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Abstract 27 

Oral drug absorption is a complex process depending on many factors, including the 28 

physicochemical properties of the drug, formulation characteristics and their interplay with 29 

gastrointestinal physiology and biology. Physiological-based pharmacokinetic (PBPK) 30 

models integrate all available information on gastro-intestinal system with drug and 31 

formulation data to predict oral drug absorption. The latter together with in vitro-in vivo 32 

extrapolation and other preclinical data on drug disposition can be used to predict plasma 33 

concentration-time profiles in silico. Despite recent successes of PBPK in many areas of drug 34 

development, an improvement in their utility for evaluating oral absorption is much needed. 35 

Current status of predictive performance, within the confinement of commonly available in 36 

vitro data on drugs and formulations alongside systems information, were tested using 3 37 

PBPK software packages (GI-Sim (ver.4.1), Simcyp® Simulator (ver.15.0.86.0), and 38 

GastroPlusTM (ver.9.0.00xx)). This was part of the Innovative Medicines Initiative (IMI) Oral 39 

Biopharmaceutics Tools (OrBiTo) project. 40 

Fifty eight active pharmaceutical ingredients (APIs) were qualified from the OrBiTo database 41 

to be part of the investigation based on a priori set criteria on availability of minimum 42 

necessary information to allow modelling exercise. The set entailed over 200 human clinical 43 

studies with over 700 study arms. These were simulated using input parameters which had 44 

been harmonised by a panel of experts across different software packages prior to conduct of 45 

any simulation. Overall prediction performance and software packages comparison were 46 

evaluated based on performance indicators (Fold error (FE), Average fold error (AFE) and 47 

absolute average fold error (AAFE)) of pharmacokinetic (PK) parameters. 48 

On average, PK parameters (Area Under the Concentration-time curve (AUC0-tlast), Maximal 49 

concentration (Cmax), half-life (t1/2)) were predicted with AFE values between 1.11 and 1.97. 50 



 

 

Variability in FEs of these PK parameters was relatively high with AAFE values ranging 51 

from 2.08 to 2.74. Around half of the simulations were within the 2-fold error for AUC0-tlast 52 

and around 90% of the simulations were within 10-fold error for AUC0-tlast. Oral 53 

bioavailability (Foral) predictions, which were limited to 19 APIs having intravenous (i.v.) 54 

human data, showed AFE and AAFE of values 1.37 and 1.75 respectively. Across different 55 

APIs, AFE of AUC0-tlast predictions were between 0.22 and 22.76 with 70% of the APIs 56 

showing an AFE > 1. When compared across different formulations and routes of 57 

administration, AUC0-tlast for oral controlled release and i.v. administration were better 58 

predicted than that for oral immediate release formulations. Average predictive performance 59 

did not clearly differ between software packages but some APIs showed a high level of 60 

variability in predictive performance across different software packages. This variability 61 

could be related to several factors such as compound specific properties, the quality and 62 

availability of information, and errors in scaling from in vitro and preclinical in vivo data to 63 

human in vivo behaviour which will be explored further. Results were compared with 64 

previous similar exercise when the input data selection was carried by the modeller rather 65 

than a panel of experts on each in vitro test. Overall, average predictive performance was 66 

increased as reflected in smaller AAFE value of 2.8 as compared to AAFE value of 3.8 in 67 

case of previous exercise.   68 



 

 

1. Introduction 69 

Oral administration is the preferred route in drug treatments due to its ease of use. The 70 

absolute oral bioavailability (Foral) is the most useful pharmacokinetic (PK) parameter to 71 

measure the human systemic exposure of orally administered drugs. Foral is affected by a 72 

number of biological processes, themselves impacted by physicochemical properties of the 73 

drug, formulation characteristics, and physiological factors in the intestine. There is a need to 74 

improve our understanding of these factors and their interplay in order to ensure reliable 75 

prediction of first in man pharmacokinetics, anticipate the effect of formulation changes, 76 

disease, prandial state on exposure or explore the effects of co-administered drugs on 77 

absorption and first pass gut or liver extraction. Relative drug exposures can be qualitatively 78 

inferred via early in vitro and in vivo models, while quantitative drug levels can be derived 79 

through validated in vitro in vivo correlations (IVIVC) [1]. But these models have limitations 80 

as they are neither able to integrate multiple sources of in vitro data to predict in vivo 81 

absorption and Foral, nor can evaluate the impact of first pass gut extraction or dynamic 82 

changes in physiological parameters on absorption. Moreover, they require sets of clinical 83 

studies with varying formulations to establish adequately robust IVIVC. Physiological-based 84 

pharmacokinetic (PBPK) modelling and simulation (M&S), on the other hand, can provide 85 

quantitative predictions of in vivo PK, integrating multiple sources of data, which helps 86 

understanding the complex interplay of underlying processes governing drug exposure. 87 

Although PBPK models can be constructed from first principles and so call ‘bottom up 88 

fashion’, they are also capable of integrating clinical observations through a process coined 89 

reverse translation (so called ‘middle-out’ approach)’. These models, regardless of bottom-up 90 

or middle-out approach have gained considerable interest and use in drug development [2,3]. 91 

Their extensive use by regulatory authorities, industry, and academia, has not been associated  92 

with systematically investigation of the predictive performance and these reports have been 93 



 

 

rare and limited in their scope and design regarding blinding of the outcome to the modellers, 94 

a priori setting of criteria for selection of input parameters, broad range of API and 95 

formulations [2,4,13,5–12]. 96 

The Innovative Medicines Initiative (IMI) Oral Biopharmaceutics Tools (OrBiTo) project 97 

aims to enhance our understanding of how oral drug formulations are absorbed in the 98 

gastrointestinal (GI) tract and improve upon current in vitro, in vivo and in silico models for 99 

predicting oral biopharmaceutics [14]. This consortium comprised 4 work packages (WP), 100 

focussing on different aspects of oral biopharmaceutics, from in vitro characterization of drug 101 

substances (WP1), to in vitro drug product performance (WP2), and to in vivo tools to refine 102 

our understanding of human physiology (WP3). WP4 focused on the evaluation of current in 103 

silico tools including PBPK absorption models to assess their current performance, provide 104 

best practices for their use in a context of absorption modelling and propose new algorithms 105 

to improve these models based on the work done through other work packages [14,15]. In 106 

previous publications we presented the setup of the OrBiTo active pharmaceutical ingredient 107 

(API) database, capturing drug- and formulation-specific properties, pre-clinical and clinical 108 

data [16,17]. The database comprised a total of 83 APIs and 1,475 study arms. We also 109 

performed a simulation exercise (entitled Task 4.9 within OrBiTo) previously for 43 APIs 110 

