4], and Ardehali [5]. All three of these papers investigated

the Cardy-like limit of the 4d N = 4 index I(p, q; yk) using its integral represen-

tation, and in the limit where yk approach the unit circle (for yk not approaching

the unit circle the problem is still open — see Problem 2 in [5] and subsection 5.2

below). CKKN [3] took actually also a large-N limit — after the Cardy-like limit

— to simplify the analysis, but in [4, 5] N was left arbitrary. CKKN [3] assumed

that the dominant holonomy configurations in the Cardy-like limit correspond to

equal holonomies xij = 0; it was later realized in [4, 5] that this assumption fails

in essentially half of the parameter-space (see the Added Note of [5] for the rela-

tion between the findings of [4] and [5]). As in [5] we divide the parameter-space

into complementary M wings and W wings. While on the M wings the dominant

holonomy configurations indeed correspond to xij = 0 and the asymptotics has been

understood, on the W wings finding the Cardy-like asymptotics has been an open

problem — see Problem 1 of [5]. In section 3 we solved this problem for N ≤ 4, and

also conjectured the formula (3.19) in the large-N limit. In particular, for N = 4, as

well as in the large-N limit, we have discovered regions on the W wings corresponding

to partially deconfined phases in the Cardy-like limit of the 4d N = 4 index.

• Large-N asymptotics of the N = 4 index. Benini-Milan [6]. This reference

studied the large-N limit of the 4d N = 4 index using its Bethe Ansatz representa-

tion. In the present paper we pointed out some difficulties with the Bethe Ansatz

representation for N ≥ 3: there seem to be continuous families of Bethe roots, call-

ing for an integration measure which is so far not understood. Setting this difficulty

aside, we pointed out that some of the discrete Bethe roots (found in [20]) are not

negligible in the large-N limit of the index as assumed in [6]. We moreover discovered

new discrete Bethe roots that play an important role in the large-N asymptotics of

the index. The new non-negligible contributions that we have found demonstrate

partially deconfined phases in the large-N limit of the index as well.

• Large-N asymptotics of the N = 4 index via the density-distribution

approach. CKKN [7]. In this reference, following the original work of Kinney-

Maldacena-Minwalla-Raju [2], the large-N limit of the index was analyzed using

its integral representation, by rewriting the integral in terms of ρn :=
∑N

j=1 e
2πinxj ,

rather than xj . These new variables are Fourier coefficients of the density distribution

ρ(x) for the holonomies in the large-N limit. The drawback of this approach is that

the constraint ρ(x) ≥ 0 makes the range of ρn difficult to derive. This difficulty

hinders an accurate analysis of the saddle-points of the integral over the ρn variables.

We have thus avoided this approach in the present work.

• Cardy-like asymptotics of the N = 1 index on higher Riemann sheets.

Kim-Kim-Song [27] and Cabo Bizet-Cassani-Martelli-Murthy [28]. Since the fugaci-

ties of the index satisfy y1y2y3 = pq, one can “turn off the flavor fugacities” by setting

yk = (pq)1/3; the resulting function I(p, q; (pq)1/3) is the usual N = 1 superconformal
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index of the N = 4 theory, and is known not to have fast asymptotic growth in the

usual Cardy-like limit p, q → 1, due to bose-fermi cancelations. [More precisely, for

SU(N) N = 4 theory it can be shown from the results in [23] that I(p, q; (pq)1/3)

grows like βN−1, not like e1/β2
as expected from the bulk black holes [15].] These

statements are not the end of the story however, as they really apply only to the

fundamental Riemann sheet of the function. For p, q inside the punctured unit open

disc, the function I(p, q; (pq)1/3), unlike the more well-behaved I(p, q; yk), is not

meromorphic; therefore besides turning on flavor fugacities there is another way to

get fast growth from it — or “obstruct its bose-fermi cancelations” if you will — and

that is to go to its higher Riemann sheets. Because of the power 1/3 for pq, the non-

meromorphic N = 1 index I(p, q; (pq)1/3) has in fact three inequivalent sheets, which

can be identified along branch cuts at arg p = π, and be labeled by n0 = −1, 0,+1.

