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Abstract 

Finite element simulation of thermoplastic components is gaining importance as the companies aim to 

avoid overdesign of the components. Cost of the component can be minimized by using an adequate 

amount of material for its application. Life of the component, in a particular application, can be predicted 

as early as during its design phase with the help of computer simulations. To achieve reliable simulation 

results, an accurate material model which can predict the material behaviour is vital. Most material models 

consist of a number of material parameters that needs to be fed into them. These material parameters 

can be identified with the inputs from physical tests. The accuracy of the data extracted from the physical 

tests, however, remains the base for the aforementioned process. 

The report deals with the implementation of optical measurement technique such as Digital Image Cor-

relation (DIC) in contrast with the conventional extensometers. A tensile test is conducted on a glass 

fibre reinforced thermoplastic specimen, according to ISO 527-2/1A, to extract the experimental data 

with the help of DIC technique. The material behavior is reproduced within a finite element analysis 

software package LS-DYNA, with the combination of elastoplastic model called *MAT_024 and stress 

state dependent damage and failure model called GISSMO. The tensile test is performed under quasi-

static condition to rule out the strain rate dependency of the thermoplastic material. The mesh sensitivity 

of the damage model is taken into account with the element size regularization. 

The thesis concerns setting up a routine for material parameter identification of thermoplastics by full-

field calibration (FFC) approach. Also, comparison of the strain field in the specimen, obtained through 

the newly set up routine against the regular non-FFC i.e. extensometer measurement routine. The major 

objective being, through the comparisons, a qualitative assessment of the two routines in terms of cali-

bration time vs. gain in simulation accuracy. Material models obtained through both the routines are 

implemented in three-point and four-point bending simulations. The predicted material behaviors are 

evaluated against experimental tests. 
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1. Introduction 

1.1  About IKEA 

IKEA was founded in Älmhult, Sweden by Ingvar Kamprad in 1943. Since then, it has gone from 

being a tiny mail-order company, to becoming one of the most well-known home furnishing brands 

in the world. With a business idea, “to offer a wide range of well-designed, functional home fur-

nishing products at prices so low that as many people as possible will be able to afford them”, 

IKEA has always been striving to do everything a little better, a little simpler, more efficiently and 

always cost-effectively. 

In 1985 Ingvar Kamprad and the IKEA board realised that suppliers used same fittings on 

multiple furniture and therefore decided to start IKEA’s first subsidiary: MODUL Service, that 

later on in 2007 changed name to IKEA Components. IKEA Components, with an assignment to 

develop, source, pack and supply components in areas where it benefits IKEA and its customers, 

focusses on creating price advantage through business development and economy of scale. Cur-

rently, with about 1500 employees, IKEA Components’ offices are based in Sweden, Slovakia and 

China. 

1.2   Background 

Because of large scale production of the components, every small detail will have an impact on the 

final price. Keeping that in mind, IKEA Components aims to avoid overdesign of the components. 

An important development strategy within IKEA is to create a product which enables easy assem-

bly for the end customer. Hence, a more advanced fitting with aesthetics such as delightful colour 

and shape, at low cost is desired.  Thereby the demand for thermoplastic materials in the current 

application is increasing. In its expedition of being climate positive, IKEA focusses on replacing 

fossil fuel-based thermoplastics with bio-based thermoplastics. The new materials that are intended 

to be used need a calibration of parameters that are present in material models in the finite element 

software packages. For accurate simulation of the material behaviour, the material parameters are 

to be identified through a calibration against an accurate experimental data. “The goal of material 

parameter identification is to characterize the constitutive behaviour using experimental results in 

combination with structural modelling of test samples” (Stander, Witowski et al. 2018). 

Tensile testing is a commonly used method for material parameter identification where a test 

specimen is subjected to a force and measured for deformation. As of now at IKEA Test Lab, the 

Digital Image Correlation (DIC) system is used to measure the deformation with the help of ho-

mologous point tracing during the material testing. Meaning that the DIC system would only act 

as a virtual extensometer which calculates deformations, across a gauge length, between two points. 

The extracted global data would then undergo a regular routine for calibration and the material 

parameters were identified. However, the capabilities of the DIC system were not fully utilized. 

Also, during the complex phenomena like strain localization and failure, the strain field in the test 

specimen will be non-uniform. The impact of reference length in the computation of strain across 
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a localization region is clearly depicted in (Ilg, Haufe et al. 2018). Therefore, there is a need for 

extracting data not only as global quantities, but also as local (in the region around localization) 

quantities to accurately model the material behaviour. 

1.3  Objectives 

The test samples used in this thesis are made up of a glass fibre reinforced thermoplastic material. 

A standard uniaxial tensile test will be conducted on five test samples and the DIC system will be 

used to extract both local and global physical quantities. The data extracted from the most generic 

test specimen will be considered as the input test data. The choice of the most generic test sample 

will be carried out according to IKEA’s in-house scripts*. A new routine will be set up for identi-

fying material parameters by using the force vs. full-field strain data as target data in LS-OPT. 

Material parameter identification will also be carried out by using the force vs. global strain data by 

adopting the regular routine†. A comparison among the strain field in the specimens obtained from 

the experiment, by calibration through the regular routine and the newly set up routine is to be 

made. Through the comparisons, a qualitative assessment of the two routines in terms of calibra-

tion time vs. gain in simulation accuracy will be carried out.  

The material models that are to be used in LS-DYNA consist of a combination of *MAT_024 

and *MAT_ADD_EROSION. The optimization of material parameters will be carried out in LS-

OPT with an objective to minimize the distance functional between the experimental data and the 

computed results. Similarity measures such as Mean Square Error and normalised Dynamic Time 

Warping will be adopted based on the nature of responses that are to be matched.  

A similar material testing procedure, without extraction of full-field data, will be carried out for 

three-point and four-point bending tests. The material models, obtained from calibration against 

the tensile test, will be used to simulate the bending tests in the software. Comparisons among the 

experimental and simulation results are to be made with comments on further possible enhance-

ments in the routines. To determine the credibility of the simulation models, the three-point and 

four-point bending models will be validated against analytical solutions obtained in the elastic re-

gime.   

 

* The Script imports material parameters and their corresponding weights, that are chosen by the operator, and deter-
mines the most generic test sample based on the mean value among the test samples. 
† Regular routine, in this thesis, refers to the process of calibration against the force vs. true strain data extracted by 
the 75 mm gauge length virtual extensometer. 
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2. The Digital Image Correlation Technique 

2.1  Initial setup 

The DIC software, ARAMIS Professional by GOM GmbH, calculates the strain in the test speci-

men with the help of stochastic image information present on its surface. To obtain this random 

pattern on the surface, the test specimen is painted white to have a clear bright background and 

then sprayed randomly with graphite coating. A specimen with a dark stochastic speckle pattern 

against a bright white background on its surface is presented in Figure 1a. 

 

Figure 1 a) Specimen prepared for DIC technique of data extraction b) Facet points in ARAMIS interface  

The ARAMIS Professional software, during its initial calibration, detects a number of square image 

areas on the specimen. The square image areas are called facets in the GOM software. The facets, 

as seen in Figure 1b, are initially square and would eventually change size and shape to accommo-

date the pattern it encloses, as the specimen undergoes deformation. The size and the distance 

between the facets can be adjusted according to the need. The centre point of the facet is referred 

as facet centre or the facet point. 

As seen in Figure 2, the topology of the facet point distribution on the specimen surface is based 

on equilateral triangles. 

 

Figure 2 Facet point distribution on the surface  
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2.2  Computation of strain: Theory 

Consider a continuous bar of initial length l0 under a longitudinal external force f0. The bar de-

forms in the direction of the applied force and the deformation is ∆l. The engineering or the Cau-

chy strain, εeng, can be expressed as the magnitude of deformation in the direction of the force 

divided by the initial length of the bar, 

εeng =
∆l

l0
. 

The stretch ratio λ of a line element is defined as the ratio of current length lc to the initial length 

l0, 

λ =
lc

l0
=

l0+∆l

l0
= 1 +

∆l

l0
= 1 + εeng. 

Taking into account the influence of strain path, the logarithmic strain or the true strain, εtrue can 

be written as, 

εtrue = ln(1 + εeng). 

A material is said to be deformed if the particles within it have a relative motion to each other. In 

continuum mechanics, the deformation of a continuum body can be described by a second order 

tensor called the deformation-gradient tensor, F (Spencer 2004). It can be defined as, 

FiR =
∂xi

∂XR
 or 𝐅 = [

F11 F12 F13

F21 F22 F23

F31 F32 F33

], 

where the index i represents current configuration and R represents the reference configuration. 

By the polar decomposition theorem, the non-singular square matrix F can be decomposed into a 

product of a positive definite symmetric matrix U and an orthogonal matric R. This can be denoted 

by, 

𝐅 = 𝐑 ∙ 𝐔, (1) 

where the operator “∙”, between two second order tensors, is defined as 𝐀 ∙ 𝐁 = AikBkj and 

i, j, k = 1, 2, 3. R is called as rotation tensor and contains the rotational part and U is called as the 

right Stretch tensor and contains the stretch part, 

𝐔 = [

λ11 λ12 λ13

λ21 λ22 λ23

λ31 λ32 λ33

]. 

Now consider the right Cauchy-Green deformation tensor denoted by 𝐂, 

𝐂 = 𝐅T ∙ 𝐅, 

with the previous definition of F as in equation (1), 

𝐂 = 𝐅T ∙ 𝐅 = (𝐑 ∙ 𝐔)T ∙ (𝐑 ∙ 𝐔) = 𝐔T ∙ 𝐑T ∙ 𝐑 ∙ 𝐔. 

