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Sammanfattning 
De senaste åren har den autonoma fordons industrin genomgått en stor utveckling genom 
forskning, företag har gjort stora investeringar för att förbättra teknologin för att kunna nå den 
privata marknaden. Industrin och akademin jobbar fortfarande för att göra autonoma bilar säkra, 
pålitliga och robusta. Autonom racing tillhandahåller en plattform för att förbättra tekniken så att 
den kan utnyttja fordonets fulla fysiska förmåga i ett brett spektrum av driftsförhållanden. Flera 
funktioner krävs för att göra bilen autonom, detta arbete fokuserar på rörelseplaneringsmodulen 
för autonom racing. Vi har utvärderat hur rörelseplanerings algoritmen presterar vid användning 
av en dynamisk modell med dynamiska begräsningar. 

Utvärderingen är baserad på ett ramverk för optimal rörelseplanering [1] vilken löser 
optimerings problemet genom användning av "Sampling Augmented Real Time Iteration 
(SAARTI) motion planning scheme". Fyra olika modeller jämfördes vilka inkluderade en 
dynamisk cykelmodell med både statiska och dynamiska begränsningar. De parametrar som 
påverkade prestandan identifierades, och avvägningen mellan modell komplexitet och planerings 
horisont undersöktes genom att studera skillnader i prestanda för olika parameter 
konfigurationer. Generaliserbarhet av resultaten undersöktes genom att studera prestandan för 
olika parameter konfigurationer under olika körförhållanden. 

Batch simuleringar utfördes för att ta hänsyn till många olika scenarion, för att säkerställa att 
resultaten var så nära verkligheten som möjligt. Simuleringarna visade att användning av 
dynamiska begränsningar vid rörelse planering förbättrar prestandan jämfört med att använda 
statiska begränsningar vid extrema körförhållanden. 

Observation av resultaten från simuleringarna visade att användning av den grepp adaptiva 
modellen resulterade i robust och konsistent prestanda. Att kombinera estimering av friktion och 
samtidigt ta hänsyn till en varierande normal kraft, ökar förmågan att planera för variationer i 
friktion, minskar chansen att bilen kör av vägen och förbättrar varvtiden.  
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Abstract 
The autonomous driving industry has undergone leaps and bounds of research to reach the 
mainstream market, with major players investing heavily to improve the technology further. 
Industry and academia are currently working to make the technology safe, reliable and robust. 
Autonomous racing provides this opportunity, to improve the technology to the point, where it 
can utilize the full physical capability of the vehicle in a wide range of operational conditions. 
Multiple functionalities are required to make the car autonomous, this thesis focuses on the path 
planning module for autonomous racing. We evaluated the performance of dynamic models, 
using different adaptive dynamic constraints, implemented for path planning. 

The evaluation is based on framework for optimization based motion planning[1] The 
optimization problem is solved by "Sampling Augmented Real Time Iteration (SAARTI) motion 
planning scheme". Four different models were studied during this thesis and include dynamic 
bicycle models, with static and dynamic constraints. Parameters affecting the planning 
performance were identified, and the trade-off between model complexity and planning horizon, 
was investigated by varying these parameters and the differences in performance was studied. 
The generalizability of results for different driving conditions was investigated for these 
parameter configurations. 

Batch simulations were performed to account for various possible scenarios of different 
parameter configurations, to ensure results closest to reality. The simulation was conducted with, 
hardware in the loop setup running the planning node, to get a realistic estimation of  the 
computation resources. Batch simulations were instrumental in showing interesting trends of 
how the input parameters affected the planning performance. Simulations provided  extensive 
proof of  the different dynamic constraints improving the planning performance, over the basic 
dynamic model under extreme driving conditions. 