The papers [27, 28] show that on the n0 = ±1 sheets it is possible to get the fast ex-

ponential growth associated to the bulk black holes — simply note that p→ pe2πin0

introduces nontrivial phases in (pq)1/3, equivalent to “turning on flavor fugacities”

and setting yk = (pq)1/3e2πin0/3 on the n0 = 0 sheet, corresponding to ∆a = n0/3

in the CKKN limit, which can obstruct the bose-fermi cancelations as familiar from

CKKN’s work [3]. Now, while for sign(arg β) = ± the Cardy-like asymptotics of the

index has been obtained from the fully-deconfining holonomy configurations on the

n0 = ±1 sheets, on the other (n0 = ∓1) sheets we expect that the partially decon-

fined configurations become significant. Note that here the control-parameters are

n0, sign(arg β). In particular, for the SU(4) N = 4 theory it follows from our results

in section 3 that it is the partially-deconfining Z4 → Z2 holonomy configurations

which take over on the n0 = ∓1 sheets. Similarly, if our conjecture (3.19) is correct,

in the large-N limit the partially-deconfining ZN → ZN/2 holonomy configurations

take over on the n0 = ∓1 sheets. (As discussed in subsection 3.2.3, when N is odd,

as N → ∞ we can approximate the problem by replacing N → N − 1, and then

consider the ZN−1 → Z(N−1)/2 configurations instead.)

The results of [27, 28] also imply universal expressions for the asymptotics of the

N = 1 indices of large classes of 4d SCFTs on parts of their n0 = ±1 sheets. We

expect that on other parts of those sheets, as well as on other sheets when available,

partially deconfined phases with different asymptotics might arise.

• Higher Riemann sheets of the N = 1 index with path-integration.

Cabo Bizet-Cassani-Martelli-Murthy [45]. This reference is also related to analytic

continuation of the N = 1 index to the n0 6= 0 sheets, and is in fact the pioneer-

ing work on investigation of such higher sheets. However, it adopts a Lagrangian

(path-integral) approach, whose analytic continuation is not properly understood.

In particular, the path-integral computation in [45] suffers from subtleties regarding

regularization of the analytically continued supersymmetric Casimir energy: as dis-

cussed in footnote 13 of [45], already before analytic continuation the regularization

scheme used there does not give the correct result when applied to general theories,

and it is somewhat of a coincidence that it works for the N = 4 theory. There seems
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to be no reason to believe that the scheme keeps being coincidentally correct in the

analytically continued case, which is relevant to black hole counting. [Such subtleties

can be overcome when working with the path-integral version of the N = 4 index

I(p, q; yk) in the CKKN limit though, which would be relevant to the analysis here;

see section 4 of [5] where this issue was addressed.]

• Large-N asymptotics of the N = 1 index on higher Riemann sheets.

Cabo Bizet-Murthy [47]. This paper studies the large-N asymptotics of the N =

1 index (with p = q) of the N = 4 theory on its n0 6= 0 sheets in the density-

distribution approach. It adopts a variational perspective and looks for saddle-point

configurations of ρ(x), instead of working with the subtle Fourier coefficients ρn.

While the focus of [47] is on the saddle-point configurations corresponding to the

standard {m,n, r} eBAE solutions with gcd(m,n, r) = 1, our results imply that

detecting the partially deconfined phases in their approach requires investigating more

general saddle-point configurations corresponding to the standard eBAE solutions

with gcd(m,n, r) > 1, as well as configurations corresponding to non-standard eBAE

solutions.

• The topologically-twisted N = 4 index. Hosseini-Nedelin-Zaffaroni [46] and

Hong-Liu [20]. Besides the superconformal index, there is the rich and interesting

topologically-twisted index that one can compute exactly for the N = 4 theory. This

index has been analyzed using a Bethe Ansatz expression with precisely the same

eBAEs that feature in the 4d N = 4 superconformal index. Our results in this paper

thus imply that the expressions analyzed in [46] and [20] too, for rank ≥ 2, suffer

from the difficulty of continuously connected Bethe roots. Furthermore, in some

regions of the parameter-space this index exhibits a well-understood, fast asymptotic

growth of type e1/β in the Cardy-like limit, which is associated to black strings

in AdS5 [46]. In the rest of the parameter-space finding the asymptotics is more

challenging however [20]. In those regions, we expect that the new discrete solutions

that we introduced in this paper are of significance in the Cardy-like asymptotics of

the topologically twisted index.

5.2 Future directions

We conclude by outlining some of the interesting open problems and exciting prospects

related to this work.

• The Bethe Ansatz approach. There are several important open questions regard-

ing the Bethe Ansatz approach. Already at rank 1 (i.e. for SU(2)) where the Bethe

Ansatz formula seems valid, not all the solutions of the eBAE are known; as discussed

in section 4, besides the four standard solutions [20] 0, 1/2, τ/2, (1 + τ)/2, there are

two more solutions of the form ±u∆, and it would be nice to find u∆ in closed form.