Since R is orthogonal meaning that RT ∙ R = R ∙ RT =I, thus 
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𝐂 = 𝐅T ∙ 𝐅 = 𝐔T ∙ 𝐔 = 𝐔 ∙ 𝐔 = 𝐔2 

due to 𝐔 being symmetric, and 

𝐔 = +√𝐅T ∙ 𝐅 = √𝐂 

i.e. Uij = √Cij; i, j = 1, 2, 3. The components of 𝐔 are nothing but the stretch ratios and the strains 

are calculated thereafter. 

2.3  Computation of strain: Procedure 

The DIC setup consists of a light source and cameras mounted on a stand. The cameras capture 

high resolution images of the specimen undergoing deformation during the test, for every load 

step. As mentioned earlier, the ARAMIS Professional software assigns small image areas called 

facets over the surface of the specimen. The main assumption in identifying a facet is that a casual 

connection exists between the original and the deformed state (GOM 2016). Through the stochas-

tic speckle pattern, the software is able to identify the image information within the facet during 

each load step. With the help of coordinates of every point, the strain can be calculated in the 

following way. 

Let us consider a material with a 2D surface which consists of one facet point. The initial coordi-

nates of the facet point are (A1, A2) and the material undergoes a movement and a deformation. 

Let the rigid body movements along the axes be u1 and u2 and the new coordinates of the facet 

point be A1
′  and A2

′ . It can be described as, 

[
A1

′

A2
′ ] = [

u1

u2
] + [

F11 F12

F21 F22
] [

A1

A2
]. 

 

(2) 

Equation (2) is an underdetermined system of equations as it has two equations and six unknowns 

(u1, u2, F11, F12, F21 and F22). 

Mathematically, a triangle having three points is necessary and sufficient to calculate strain. But for 

better support to the individual measuring points, the software also uses its neighbouring points 

for the calculation. Therefore, the software considers an equilateral hexagon around the facet point. 

Thus, the strain in the individual facet points can be calculated by solving an overdetermined sys-

tem of equations.  
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3. Theory 

3.1  Material Models in LS-DYNA 

The key file, which is the input for LS-DYNA, consists of keywords which build the problem. 

Every keyword starts with “*” and follows the data pertaining to the keyword. This systematically 

organised database enables easy understanding for the user. 

The material keyword that will be used to simulate the material behaviour consists of 

*MAT_PIECEWISE_LINEAR_PLASTICITY and *MAT_ADD_EROSION. 

3.1.1 MAT_PIECEWISE_LINEAR_PLASTICITY 

The MAT_PIECEWISE_LINEAR_PLASTICITY, which is the material type 24 commonly called 

as *MAT_024, is an elasto-plastic constitutive model based on von Mises yield criterion. The input 

for the material model in the current application consists of mass density, Young’s modulus, Pois-

son’s ratio and a curve defining effective plastic strain versus effective stress. 

When a specimen is under an external force f0, perpendicular to a surface with area A0, the engi-

neering stress in the specimen across any cross-section perpendicular to the direction of force is 

given by, 

σeng =
f0

A0
. 

As the specimen undergoes deformation, the cross-sectional area also changes. This change in 

cross-sectional area is accounted by true stress in the specimen given by, 

σtrue = σeng(εeng + 1). (3) 

In continuum mechanics, the true stress in 3 dimensions can be expressed in terms of tensor no-

tation and is as follows, 

𝛔 = [

σ11 σ12 σ13

σ21 σ22 σ23

σ31 σ32 σ33

]. 

𝛔, called as the Cauchy stress tensor, is a second order tensor which can completely define the state 

of stress inside a material. Since it contains stress components specified in the current configura-

tion, it is vastly used in applications with small deformations. 

The stress tensor 𝛔 can be split into two parts, a hydrostatic part, p and a deviatoric part, 𝐬, 

𝛔 = p𝐈 + 𝐬, 

where 𝐈 is the identity tensor. If σ1, σ2 and σ3 are the principal stresses, it is possible to choose a 

coordinate system such that all the non-diagonal elements of  𝛔 become zero i.e., 
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𝛔 = [

σ1 0 0
0 σ2 0
0 0 σ3

], 

which implies 

p =
1

3
(σ1 + σ2 + σ3) 

 

and 

(4) 

and 

𝐬 = [

σ1 − p 0 0
0 σ2 − p 0
0 0 σ3 − p

]. 

Herein, the second invariant J2 of the deviatoric stress tensor 𝐬 is defined as 

J2 =
1

2
sijsij =

1

6
{(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2}. 

 

(5) 

The von Mises yield criterion states that plastic yielding will occur only when the second invariant 

J2 of the deviatoric stress tensor 𝐬 reaches a critical value k2 (Khan and Huang 1995). 

The value of the material constant, k can be obtained by a simple tensile test where, 

𝛔 = [
σ1 0 0
0 0 0
0 0 0

]. 

Hence J2 from equation (5) now becomes, 

J2 =
σ1

2

3
. 

For a uniaxial test, plastic yielding occurs when the stress reaches the yield value i.e. σ1 = σy. 

Hence, 

J2 =
σy

2

3
. 

And according to the von Mises yield criterion, J2 − k2 = 0 implying that k =
σy

√3
. Thus, the plastic 

yielding takes place when the equivalent stress within the material reaches a critical yield value of 

stress. It can be expressed as √3J2 − σy = 0. In general, the yield function is given by, 

σvM − σy = 0, 

where, 

σvM = √
1

2
{(σ1 − σ2)2 + (σ2 − σ3)2 + (σ1 − σ3)2}. (6) 

The abscissa of the input load curve for the material model is effective plastic strain. In the case of 

uniaxial stress state, up to the point of necking, the plastic strain can be obtained by removing the 

elastic part of strain from the total strain. This can be expressed as, 
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εp = ln(1 + εeng) −
σeng

E
, 

 

(7) 

where E is the modulus of elasticity. This input load curve of effective stress vs. effective plastic 

strain is referred to as yield curve in this report. The elasto-plastic material model follows an iso-

tropic hardening description described by 

σyI = β[σ0 + fh(εeff
p

)], 

where σyI is the instantaneous yield stress; since in isotropic hardening description, the radius of 

the yield surface changes. σ0 is the initial yield stress and the hardening function fh(εeff
p

) can be 

specified in the form of a table (Hallquist 2006). εeff
p

 is the effective plastic strain. Let ϕ be the 

yield function and the plastic flow rule can be written as 

Δεij
p

=
(

3

2
sij

∗ sij
∗ )

1
2−σyI

3G+Ep

∂ϕ

∂σij
, 

where G and Ep are shear and current plastic hardening moduli, respectively. The asterisk in sij
∗  

represents trial state. 

3.1.2 MAT_ADD_EROSION 

The damage model GISSMO (Generalised Incremental Stress–State dependent damage MOdel) 

was originally formulated for its application in crashworthiness simulations. The model was devel-

oped at Daimler and DYNAmore (Effelsberg, Haufe et al. 2012). It was mainly developed to over-

come the limitations of the forming limit curve, which does not consider a possible change in strain 

path during a forming process (Neukamm, Feucht et al. 2009). With the usage of GISSMO, the 

damage accumulation due to plastic deformation during sheet metal forming can be introduced 

into crashworthiness simulations as a history data. This will result in the improvement of predic-

tiveness of crashworthiness simulations. The intention was to have a user-friendly input of material 

parameters achieved by phenomenological formulation of ductile damage. It is not a complete 

constitutive model and hence needs to be coupled with a plasticity model. In this thesis, 

*MAT_ADD_EROSION will be coupled with *MAT_PIECEWISE_LINEAR_PLASTICITY. 

During the late 1960s, extensive studies by means of micro-mechanics analysis had been carried 

out on ductile plastic damage‡ (Lemaitre 1985). The studies resulted in a good representation of 

physical mechanisms at microscale, but had its limitations when the analyses were implemented to 

predict failure in large scale structures. The continuous damage mechanics approach deals with the 

introduction of a damage variable and an effective stress concept in the structural calculation. 

Consider a continuum which has undergone plastic deformation. A volume element with cross 

section area, A defined by its normal, 𝒏 is depicted in Figure 3. The body is now damaged and 

microcracks and voids have been formed. Let AD be the total area of the microcracks and voids in 

 

‡ The phenomenon of initiation and growth of cavities and microcracks induced by large deformations in metals was 
referred as ductile plastic damage. 
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the same cross section. Let Ã be the effective area that has a load bearing capacity. The damage 

variable D𝒏 that is associated with the normal 𝒏 can now be introduced as, 

D𝒏 =
A−Ã

A
. 

 

Figure 3 A volume element in a deformed body 

Restricting to isotropic damage, where the voids and cracks are equally distributed in all directions,  

D𝒏 can be written as a scalar D i.e., 

D = D𝒏. 

Using this relation, the effective area can be written as, 

Ã = A(1 − D). 

If 𝒇 is a load acting on a given section A, then the traction vector can be given by,  

𝒕 =
𝒇

A
. 

Similarly, for a section Ã , 

�̃� =
𝒇

Ã
. 

Inserting the expression for effective area in the above equation yields, 

�̃� =
𝒕A

A(1−D)
=

𝒕

(1−D)
. 

 

(8) 

The Cauchy stress theorem yields 𝛔 ∙ 𝒏 = 𝒕. Since D is a scalar, equation (8) can be written as, 

�̃� =
𝛔

(1−D)
. 