When reviewing the results from the simulations, the traction adaptive model showed robust and 
consistent performance. The results showed that combining friction estimation and load 
adaption, increased the ability to plan for local variations, reduced failure and improved laptime. 
When designing a planner for a race car that is exposed for local variations, the friction 
estimation is needed to reduce errors and the load adaption is needed for better handling of the 
vehicle to perform critical maneuvers. 
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Chapter 1

Introduction

1.1 Background
Autonomous driving has undergone a lot of research in recent years, to make
it safe and reliable [2]. Some functionalities involved in autonomous driv-
ing, include perception, localization, path planning, and path following. The
dream of large scale commercial deployment of autonomous cars is closer to
reality today, with the industry taking a keen interest. AFRY as an engineer-
ing, design, and advisory company, works together with other companies to
improve and develop the technology. This thesis was conducted with AFRY
Sweden and focuses on path planning for autonomous racing to improve the
autonomous driving competence of the company.

In autonomous racing, cars drive in an environment void of human interven-
tion and therefore provides a platform to develop and test new technologies,
pushing the limits of vehicle capabilities. This setup ensures a low risk of
human injuries [3]. Racing is a challenging task for an autonomous system.
Primarily due to the need for handling the vehicle close to its stability limits
to reach high speeds, in cases like sharp corners or slippery surfaces. Also,
the dynamic limits of the vehicle are time-dependent due to local variations
in terms of varying road conditions, and high accelerations causing varying
distribution of normal force. Implementation of a real-time system with the
need for fast computations on an embedded platform with limited computa-
tional power makes the task even more challenging [4].

Trajectory planning is essential in autonomous vehicles, a trajectory describes
how configurations, for example, position, and velocity of the vehicle will

1
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evolve with time. By using the input from the surroundings it is possible to
predict feasible trajectories for the vehicle. Feasible and optimal path plan-
ning has been studied extensively, and a large number of algorithms have been
developed [5]. This thesis will be based on the thesis done by Ionescu and Jon-
sson [6], which used an algorithm based on Model predictive control (MPC)
for trajectory planning. One of the factors a�ecting this planning method is,
the selection of the vehicle model. Ionescu and Jonsson [6] showed improved
performance for planning, in terms of laptime, when increasing the model
complexity from a kinematic bicycle model to a dynamic bicycle model. This
thesis [6] stresses the need for having a more complex way of describing the
constraints on the tire forces to improve the constraints at high accelerations.

Another factor a�ecting performance is the planning horizon[6], which de-
cides how far ahead in time planning will be done. The previous thesis inves-
tigated the trade-o� between model accuracy and planning horizon, by em-
ploying complex models. We extend this work by using a dynamic model
with dynamic constraints adapting to time-varying traction limitations, and
investigate if it improved the planning performance in real-time.

1.2 Problem description
Optimal performance in autonomous racing is achieved when the vehicle op-
erates close to its physical limits [7]. To fully use the physical capabilities of
the vehicle an accurate description of the dynamics and dynamic constraints
are required [1]. The dynamic model used by Ionescu and Jonsson [6] is based
on the assumption of static force constraints on the tires. This model will only
be an accurate representation of the system when the vehicle is operating in
static traction conditions of the road.

Increased model complexity for trajectory planning will permit the cars to
reach their physical limits in terms of speed and control. However, given
limited computational resources, a more complex vehicle model would also
increase the computational time which would negatively a�ect performance
in real-time applications. Planning horizon length decides for how many steps
the planning will be done, a high planning horizon allows the planner to see
further and allow for better planning. At the same time, longer planning hori-
zon leads to more computations and a longer planning time. Ionescu and Jon-
sson [6] show that the optimal planning horizon is varying with the shape of
the track [6]. Planning horizon length and model accuracy, both a�ect the
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computation time and performance of the trajectory planner, meaning there is
a trade-o� between model accuracy and planning horizon.