For rank ≥ 2 we have given numerical evidence that there is a continuously con-

nected set of solutions, undermining the Bethe Ansatz formula in its current form

as a finite sum over eBAE vacua; it would be nice to have a proof for existence of
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uncountably many Bethe roots for rank ≥ 2. It would also be important to find ways

of reformulating the BA approach to incorporate the continuous sets of Bethe roots

into account. It would moreover be necessary for black hole-counting applications

(as in [6]) to characterize all the Bethe roots contributing to the leading asymptotics

of the index in the large-N limit. (We expect similar challenges facing the analyses

in [48, 49] as well.)

• General Cardy-like asymptotics and black holes with unequal charges.

As remarked above, the Cardy-like asymptotics of the 4d N = 4 index for general

complex ∆1,2 is still an open problem. This problem is relevant to the microstate

counting of the bulk black holes with unequal charges, because it is only for the

equal-charge black holes that ∆1,2 ∈ R as we have assumed [5]. While it might be

quite challenging to address this problem for arbitrary N , in the SU(2) case this does

not seem out of reach: finding the asymptotic form of u∆ would lead to the desired

asymptotics using the Bethe Ansatz formula.

• The gravity dual of the partially deconfined phases. The bulk duals of the

partially-deconfined phases have not been constructed as far as we are aware. They

should be new black objects and their accurate interpretation is not clear to us at

this point. It is tempting to speculate that they correspond to multi-center black

holes, which in cases with lens-space horizon topology are sometimes referred to as

black lenses [50, 51]. (We expect partially-deconfined phases in the indices analyzed

in [48, 49, 52] as well, with new possibly multi-center black objects associated to

them in the bulk.)

• The black hole operators. One of the most exciting aspects of the recent advances

in AdS5/CFT4 microstate counting is the prospect they open for explicit construction

of the operators dual to the bulk BPS black holes. The operators dual to the bulk

KK multi-particle states have long been known of course: they are the multi-trace

operators, generated by the famous single-trace operators nicely reviewed in table 7

of [53] for instance. The black hole operators on the other hand, have been elusive

even in AdS3/CFT2. We hope that the emerging refined understanding of the asymp-

totic growth of the 4d N = 4 index can guide future pursuits of these long-sought

operators in the N = 4 theory.

Note added. After the first version of the present paper appeared on arXiv, we became

aware that the latest version of [28] contains the contribution of a divisor holonomy con-

figuration to the Cardy-like asymptotics of the N = 1 index on its higher Riemann sheets.

In particular, eq. (3.50) in that work is essentially the analog of our (3.13) in that context.

Our conjecture (3.19) implies that for SU(N) N = 4 theory in the large-N limit, irrespec-

tive of whether N is even or odd, eq. (3.50) of [28] with K = 2 would give the leading

Cardy-like asymptotics in the parameter-regimes which were previously unexplored (i.e.

Re(i/τσ) > 0, n0 = −1, or Re(i/τσ) < 0, n0 = +1).
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A Proof of Lemma 1

Cover the torus R2/Z2 with balls of radius ε/2. By the pigeonhole principle, there are

two integers A < B such that ({Ax}, {Ay}) and ({Bx}, {By}) are in the same ball. Then

({(B −A)x}, {(B −A)y}) is in the ball of radius ε around 0 (mod Z2).

Now, if {(B −A)x}+ {(B −A)y} > 1, we are done by taking C = B −A.

If on the other hand {(B −A)x}+ {(B −A)y} < 1, then the relation

{α− β} =

{
{α} − {β}, {α} ≥ {β};
{α} − {β}+ 1, {α} < {β},

(A.1)

guarantees that for ε small enough we have ({(B −A− 1)x}+ {(B −A− 1)y}) > 1, so we

are done by taking C = B −A− 1. Q.E.D.

Let us see how things work in an example. Take x = y = 1/3. The two values B = 6

and A = 3 are acceptable. Now, since {(B −A)x}+ {(B −A)y} = {1}+ {1} = 0 < 1, we

can take C = B − A − 1 = 2. Indeed {2 · 1
3} + {2 · 1

3} = 4
3 > 1 as desired. As explained

above (3.18), this implies that for arg β < 0, at the point (∆1,∆2) = (1/3, 1/3), the bound

in (3.18) with C = 2 guarantees a partially deconfined behavior for IN→∞.