 

(9) 

Bridgman (1952) was one of the pioneers who, with his wide range of experiments on numerous 

materials, illustrated the effect of hydrostatic pressure on fracture strain. Later during 1960s and 

1970s, the claim was further investigated and asserted by many. A stress-state indicator was then 

proposed using the invariants of stress tensor and equivalent measure of stress. With the help of 

this parameter, nowadays widely known as triaxiality, one can predict the stress state in an isotropic 

material under plane stress condition. Even though the triaxiality alone is sufficient to determine 

stress-state in an isotropic material under plane stress, for three-dimensional stress-state the so-



 

10 

 

called lode angle is also necessary in addition to the aforementioned. The triaxiality, η is defined as 

the ratio of hydrostatic stress and equivalent stress. 

η =
σH

σeq
, 

 

(10) 

where the hydrostatic stress, σH is the first invariant of the Cauchy stress tensor, 𝛔 and σeq can be 

von Mises stress as described in section 3.1.1. In a broader perspective, the stress-state in an ele-

ment will not be the same when under a non-proportional loading. Thus, the GISSMO model 

should be able to account for the change in strain path and therefore the need for an incremental 

treatment of instability§ and damage. Weck, Wilkinson et al. (2006), through their measurements 

on model materials, illustrated that the strain and the damage, in the form of void growth, are 

related exponentially. Therefore an assumption was made regarding both damage, D and measure 

of instability, F, and a non-linear means of accumulation was formulated. 

∆F =
n∗F

(1−
1
n

)

εcrit(η)
∆εp  

and 

∆D =
n∗D

(1−
1
n

)

εf(η)
∆εp, 

where ∆εp is an increment in plastic strain for which an increment in measure of instability, ∆F 

and an increment in damage parameter, ∆D, are calculated. εf(η) and εcrit(η) are the equivalent 

plastic strain to failure and equivalent plastic strain to instability, as a function of triaxiality, respec-

tively. n is the damage exponent and a value of n=1 results in linear accumulation. If GISSMO is 

activated, the values of F and D are calculated for each time step as soon as the elements enter the 

plastic regime. When the value of F, computed incrementally through ∆F, becomes equal to 1, a 

coupling of damage and stress is expected to occur. The value of D when F reaches unity is con-

sidered as the damage threshold Dcrit. As D reaches the threshold value Dcrit, the stress tensor, 𝛔, 

and the damage are coupled and thus the effective stress tensor, �̃�, is calculated according to: 

𝛔 = �̃� [1 − (
D−Dcrit

1−Dcrit
)

m

], 

 

(11) 

where m is the so-called fading exponent. The fading exponent influences on the amount of energy 

that is dissipated when the element fades out. For a value of m=1 and Dcrit=0 in equation (11), 

the Lemaitre’s equation as in equation (9) is restored. 

One needs to appreciate the fact that a spurious mesh dependence (Andrade, Feucht et al. 2014) 

will be present during an event such as localization, when the strain is not uniform. The element 

strain is also a function of element size and different mesh size will yield different simulation results. 

This mesh dependency should not be confused with the one that causes inaccurate results because 

of coarse mesh. In GISSMO, there is a possibility to introduce element size dependent factors 

which can adjust the softening part of the response curve according to the corresponding element 

size. This method does not directly solve the problem of mesh dependence but compensates for 

 

§ In the present context, instability can be seen as the onset of softening through localization. 
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its effect in calculation of damage. To achieve this in the model, one needs to feed in a load curve 

defining scale factors of equivalent plastic strain to failure for corresponding element sizes. 

3.2  Optimization 

3.2.1 Response Surface Methodology 

Consider an experiment consisting of two input variables α1 and α2 generating an output or a 

response, z. The input variables, α1 and α2, are also called independent variables and z is called as 

the response variable. For each value of input variables there is a corresponding value of response, 

which can be represented graphically as seen in Figure 4. 

 

Figure 4 An example for a response surface 

The surface in the Figure 4 is called as response surface and it is this graphical perspective of the 

problem environment that led to the term “Response Surface Methodology (RSM)”. The field of 

RSM consists of experimental strategies for exploring the space of the independent variables, em-

pirical statistical modelling to develop an appropriate approximating relationship between the re-

sponses and the independent variables, and optimization methods for finding the values of the 

independent variables that produce a desirable value of the response variables (Myers, Montgomery 

et al. 2016). 

The relationship between the response, z and the independent variables, α1 and α2 can be written 

as, 

z = f(α1, α2) + εe, 

where the term εe represents a source of variability not represented in the true response function 

f(α1, α2). It is considered as a statistical error having normal distribution with mean zero and var-

iance S2, where S is the standard deviation. Therefore, 

E(z) ≡ φ = E[f(α1, α2)] + E(εe). 
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Since the mean of εe is zero, E(εe) = 0**. Hence, 

φ = f(α1, α2). 

Since the true response function, f(α1, α2) is unknown and complicated to determine, a suitable 

approximation could be developed. α1 and α2, called as natural variables, can be transformed to 

coded variables, y1 and y2, which are dimensionless with mean zero and variance S2;  and can be 

written as, 

φ = f(y1, y2). 

Since the form of the true response function f(y1, y2) is unknown, it needs to be approximated 

(Myers, Montgomery et al. 2016). An example for a first-order model with the aforementioned 

independent variables in terms of coded variables is as follows, 

φ = β0 + β1y1 + β2y2. 

This is a multiple linear regression model which can be generalised to a number of experiments 

yielding a number of responses. 

Let yij denote the ith observation or experiment of an independent variable yj, i = 1,2, … , P; j =

1,2, … , K; P represents the number of experimental points and K represents the number of inde-

pendent variables. The error term ε in the model has mean zero and variance σ2 and {εi} are 

uncorrelated random variables. The response variable for each observation can be written as, 

zi = β0 + β1yi1 + β2yi2 + ⋯ + βKyiK + εi 

or 

zi = β0 + ∑ βjyij
K
j=1 + εi. 

 

(12) 

A method of least square is chosen to minimize the sum of squares of the errors εi in equation (12) 

and can be expressed as, 

L = ∑ εi
2

P

i=1

 

i.e. 

L = ∑ (zi − β0 − ∑ βjyij
K
j=1 )

2P
i=1 . 

Let ϕi = β0 + ∑ βjyij
K
j=1 = ∑ βqyiq such that yi0 = 1 and q = 0,1, … , KK

q=0 . The function ϕi 

is called a basis function. Equation (12) can be written in matrix form as, 

𝒛 = 𝐘𝜷 + 𝜺, 

where, 

 

** E(εe) is the expectation of εe. 
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 𝒛 = {

z1

z2

⋮
zP

}; 𝐘 = [

1
1
⋮
1

y11

y21

⋮
yP1

y12

y22

⋮
yP2

…
……
…

y1K

y2K

⋮
yPK

]; 𝜷 = {

β0

β1

⋮
βK

}; 𝜺 = {

ε1

ε2

⋮
εP

}. 

The solution to the minimization problem, which is the least square estimation 𝒃, to 𝜷 (Roux, 

Stander et al. 1998) is found with, 

𝒃 = (𝐘T𝐘)−1𝐘𝒛. 

LS-OPT allows linear, elliptic, linear with interaction and quadratic basis functions. 

After the selection of basis function, the next step is to choose a method for selection of points in 

the design space. The points selected will be considered for evaluation of the response. This 

method is commonly called as design of experiments. One can achieve higher accuracy and lower 

cost of building the response surface by carefully choosing the experimental design. There is a 

possibility of using built-in point selection method such as D-optimal, factorial, Koshal, composite 

and five others in LS-OPT. It also allows user defined point selection. 

The material parameters are optimised in LS-OPT by adopting the method of nonlinear regres-

sion††. The material parameters can be identified by matching the experimental behaviour to the 

simulation response. In LS-OPT, this can be achieved by using curve matching metrics as the min-

imization objective. The software has four curve matching techniques out of which two are used 

in this thesis. 

3.2.2 Mean Square Error 

Mean Square Error (MSE) option in LS-OPT is an ordinate-based error measurement technique 

which calculates the Euclidean distance between the experimental and the computational results. 

Consider a set of experimental points En(z) which can be interconnected to form a curve E(z). 

The independent variable, z in this example, represents a physical quantity. The response curve 

from the simulation will consist of f(t) and z(t). The variable t represents time and the function 

f(t) and z(t) are physical quantities that are the ordinate and abscissa of the experimental graph, 

respectively. A built-in crossplot feature can be used to obtain the curve f(z). The intermediate 

points could be obtained by interpolation. 

During an optimization for an unknown parameter x in the parameter space, the response curve 

f(x, z) is obtained. The MSE norm εMSE (Stander, Basudhar et al. July 2019) between the two 

curves for N regression points can be expressed as, 

εMSE =
1

N
∑ Wn (

fn(x)−En

sn
)

2
N
n=1 , 

where W is a set of weights and s is a set of residual scale factors and n = 1, … , N. 

 

†† Nonlinear regression is a form of regression analysis where the observational data is modelled by a nonlinear equa-
tion consisting of model parameters and one or more independent variables. 
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MSE similarity measure has a few drawbacks. It is difficult to implement when the curves are steep 

or the horizontal ranges for comparison are not same. The latter drawback would lead to some of 

the points not being considered. 