(meeting the minimum inclusion criteria), which consisted in blinded predictions of 111 

intravenous and oral exposure carried out in GastroPlus™ ver.8.5.00xx (Simulations Plus 112 

Inc., Lancaster, CA), Simcyp® Simulator ver. 13.2.89.0 (Certara, Sheffield, UK) and GI-Sim 113 

ver. 4.1 (AstraZeneca, London, UK) [18,19]. For these simulations, the predictive 114 

performance was evaluated in relation to drug-specific properties, including: molecular 115 

weight, Log P, Log DpH, acid-base nature, Biopharmaceutics Classification System (BCS) 116 

class, estimated fraction absorbed (fa) from in vitro assays, dose number (Do), and blood and 117 

plasma binding. Despite issues due to the lack of model input parameters, in particular for 118 



 

 

biorelevant solubility, particle size, precipitation and enzyme-specific metabolism, as well as 119 

high variability between users, several areas of improvement were identified [18,19]. 120 

Findings were used to improve modelling strategies along with requested database updated in 121 

order to increase the prediction ability of PBPK software packages. 122 

We have now performed a new sets of simulations (entitled Task T4.20 within OrBiTo) after 123 

the implementation of some improvements, and the findings are discussed in this report with 124 

a view to help in defining standard operating procedures (SOPs) of PBPK M&S as applied to 125 

biopharmaceutics space within drug development. This is an essential part as the use of 126 

PBPK in this space moves from the exploratory tool for the developers into a regulatory 127 

decision making function that assess not only the input parameters and software options per 128 

se but also the procedure of selecting modelling options and their validity and rationale. 129 

2. Methods 130 

2.1. API Selection and allocation 131 

Based on the previously defined selection criteria [17], 58 APIs were chosen from a set of 83 132 

compounds comprised in the OrBiTo database. The selection criteria were based on 133 

availability of the following information: molecular weight, at least one Log P or Log DpH 134 

value, at least one solubility point estimate or dissolution profile, in vitro permeability along 135 

with reference compounds, human in vitro clearance or preclinical i.v data, and fraction 136 

unbound in plasma. The 58 APIs chosen represented around 200 human studies, and more 137 

than 700 clinical study arms. Each API selected was simulated in three software packages: 138 

GastroPlus™ ver.9.0.00xx (where xx = 04, 07, or 12) (Simulations Plus Inc., Lancaster, CA), 139 

Simcyp® Simulator ver. 15.0.86.0 (Certara, Sheffield, UK) and GI-Sim ver. 4.1 (AstraZeneca, 140 



 

 

London, UK). These API-software combinations were randomly allocated to different 141 

partners based on their resources or access to the software packages. 142 

2.2. Simulation strategies 143 

Guidance documents for software usage and selection and calculation of input parameters 144 

were provided to the modellers, along with guidance on reporting simulation results. Before 145 

performing simulations, modellers were asked to define strategies for the calculation and 146 

selection of input parameters for allocated APIs and software packages. They were asked to 147 

discuss these strategies with fellow modellers, simulating the same API in other software 148 

packages, in order to harmonise the inputs across the software packages. These documented 149 

strategies, named “strategy documents”, were discussed and updated during the course of 150 

monthly strategy meetings between modellers and a panel of experts. Simulations were 151 

performed by the modellers based on these strategy documents once signed-off by the panel 152 

of experts. This important information and discussions were used as one of the sources to 153 

update and improve SOPs of the software packages, created in a previous simulation exercise 154 

[18]. The purpose of these strategy meetings was to make sure the inputs to the various 155 

simulation tools were harmonized in order to properly assess their prediction ability.  156 

2.3. Simulation procedure 157 

Each participating institution was asked to generate bottom-up predictions for every human 158 

study arm associated with their allocated APIs by simulating a population representative 159 

healthy volunteer, as built into the packages. Simulation outputs, automatically generated by 160 

the software and in some cases entered manually into a specific output template, were 161 

uploaded on a shared space for analysis. Final strategy documents were also uploaded along 162 

with the performed simulations.   163 



 

 

2.4. Data extraction 164 

Extraction of input parameters and simulated plasma-concentrations profiles from the 165 

software output files was carried out in an automated way using MatlabTM R2016a 166 

(Mathworks, Natick, MA). These extracted plasma concentration-time profiles were exported 167 

into Microsoft Excel®, 2010 (Microsoft, Redmond, WA) where macros were used for 168 

automated calculations of PK parameters. Calculated PK parameters for each study arm along 169 

with extracted input parameters were stored in a meta-data Excel file. Input parameters that 170 

were either not available or not reported in simulation files were taken from strategy 171 

documents and API information files and entered manually in this meta-data file. Observed 172 

plasma concentration-time profiles were treated in the same manner as simulated profiles to 173 

extract the PK parameters. 174 

2.5. Data cleaning 175 

Data cleaning was performed in order to prepare data sets for final analysis. In the first step, 176 

PBPK input parameters used in the simulations were compared with original values present 177 

in the database, and simulations were excluded when any discrepancies were found, for 178 

example if the incorrect value or unit was used for any parameter. Further exclusion was 179 

based on divergence from provided guidance, for example if the wrong option was selected 180 

or a software version other than that recommended was used.   181 

In the final step, two data sets were prepared. The objective of the first one was to analyse 182 

software prediction accuracy. In that respect, input parameters of this set of simulations were 183 

checked to be in agreement with values reported in the strategy documents. The second data 184 

set was prepared for software comparison. For this second set, harmonisation of model input 185 

parameters across different software packages was checked, regardless of the values in the 186 

strategy documents. NOTE: For Simcyp, only 24 out of 48 possible APIs were considered in 187 



 

 

the performance and comparison statistics. This was because for 9 of the total APIs, 188 

simulations were conducted using Simcyp ver. 16.0.113.0 or ver.13.2.89.0. Even though the 189 

simulation results were conducted with the wrong software versions the statistics were 190 

compiled and are presented in Supplementary material. Data cleaning described in section 2.5 191 

was performed on these inclusions as well.  192 

2.6. PK parameter calculations 193 

Commonly used PK parameters such as the area under the plasma concentration-time curve 194 

(AUC0-tlast), the maximal concentration (Cmax), time to reach maximum concentration (tmax), 195 

and half-life (t1/2), were used for the comparison between simulated and observed profiles. 196 