B Proof of Lemma 2

Using the identity

θ′1(n; τ) = θ2(n; τ)θ3(n; τ)θ4(n; τ) (B.1)

for an arbitrary integer n ∈ Z, we can generalize Theorem 2.1 of [54] as

3∑
a=1

θ′I(∆̃a; τ)

θI(∆̃a; τ)
=

+
θ′1(ñ;τ)
θI(ñ;τ)

∏3
a=1

θ1(∆̃a;τ)

θI(∆̃a;τ)
(I = 3);

− θ′1(ñ;τ)
θI(ñ;τ)

∏3
a=1

θ1(∆̃a;τ)

θI(∆̃a;τ)
(I = 2, 4),

(B.2)

where
∑

a ∆̃a = ñ ∈ Z. Here θ2,3,4 are related to θ1(u; τ) defined in (4.6) via

θ2(u; τ) = θ1(u+ 1/2; τ), (B.3a)

θ3(u; τ) = e
πiτ
4 eπiuθ1(u+ (1 + τ)/2; τ), (B.3b)

θ4(u; τ) = −ie
πiτ
4 eπiuθ1(u+ τ/2; τ). (B.3c)
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These theta functions are basically obtained from θ1(u; τ) by shifting the first argument

u by three different half-periods 1
2 ,

1+τ
2 , τ2 respectively. They satisfy the so-called Jacobi’s

formula together with θ1(u; τ), namely [55]

2θ1(u0, u1, u2, u3; τ) = θ1(u′0, u
′
1, u
′
2, u
′
3; τ) + θ2(u′0, u

′
1, u
′
2, u
′
3; τ)

− θ3(u′0, u
′
1, u
′
2, u
′
3; τ) + θ4(u′0, u

′
1, u
′
2, u
′
3; τ), (B.4)

where 2u′α =
∑3

β=0 uβ − 2uα (α = 0, 1, 2, 3), and we have used the abbreviations

θI(u0, u1, u2, u3; τ) ≡
3∏

α=0

θI(uα; τ). (B.5)

Since θ1(n; τ) = 0 for an arbitrary integer n ∈ Z, the following special case of Jacobi’s

formula (B.4) is valid for
∑

a ∆̃a = ñ ∈ Z:

0 = θ2(ñ, ∆̃1, ∆̃2, ∆̃3; τ)− θ3(ñ, ∆̃1, ∆̃2, ∆̃3; τ) + θ4(ñ, ∆̃1, ∆̃2, ∆̃3; τ). (B.6)

Combining (B.6) and (B.2) establishes the lemma. Q.E.D.

As discussed in the main text, the lemma proves that the SU(3) eBAEs have a “zero

mode” at the exact non-standard solution (4.39).

C The elliptic Bethe Ansatz equations in the asymptotic regions

In this appendix, we investigate the eBAEs (4.7) in the asymptotic regions, including both

the low-temperature (|τ | � 1) and the high-temperature (|τ | � 1) limits. Then we look

for asymptotic, non-standard solutions for N = 2 and N = 3.

Before getting into details, first we rewrite (4.7) as

1 = Qi = e2πiλ
N∏
j=1

3∏
a=1

θ1(uji + ∆̃a; τ)

θ1(uij + ∆̃a; τ)
, (C.1)

where, for notational convenience, we have introduced ∆̃a as

∆̃a =

{
∆a (a = 1, 2);

−∆1 −∆2 (a = 3).
(C.2)

This is to avoid using a complex ∆3 = 2τ −∆1−∆2 and to keep all the chemical potentials

∆̃a real. We now use quasi-periodicity and the oddness of θ1(u; τ), namely (4.8), to rear-

range the chemical potentials ∆̃a and the holonomies uk for convenience when writing down

the asymptotic expansions. Note that we always assume ∆1,2 ∈ R, or equivalently ∆̃a ∈ R.

We start with shifting ∆̃a by integers using (4.8) so that 0 ≤ Re ∆̃a < 1 is satisfied.

This yields
∑

a ∆̃a ∈ {0, 1, 2}. Then since the eBAEs (C.1) are invariant under ∆̃a → 1−∆̃a

and λ→ −λ due to (4.8), redefining ∆̃a as ∆̃a → 1−∆̃a does not change the eBAE solutions

{ui}. Therefore, we can redefine ∆̃a as ∆̃a → 1−∆̃a whenever
∑

a ∆̃a = 2 and consequently
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we have
∑

a ∆̃a ∈ {0, 1}. Finally, we assume ∆̃a ∈ R, then 0 ≤ Re∆̃a < 1 together with∑
a ∆̃a = 0 leads to ∆̃a = 0, which is forbidden for the index to converge. So we have

0 < ∆̃a < 1,

3∑
a=1

∆̃a = 1. (C.3)

The final expression of ∆̃a shifted from (C.2) is given in terms of ∆a as

∆̃1,2 =

{
{∆1,2} ({∆1}+ {∆2}+ {−∆1 −∆2} = 1);

1− {∆1,2} ({∆1}+ {∆2}+ {−∆1 −∆2} = 2),

∆̃3 =

{
{−∆1 −∆2} ({∆1}+ {∆2}+ {−∆1 −∆2} = 1);

1− {−∆1 −∆2} ({∆1}+ {∆2}+ {−∆1 −∆2} = 2),

(C.4)

where as usual {·} = · − b·c, and we have assumed ∆1,2 ∈ R \ Z.