3.2.3 Dynamic Time Warping 

Dynamic Time Warping (DTW), first introduced in 1960s, became popular in 1970s through its 

application in speech recognition. LS-OPT uses a normalised DTW approach where the DTW 

value is normalised by the length of the warping path. Consider two different set of points B and 

C forming two polygonal chains. Let B = (b1, … , bn) and C = (c1, … , cm). Let d(∙,∙) denote Eu-

clidean distance between two points. Let W be the warping path between B and C and W =

(w1, … , wl). For instance if wi = (h, v) where h ∈ 1, … , n, v ∈ 1, … , m and i ∈ 1, … , l, then 

the normalised DTW distance (Stander, Basudhar et al. July 2019) can be calculated as follows, 

DTW(B, C) =
1

l
min

W
{∑ δ(wi)

l
i=1 }, 

where δ(wi) = d(bh, cv). 

A major drawback with DTW is that it compares all the points on the curve and heavy noise at one 

part can lead to a poor solution. Also, it is suggested by the software supplier to use equal density 

of points which are uniformly spaced on both the curves. This can be achieved by the built-in 

capability of LS-OPT to interpolate between the curves. 

A simple example of how the DTW algorithm finds the warping path that accumulates a minimum 

ordinate distance between two curves is illustrated in Appendix 1: Example: DTW.  

3.3  Three-point bending 

Consider a rectangular cross section simple determinate beam of thickness, t and depth, d. The 

beam is simply supported on either end of its span of length l. Let a point load, q be acting on its 

centre point along the vertical direction as seen in Figure 5a. The reaction force at the supports are 

shown in Figure 5b. The maximum bending moment experienced by the beam is at the centre of 

the span and therefore the beam is expected to undergo maximum deflection at the same point. 

 

Figure 5 A schematic representation of a) the beam with b) reaction forces and c) bending moment diagram for a 

three point bending scenario 
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The flexure formula (Hopkins, Patnaik et al. 2003) for a beam under pure bending is given by,  

−σ

y
=

M

I
, 

 

(13) 

where σ is the normal stress induced by the bending moment, M. y is the distance from the neutral 

axis along the y-direction. Negative values of y indicate the positions below the neutral axis and 

vice-versa. The lowermost fiber which is at a distance, y = −
d

2
 undergoes the maximum tension 

as the value of σ in equation (13) becomes positive. Similarly, the uppermost fiber undergoes the 

maximum compression. Area moment of inertia I, for a rectangular section is given by, 

I =
td3

12
. 

Considering the elastic regime, Hooke’s law states that σ = Eε. Inserting in the equation (13) and 

rearranging the terms yield, 

ε = −
My

EI
. 

 

(14) 

According to the assumptions of the beam theory and geometric relationships (Hopkins, Patnaik 

et al. 2003), a relation between normal strain (ε) and transverse displacement (v) can be formulated 

as, 

ε = −y
d2v

dx2. 

Inserting the above equation in equation (14) yields, 

d2v

dx2 =
M(x)

EI
. 

 

(15) 

Since the bending moments on either side of the load is different, the vertical deflection (or the 

displacement function) of the beam can be written for two different segments. M(x) is a function 

that defines the variation of moment in the corresponding section of the beam. Integration of 

equation (15) and solving for the constants with appropriate boundary conditions, for each segment 

of the beam yields, 

v(x) = {

qx

48EI
(4x2 − 3l2)     for 0 ≤ x ≤

l

2

qlx

48EI
(12x −

4x2

l
− 9l +

l2

x
)     for 

l

2
≤ x ≤ l

. 

The maximum deflection is expected at the center point where x =
l

2
 and the magnitude of deflec-

tion is given by, 

∆max=
ql3

48EI
. 

 

(16) 
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3.4  Four-point bending 

A four-point bending consists of a similar setup as the three-point bending, but there are two 

symmetric point loads acting at a distance from the centre point (see Figure 6a). 

 

Figure 6 A schematic representation of a) the beam with b) reaction forces and c) bending moment diagram for a 

three point bending scenario 

The maximum bending moment is experienced by the beam at the region between the two point 

loads. A schematic representation of a deformed beam can also be seen in Figure 6b. Through the 

formulation of moment equations for each of the three segments of the beam, one can obtain the 

deflection formulas as discussed in the previous section. It must also be noted that the deflection 

is symmetric about the center point. The transverse displacement equations for the first two seg-

ments from the left is given by, 

v(x) = {

qx

6EI
(−3la + x2 + 3a2)     for 0 ≤ x ≤ a

qa

6EI
(−3lx + 3𝑥2 + 𝑎2)    for a ≤ x ≤ (l − a)

. 

The deflection at the point where the load acts is given by, 

∆(x = a) =
qa2

6EI
(3l − 4a). 

 

(17) 

The maximum deflection of the beam is expected to occur at the centre point and is given by, 

∆max=
qa

24EI
(3l2 − 4a2). 

These formulas can be derived or are readily available in most of the solid mechanics handbooks, 

such as the one by Björk (2007). 

For convenience, let a testing machine control the movement of the loading pins and it exerts a 

force Q such that 2q = Q. Equation (17) can then be written in terms of the force exerted by the 

machine as, 

∆(x = a) =
Qa2

12EI
(3l − 4a). 

 

(18) 
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4. Method 

4.1  Material parameter identification 

The process of material parameter identification, in general, is explained in this section with the 

help of a flow chart (see Figure 7). Experiments are conducted on the standard specimens and 

suitable data are extracted during the experiment. An accurate model of the specimen is built in a 

finite element software. Apt boundary conditions are applied on the model to replicate the physics 

during the experiment. A similar response is extracted from the simulation. A comparison is made 

between experimental data and the simulation response. In case of curves, an appropriate similarity 

measure is chosen to quantify the difference between two curves. The experimental curve is con-

sidered as target curve and the parameters in the simulation can be tweaked to reduce the difference 

with target curve. This is achieved with the help of LS-OPT, which is an optimization software. 

The difference between the curves is also referred as distance functional. The optimization is car-

ried out with an objective to minimize the distance functional. The output from the optimization 

will be the optimal value of material parameters that mimic the material behaviour as in the exper-

iment. 

Figure 7 Flow chart describing a material parameter identification process 

4.2  Material testing 

The experimental tests were carried out at IKEA Test Lab, Älmhult. Uniaxial tensile tests were 

conducted on dumb-bell-shaped test specimens of type 1A according to ISO 527-2 (2012). The 

geometric specification of a specimen of type 1A can be seen in Figure 8. In this thesis, the tensile 

test on each specimen was carried out at 2 different speeds, 1 millimetre per minute and 50 milli-

metres per minute. The initial part of test was carried out at a grip speed of 1 millimetre per minute, 

to have a high density of data points for the calculation of derived physical quantities such as 

Young’s modulus and Poisson’s ratio. 
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Figure 8 Geometric specifications of the specimen 

The tests were carried out on five specimens, each made of 30 % glass fibre reinforced thermo-

plastic material. The most generic test sample, with a value closest to the mean value of physical 

quantities determined according to IKEA’s in-house scripts‡‡, was considered for further investi-

gations as the target curve or the experimental curve. The specimens were prepared as described 

in section 2.1 to enable optical non-contact measurement through the DIC system by GOM. The 

initial setup consists of ARAMIS 3D camera, light projector and sensor mounted on a stand as 

seen in Figure 9. The setup is connected to ARAMIS Professional software installed on a computer. 

The stereo camera setup enables measurement in 3D. The system measures 3D coordinates of the 

facet points during the deformation. From the 3D coordinates, quantities such as strain, displace-

ment, velocity can be derived as discussed in section 2.2. The initial image captured will be consid-

ered as reference state for measurements. 

 

Figure 9 DIC setup during the experiment 

Mainly, two types of force-true strain data, as seen in Figure 10, were extracted from the experi-

ment. A virtual extensometer of 75 mm gauge length was used in ARAMIS Professional, to obtain 

the force-true strain data across the 75 mm gauge length. This would constitute a conventional 

method of extracting data from the experiments and will be further associated with the term Reg-

ular routine. A major advantage of DIC technique is that it is possible to obtain the data from each 

 

‡‡ The Script imports material parameters and their corresponding weights, that are chosen by the operator, and de-
termines the most generic test sample based on the mean value among the test samples. 
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facet point, in the region between two extreme ends of the virtual extensometer. A graph of force 

against the corresponding true strain data, from all facet points, for the consecutive load stages, is 

a mathematical entity that represents both spatial and temporal dimensions. This type of output 

from the ARAMIS Professional software will be further associated with the term FFC routine. 

 

Figure 10 Experimental data extracted from a) 75 mm gauge length extensometer b) DIC system 

In addition to the tensile test, bending tests were also conducted on the specimen, to validate the 

material model obtained from calibration against the tensile test in LS-OPT. Both three-point and 

four-point bending tests were carried out on five specimens each. The most generic specimen (see 

Appendix 2: Generic specimen from bending tests), closest to the mean value of the ordinate in 

force-displacement graphs, was chosen from each experiment. The setup for the four-point bend-

ing test, with its geometric data, is provided in Figure 11. For the three-point bending test, one 

loading pin is used, which is placed in the centre between the supports. The tests were carried out 

at the loading pin’s vertical translation speed of 50 millimetres per minute, to achieve quasi-static 

condition. This was done as to elude the possibility of strain-rate dependence on material behaviour 

and to have uniform speed in all the tests. 

 

Figure 11 The a) setup with its b) geometrical specification for the four-point bending 
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4.3  Modelling in LS-PrePost 

A CAD geometry of the dumb-bell shaped test specimen was imported into HyperMesh. It is first 

meshed on the surface with 2D quadrilateral elements and then with the line drag option along the 

thickness. Thus, a finite element (FE) model of the specimen, built up with hexahedron elements, 

was generated. The FE model was imported into LS-PrePost for pre-processing. The FE model 

was split into three parts, as seen in Figure 12, so that the portion of the specimen held by the grips 

was considered as rigid. The parts were made rigid through the usage of keyword *MAT_RIGID. 