Foral was used only for APIs with both oral and i.v. data. The parameters were calculated for 197 

each individual study arm for the observed plasma concentration profiles as well as the 198 

predicted profiles, using the matched final time point of profiles. In the case of the observed 199 

data, the median of the individual profiles in each study arm was used to calculate PK 200 

parameters.  201 

2.7. Summary statistics 202 

The performance of the models to predict the PK parameters was evaluated using already 203 

defined metrics in our previous study [18]. These metrics include the percent of predictions 204 

within a certain fold error (FE) which provides a commonly used measure of accuracy (i.e. 205 

the magnitude of the deviation from the observed value), average fold error (AFE) which 206 

measures the bias of the predictions (i.e. the central tendency of the deviation). Absolute 207 

average fold error (AAFE), which measures the spread of predictions, and absolute average 208 

fold difference (AAFD) between two software packages. Predicted vs. observed profiles were 209 

also compared directly using Pearson correlation coefficient (R) and concordance correlation 210 

coefficient (CCC).  211 



 

 

3. Results 212 

3.1. Simulated data sets used for analysis 213 

Around 2000 simulation files had been generated by the participating institutions 214 

representing 700 unique study arms and 58 API simulated in three software packages (Table 215 

A1). After data cleaning, as explained in method section 2.5, Table 1 displays the two data 216 

sets used for analysis in evaluating predictive performance stratified based on software used 217 

together with one-to-one software comparisons. Statistics on different issues/errors in 218 

excluded data and its impact on output will be reported in separate report (In preparation).  219 

Table 1: Subsets of simulated data used for prediction accuracy and software comparisons 220 

 Number of API Number of study arms 

Prediction Accuracy    

Total 48 541 
GastroPlus 37 377 

GI-Sim 42 454 

Simcyp 24 242 
Software Comparisons   

All together 16 154 

GastroPlus vs. GI-Sim 35 349 
GastroPlus vs. Simcyp 21 230 

Simcyp vs. GI-Sim 23 197 

 221 

3.2. Prediction accuracy 222 

The data set which was used to evaluate the ability of software packages to accurately predict 223 

the drug exposure consisted of a total of 48 API and 541 study arms (Table 1). This section 224 

describes results averaged over the three software packages.  225 

3.2.1. Overview 226 

Between 45% and 57% of predictions of human PK parameters (AUC0-tlast, Cmax, t1/2) for total 227 

simulations were predicted within a 2-fold error (Table A2, Fig. 1A). The percentage within 228 

3-fold was between 62% and 75%. Parameter t1/2 was most accurately predicted followed by 229 



 

 

Cmax and then AUC0-tlast (Fig. 1). The AFE values indicated a general overprediction of these 230 

parameters ranging from 1.1 to 2 (Fig. 1B, Table A2). The spread in FEs described by AAFE 231 

values was between 2.2 to 2.8 (Fig. 1B).  232 

 233 

Fig. 1. Prediction metrics for PK parameters. (A) Percentage of simulations within 2, 3, and 234 

10 fold error. (B) AFE and AAFE of different PK parameters. AFE: average fold error, 235 

AAFE: absolute AFE.  236 

Fig. 2 shows box plot for FEs in AUC0-tlast and Cmax predictions for all study arm-software 237 

combinations, grouped by API. For these APIs, considerable differences in FEs were 238 

observed for both AUC0-tlast and Cmax predictions (Fig. 2). The overall 5th - 95th percentiles of 239 

FEs in AUC0-tlast and Cmax predictions across APIs were 3-fold underprediction - 14.4-fold 240 

overprediction and 3.6-fold underprediction - 9.8-fold overprediction respectively. For 241 

around half of the APIs, both AUC0-tlast and Cmax were predicted with AFE between 0.5 and 2 242 

(Table A3). Around 44% and 25% of APIs showed higher spread of FEs (AAFE > 3) for 243 

AUC0-tlast and Cmax, respectively (Table A3). 244 



 

 

   245 

Fig. 2. Fold errors in AUC0-tlast (red) and Cmax (green) predictions for all study arm-software 246 

combinations, grouped by API. 247 

3.2.2. Observed vs. predicted regression lines 248 

In order to gauge the overall predictive performance of the simulations for each of the 48 249 

APIs in the simulation set, predicted and observed AUC0-tlast and absolute oral bioavailability 250 

averaged by geometric mean over the study arms for each API were examined (Fig. 3, Table 251 

A2). The correlation between predicted and observed Log10(AUC0-tlast) gave an R of 0.85 and 252 

0.94 for p.o. and i.v. administration respectively. The CCC value was also higher in case of 253 

i.v. administration as compared to p.o. administration (0.9 and 0.81, respectively). The 254 

overall trend in oral bioavailability showed lower correlations between predicted and 255 

observed, with an R of 0.47 and CCC of 0.4 (Fig. 3C). 256 



 

 

  257 

Fig. 3. Overall predictive performance, displaying the geometric mean observed against 258 

predicted data for A: p.o. administration, B: i.v. administration, C: p.o. bioavailability (Foral). 259 

R = Pearson regression coefficient, CCC = concordance correlation coefficient. 260 

3.2.3. Overview by different formulations 261 

Around 86% of total simulated study arms were in the fasted state. These included different 262 

administration routes and formulations, as shown in Table 2 along with number of APIs and 263 

number of total study arm-software combinations for each formulation type. 264 

Table 2: Number of simulated APIs and study arms for each formulation type. 265 

Route/Formulation Number of APIs 
Number of Study Arm/Software 

combinations 

p.o/IR Tablet 36 226 

p.o./Solution 28 177 
i.v. Infusion/Solution 17  30 

p.o./IR Capsule 14  69 

p.o./IR Suspension 14  92 
p.o./CR Solid Dispersion  7  43 

 266 

A general trend of overprediction in most PK parameters was observed for different 267 

formulations (Table A2). Predictions for i.v. route were in general better than the predictions 268 

for p.o. formulations as shown by the calculated metrics for different PK parameters (Table 269 

A2). Among different p.o. formulations, predictions for controlled release (CR) formulations 270 

were better than both immediate release (IR) solid and solution formulations for different PK 271 

parameters (Table A2). In the case of the AUC0-tlast predictions, as an example, there were a 272 

    R = 0.94 

    CCC = 0.91 

    R = 0.47 

    CCC =0.4 
    R = 0.85 

    CCC = 0.81 



 

 

higher percentage of simulations within the pre-specified fold error ranges in the case of CR 273 

formulations as compared to other p.o formulations (Fig. 4A). Similar trends for CR and i.v. 274 

formulations were seen in AFE and AAFE (Fig. 4B). Spread of FEs as displayed by AAFE in 275 

the case of CR and i.v. administration was almost half of that in other p.o. administrations 276 

(Fig. 4B). In terms of correlations between observed and predicted AUC0-tlast, no substantial 277 

differences were found between different formulations except lower CCC in IR solid 278 

formulations (Fig. 4C).  279 

 280 

 Fig. 4. . Prediction metrics for AUC0-t,last (A-C), Foral between p.o. and i.v. simulations (D-F); 281 