We can also specify the range of holonomies uk using the same properties of θ1(u; τ)

given in (4.8). The key is that the eBAEs (C.1) are invariant under uk → uk + pk + qkτ

for arbitrary integers pk, qk ∈ Z. Using this invariance, we can set uk as

uk = xk + ykτ (0 ≤ xk, yk < 1), (C.5)

with yi ≤ yj for i ≤ j without loss of generality.

Following the setup (C.3) and (C.5), now we investigate the eBAEs (C.1) in asymptotic

regions and look for non-standard solutions there.

C.1 Low-temperature asymptotic solutions

We start with the low-temperature (|τ | � 1) asymptotic region. First we rewrite the

infinite product form of θ1(u; τ) (4.6) as

θ1(u; τ) = ie
πiτ
4 eπi(p+p(p+1)τ−u(2p+1))

×
∞∏
k=1

(1− e2πikτ )(1− e2πi((k−1)τ+(u−τp)))(1− e2πi(kτ−(u−τp))),
(C.6)

where we have defined the integer p as

p =

⌊
Imu

|τ | sin θ

⌋
(τ = |τ |eiθ). (C.7)

Substituting the form of eBAE solutions uk (C.5) and the product form (C.6) into the

eBAEs (C.1) then gives

eπi(N−2λ−1) =
3∏

a=1

N∏
j=1

∞∏
k=1

(1− e2πi(−xij+(k−{yij})τ+∆̃a))(1− e2πi(xij+(k−1+{yij})τ−∆̃a))

(1− e2πi(xij+(k−1+{yij})τ+∆̃a))(1− e2πi(−xij+(k−{yij})τ−∆̃a))
,

(C.8)
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where the curly bracket denotes mod Z as in (3.3). Under the low-temperature limit, the

contributions from k ≥ 2 are exponentially suppressed and therefore (C.8) reduces to

eπi(N−2λ−1) =
3∏

a=1

N∏
j=1

(1− e2πi(xij+{yij}τ−∆̃a))(1− e2πi(−xij+(1−{yij})τ+∆̃a))

(1− e2πi(xij+{yij}τ+∆̃a))(1− e2πi(−xij+(1−{yij})τ−∆̃a))

×
(

1 +O(e−2π|τ | sin θ)
)
.

(C.9)

These are the eBAEs reduced under the low-temperature limit, which yield N − 1 inde-

pendent algebraic equations. They are still involved to solve in general, however, so we

consider simple cases: N = 2 and N = 3.

C.1.1 N = 2

For N = 2, the reduced eBAEs (C.9) yield a single algebraic equation,

± 1 =
3∏

a=1

1− e2πi(u21−∆̃a)

1− e2πi(u21+∆̃a)

1− e2πi(τ−u21+∆̃a)

1− e2πi(τ−u21−∆̃a)
×
(

1 +O(e−2π|τ | sin θ)
)
. (C.10)

The complete set of solutions to (C.10) is given as

u21 ∈
{

0,
1

2
,
τ

2
,

1 + τ

2
,± 1

2πi
log

[
− 1−

∑
a cos 2π∆̃a

2
+

√(
1−

∑
a cos 2π∆̃a

2

)2

−1

]}
. (C.11)

Here the first solution is trivial and the next three solutions correspond to the standard

{2, 1, 0}, {1, 2, 0}, and {1, 2, 1} solutions respectively. The other two low-temperature

asymptotic solutions are non-standard and completely distinguished from the trivial so-

lution and the standard {m,n, r}-type solutions.