 

Figure 12 The FE model 

An advantage of using *MAT_RIGID is that the elements that are modelled as rigid are bypassed 

during element processing and no storage is allocated for storing history variables, therefore being 

cost efficient in a simulation (LSTC 2017). The stationary part was constrained in all direction 

translations and rotations. The moving part was constrained in all directions except y-axis transla-

tion which is the longitudinal direction of the specimen. The movement of the grip, resulting in 

elongation of the specimen, during the experiment was mimicked in the FE simulation by applying 

translational motion to the moving part along the y-axis. This was achieved with the help of 

*BOUNDARY_PRESCRIBED_MOTION_RIGID keyword, that allows to prescribe a load 

curve defining velocity of rigid body motion against time, applied on the moving part. Since explicit 

time integration was chosen to solve time dependent differential equations, the time step needed 

to be very small. To reduce the overall simulation time, a higher loading rate was used. But, for a 

quasi-static analysis, the first Eigenmode is dominant and it is suggested, by DYNAmore Nordic 

AB, that the loading period must be at least 10 times the time period of first mode. A Smooth 

curve of displacement against loading time was generated using CurveGen option. The curve was 

then differentiated to obtain a curve of velocity against loading time. 

Fully integrated S/R (Selective Reduced) solid elements (ELFORM 2) were used for modelling the 

test specimen. A cross section set was created with the keyword *DATABASE_CROSS_SEC-

TION_SET to extract the section force. Two nodes, constituting the extreme points of a 75 mm 

gauge length extensometer, were selected to extract displacement data, therefore to calculate ex-

tensometer displacement during the simulation. 

The linear elastic and non-linear hardening behaviour could be modelled with the elasto-plastic 

material model with von Mises yield criterion, widely known as *MAT_PIECEWISE_LIN-

EAR_PLASTICITY in LS-DYNA. The input parameters for this material model are described in 

the section 3.1.1. Among the four inputs that are mentioned, mass density and Poisson’s ratio can 
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be considered to remain constant during the optimization. The Young’s modulus of elasticity can 

be treated as an independent variable or a model parameter, along with the yield curve, during the 

optimization to achieve target material behaviour. In LS-DYNA, a real number input can be set as 

a parameter through the keyword *PARAMETER. The yield curve input, which is a table consist-

ing of values of effective plastic strain against the corresponding effective stress, can be parame-

terised through a modified version of Hockett-Sherby equation (Hockett and Sherby 1975). The 

modified version of the Hockett-Sherby equation constructs a relation between true stress and 

plastic strain as, 

σtrue(εp) = A (1 − e−CεpN

) + Be−CεpN

. 

It must also be noted that, for a uniaxial stress state, the yield curve can be directly obtained from 

the experimental data through equations (3) and (7). The usage of an equation, such as the Hockett-

Sherby equation, to parametrize the yield curve can be motivated as the presence of non-uniformity 

in strain in the hardening part of the DIC data. The same approach was implemented in the regular 

routine to ensure similarity between the routines and identical treatment of input data. The varia-

bles A, B, C and N can be used as model parameters during the optimization. A general example 

of how a yield curve looks like is shown in Figure 13a. 

 

Figure 13 An example of a) Yield curve b) LCSDG curve 

The softening behaviour after the necking point, leading to failure can be modelled using 

*MAT_ADD_EROSION keyword. The GISSMO damage model, described in section 3.1.2, can 

be activated by setting IDAM to 1. For the current application, equivalent plastic strain to instability 

(ECRIT), damage exponent (DMGEXP) and fading exponent (FADEXP) were considered to be 

the model parameters. In addition to the three parameters mentioned before, a load curve defining 

equivalent plastic strain to failure vs. triaxiality (LCSDG) has to be given as an input. For a uniaxial 

loading case, the value of the triaxiality can be calculated through equations (4), (6) and (10) as, 

η =
σH

σeq
=

(σ1+0+0)

3

√(σ1
2)+0+(σ1

2)

2

=
1

3
. 

A general example of LCSDG curve for a uniaxial loading case can be seen in Figure 13b. The y-

coordinate of the LCSDG curve will be hereinafter referred to as Y_LCSDG. Softening behaviour 

is attained by coupling of damage to the stress through equation (11). Therefore, it is necessary to 

extrapolate the yield curve beyond the necking point. The built-in extrapolation is a straight-line 
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extrapolation with a slope equal to the slope between the two previous points. To have a curve, 

whose shape can be controlled in the form of a model parameter, was possible through the imple-

mentation of a cubic Hermite spline interpolation between the points A and B as depicted in Figure 

14. The usage of such a spline for extrapolation, also allows to satisfy C1-continuity at the transition 

point (necking point). In addition to this, it is possible to change the shape of the curve unlike the 

straight-line extrapolation. With this ability of the cubic Hermite spline, the probability of achieving 

a better fit with the softening part of the experimental curve increases. 

Let the points A and B, seen in Figure 14, have coordinates (Xp, Yp) and (Xp+1, Yp+1), respec-

tively. Let mp and mp+1 be the slope at point A and B. Equation of the spline interpolating be-

tween points A and B, is given below, 

yi = h00(t)Yp + h10(t)mp(Xp+1 − Xp) + h01(t)Yp+1 + h11(t)mp+1(Xp+1 − Xp), 

where h00, h10, h01 and h11 are the four Hermite basis functions defined as, 

h00(t) = 2t3 − 3t2 + 1, 

h10(t) = t3 − 2t2 + t, 

h01(t) = −2t3 + 3t2, 

h11(t) = t3 − t2. 

And 

t =
(xi−Xp)

(Xp+1−Xp)
 , 

where xi and yi are the coordinates of ith interpolation point between A and B. 

 

Figure 14 A cubic Hermite spline interpolation between points A and B 

To satisfy C1-continuity, the slope and coordinates at point A needs to be kept constant. It has 

been noted that the slope at point B, mp+1, itself is enough to change the shape of the spline. 

Hence, the coordinates of point B were considered constant and the slope at point B, hereinafter 
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referred to as END_SLOPE, was considered as a model parameter. The list of model parameters 

associated with the calibration of each material card can be seen in Table 1. 

Model parameters 

*MAT_024 *MAT_ADD_EROSION 

Young’s modulus ECRIT 

A DMGEXP 

B FADEXP 

C Y_LCSDG 

N END_SLOPE 

Table 1 Model parameters for the optimization 

The three-point and four-point bending setups were modelled in LS-PrePost with the geometric 

data as illustrated in Figure 11. The supporting pins are common in both type of tests and were 

modelled with shell elements. The keyword *MAT_RIGID was used and ELFORM 2 was used 

for shell elements, which is the default. ELFORM 2 refers to Belytschko-Lin-Tsay shell element 

which is based on a combined co-rotational and velocity-strain formulation (Hallquist 2006). Bilin-

ear shape functions are used and Mindlin theory of plates and shells is adopted to partition the 

velocity of any point in the shell. The supports were constrained in all translations and rotations. 

The loading pins were modelled as rigid hollow cylinders made of shell elements, allowed to trans-

late only along the vertical axis. An implicit time integration method was chosen, hence eluding all 

possible dynamic effects. It was convenient to extract rigid body displacement of loading pins and 

resultant interface force between specimen and rigid loading pins, to compare with the experi-

mental force-displacement graph. 

4.4  Optimization set up in LS-OPT 

4.4.1 Introduction 

Optimization was carried out in LS-OPT, to find the optimal value of the model parameters that 

would replicate the material behaviour extracted during testing. The material parameter identifica-

tion process was distinguished as regular routine and FFC routine, depending on the target data. 

In the regular routine, the target data is the curve seen in Figure 10a, implying that the objective of 

the optimization is to achieve similar force-extensometer strain response. For FFC routine, the 

target data is a family of curves as seen in Figure 10b, implying that the objective of the optimization 

is to achieve identical strain fields. As it can be seen in the Table 1, there are a total of 10 model 

parameters. Due to the large number of model parameters, the optimization was split into two 

stages. A Hardening stage deals with the optimization of the simulation response to match with 

the material behaviour until necking point. Meanwhile, a Damage and failure stage deals with the 

same after the necking point. 
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The Successive Response Surface Method (SRSM) with an adaptive domain reduction is employed 

because of its robustness, computational efficiency and rapid convergence to the region of opti-

mum. More details, regarding the theoretical description of adaptive domain reduction imple-

mented in LS-OPT, are covered in the work by Stander and Craig (2002). Quadratic response 

surfaces are constructed in a sub region of design space using a D-optimal experimental design for 

point selection with a design of experiments approach. A starting value and a bound was provided 

for each model parameter. 

4.4.2 Regular routine 

The setup of the optimization problem in LS-OPT is as shown in Figure 15. The stage Yield_curve 

deals with an execution of a python file. The python file contains a script which processes the yield 

curve and produces an include file. The results from the Yield_curve stage are set to be automati-

cally transferred to Simulation stage directory. To extract a response similar to the extensometer 

true strain, an expression is used which contains the nodal displacements of the two nodes consti-

tuting extreme ends of an extensometer. With the help of another expression, the true strain is 

calculated through extensometer displacement. A crossplot of force vs. extensometer true strain is 

generated using the built-in crossplot feature. The DTW algorithm is used to match two histories 

and measure the similarity between them. Since the DTW similarity measure is highly sensitive to 

noise, the comparison between correct part of the curves can be achieved through the usage of 

lookup function under responses tab. The optimization was carried out with a single objective of 

minimizing the curve matching error. For the Damage and failure stage, the optimal model param-

eters obtained during the Hardening stage were considered as constants. For the Damage and fail-

ure stage, MSE method was used to compare the curves. 