Most models used for trajectory planning is based on assuming a constant
tire-road friction coe�cient and normal forces acting on the tires. Although
the dynamic limits are typically varying with time due to local variations in
terms of road, tire condition, temperature and distribution of the normal force.
Hence, Svensson et al. [1] proposed to incorporate, an adaptation of tire force
constraints of the vehicle at run time for motion planning to avoid obstacles.
The traction adaptive algorithm allowed the vehicle to avoid obstacles with in-
creased capacity, in comparison to an equivalent non-adaptive control scheme
[1]. Thus we hypothesize that including traction adaptation in trajectory plan-
ning for racing will improve performance, in terms of increased laptime while
keeping the vehicle inside the track, compared to using static constraints.

1.3 Hypothesis
Four types of constraints on the maximum tire force will be examined:

• Static constraints

• Dynamic constraints depending on friction estimation

• Dynamic constraints depending on the normal load

• Dynamic constraints depending on both friction estimation and varying
normal load

Using dynamic constraints require more computations, meaning a limited com-
putation force could result in a longer computation times.

We hypothesize that all models will have decreased failure with higher plan-
ning horizons although there will be a trade-o� when the planning time gets
close the sample time, and failure will start to increase with higher planning
horizons. The model using static constraints will have a lower increase in
planning time and therefore be less negatively a�ected by increased planning
horizon.

Using static constraints will allow for higher planning horizon at the point of
failure compared to dynamic constraints, but will have high failure when there
are high variations in surface friction. Models using friction estimation will
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lead to lower failure due to the decreased environmental error. Models with dy-
namic constraints considering varying normal load without friction estimation
permit higher accelerations resulting in shorter laptime. Models running close
to physical limits become prone to model errors, hence resulting in higher fail-
ure when considering varying normal load. Using dynamic constraints with
both friction estimation and adaption to normal load will give lower failure
compared to only normal load adaption and a lower laptime compared to only
using friction estimation.

1.4 Research Question
Previous research[6] has shown that increased accuracy and planning hori-
zon improves planning performance while causing an increase in computation
time, when given limited computational resources. Therefore, considering a
real-time application. Increased computation time will at some point a�ect
the vehicle’s performance negatively, as the benefit of high plan quality will
be outweighed by extensive planning delay. Ionescu and Jonsson [6] showed
that the optimal planning horizon is varying with the features of the racing
track, and that, the S-curve, a U-turn, and a double U-turn had the most im-
pact on planning horizon.

Optimal trade-o� between model accuracy and planning horizon length should
optimize laptime and failure. At the same time, utilizing all computational re-
sources available should at times mean that the vehicle is operating just at the
point of failure, i.e. that the latency and planning are both just enough to keep
the vehicle from going o� the track. Given these circumstances:

– What are the implications of using a dynamic model with dynamic con-
straints (traction adaption) compared to a dynamic model with static
constraints?

– Investigated for the above mentioned race track features, is it possible to
generalize these implications for an arbitrary race track?

1.5 Methodology
Using case study is feasible when studying “a contemporary phenomenon
within its real-life context, especially when the boundaries between the phe-
nomenon and context are not clearly evident” [8]. To answer the research ques-
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tion the performance of the path planner was to be evaluated during di�erent
scenarios and input parameters. Case study was a suitable choice of research
method since this method allowed control of the real-life context to investi-
gate how the shape of the track a�ects the result. Case studies permit in-depth
study of specific cases [9], each case was evaluated by means of quantitative
metrics like laptime and success rate of path planning.

Figure 1.1: Design flow of general Case Study [8]

Figure 1.1 shows the important steps that were required in making a case study.
During the initial design phase, a hypothesis was set up from the existing liter-
ature. The models and planning algorithm was set up during this phase. The
next step involved the selection of di�erent cases and setup of the simulation
environment. The research investigated the implications of di�erent vehicle
models and if these implications were general for various tracks. Hence, dif-
ferent track shapes were chosen as cases. Di�erent sets of input variables and
models were evaluated for these track sections by running simulations. Inputs
included planning horizon and friction estimate accuracy, and the output was
quantified as laptime and fail rate. The di�erent parameters were plotted to
observe interesting behavior and relations, which provided quantitative data
for basing qualitative analysis. The qualitative analysis answered the initial
hypothesis and contributed to the research.