<n-fold = % APIs within n-fold;  282 

Foral was generally well predicted for all formulations, with around 75% of simulations 283 

within 2-fold error (Fig. 4D, Table A2). AFE ranged from 1.22 to 1.65 and AAFE 284 

ranged from 1.67 to 1.8 for different formulations. Foral predictions for IR solid 285 

formulations displayed the lowest AFE but considerably high AAFE (Fig. 4E, Table 286 



 

 

A2). Again correlations between predicted and observed Foral were highest for 287 

controlled release (Fig. 4F, Table A2).    288 

3.3. Software comparisons 289 

Common APIs simulated across different software packages were used first for one-to-one 290 

software comparisons, because data cleaning, as explained in method section, lead to only 16 291 

common APIs across all three software packages (Table 1). Comparison of 3 software 292 

packages for these common 16 APIs were also done.  293 

3.3.1. GastroPlus vs. GI-Sim 294 

Overall, a very small difference was found between GastroPlus and GI-Sim (Fig. 5(A,B)). 295 

There was slightly higher number of AUC0-tlast predictions within (2, 3, 10)-fold error for GI-296 

Sim (Fig. 5A). On average, both software packages almost equally overpredicted AUC0-tlast 297 

with AFE of 2.2 and 2.1 for GastroPlus and GI-Sim, respectively (Fig. 5B). The spread of 298 

FEs of AUC0-tlast predictions was slightly lower for GI-Sim with an AAFE of 2.8 as compared 299 

to 3.1 in GastroPlus (Fig. 5B). 300 

Comparing across different APIs, the software packages were not substantially different (Fig. 301 

6A, Table A4). There was only 6 API out of 35 compared, where AAFD of AUC0-tlast 302 

predictions were greater than 2 (Table A5). The largest was for API A0714 with an AAFD of 303 

9.74, i.e., GastroPlus overpredicted 7.7-fold and GI-Sim underpredicted 1.3-fold. 304 



 

 

   305 

Fig. 5. One-to-one software comparison given by different metric for AUC0-tlast predictions. 306 

3.3.2. GastroPlus vs. Simcyp 307 

There were more AUC0-tlast predictions within 2-fold error in GastroPlus as compared to the 308 

Simcyp (Fig. 5C). On average, performance was fairly similar with both overpredicting 309 

AUC0-tlast, where GastroPlus showed a slightly smaller AFE and AAFE (Fig. 5D). The AFEs 310 

for each API across the two software packages were also fairly similar (Fig. 6B, Table A4). 311 

There was only 1 API out of 21 compared, with an AAFD in AUC0-tlast prediction greater 312 

than 2 (Table A5). The highest AAFD was for API A4460, where GastroPlus overpredicted 313 

1.28-fold and Simcyp underpredicted 2-fold. 314 

nAPI = 35 

nAPI = 21 

nAPI = 23 



 

 

 315 

Fig. 6. Average fold error (AFE) of AUC0-tlast predictions across different APIs for one-to-one 316 

software comparison. 317 

3.3.3. GI-Sim vs. Simcyp 318 

On average, both software packages overpredicted AUC0-tlast with no significant difference 319 

(Fig. 5E, 5F). The number of simulations with AUC0-tlast predictions within 2 and 3-fold error 320 

was slightly higher in GI-Sim (Fig. 5E). For comparison based on each API, there was only 1 321 



 

 

API out of 23 compared, with an AAFD in AUC0-tlast greater than 2 (Fig 6C, Table A5). This 322 

was for API A4460, for which GI-Sim overpredicted 1.4 fold and Simcyp underpredicted 2-323 

fold.  324 

3.3.4. GastroPlus vs. GI-Sim vs. Simcyp 325 

Three software packages, when compared using 16 common APIs, were fairly equal in 326 

predicting AUC0-tlast and other parameters (Fig. 7). The variability in predictions within each 327 

API was also consistent across three software packages (Fig. 7). 328 

   329 

Fig. 7. Fold error (FE) in AUC0-tlast for common APIs across three software packages.  330 

3.4. Comparison with the previous exercise 331 

One aim of the study was to assess the difference in the prediction performance following 332 

improvements in the strategies and quality of data. The overall performance was improved as 333 

displayed by the prediction improvements of PK parameters, shown in table A6. There was a 334 

higher number of predictions in the current exercise within 2, 3 and 10-fold error in most PK 335 

parameters (Table A6, Fig. 8). In the current exercise, most of the parameters had higher AFE 336 



 

 

(Table A6), but at the same time variability in predictions was reduced as displayed by lower 337 

AAFE values (Table A6, Fig. 8). 338 

 339 

Fig. 8. Comparison between the current exercise and the previous simulation exercise using 340 

common APIs across two exercises. (A) Percentage of simulations with AUC0-tlast predictions 341 

with 2, 3, and 10-fold error. (B) Average fold error (AFE) and absolute average fold error 342 

(AAFE) of AUC0-tlast predictions. 343 

Out of 32 common APIs compared, 15 APIs displayed lower AFEs in AUC0-tlast, whereas 22 344 

APIs had better accuracy (lower AAFE in AUC0-tlast) (Fig. 9). 345 



 

 

  346 

Fig. 9. Fold error (FE) in AUC0-tlast prediction for APIs compared in the current simulation 347 

task (T4.20) and previous simulation exercise (T4.9). 348 

3.5. Discussion 349 

In general, OrBiTo WP4 (In silico tools) has established the largest scale of systematic 350 

evaluation for PBPK exercise over a range of software packages and as a function of input 351 

parameters and software options. To the best of our knowledge, this is the first attempt made 352 

to evaluate the prediction performance of PBPK software packages in two stages where the 353 

input were selected by the modellers themselves vs. decisions on input by a committee of 354 

experts. The improvements in both inputs and the simulation process demonstrated a clear 355 

reduction in variabilities seen previously in the outcome of simulations (which were assigned 356 

erroneously to software differences). Whilst the exercise highlighted the importance of the 357 

SOPs in reducing variability in the outcome, it also put question marks once again over the 358 

completeness of the in vitro data which are used as input into the simulations. Overall 359 

consistency between the results from the 3 software packages and reduced variation in the 360 

output from these tools indicate that perhaps limits on what can be done in these two fronts 361 



 