 

Figure 15 Optimization setup in LS-OPT 
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4.4.3 FFC routine 

The FFC routine also follows the same workflow as discussed in the previous section, but with 

change of history to multi-point history. Because of the difference in test point coordinates ob-

tained during the experiment and the coordinate system of the simulation model, there is a need to 

align test point set to the FE nodes. This is achieved by a built-in alignment option (see Figure 16) 

that uses least square formulation to transform the test point set so that it aligns with the FE nodes. 

It is not a necessary condition that the test points should spatially coincide with the FE nodes. The 

LS-OPT algorithm allows a 3D one-to-one mapping of test points onto the nodes or elements 

using a binary tree. This is done through the nearest nodal neighbour algorithm (Stander, Basudhar 

et al. July 2019). An alternative to this is an ability of the LS-OPT algorithm to interpolate fields 

within each element. The alignment of test point set with the FE nodes at the region of interest 

can be seen in Figure 17. 

 

Figure 16 A user interface for alignment of test set cloud to FE nodes in LS-OPT 

 

Figure 17 Alignment of test point set with the FE nodes 

For the multi-point history response, the upper surface yy-strain under multihistories tab was cho-

sen and a crossplot of force and U_surf_yy_strain was set up to compare with the ARAMIS input. 

4.5  Element size regularization 

It was previously discussed in section 3.1.2 about the spurious mesh dependency of calibrated 

GISSMO parameters. The possibility of compensating for the change in element size, through a 

load curve defining a scale factor for equivalent plastic strain to failure against the corresponding 

element size, is explored. Another possibility for compensating the element size changes is through 

a load curve defining the element-size dependent fading exponent. In this thesis, the focus will be 

only on the former. FE models of different mesh sizes are generated and an optimization is carried 

out for each model to find out the value of equivalent plastic strain to failure that adjusts the sof-

tening part of the curve to match with the target data. For a solid element, its size is given by the 
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cube root of its volume. Scale factor is the ratio of equivalent plastic strain to failure values for the 

mesh under consideration to that of the original mesh. 

4.6  Comparisons 

The calibrated material models will then be compared with the data extracted from the same tensile 

test but with different gauge lengths of the extensometer. The force vs. true strain data was ex-

tracted from an experiment, for 50 mm and 25 mm gauge length extensometers (see Figure 18). A 

similar strategy as before will be adopted to obtain corresponding extensometer true strain from 

the simulation, for both gauge lengths. 

 

Figure 18 Experimental force vs. extensometer true strain for 75 mm, 50 mm and 25 mm gauge lengths  
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5. Results 

5.1  Regular vs. FFC routine  

A comparison between the target curve and the calibrated response for the two different routines 

can be seen in Figure 19. It is worth noting that for the regular method, the experimental and the 

simulated force vs. extensometer true strain curves are in close agreement. In Figure 19b, a non-

uniformity in the strain field present in the experimental data, even before the point of necking, is 

to be observed. 

A similar multi-point history, including only the hardening part, with the introduction of geometric 

perturbation of nodes through the keyword *PERTURBATION_NODE, can be seen in Figure 

20a. The optimal parameters obtained from the FFC routine were used in this simulation which 

produced a harmonic perturbation of nodes along the length of the specimen. The resulting sto-

chastic distribution of strain field along with its experimental counterpart is shown in Figure 20b. 

A contour plot of y-strain is adopted for all the comparisons in this section. 

 

b) 

Figure 20 A comparison of the response and the y-strain contour plot attained after the introduction of nodal per-

turbations with the experimental counterpart 

a) 

Figure 19 Comparison between the target data and the calibrated response for a) Regular routine and b) FFC routine 
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A comparison among the strain fields (just before the specimen breaks), obtained through the 

calibrations and the experiment, is carried out (see Figure 21). It can be observed that the localiza-

tion is more pronounced in the specimen that underwent the regular routine. The similarity in the 

strain-contour plots obtained from the FFC routine and the experiment indicates that the specimen 

does not undergo a pronounced localization. 

The strain-contour plot from the regular routine is removed to achieve a more accurate comparison 

between the FFC routine and the experiment (see Figure 22). The tiny red patch in the lower 

specimen indicates the small amount of localization that occurred at that position, just before the 

breakage. But, in the upper specimen, the localization is dispersed around the centre point of the 

specimen. The point at the extreme right of the graph (see Figure 19b) corresponds to the value of 

strain data extracted from the facet point present close to the red patch. 

 

Figure 21 A comparison among the y-strain contour plots obtained from regular routine, FFC routine and the exper-

iment 

Figure 22 A comparison between the strain-contour plots obtained from the FFC routine and the experiment 
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The optimal value of model parameters, obtained for each routine, is compared in Table 2. The 

optimal values are normalised against the corresponding values obtained from FFC routine. The 

model parameters that were optimised during the Hardening stage have their values very close 

between the two routines. The maximum percentage difference being just over 5% for the first set 

of model parameters. For the model parameters that were optimised under Damage and failure 

stage, there are higher percentages of the differences, as it was also seen in the difference in strain-

contour plots. The equivalent plastic strain, that each element has to undergo before it fails, is 

approximately 80 % higher for the regular routine than the FFC routine.  

5.2  Comparisons with different extensometer gauge lengths 

After the material models were calibrated against the corresponding target curves, the validation of 

the material model had to be carried out. Considering the 75 mm extensometer measurements as 

 

§§ (Regular-FFC) ×100 and rounded off to one decimal. 

Stage Parameters 
FFC 

routine 

Regular 

routine 
% difference§§ 

Hardening 

Young’s modulus 1 1 0 

A 1 1 0 

B 1 0.947 -5.3 

C 1 1.011 1.1 

N 1 1 0 

Damage and failure 

FADEXP 1 2.859 185.9 

DMGEXP 1 0.966 -3.4 

ECRIT 1 1.024 2.4 

Y_LCSDG 1 1.799 79.9 

Slope at point B 1 1.637 63.7 

Table 2 A comparison between the optimal values of model parameters obtained for the regular and the FFC routine 

Figure 23 Comparisons among the Experiment, FFC and reg-

ular routines with 75 mm gauge length extensometer 
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the global measurements, more local comparisons had to be carried out to study the merits of the 

FFC routine. For this reason, two different extensometers of gauge length 50 mm and 25 mm were 

employed to measure more local extensometer strains. For the 75 mm gauge length extensometer, 

it can be seen in Figure 23 that the force vs. true strain curves are in a fairly good match. For the 

50 mm gauge length extensometer (see Figure 24a), the true strain at failure has increased for both 

the calibrated material models. The same trend follows for the 25 mm gauge length extensometer 

(see Figure 24b). In fact, the difference in true strain obtained through the regular and FFC routine 

models increases as it measures more locally. 

5.3  Element size regularization 

The element size regularization was carried out with 4 different mesh sizes in addition to the orig-

inal mesh size used. The element-size dependent regularization curves for each of the routines can 

Figure 25 Element size regularization curves for the two routines 

a) b) 

Figure 24 Comparisons among the Experiment, FFC and regular routines with a) 50 mm gauge length and b) 25 mm 

gauge length extensometer 
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be seen in Figure 25. For the element sizes outside the range, LS-DYNA linearly extrapolates the 

curve to the required element size. The equivalent plastic strain to failure increases as the element 

size decreases and vice-versa. The variation of regularization scale factor over the element size is 

low in case of full-field calibrated model compared to its regular counterpart. 

5.4  Three-point bending 

Force and displacement were extracted from the loading pin and a relation between the two quan-

tities, in the form of a graph is constructed. A comparison is made among the experiment and the 

two different routines, which is depicted in Figure 26. It can be observed that in the specimen from 

regular routine, the elements do not fail at all. But, a fracture does occur in the other two specimens. 

The loading pin displacement at the moment of fracture, for experimental and FFC routine model, 

is comparable. It is to be noted that the calibrated models are exhibiting stiffer behaviour than in 

the experiment. The difference can be quantified, in the region of linear elasticity, with the help of 

the equations derived in section 3.3. In the linear elastic region, for a given displacement, the cali-

brated material models and the analytical equation yield the values of force within 9 % difference 

with each other. In the experiment, the specimen shows 30 % softer behaviour compared with the 

calibrated models. 

 

Figure 26 Comparisons among the Experiment, FFC and regular routines with a 3-point bending test 

5.5  Four-point bending 

Similar comparisons, as in the previous section, are to be carried out among the force vs. displace-

ment curves (see Figure 27). It can be noticed that there is a difference between the experimental 

curve and the curves from calibrated material models. The difference in the linear elastic regime of 

the material behavior can be quantified using the analytical equations described in section 3.4. It is 

observed that the difference between the forces obtained for the calibrated models and the analyt-

ical solution, for a given displacement, is approximately within 13 %. The difference, considering 
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the same as above, between the experiment and the calibrated model is calculated to be approxi-

mately 17 %. 

 

Figure 27 Comparisons among the Experiment, FFC and regular routines with a four-point bending test 

It is also seen that even for the higher values of loading pin displacement, the calibrated material 

models do not exhibit failure. Also, the curves from the FFC routine and the regular routine de-

scribe a similar behavior despite showing differences in the previous comparisons. A detailed study 

on both the simulated models were carried out and a fringe plot of the effective plastic strain for 

the full-field calibrated model is presented in Figure 28. 