Case studies needed to be competent, current, and research worthy. An ef-
fective way to ensure this was to have studies on relations between interesting
input parameters, and how varying input parameters a�ect the planning per-
formance. Therefore numerical experiments were used to evaluate di�erent
algorithm configurations for each case. The following checklist [10] was used
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as a baseline when planning the experimental setup used for data collection.

1. Define the objectives of your experiment.

2. Define all sources of variation, including:

(a) Treatment factors and their levels.
(b) Experimental units.
(c) Blocking factors, noise factors and constraints.

3. Choose a rule for assigning the experiment units to the treatments.

4. Specify the measurements to be made, the experimental procedure and
the anticipated di�culties.

5. Run a pilot experiment.

6. Specify the model.

7. Outline the analysis.

8. Calculate the number of observations that need to be taken.

9. Review the above decisions and revise, if necessary.

A detailed description of the important steps is given in chapter 4.

1.6 Scope and Limitations
Autonomous driving is a huge area of interest, however, the main focus will
be on the planning module, with inputs from other modules used for local-
ization of the vehicle like perception and Simultaneous localization and map-
ping (SLAM), being considered constant and ideal. This thesis is relying on
the simulation environment Formula Student Simulator (FSSIM) to match the
simulation to the actual vehicle performance. The tracks for experimentation
are created in the simulation environment, and boundaries of the track are
implemented using cones for each side of the track, to ease implementation.
Di�erent road conditions are considered for evaluating the planning perfor-
mance by varying the surface friction. However, the road is considered to be
flat, with no banking. The module used to estimate friction is not implemented
in this work, and is assumed to be ideal. The value used for friction estimation
is given by using the real friction value from the simulation environment. The
complete hardware implementation requiring multiple modules, on 1:12 scale
car for autonomous driving will not be done during this thesis.
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1.7 Implementation
The initial hypothesis was validated by employing batch simulations using
Robot Operating System (ROS) and FSSIM. Batch simulations were used for
validating our initial hypothesis as it permitted di�erent parameters a�ecting
the planning performance to be modeled in form of di�erent levels of treatment
and then investigate how a single or a combination of parameters a�ected the
overall planning performance. The number of simulations performed decided
the generalisability of the results, and a higher number of simulations corre-
lated to the results being closer to reality. This permitted the results to be gen-
eralized for di�erent sections of the track and models in the study. Batch sim-
ulations was performed using a hardware in the loop setup, with the planning
module running on a Jetson TX2 microcontroller and host machine running
the other nodes essential for autonomous driving.

1.8 Verification
This project compares performance at the point of failure using di�erent pa-
rameter configurations for path planning. Laptime and failure were used as
success parameters, with planning time decides the point of failure. These
parameters were used as measurements to verify our initial hypothesis and
answer the research question.

1.9 Ethics
The trolley problem [11], [12] of decision making appears in motion plan-
ning, and show how ethical questions can arise when there is an interaction
between human and autonomous vehicles. The trolley problem refers to the
dilemma situations involving two groups of people, where it is unavoidable
that one of the groups get harmed to spare the other. For example should the
car manage to avoid pedestrians on the road and harm the driver or harm the
pedestrians to spare the driver? The moral question is how should we program
the car to make these decisions, and who is responsible in case of failure? Pa-
per [13] proposes a way in which the stakeholders can give weights to ethical
decisions for di�erent autonomous robots. Paper [14] proposes hierarchical
decision making to reduce fatal accidents. These methods can be utilized to
build algorithms capable of ethical decision making and they can be tested by
means simulation experiments.



Chapter 2

Related Work

During this thesis, we investigate the implications of using a more complex
model when using a model predictive controller for trajectory planning. This
chapter describes previous research where model predictive control is used for
trajectory planning.