C.1.2 N = 3

For N = 3, we define

z21 = e2πiu21 , z31 = e2πiu31 , ya = e2πi∆̃a and q = e2πiτ . (C.12)

Note that the low-temperature limit corresponds to |q| � 1. In addition, the setup (C.5)

restricts

|q| ≤ |z31| ≤ |z21| ≤ 1. (C.13)

Under this restriction, the reduced eBAEs (C.9) yield two algebraic equations,

3∏
a=1

(1− yaz21)(1− y−1
a

q
z21

)(1− yaz31)(1− y−1
a

q
z31

)

(1− y−1
a z21)(1− ya q

z21
)(1− y−1

a z31)(1− ya q
z31

)

=

3∏
a=1

(1− y−1
a z21)(1− ya q

z21
)(1− ya z31

z21
)(1− y−1

a q z21
z31

)

(1− yaz21)(1− y−1
a

q
z21

)(1− y−1
a

z31
z21

)(1− yaq z21
z31

)

=
3∏

a=1

(1− y−1
a z31)(1− ya q

z31
)(1− y−1

a
z31
z21

)(1− yaq z21
z31

)

(1− yaz31)(1− y−1
a

q
z31

)(1− ya z31
z21

)(1− y−1
a q z21

z31
)
, (C.14)

up to exponentially small terms of at most O(|q|).
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If we assume |z31| is strictly greater than |q|, then we can simply set q = 0 in (C.14)

in the log-temperature limit. The resulting equations then simplify and admit a discrete

set of solutions

(z21, z31) = (1, 1) ∪ (ω, ω−1) ∪ (ω−1, ω) ∪ (−1, 0), (C.15)

where ω = e2πi/3, as well as a continuous family of solutions satisfying a single condition

(1 + z21 + z31)

(
1 +

1

z21
+

1

z31

)
= 3 + 2

∑
a

cos 2π∆̃a, (C.16)

which reduces to the finitely many non-standard solutions for N = 2 given in (C.11) under

z31 = z21. Starting with the discrete solutions, the first three are based on cube roots of

unity and correspond to the high temperature limit of the standard solutions. In particular,

the first entry in (C.15) corresponds to the C = 1 case, and the next two correspond to the

C = 3 cases. The final solution in (C.15) is novel, as it is a non-standard solution that is

nevertheless independent of the chemical potentials ∆̃a. Note that, strictly speaking, this

solution violates the assumption made above that |z31| > |q|. However, it is in fact easy to

see that this extends to an exact non-standard solution

(u21, u31) = (1/2, τ/2), (C.17)

for arbitrary τ .

Perhaps more interestingly, we have found a continuous family of solutions given

by (C.16). This one complex dimensional family of solutions is obviously non-standard since

it depends on the chemical potentials ∆̃a. In addition, the limiting form of (C.16) for z21 →
−1 and z31 → 0 encompasses the non-standard solution (C.17). This suggests that (C.17)

is not a discrete solution but rather a part of the continuous family. We confirm this explic-

itly in appendix B by demonstrating that the transformation matrix ∂Qi/∂uj (i, j = 1, 2)

where Qi represents the i-th BAE contains a zero mode corresponding to a flat direction.

C.2 High-temperature asymptotic solutions

Next we consider the high-temperature (|τ | � 1) asymptotic region. Using the infinite

product form of θ1(u; τ) in (4.6) together with the S-transformation

S : θ1(u/τ ;−1/τ) = −i
√
−iτe

πiu2

τ θ1(u; τ), (C.18)

we can derive the high-temperature expansion of θ1(u; τ),

θ1(u;τ) = (−iτ)−
1
2 e−

πi
4τ e

πi
τ
u(1−u)(1−e−

2πi
τ
u)

∞∏
k=1

(1−e−
2πi
τ
k)(1−e−

2πi
τ

(k−u))(1−e−
2πi
τ

(k+u))

= (−iτ)−
1
2 e−

πi
4τ (−1)pe

πi
τ
{u}τ (1−{u}τ )

×
∞∏
k=1

(1−e−
2πi
τ
k)(1−e−

2πi
τ

(k−{u}τ ))(1−e−
2πi
τ

(k−1+{u}τ )) (C.19)
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where we have used the notation {u}τ introduced in (4.15) and defined the integer p as

p = bReu− cot θ Imuc (τ = |τ |eiθ). (C.20)

Substituting the form of eBAE solutions uk (C.5) and the product form (C.19) into the

eBAEs (C.1) then gives

eπi(N−2λ−1) =

3∏
a=1

N∏
j=1

[
e
πi
τ ({−xij+∆̃a}(1−{−xij+∆̃a})−{xij+∆̃a}(1−{xij+∆̃a})) (C.21)

+eπi(b−xij+∆̃ac−bxij+∆̃ac−2yij(1−{−xij+∆̃a}−{xij+∆̃a}))

×
∞∏
k=1

(1−e−
2πi
τ

(k−{−xij+∆̃a}+yijτ))(1−e−
2πi
τ

(k−1+{−xij+∆̃a}−yijτ))