 

are close to the optimum whilst there is room for better in vitro tests and enhanced analysis of 362 

such data prior to input into the models.  363 

Although the average predictive performance did not seem related to software packages, for 364 

some compounds there was a high level of variability in predictions depending on the 365 

software used (and despite the best efforts to have harmonised inputs). These could be related 366 

to availability of information, scaling errors or compound specific properties, which will be 367 

reported in a companion paper (Ahmad et al. 2020, in preparation). The assessment proposed 368 

in this paper could be considered as a snap shot for current status and helps with making 369 

significant step toward the development of better approaches by the characterization of the 370 

degree of accuracy for PBPK modelling and comparing it with the outcomes reported in this 371 

evaluation. The aspects which made this exercise more reliable and a true reflection of status, 372 

beside the scale, included the reach (software options, modellers, and companies), blind 373 

nature and prospective decisions on input parameters without knowledge of the observed data 374 

or without being biased by them. 375 

Based on the learning from the previous exercise (T4.9), when modellers were faced with 376 

inconsistencies in the source data, they could use an online query system to raise issues and 377 

ask questions around specific compounds to the data owners (companies which loaded the 378 

data). Some issues were resolved and data was updated by the EFPIA partners during the 379 

course of the exercise. Moreover, in contrast to our previous exercise, modellers 380 

communicated with each other and with the team of experts throughout the modelling process 381 

in an attempt to harmonise simulation input. This was a key factor in the lower variability 382 

observed for the outcome of the simulation as displayed by the lower AAFE values compared 383 

to the previous exercise (T4.9), where modellers made their own choices (and occasionally 384 

without consulting an expert in the specific area related to the in vitro test). 385 



 

 

The dataset chosen for this exercise was extensive (58 compounds), provided by different 386 

EFPIA partners, and selection of PK modelling input was challenging for multiple 387 

compounds. In many cases information needed to inform models was limited [17]. Moreover, 388 

different methods were used to generate in vitro and in vivo preclinical data. This could have 389 

affected the level of simulation accuracy. This is also reflected in several compounds with 390 

large uncertainty in predictions. This could further be investigated by doing in-depth analysis 391 

for different sources of input data, probably for those compounds with i.v. and p.o. PK data 392 

available in both humans and animals. 393 

It should be noted that this investigation does not represent how PBPK M&S is done in the 394 

pharmaceutical industry, where “bottom-up” predictions are commonly conducted for 395 

estimating the safety of the starting human dose in phase 1 clinical trials. In most cases PBPK 396 

is done alongside other approaches using preclinical evaluation and allometric scaling for 397 

instance. Also, the molecular structure is well known to the pharmaceutical PBPK M&S team 398 

(but this was not available for modellers in this study due to proprietary restrictions). Last but 399 

not least, PBPK is performed iteratively within industry and each clinical study and study 400 

arm results (when become available) fed into the original PBPK and help with its 401 

optimisation of performance regarding the next set of questions and studies (unlike this study 402 

when ‘all’ studies for a given compound were simulated simultaneously and without being 403 

informed by such iterative process.   404 

We noted mistakes in data entry such as listing a pKa value as a base when the molecule is an 405 

acid! Such mistakes could be avoided by always starting with a purely in silico simulation of 406 

properties from structure. Once phase 1 pharmacokinetic data are available, these are used as 407 

inputs to refine/optimise the models by changing the most ‘uncertain’ parameters and 408 

improve their prediction ability for assessing dose escalation, effect of food or formulation 409 

changes called as learn-and-confirm approach. The current exercise was limited to available 410 



 

 

in vitro and preclinical data, and a top down analysis using i.v. human pharmacokinetics (or 411 

any other prior human studies) was not part of the exercise. Hence, modellers performed 412 

simulations using available data and have used in silico tools to handle missing information. 413 

This is reflected in overall predictive performance of the simulations. However, it would have 414 

been ideal to use i.v. human data, despite being limited to 19 compounds, to generate input 415 

parameters in addition to the performed bottom up simulations in order to trace the source of 416 

bias and reasons of poor predictions. This view will be in line with advocacy of having i.v. 417 

administration as part of the development (albeit as microdosing) otherwise the number of 418 

compounds with such information currently are too few to make a major difference. 419 

The whole exercise might be considered as a good learning process in exploring software 420 

differences with consistent inputs. Since certain choices were made in terms of entering input 421 

parameters in the software platforms, such as for instance neglecting the effect of 422 

concentration dependent permeability, or neglecting the impact of drug precipitation, 423 

exploring the reasons why software platforms did not lead to an adequate prediction of 424 

pharmacokinetics over a dose escalation study for instance will be of interest to refine the 425 

strategies for model parameterization. There were no large differences across one-to-one 426 

comparisons of software packages. Thanks to the well-harmonised inputs across the software 427 

packages; the variability in software output was reduced by 26% compared to the previous 428 

exercise (Task 4.9). Although the simulation results from the wrong version of the Simcyp 429 

software package were equivalent to the results of the 24 APIs that were evaluated for this 430 

study, such omissions in following the SOPs might indicate the shift in discipline as PBPK 431 

tools move from purely exploratory aid into a an exercise with regulatory impact on study 432 

waivers or statements in drug label which solely rely on in silico modelling   433 

Comparing this exercise, which was based on improved strategies and data, with the previous 434 

exercise [18], showed an improvement in prediction performances of all software packages. 435 



 

 

These improvements were related to a better control of the inputs and to agreeing on 436 

modelling strategies with fellow modellers and team of experts. One could argue that 437 

software were improved and updated during T4.9 and T4.20, but only Simcyp version 438 

15.0.86.0 underwent significant changes for T4.20 compared to the version 13.2.89.0 was 439 

used for T4.9. GastroPlus and GI-Sim did not undergo significant changes between T4.9 and 440 

T4.20. Since all software platforms resulted in similar output and since prediction accuracy 441 

has improved overall between the two exercises, the adopted strategy for selection of input 442 

parameters and simulation approach in T4.20 is likely responsible for the better outcome. 443 

APIs for which dose was a factor in the determining the simulation accuracy or cases where, 444 

despite the same input parameters, simulation outputs were different between modelling 445 

platforms, represent an important source of knowledge to explore different modelling 446 

strategies or understand finer differences between the software packages.  447 

Conclusion 448 

The outcome of this exercise reflects the evaluation of the prediction accuracy of different 449 

software packages as a function of data availability and software options in a bottom-up 450 

approach and shows that model prediction can be improved with careful and better selection 451 

of input parameters. More detailed results, including the compound specific properties and 452 

further exploration of model discrepancies with observed data will be discussed in a 453 

companion paper (Ahmad et al. 2020, in preparation). 454 
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Appendix 459 

Table A1: Number of simulations performed by different partners. 460 

 Number of study arms simulated                             Number of APIs simulated 