2.1 Parameters a�ecting trajectory planning

2.1.1 Model complexity
Including more complex dynamics to describe the vehicle increases the model
accuracy. Although it is not certain that this would lead to better performance
of the planning since higher complexity could also a�ect the robustness of
the planner. Previously, research has been done to compare di�erent levels of
model fidelity, by comparing the dynamic model with the kinematic model.
Ionescu and Jonsson [6] examine the trade-o�s between model accuracy and
planning horizon. Having a more complex model improved racing perfor-
mance and showed that consideration of lateral tire forces is needed at high
speeds conditions. Ionescu and Jonsson [6] concluded that factors like sam-
ple time and planning horizon had more impact on the computation time than
model complexity [6]. Liu et al. [15] compared a dynamic bicycle model to
a four-wheel model with 14 Degrees of freedom (DoF) and concluded that by
using steering limits of the four-wheel model, the bicycle model could perform
similar to the four-wheel model. The research established the importance of
a vehicle being able to operate close to performance limits for better perfor-
mance. While they concluded that it might not be as important, having these
complex models inside the planner as the constraints to set limits to the control

8
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inputs [16]. John K. Subosits and J. Christian Gerdes [17] present a replan-
ning algorithm using a point-mass model for planning to minimize the com-
putational force needed for the planning. The algorithm uses a simple model
for planning while adding longitudinal weight transfer and road topography to
model the vehicle limits. This scheme successfully manages to avoid obstacles
in real-time scenarios [17], although it is still dependent on a nominal path to
be computed o�ine for the whole track. Additional studies have been made to
further investigate what levels of model complexity is needed, Liu et al. [18]
performed a study to determine the model fidelity required in an MPC to plan
online trajectories for obstacle avoidance. The paper presents a comparison
of four variations of the dynamic bicycle model, the models have either a lin-
ear tire model or a pure-slip Magic Formula tire model [19] in combination
with constant force or varying force on the axle loads. The results showed that
the dynamic model with linear tire force and constant axle load had a good
performance for low speed situations but fails when moving at a higher speed
of 30 m/s. Therefore, a nonlinear tire model and longitudinal load transfer
were shown to be important factors to include in the dynamic bicycle model
to accurately predict vehicle trajectory.

2.1.2 Local variations
The previous section showed that the model plays an important role in op-
timization based planning and the dynamic capabilities of road vehicles are
a�ected by local variations [1]. Papers [20] [1] talk about the trade-o�s be-
tween model accuracy, planning horizon and computation time. Kabzan et al.
[7] [3] further emphasize the challenging trade-o� between computation time
and model accuracy given by the racing environment. Ionescu and Jonsson
[6] showed that a longer planning horizon has no impact on performance if
the race track has a simple form as a straight line, while in the case of a more
complex track like a double U-turn a large planning horizon led to an improve-
ment on the planning performance [6]. An increased planning horizon in turn
negatively a�ected the computation time.

Other factors a�ecting performance in trajectory planning, include varying
track surface and axle load variations due to longitudinal accelerations, which
cause the maximum tire force to vary with time, especially in racing applica-
tions [21]. Svensson et al. [1] propose a model predictive adaptation of tire
force constraints of the vehicle at run time for motion planning to avoid ob-
stacles. By adding online friction estimation the traction adaptive algorithm
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allowed the vehicle to avoid obstacles with increased capacity, in comparison
to equivalent non-adaptive control scheme, this was confirmed by extensive
numerical simulations [1]. The work [1] assumes a state of the art friction
estimation and focuses on the planning module. Study [22] presents the dif-
ferent available model based and experimental based techniques for tire-road
friction estimation.

As seen, previous research has been done to increase the ability to plan feasible
trajectories for autonomous vehicles. This thesis further investigated combin-
ing friction estimation and longitudinal load transfer for a dynamic bicycle
model using a simplified nonlinear tire model, to study the e�ects of their in-
corporation into a trajectory planner used for racing.