(1−e−
2πi
τ

(k−{xij+∆̃a}−yijτ))(1−e−
2πi
τ

(k−1+{xij+∆̃a}+yijτ))

]
.

where the curly bracket denotes mod Z as in (3.3). Under the high-temperature limit, the

contributions from k ≥ 2 are exponentially suppressed and therefore (C.21) reduces to

eπi(N−2λ−1) =
3∏

a=1

N∏
j=1

[
e
πi
τ ({−xij+∆̃a}(1−{−xij+∆̃a})−{xij+∆̃a}(1−{xij+∆̃a}))

+ eπi(b−xij+∆̃ac−bxij+∆̃ac−2yij(1−{−xij+∆̃a}−{xij+∆̃a}))

× (1− e−
2πi
τ

(1−{−xij+∆̃a}+yijτ))(1− e−
2πi
τ

({−xij+∆̃a}−yijτ))

(1− e−
2πi
τ

(1−{xij+∆̃a}−yijτ))(1− e−
2πi
τ

({xij+∆̃a}+yijτ))

]
×
(

1 +O(e
− 2π sin θ

|τ | )
)
. (C.22)

These are the eBAEs reduced under the high-temperature limit, which yield N − 1 inde-

pendent algebraic equations. They are still involved to solve in general, however, so we

consider simple cases: N = 2 and N = 3.

C.2.1 N = 2

For N = 2, the reduced eBAEs (C.22) yield a single algebraic equation (take logarithmic

function on both sides),

Zπi=
πi

τ

3∑
a=1

({x21 +∆a}(1−{x21 +∆a})−{−x21 +∆a}(1−{−x21 +∆a})) (C.23)

+πi
3∑

a=1

(bx21 +∆ac−b−x21 +∆ac+2y21(1−{x21 +∆a}−{−x21 +∆a}))

+
3∑

a=1

log

[
(1−e−

2πi
τ

(1−{x21+∆a}−y21τ))(1−e−
2πi
τ

({x21+∆a}+y21τ))

(1−e−
2πi
τ

(1−{−x21+∆a}+y21τ))(1−e−
2πi
τ

({−x21+∆a}−y21τ))

]
+O

(
e
− 2π sinθ

|τ |
)
.

Solving this equation is quite involved in general mainly because the last logarithmic term

may yield a large contribution for some special values of x21. We therefore solve this

equation under appropriate assumptions on x21.
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Case 1. {±x21 + ∆̃a} are NOT asymptotically close to 0 or 1. First, we consider

the solutions where {±x21 +∆̃a} are not asymptotically close to the end points 0 and 1. In

this case, the last logarithmic term in (C.23) is exponentially suppressed as ∼ O(e
− 2π sin θ

|τ | x
)

where we have defined a real number x ∈ (0, 1) as

x ≡ min({x21 + ∆̃a}, 1− {x21 + ∆̃a}, {−x21 + ∆̃a}, 1− {−x21 + ∆̃a} : a = 1, 2, 3). (C.24)

Then (C.23) is simplified into the following system of algebraic equations,

0 =
3∑

a=1

(
{x21 + ∆̃a}(1− {x21 + ∆̃a})− {−x21 + ∆̃a}(1− {−x21 + ∆̃a})

)
, (C.25a)

Z =
3∑

a=1

(
bx21 + ∆̃ac − b−x21 + ∆̃ac+ 2y21(1− {x21 + ∆̃a} − {−x21 + ∆̃a})

)
, (C.25b)

up to O(e
− 2π sin θ

|τ | x
). If we set 0 < ∆̃1 ≤ ∆̃2 ≤ ∆̃3 < 1 without loss of generality, the

complete set of solutions to (C.25) can be written as

u21 = x21 + y21τ ∈
{

0,
1

2
,
τ

2
,
1 + τ

2

}
∪
{

1

2
+
τ

4
,

1

2
+

3τ

4

∣∣∣∣∆̃3 <
1

2

}
∪
{
x21 + y21τ

∣∣∣∣x21 ∈ [1− ∆̃3, ∆̃3], y21 ∈ [0, 1), ∆̃3 ≥
1

2

}
, (C.26)

up to O(e
− 2π sin θ

|τ | x
). The complete set of solutions to (C.23) corresponding to the CASE

1 is therefore given as (C.26) whose subset violating the assumption “{x21 ± ∆̃a} are not

asymptotically close to 0 or 1” is excluded. For example, u21 = ∆̃3 +y21τ (∆̃3 ≥ 1/2) must

be excluded from the set of solutions to (C.23) corresponding to the CASE 1 even though

it’s included in (C.26), since {−x21 + ∆̃3} = 0 violates the assumption.