Institution Total 

software-

study arm 

combinations 

GastroPlus GI-Sim Simcyp Total 

software-

API 

combination

s 

GastroPlus GI-Sim Simcyp 

AstraZenec
a 

696 129 438 129 65 12 41 12 

UNIMAN 443 120 243  80 27 7 15 5 

Sanofi 191  69   0 122 12 5 0 7 

BMS 168  85   0  83 13 7 0 6 

Novartis 152  76   0  76 12 6 0 6 

AbbVie  86  28   0  58  8 4 0 4 

Orion  84  84   0   0  4 4 0 0 

SIMCYP  77   0   0  77  8 0 0 8 

MSD  56  28   0  28  6 3 0 3 

BI  29  29   0   0  3 3 0 0 

UG  24   8   0  16  3 1 0 2 

Pfizer  24   8   8   8  3 1 1 1 

GSK  18   9   0   9  4 2 0 2 

Janssen  17  17   0   0  2 2 0 0 

SimPlus  16   8   0   0  2 1 0 0 

UMainz   7   0   0   7  1 0 0 1 

UU   2   0   2   0  1 0 1 0 

(UNIMAN = The University of Manchester; BMS = Bristol-Myers Squibb; MSD = Merck Sharp & Dohme; BI = Boehringer Ingelheim; UG = Goethe 
Universität Frankfurt; GSK = GlaxoSmithKline; SimPlus = SimulationPlus; UMainz = Johannes Gutenberg Universität Mainz).  
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Table A2: Prediction performance given by different metrics of PK parameters and oral 462 

bioavailability grouped by formulations. 463 

Formulations Total API <2 fold <3 fold <10 fold AFE AAFE R CCC Parameter 

All 48 44.700 61.900 90.700 1.970 2.740 0.851 0.265 AUC0-tlast 

p.o 48 42.600 60.500 90.400 2.000 2.840 0.850 0.811 AUC0-tlast 

IR: Solid 44 37.000 52.300 87.600 1.980 3.190 0.817 0.785 AUC0-tlast 
Solutions 28 45.200 69.500 93.000 2.120 2.540 0.908 0.870 AUC0-tlast 

i.v 19 76.100 82.100 95.500 1.700 1.890 0.936 0.912 AUC0-tlast 

CR: formulations 7 74.300 83.800 100.000 1.700 1.860 0.946 0.887 AUC0-tlast 
All 48 39.800 59.500 87.500 2.240 3.010 0.746 0.135 AUC0-Inf 

p.o 48 37.800 58.100 87.000 2.370 3.280 0.794 0.728 AUC0-Inf 

IR: Solid 44 34.200 49.000 84.000 2.400 3.820 0.764 0.706 AUC0-Inf 
Solutions 28 38.000 67.200 89.200 2.500 2.850 0.851 0.766 AUC0-Inf 

i.v 19 68.700 79.100 95.500 1.960 2.130 0.904 0.863 AUC0-Inf 

CR: formulations 7 64.800 85.900 100.000 1.660 1.930 0.970 0.931 AUC0-Inf 
All 48 50.400 71.500 94.000 1.440 2.350 0.804 0.711 Cmax 

p.o 48 49.200 70.800 94.300 1.470 2.360 0.902 0.886 Cmax 

IR: Solid 44 46.000 70.400 94.700 1.400 2.420 0.900 0.889 Cmax 

Solutions 28 49.700 69.500 93.600 1.580 2.410 0.908 0.902 Cmax 

i.v 19 68.700 82.100 89.600 1.090 2.200 0.918 0.911 Cmax 

CR: formulations 7 71.600 79.700 94.600 1.510 1.800 0.917 0.868 Cmax 

All 48 56.600 75.000 94.800 1.100 2.080 0.532 0.158 t1/2 

p.o 48 56.200 74.400 94.700 1.090 2.190 0.510 0.504 t1/2 

IR: Solid 44 54.800 73.600 92.700 1.090 2.280 0.529 0.518 t1/2 

Solutions 28 61.100 77.700 97.000 1.200 2.020 0.422 0.390 t1/2 

i.v 19 62.700 83.600 95.500 1.310 1.920 0.539 0.511 t1/2 

CR: formulations 7 43.700 64.800 100.000 0.690 2.290 -0.886 -0.640 t1/2 

All 48 54.100 75.300 97.200 0.000 Inf 0.196 0.195 tmax 

p.o 48 53.600 76.000 98.200 1.160 2.100 0.271 0.267 tmax 

IR: Solid 44 54.700 77.900 98.300 1.160 2.060 0.399 0.396 tmax 
Solutions 28 46.200 68.300 97.700 1.190 2.310 -0.052 -0.040 tmax 

CR: formulations 7 79.700 95.900 100.000 1.020 1.540 0.776 0.761 tmax 

All 48 24.100 37.600 61.600 3.790 6.840 0.505 0.502 CL 
p.o 48 24.500 37.000 61.100 4.320 7.800 0.486 0.375 CL 

IR: Solid 44 22.600 34.600 57.900 4.520 9.020 0.470 0.346 CL 

Solutions 28 21.700 36.400 64.500 4.220 6.930 0.278 0.236 CL 
i.v 19 19.400 46.300 68.700 1.730 5.030 0.441 0.373 CL 

CR: formulations 7 52.100 57.700 70.400 3.370 4.400 0.203 0.093 CL 

All 48 19.800 31.700 62.100 4.160 7.200 0.530 0.516 Vd 

p.o 48 19.300 31.100 61.100 4.710 8.250 0.583 0.399 Vd 

IR: Solid 44 17.100 28.600 57.400 4.940 9.340 0.567 0.371 Vd 

Solutions 28 18.700 30.100 63.300 5.070 7.890 0.592 0.392 Vd 
i.v 19 26.900 40.300 76.100 2.270 5.110 0.529 0.434 Vd 

CR: formulations 7 39.400 54.900 80.300 2.320 3.910 0.370 0.207 Vd 

All 48 32.800 53.200 80.400 2.330 3.600 0.925 0.166 AUMC0-tlast 

p.o 48 31.400 51.800 79.600 2.390 3.840 0.823 0.783 AUMC0-tlast 

IR: Solid 44 28.200 42.500 71.800 2.340 4.690 0.781 0.743 AUMC0-tlast 

Solutions 28 32.500 57.700 87.900 2.700 3.220 0.872 0.817 AUMC0-tlast 
i.v 19 53.700 73.100 92.500 2.620 2.850 0.886 0.827 AUMC0-tlast 