 

Figure 28 A contour plot of effective plastic strain at the highest displacement of loading pins 

The legend is set in such a way that the color red represents the value of equivalent plastic strain 

to failure (Y_LCSDG) of the full-field calibrated model. It can be seen that the plastic strain in the 

elements is not as high for the failure to occur. As the loading pins move vertically and deform the 

specimen model, the deformation occurs to an extent and then the specimen model starts to slide 
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down the supports. The value of maximum effective plastic strain, seen in the contour plot of the 

deformed specimen in Figure 28, is indicated with the help of an arrow in Figure 29. Figure 29 is a 

comparison between yield curves obtained for each of the routines. 

 

Figure 29 Yield curves obtained from calibrations 
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6. Discussion 

The impact of localization in the measurement of strain across different gauge lengths, was 

acknowledged through the behavior of curves observed in Figure 18. The observation further em-

phasized the need for extracting data from the localization zone. A full-field calibration of the 

material model was carried out against the multi-point history data which was extracted during the 

experiment with the help of Digital Image Correlation technique. To compare and contrast, a con-

ventional way of calibrating the material model against the extensometer data was adopted. It was 

observed, despite a very close match between the target and response curves (see Figure 19a), the 

material model calibrated through the regular routine shows a ductile behavior. The observation 

was supported by the strain-contour plots (see Figure 21). The ductile behavior of the elements is 

answered by the value of equivalent plastic strain to failure obtained from the regular routine. The 

objective of the optimization was only to fit the global data and the event occurring in the middle 

was not taken into account. On the other hand, the material model calibrated through the FFC 

routine shows a comparatively low localization and hence a lesser ductile behavior. But, as seen in 

the experiment, the specimen exhibits a very brittle behavior with a slight reduction of force before 

failure. During the optimization in the FFC routine, it was experienced by the author that there 

was a trade-off between the reduction of force and the value of equivalent plastic strain to failure. 

If the force value, post the necking point, has to be reduced to what it is in the experiment, then 

the specimen has to undergo a localization which will lead to higher equivalent plastic strain to 

failure. A higher value of equivalent plastic strain to failure implies that the specimen will no longer 

undergo a brittle failure. A balance (see Figure 19b) had to be brought in between both the quan-

tities manually. In addition to this, the resulting model should be able to predict the correct (as in 

the experiment) extensometer displacement at failure, which implicitly depends on the damage 

parameters. A combination of all these had to be taken care of during the optimization which 

demanded a substantial human supervision. According to the author, the key to an easier optimi-

zation is to narrow down the design space through manual design of experiments. 

The non-uniform strain behavior before the necking point was seen in the simulation response 

through the introduction of geometric non-linearity. The amplitude of the harmonic perturbation 

used in the simulation model is high and does not exist in that magnitude in the real specimen. This 

would lead to a possibility that the non-uniform strain field before the necking point might be 

because of a material inhomogeneity. The claim can be supported by the fact that the specimen is 

manufactured through injection molding and consists of 30% glass fiber reinforcement. The ori-

entation and the distribution of glass fibers play a major role in specimen behavior. The manufac-

turing process plays a major role as the factors such as mold surface, flow conditions involve in 

governing the fiber orientation. For short-fiber reinforced plastics manufactured from injection 

molding, the fibers in the boundary layers are orientated in the filling direction and the ones in the 

core layer are oriented perpendicular to the filling direction. More details can be found in the work 

of Müller, Brylka et al. (2016). But in contrast to the aforementioned study, the specimen, in this 

case, shows a softer behavior in bending than in tension. A detailed study, right from the manu-

facturing of the specimens, needs to be carried out to answer several discrepancies observed in the 

material behavior. Another aspect that cannot be neglected is a possible error in measurement. This 

hypothesis gathers more support because of the presence of non-uniformity in the strain field of 
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the homogenous PA6 material (see Appendix 3: A short study on PA6 Material). A similar non-

uniformity in strain field, as previously seen in glass fiber reinforced PA6 material, can also be 

observed in the y-strain contour plot of PA6 specimen (see Figure 34c). 

The gain of implementing FFC routine over regular routine can be witnessed through Figure 24. 

Also, Table 2 presents the value of equivalent plastic strain to failure for each of the routines. The 

elements in the model from the regular routine undergo approximately 80 % higher strain than 

their counterparts from the FFC routine. Meaning, if the material model from regular routine is 

used in a simulation of a component, then the component would exhibit a ductile behavior leading 

to an inaccurate prediction. The time taken for calibration through regular and FFC routines are 

four and two weeks, respectively. Also, it needs to be noted that the time taken for calibration will 

significantly depend on the competence of the individual performing the task. In the course of 

calibration through the regular routine, the author had gained competence and experience and thus 

the calibration through FFC routine took comparatively less time. According to the author, cali-

bration through both the routines demand similar amount of time. Hence, with similar amount of 

calibration time required, the FFC routine has an advantage of more accurate material behavior 

prediction over the regular routine. Since the damage model GISSMO is capable to account for 

the stress-state dependent failure, more number of tests can be carried out to calibrate the material 

model so that it could account for a wide range of triaxialities. 

The validations of the calibrated material models were carried out through their implementation in 

three-point and four-point bending tests. A major assumption underlying the simulations is that 

the tension-compression asymmetry is neglected. The material model behaves identically in both 

tensile and compressive loadings. A plausible explanation to the softer behavior of the specimen 

in bending might be because of the spatial distribution or orientation of the glass fibers reinforced 

with the binding material. One can expect the difference between analytical and simulation re-

sponse, in the linear elastic regime, as the analytical equations are formulated based on the assump-

tions from the beam theory (Hopkins, Patnaik et al. 2003). Also, the values of frictions in the 

contact definitions are assumed by the author. In case of the comparisons among the force-dis-

placement curves of four-point bending, one can notice that the curves from the FFC and the 

regular routines are in close agreement to each other in spite of their difference in previous com-

parisons. The identical force-displacement behavior can be explained with the help of yield curves 

present in Figure 29. The magnitude of maximum effective plastic strain in the specimen in Figure 

28 is indicated in Figure 29 by the arrow. One can notice that both the curves are in close agreement 

to each other around that region and hence identical behavior can be expected.  
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7. Conclusion and future work 

7.1  Conclusions 

A comparison in strain fields, obtained from the experiment and the two different routines, shows 

that the regular routine is only able to accurately mimic the global behaviour of the specimen. On 

the other hand, the FFC routine takes into account both the global behaviour and the strain field 

in the specimen and therefore predicts the material behaviour better than the regular routine. The 

gain of accuracy in prediction of material behaviour, achieved through FFC routine over the regular 

routine, was further backed up through different comparisons and validations. The gain in accuracy 

was not significant until the point of necking in the material behaviour. Hence it is recommended 

by the author, to use the equations (3) and (7) to set up the yield curve until the necking point for 

uniaxial tests. Demanding similar amount of calibration time in Damage and failure stage, the FFC 

routine has an advantage of more accurate prediction of material behaviour over the regular rou-

tine. 

7.2  Future work 

A possible future work would be to conduct a detailed study to find the cause for non-uniform 

strain field before necking point. The study can be carried out on the material characteristics and 

measurement of strains in ARAMIS. It must also be confirmed if the non-uniform strain field 

before necking point is due to an error in measurement or an error in implementation of DIC 

technique. It can be done through an experiment on a metallic specimen as the implementation of 

DIC in characterization of metals has been carried out by many. It can be seen through the works 

of Ilg, Haufe et al. (2018) that there is a uniform strain field until necking point in metals. A detailed 

study on glass fibre distribution and orientation during the injection moulding process of the spec-

imen would reveal the material characteristics that yield softer behaviour in bending. In this thesis, 

the material model is calibrated only for a single load case and hence there is a possibility to carry 

out a similar work for a variety of load cases to build a complete material card for the damage 

model.  



 

37 

 

References 

1. (2012). International Standard. ISO 527-2, Plastics — Determination of tensile properties —
Part 2: Test conditions for moulding and extrusion plastics—Test report, ISO. 

2. Andrade, F., M. Feucht and A. Haufe (2014). On the prediction of material failure in LS-DYNA: 
A comparison between GISSMO and DIEM. 

3. Björk, K. (2007). Formler och tabeller för mekanisk konstruktion : mekanik och hållfasthetslära, 
Karl Björks förlag. 

4. Bridgman, P. W. (1952). Studies in Large Plastic Flow and Fracture: With Special Emphasis on 
the Effects of Hydrostatic Pressure. United States of America, McGRAW-HILL BOOK 
COMPANY, INC. 

5. Effelsberg, J., A. Haufe, M. Feucht, F. Neukamm and P. DuBois (2012). On Parameter 
Identification for the GISSMO Damage Model. 12th International LS-DYNA Users 
Conference. Detroit. 

6. GOM (2016). 3D Testing- Technical Documentation- Digital Image Correlation and Strain 
Computation Basics, GOM GmbH. 

7. Hallquist, J. O. (2006). Belytschko-Lin-Tsay shell. LS-DYNA Theory manual, Livermore 
Software Technology Corporation. 

8. Hallquist, J. O. (2006). Material model: Piecewise linear isotropic plasticity. LS-DYNA Theory 
manual, Livermore Software Technology Corporation. 

9. Hockett, J. and O. Sherby (1975). "Large strain deformation of polycrystalline metals at low 
homologous temperatures." Journal of the Mechanics and Physics of Solids 23(2): 87-98. 

10. Hopkins, D., S. Patnaik and D. Hopkins (2003). Displacement in a Beam. Strength of Materials 
: A New Unified Theory for the 21st Century. Burlington, UNITED STATES, Elsevier Science 
& Technology: 164-178. 