Case 2. Some {±x21 +∆̃a} are asymptotically close to 0 or 1. Next, we consider

the solutions where some of the {±x21+∆̃a} are asymptotically close to 0 or 1. In this case,

the last logarithmic term in (C.23) may yield a contribution which is not exponentially

suppressed. Therefore it is hard to reduce (C.23) further as we did in CASE 1, and

consequently it becomes difficult to find the complete set of solutions to (C.23) in CASE 2.

We can still find, however, a particular solution in CASE 2 by using an appropriate

ansatz. Setting 0 < ∆̃1 ≤ ∆̃2 ≤ ∆̃3 < 1 without loss of generality, we use the following

ansatz,

u21 = ∆̃3 + ε|τ |+ y21τ

(
∆̃3 ≥

1

2

)
, (C.27)

where ε is a positive real number. Note that this ansatz has {−x21 + ∆̃3} asymptotically

close to 0 so breaks the assumption for CASE 1; hence, using this ansatz may yield a new

asymptotic solution that is not covered by (C.26).

Substituting (C.27) into (C.23), we get

± 1 =
e
−2πi

(
ε
|τ |
τ

+y21

)
1− e−2πi

(
ε
|τ |
τ

+y21

) × (1 +O(e
− 2π sin θ

|τ | min(∆̃1−ε|τ |,2∆̃3−1+2ε|τ |)
)
)
, (C.28)
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after taking exponential function on both sides. Ignoring the exponentially suppressed

term, it is clear that the l.h.s. must take +1 to yield a regular solution and consequently

we have

ε =
log 2

2π sin θ
and y21 =

{
− log 2 cot θ

2π

}
⇔ u21 = ∆̃3− i

log 2

2π
τ (mod Z+Zτ). (C.29)

Recall that u21 → −u21 does not affect that a given solution satisfies the eBAEs (C.1) so

we found two examples of high-temperature asymptotic solutions in CASE 2, namely

u21 ∈
{
±
(
−∆̃3 + i

log 2

2π
τ

) ∣∣∣∣∆̃3 ≥
1

2

}
. (C.30)

C.2.2 N = 3

For N = 3, the reduced eBAEs (C.22) yield two algebraic equations. Since they are more

involved than the ones for N = 2, we only consider the case where {xij + ∆̃a} (1 ≤ i 6=
j ≤ 3) are not asymptotically close to 0 or 1. Then the two algebraic equations from the

eBAEs (C.22) are simplified as

F1(u21, u32) = F2(u21, u32) = F3(u21, u32) (C.31)

up to exponentially suppressed terms of order O(e
− 2π sin θ

|τ | X
), where we have defined

Fi(u21, u32) ≡ πi

τ

3∑
a=1

3∑
j=1

(
{−xij + ∆̃a}(1− {−xij + ∆̃a})− {xij + ∆̃a}(1− {xij + ∆̃a})

)

+ πi
3∑

a=1

3∑
j=1

(
b−xij + ∆̃ac − bxij + ∆̃ac

− 2yij(1− {−xij + ∆̃a} − {xij + ∆̃a})
)
, (C.32)

X ≡ min({xij + ∆̃a}, 1− {xij + ∆̃a} : a = 1, 2, 3, 1 ≤ i 6= j ≤ 3). (C.33)

It is still difficult to solve (C.31) for general chemical potentials and therefore we

assume that all the chemical potentials ∆̃a are identical as ∆̃a = 1/3. Then the complete

set of solutions to (C.31) is given as{
x21 = x32 =

Z
3
, y21, y32 =

Z
3

}
∪
{

0 ≤ x21 <
1

3
, x32 =

1− x21

2
, y21 + 2y32 =

2Z + 1

6

}
∪
{

1

3
< x21 ≤

1

2
, x32 = 1− 2x21, 2y21 + y32 =

2Z + 1

6

}
∪
{

1

3
< x21 = x32 <

2

3
, y21 − y32 =

2Z + 1

6

}
∪
{

1

2
< x21 <

2

3
, x32 = 2(1− x21), 2y21 + y32 =

2Z + 1

6

}
∪
{

2

3
< x21 < 1, x32 = 1− x21

2
, y21 + 2y32 =

2Z + 1

6

}
. (C.34)
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up to O(e
− 2π sin θ

|τ | X
). Note that the first subset of (C.34) actually breaks the assumption

that {xij + ∆̃a} are not asymptotically close to 0 or 1, but we know it corresponds to

the standard {m,n, r} solutions. The others represent continuous families of non-standard

solutions in the high-temperature limit.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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