CR: formulations 7 50.000 94.600 100.000 1.590 1.890 0.954 0.907 AUMC0-tlast 
All 48 25.200 40.100 70.000 3.050 5.440 0.553 0.035 AUMC0-Inf 

p.o 48 24.200 39.300 68.900 3.210 6.100 0.635 0.568 AUMC0-Inf 

IR: Solid 44 21.100 33.700 60.700 3.250 7.870 0.593 0.530 AUMC0-Inf 
Solutions 28 26.200 40.700 75.900 3.700 4.950 0.586 0.484 AUMC0-Inf 

i.v 19 40.300 52.200 85.100 3.640 4.150 0.762 0.672 AUMC0-Inf 

CR: formulations 7 38.000 76.100 100.000 1.480 2.280 0.918 0.890 AUMC0-Inf 
All 48 60.700 79.100 95.600 1.360 2.050 0.529 0.169 MRT 

p.o 48 60.100 79.200 95.700 1.350 2.140 0.515 0.486 MRT 

IR: Solid 44 56.500 75.800 94.200 1.350 2.310 0.517 0.487 MRT 
Solutions 28 65.100 82.800 97.300 1.480 1.930 0.395 0.333 MRT 

i.v 19 70.100 77.600 94.000 1.860 2.040 0.549 0.448 MRT 

CR: formulations 7 64.800 88.700 100.000 0.890 1.840 -0.640 -0.585 MRT 
p.o 19 74.300 88.700 98.900 1.370 1.750 0.470 0.401 Foral 

IR: Solid 18 74.700 88.000 98.800 1.220 1.730 0.395 0.335 Foral 

Solutions 12 75.700 89.300 98.600 1.590 1.800 0.285 0.190 Foral 
CR: formulations 4 67.400 91.300 100.000 1.650 1.670 0.891 0.480 Foral 
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Table A3: Average fold error (AFE) and absolute average fold error (AAFE) of AUC0-tlast 465 

and Cmax predictions for each API. 466 

 AUC0-tlast Cmax 

API AFE AAFE AFE AAFE 

A0048  3.68  3.68  2.03  2.03 
A0608  0.88  1.22  0.48  2.11 
A0619  1.80  1.80  2.28  2.52 
A0633  8.63  8.63  3.20  3.77 
A0714  2.76  3.48  0.55  2.49 
A0765  5.58  5.58  1.29  1.32 
A0772  0.36  2.80  0.59  2.42 
A0799  4.65  4.76  4.82  5.03 
A0851  1.74  2.03  1.06  2.58 
A0855  1.42  1.45  0.42  2.36 
A1308  2.26  2.30  2.80  2.91 
A1897  1.59  1.59  2.06  2.06 
A2101  3.84  3.84  2.44  2.44 
A2276 10.89 10.89  2.51  2.76 
A2284  0.30  3.38  0.37  2.73 
A2437  0.27  3.77  1.21  1.73 
A2450  0.22  4.62  0.60  1.68 
A2733  1.01  1.14  0.89  1.19 
A2764  1.33  1.44  0.90  1.26 
A2771  1.11  1.31  0.93  1.28 
A2853  0.75  1.50  0.71  1.70 
A3028  7.15  7.15  3.78  4.36 
A3154  0.53  1.98  3.97  4.02 
A3336  1.21  1.23  0.65  2.02 
A3427  0.89  1.30  1.49  1.97 
A3609  3.04  3.04  3.43  3.46 
A3622  2.79  2.79  2.82  2.82 
A3837  0.68  1.46  0.90  1.19 
A4460  0.94  1.49  2.11  3.35 
A4492  1.55  1.61  1.71  1.85 
A4955  7.69  7.69  3.62  3.62 
A5262  2.02  2.12  1.08  1.40 
A6099  0.82  1.22  1.09  1.27 
A6135 13.21 13.21  2.37  2.63 
A6197  0.85  1.59  0.63  2.52 
A6257  4.32  4.32  1.25  1.25 
A6555  0.32  3.28  0.23  4.41 
A6598  5.25  5.25  2.68  4.62 
A6939  0.35  2.83  0.24  4.20 
A7294  3.18  3.26  1.24  1.63 
A7415  1.44  1.55  0.70  1.51 
A7513  1.27  2.03  1.37  2.52 
A8279  2.24  2.46  1.39  1.61 
A8379  7.13  7.13  2.29  2.29 
A8791  1.51  1.61  1.23  1.36 
A9081  3.33  3.33  3.08  3.52 
A9606  1.90  1.90  1.18  1.22 
A9995 22.76 22.76 13.10 13.10 
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Table A4: Software packages comparison table. Average fold error (AFE) in AUC0-tlast and Cmax predictions for one-to-one comparisons. 469 

 AFE(AUC0--tlast) AFE(Cmax) AFE(AUC0-tlast) AFE(Cmax) AFE(AUC0-tlast) AFE(Cmax) 

API GastroPlus GI-Sim GastroPlus GI-Sim GastroPlus Simcyp GastroPlus Simcyp GI-Sim Simcyp GI-Sim Simcyp 