11. Hopkins, D., S. Patnaik and D. Hopkins (2003). Flexure Formula. Strength of Materials : A New 
Unified Theory for the 21st Century. Burlington, UNITED STATES, Elsevier Science & 
Technology: 153-158. 

12. Ilg, C., A. Haufe, D. Koch, N. Stander, K. Witowski, Å. Svedin and M. Liewald (2018). 
Application of a Full-Field Calibration Concept for Parameter Identification of HS-Steel with 
LS-OPT®. 

13. Khan, A. S. and S. Huang (1995). Yield criteria. Continuum theory of plasticity, Wiley: 94-104. 

14. Lemaitre, J. (1985). "A Continuous Damage Mechanics Model for Ductile Fracture." Journal of 
Engineering Materials and Technology 107: 83-89. 

15. LSTC (2017). *MAT_RIGID. LS-DYNA®: Keyword User's Manual. 2. 

16. Müller, V., B. Brylka, F. Dillenberger, R. Glöckner, S. Kolling and T. Böhlke (2016). 
"Homogenization of elastic properties of short-fiber reinforced composites based on measured 
microstructure data." Journal of Composite Materials 50(3): 297-312. 

17. Myers, R. H., D. C. Montgomery and C. M. Anderson-Cook (2016). Estimation of the 
Parameters in Linear Regression Models. Response surface methodology : process and product 
optimization using designed experiments, Wiley: 14-21. 



 

38 

 

18. Myers, R. H., D. C. Montgomery and C. M. Anderson-Cook (2016). Response Surface 
Methodology. Response surface methodology : process and product optimization using 
designed experiments, Wiley: 1-2. 

19. Neukamm, F., M. Feucht and A. D. Haufe (2009). Considering damage history in 
crashworthiness simulations. 7th European LS-DYNA Conference. Salzburg, DYNAmore 
GmbH. 

20. Roux, W. J., N. Stander and R. T. Haftka (1998). "Response Surface Approximations For 
Structural Optimization." International Journal For Numerical Methods in Engineering 42: 517-
534. 

21. Spencer, A. J. M. (2004). The Deformation gradient tensor. Continuum Mechanics, Dover 
Publications: 68-70. 

22. Stander, N., A. Basudhar, W. Roux, K. Witowski, T. Eggleston, T. Goel and K. Craig (July 
2019). Full-field material calibration. LS-OPT® User’s Manual, Livermore Software Technology 
Corporation: 625-631. 

23. Stander, N., A. Basudhar, W. Roux, K. Witowski, T. Eggleston, T. Goel and K. Craig (July 
2019). Normalized Dynamic Time Warping. LS-OPT® User’s Manual, Livermore Software 
Technology Corporation: 620-622. 

24. Stander, N., A. Basudhar, W. Roux, K. Witowski, T. Eggleston, T. Goel and K. Craig (July 
2019). Ordinate-based Curve Matching. LS-OPT® User’s Manual, Livermore Software 
Technology Corporation: 617-618. 

25. Stander, N. and K. J. Craig (2002). "On the robustness of a simple domain reduction scheme 

for simulation‐based optimization." Engineering Computations 19(4): 431-450. 

26. Stander, N., K. Witowski, C. Ilg, A. Haufe, M. Helbig and D. Koch (2018). Application of 
Digital Image Correlation to Material Parameter Identification. Advances in Structural and 
Multidisciplinary Optimization, Cham, Springer International Publishing. 

27. Weck, A., D. S. Wilkinson, H. Toda and E. Maire (2006). "2D and 3D Visualization of Ductile 
Fracture." Advanced Engineering Materials 8(6): 469-472. 

 

 

 

 

  



 

39 

 

Appendix 1: Example: DTW 

A general and rather simple example of how a Dynamic Time Warping algorithm calculates the 

similarity between two curves B and C having data points written in the vector form as B =

(10, 30, 15, 5, 25) and C = (5, 30, 10, 25, 30) is illustrated below. Only one-dimensional Euclid-

ean distance is considered in this example. The data points can be represented with the help of 

indices i and j as Bi and Cj, such that i = 1, 2, … , 5 and j = 1, 2, … , 5. A matrix of accumulated 

distance, of order i × j,  can be written as shown in the figure below. 

 

Figure 30 Accumulated distance matrix to calculate minimum warping path 

The accumulated distance matrix, ACCDIST(i, j) can be formulated as follows, 

• For i = 1 and j = 1, ACCDIST(i, j) = |Bi − Cj|; 

• For i = 1 and 2 ≤ j ≤ 5, ACCDIST(i, j) = |Bi − Cj| + ACCDIST(i, j − 1); 

• For j = 1 and 2 ≤ i ≤ 5, ACCDIST(i, j) = |Bi − Cj| + ACCDIST(i − 1, j); 

• For 2 ≤ i ≤ 5 and 2 ≤ j ≤ 5,  

ACCDIST(i, j) = |Bi − Cj| + min {

ACCDIST(i − 1, j)

ACCDIST(i − 1, j − 1)

ACCDIST(i, j − 1)
}. 
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Figure 31 DTW matching of the points between two curves 

The warping path can be found, starting from the point (i, j) = (5,5), by choosing a path that 

accumulates the least distance. The warping path gives an idea of the similarity between polygons 

B and C. This is a rather simplified example of the originally formulated algorithm***†††. The green 

dotted lines, in Figure 31, shows that DTW allows one-to-many matchings.  

 

*** Souza, C., C. Pantoja and F. C. Souza (2009). Verificação De Assinaturas Offline Utilizando Dynamic Time Warp-

ing. Anais do IX Congresso Brasileiro de Redes Neurais, Sociedade Brasileira de Redes Neurais: 1-5. 

††† Poli, G., J. F. Mari, J. H. Saito and A. L. M. Levada (2007). Voice Command Recognition with Dynamic Time 

Warping (DTW) using Graphics Processing Units (GPU) with Compute Unified Device Architecture (CUDA). 19th 

International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD'07). 
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Appendix 2: Generic specimen from bending 
tests 

As discussed before, five specimens were considered for each test. A specimen which exhibits a 

mean valued behavior was considered further in the calibration process. The data from all the 

specimens that underwent three-point (see Figure 32) and four-point (see Figure 33) bending tests, 

along with their average or mean value can be seen below. 

 

Figure 32 Data extracted from three-point bending tests 

 

Figure 33 Data extracted from four-point bending tests 
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Appendix 3: A short study on PA6 Material 

A short study on behavior of the homogenous PA6 (Polyamide 6) material was carried out with an 

existing data that was available at the author’s disposal. The data was extracted from a tensile test 

carried out at 50 millimeters per minute velocity, same velocity as the tests carried out before, 

ensuring the quasi-static condition. The output from the ARAMIS is presented below. 

 

Figure 34 a) Force vs. True strain for 75 mm gauge length region b) Hardening part of the curve for 75 mm gauge 

length region c) True strain contour plot of the specimen’s surface 

A closer look at Figure 34a reveals that a number of lines vanish in the mid-way as the deformation 

takes place. This is because the facet points move out of the camera frame. This can be expected 

as PA6 is a very ductile material. Even though the tensile specimen is made up of a homogenous 

material, there is a spread in true strain curves (see Figure 34b) before the force reaches its first 

maximum value. A contour plot of true strain on the specimen surface (see Figure 34c) also hints 

the non-uniformity of the strain field. The behavior becomes less apparent in a plot (for example 

in Figure 34a) as the magnitude of true strain at failure increases. 

 

Figure 35 An initial calibration image from ARAMIS 
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The initial calibration image for the current tensile test can be seen in Figure 35. To prevent the 

loss of data resulting from the facet points moving out of the camera frame, the author suggests 

following measures. The camera could be rotated 90 degrees so that the longer edge of the image 

is aligned along the length of the specimen. Although expensive, there is an advantage if the geom-

etry of the specimen can be changed. As smaller specimens undergo less deformation before fail-

ure, increasing the chance that the facet points will remain within the frame. 

Instead of the entire region along the gauge length, a smaller region (see Figure 36b) where the 

necking occurs can be considered for the extraction of true strain data. The force vs. true strain 

output from the ARAMIS is presented in Figure 36a. Later with the help of alignment option in 

LS-OPT, the point cloud can be aligned to the nodes at the central region of the specimen. This 

has to be done as the failure in a FE model of the specimen is bound take place around the central 

region. 

 

Figure 36 a) Force vs. True strain for a small region highlighted in b) 

A calibration was attempted with the available data of force vs. grip displacement and the output 

curve is plotted against the experimental curve as shown in Figure 37a. The grip displacement 

during the failure of the specimen is around 320 mm, suggesting the ductility of the thermoplastic 

material. 

Figure 37 Force vs. grip displacement curve b) and comparison with simulation response a) 



 

44 

 

For the ease of explanation, the graph of force vs. grip displacement, after the necking point, is 

divided into three parts (see Figure 37b). According to the author, the initial softening after the 

necking point can be achieved with the help of GISSMO damage model. But the element fails as 

it softens and the steady part of the curve is hard to obtain. There is a need to overcome the inability 

of the element to harden after it is softened. It must also be noted that the yield curve extrapolation 

after the necking point uses a single cubic Hermite spline as before. More number of such splines 

after the necking point enables to achieve a complex shaped yield curve. With such a yield curve, 

the author believes that it is possible to obtain a better match between curves. Also, with the 

meshfree methods and adaptive meshes for simulation gaining popularity, one must also look into 

possibilities of implementing it to deal with large deformations.  

 