A0048 6.53 6.76 1.77 2.24 4.01 3.13 2.37 1.71 6.76 4.94 2.24 1.21 

A0608 0.87 0.86 0.55 0.39 0.87 0.92 0.55 0.51 0.86 0.92 0.39 0.51 

A0619 1.56 1.71 4.2 0.91 1.56 2.19 4.2 3.13 1.71 2.19 0.91 3.13 

A0633 8.29 7.41 3.21 2.41 8.77 10.66 3.55 4.35 7.76 10.66 2.84 4.35 

A0714 7.7 0.79 1.55 0.15 
        

A0765 
        

5.42 4.48 0.73 0.63 

A0772 0.54 0.48 0.84 0.42 
        

A0799 4.77 2.76 6.78 1.69 5.41 5.67 7.43 6.27 2.76 5.02 1.69 5.71 

A0851 3.46 0.91 2.82 0.41 
        

A0855 1.32 1.54 0.38 0.47 
        

A1308 2.41 2.35 4.4 1.93 2.29 2.06 4.7 2.31 2.27 2.11 1.86 2.28 

A1897 1.51 1.6 3.12 1.71 1.51 1.67 3.12 1.64 1.6 1.67 1.71 1.64 

A2101 
        

3.7 4.1 2.85 2.32 

A2276 12.78 12.79 2.52 3.4 12.78 7.89 2.52 1.86 12.79 7.89 3.4 1.86 

A2284 0.23 0.38 0.22 0.61 
        

A2733 0.88 0.96 1.05 0.76 0.93 1.15 1 0.86 0.96 1.12 0.77 0.87 

A2764 1.37 1.32 1.06 0.75 1.37 1.29 1.06 0.92 1.32 1.29 0.75 0.92 

A2771 
        

1.08 1.12 0.86 0.97 

A2853 0.69 0.82 0.63 0.83 
        

A3028 6.61 7.73 4.47 3.2 
        

A3154 
        

0.51 0.55 4.67 3.37 

A3336 1.53 0.99 1.51 0.45 1.53 1.17 1.51 0.4 0.99 1.17 0.45 0.4 

A3609 2.03 4.55 3.49 3.36 
        

A4460 1.31 1.12 9.94 0.59 1.31 0.56 9.94 1.61 1.12 0.56 0.59 1.61 

A4492 1.81 1.39 1.46 2.03 
        

A4955 8.11 7.29 4.23 3.7 8.03 7.45 4.12 2.98 7.46 7.64 3.81 3.14 

A5262 
    

1.16 1.61 0.62 1.2 
    

A6099 0.81 0.82 1.38 0.86 
        

A6135 12.88 12.21 2.44 2.25 13.31 14.09 2.33 2.52 12.21 13.88 2.25 2.7 

A6215 28.4 11.33 7.17 3.44 
        

A6257 4.48 4.17 1.56 1 
        

A6598 6.6 4.77 7 1.41 
        

A6939 
        

0.44 0.35 0.27 0.22 

A7014 
    

1.92 2.11 1.11 0.91 
    



 

 

A7294 0.47 0.82 0.26 0.27 
        

A7415 1.38 1.5 0.69 0.71 
        

A7513 1.46 1.16 1.77 0.86 1.46 1.22 1.77 1.63 1.16 1.22 0.86 1.63 

A8279 1.2 2.24 1.02 1.19 1.31 2.46 1.08 1.57 2.23 2.4 1.19 1.6 

A8379 7.04 7.22 2.08 2.51 
        

A8791 
    

1.47 1.84 0.97 1.1 
    

A9081 4.13 2.84 4.44 2.55 1.73 1.86 0.82 0.53 1.88 1.86 0.57 0.53 

A9606 1.93 1.88 1.17 1.07 1.93 1.89 1.17 1.31 1.88 1.89 1.07 1.31 

A9995 24.98 20.73 16.86 10.19 
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Table A5: Software packages comparison by means of absolute average fold difference 471 

(AAFD) in AUC0-tlast and Cmax predictions. 472 

 GastroPlus vs. GI-Sim GastroPlus vs. Simcyp GI-Sim vs. Simcyp 

API.ID AAFD 

(AUC0-tlast) 

AAFD 

(Cmax) 

AAFD 

(AUC0-tlast) 

AAFD 

(Cmax) 

AAFD 

(AUC0-tlast) 

AAFD 

(Cmax) 

A0048 1.03 1.27 1.28 1.39 1.37 1.86 

A0608 1.01 1.42 1.08 1.14 1.09 1.3 

A0619 1.1 4.64 1.4 1.36 1.28 3.46 

A0633 1.12 1.33 1.22 1.22 1.37 1.53 

A0714 9.74 10.05 
    

A0765 
    

1.21 1.16 

A0772 1.46 2.43 
    

A0799 1.73 4.01 1.05 1.19 1.82 3.38 

A0851 3.8 6.81 
    

A0855 1.17 1.21 
    

A1308 1.1 2.4 1.12 2.17 1.08 1.43 

A1897 1.06 1.82 1.11 1.91 1.04 1.04 

A2101 
    

1.11 1.23 

A2276 1.15 1.35 1.64 1.36 1.62 1.83 

A2284 1.61 2.77 
    

A2733 1.13 1.4 1.24 1.19 1.16 1.12 

A2764 1.19 1.6 1.23 1.36 1.05 1.22 

A2771 
    

1.41 1.49 

A2853 1.46 1.45 
    

A3028 1.17 1.42 
    

A3154 
    

1.3 1.61 

A3336 1.55 3.32 1.31 3.76 1.19 1.13 

A3609 2.24 2.17 
    

A4460 1.32 16.83 2.36 6.2 2.02 2.72 

A4492 1.3 1.57 
    

A4955 1.11 1.14 1.09 1.38 1.05 1.21 

A5262 
  

1.43 1.94 
  

A6099 1.01 1.61 
    

A6135 1.25 1.2 1.16 1.16 1.17 1.2 

A6215 3.84 3.56 
    

A6257 1.07 1.56 
    

A6598 1.39 4.96 
    

A6939 
    

1.35 1.23 

A7014 
  

1.56 1.78 
  

A7294 5.12 3.3 
    

A7415 1.14 1.23 
    

A7513 1.48 2.15 1.56 1.53 1.29 2.07 

A8279 1.97 1.69 1.88 1.69 1.08 1.36 

A8379 1.03 1.21 
    

A8791 
  

1.65 1.73 
  

A9081 1.5 1.78 1.08 1.53 1.01 1.08 

A9606 1.03 1.1 1.03 1.12 1.02 1.23 

A9995 1.21 1.66 
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Table A6: Prediction performance of the two simulation tasks given by different metrics. 475 

Task Total 

API 

% 

within 

2-fold 

% 

within 

3-fold 

% 

within 

10-fold 

AFE AAFE R CCC Parameter 

Task4.20 32 48 63 87 2.2  2.8 0.7 0.4 AUC0-tlast 

Task4.9 32 37 54 81 1.7  3.8 0.3 0.1 AUC0-tlast 

Task4.20 32 48 63 87 2.7  3.4 0.3 0.1 AUC0-Inf 

Task4.9 32 37 54 81 1.9  4.4 0.1 0.0 AUC0-Inf 

Task4.20 32 48 63 87 1.5  2.3 0.7 0.6 Cmax 

Task4.9 32 37 54 81 0.8  3.4 0.5 0.4 Cmax 

Task4.20 32 48 63 87 0.0  Inf 0.2 0.2 tmax 

Task4.9 32 37 54 81 1.5  2.4 0.0 0.0 tmax 

Task4.20 32 48 63 87 3.3  7.1 0.3 0.3 CL 

Task4.9 32 37 54 81 0.8  4.4 0.0 0.0 CL 

Task4.20 32 48 63 87 1.2  2.2 0.4 0.2 t1/2 

Task4.9 32 37 54 81 1.8  3.4 0.0 0.0 t1/2 

Task4.20 32 48 63 87 4.0  7.8 0.5 0.5 Vd 

Task4.9 32 37 54 81 1.3  4.2 0.0 0.0 Vd 

Task4.20 32 48 63 87 2.9  3.7 0.7 0.3 AUMC 

Task4.9 32 37 54 81 2.8  7.0 0.1 0.1 AUMC 

Task4.20 32 48 63 87 4.2  6.4 0.0 0.0 AUMC0-Inf 

Task4.9 32 37 54 81 4.6 12.4 0.0 0.0 AUMC0-Inf 

Task4.20 32 48 63 87 1.5  2.1 0.4 0.2 MRT 

Task4.9 32 37 54 81 2.3  3.5 0.2 0.1 MRT 
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