2.2 Optimisation
Optimisation based planning involves minimising a cost function, that ac-
counts for the behavior of the system. Used for racing, the optimisation func-
tion needs to be set up considering, maximisation of the distance traveled [23]
[4] and needs to be solved by numerical methods such as dynamic program-
ming [24]. Previous research has been done to improve planning performance
without a significant increase in computation time. Kabzan et al. [7] use a
simple model and tighten the dynamic constraints to achieve safe driving be-
havior, however, this limited the racing performance. A learning based control
approach was implemented to overcome this limitation, based on information
from previous laps to improve current performance [7]. Gao [25] suggests
the usage of hierarchical MPC, which is simpler than nonlinear MPC [26],
for real-time implementation. The planner used a complex 4 wheel model for
local planning and a simpler model for global planning. The hierarchical plan-
ner showed good performance in avoiding obstacles while following a nominal
path. However, it’s not suitable in the racing case as it is not a general solution
for trajectory planning and is not optimal due to the high-level planner based
on a simple model. The bicycle model in the thesis [6] results in a nonlinear
optimisation function and the real-time implementation su�ers the issue of lo-
cal minima, especially when the algorithm needs to make discrete decisions,
for example choosing on what side to pass an obstacle. Liniger et al. [4] solved
this by using a high level planner creating a corridor where there is only one
possible way of passing the obstacles. Further, this paper compares the perfor-
mance of a two-level path planner with the Nonlinear Model predictive con-
trol (NMPC). The nonlinear optimization problem was solved by an approach
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called Real Time Iteration Sequential Quadratic programming (RTI) and is a
computationally e�cient way of solving the NMPC. This is done by lineariz-
ing the dynamics and form a second order approximation of the cost function
using the solution from previous iteration[4]. The use of NMPC resulted in
better performance than the two-level planner. Drawbacks of using the NMPC
include the computational cost and it’s sensitivity to measurement errors, due
to the dependency on the previously planned path. If the error between the
planned and traveled path is large, the previous solution might not be a good
initial guess and can cause the planner to get stuck in local minima. An issue
with RTI when adding online adaptation to the model is that the time-varying
constraints can cause the input sequence from the previously planned path to
become unfeasible. To model traction variations as time-varying constraints
and to address the issue of local minima, without loss of optimality, Svensson
et al. [1], proposed RTI scheme called Sampling Augmented Real Rime It-
eration (SAARTI), based on sequential quadratic programming for real-time
implementation. Using trajectory rollout of additional candidates for initial
guess is added at each iteration and selected by checking the conditions and
evaluating the cost function, the risk of getting stuck in local minima is re-
duced [1]. In this thesis, the SAARTI based planning algorithm will be used
to combine friction estimation and longitudinal load transfer into the dynamic
model, and performance will be evaluated by batch simulations for di�erent
model configurations.



Chapter 3

Theoretical Background

This chapter presents a comparison between the dynamic model with fixed
constraints that were used as part of the research in [6], and the dynamic model
with constraints adapting to the online estimation of tire-road friction coe�-
cient µ and varying axle loads. The dynamic model from the work of Ionescu
and Jonsson [6] serves as a baseline to compare the performance of the other
models. Four instances of the dynamic bicycle model were considered, one
with static constraints, the Non-adaptive model (NA), one with constraints up-
dated by friction estimation, the Friction adaptive model (FA), one with con-
straints updated by pitch dynamics, the Load adaptive model (LA) and one
with constraints updated by both friction estimation and pitch dynamics, the
Traction adaptive model (TA). A table presenting the four models is seen in
Table 3.1, the naming of models in this table will be used to describe these
models henceforth.

Vehicle model: NA LA FA TA
µ estimation No No Yes Yes

Load adaption No Yes No Yes

Table 3.1: Table showing the di�erence between the four models

The chapter describes the theory for these models and the optimisation based
planner implemented for autonomous racing during this research.

12
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3.1 Vehicle model

Figure 3.1: Illustration of the bicycle model showing the relation between
Global X-Y frame and Frenet frame. s denotes the progress along the cen-
terline of the lane

3.1.1 Frenet frame
The Frenet frame is an alternate coordinate system to the Cartesian system,
that simplifies the representation of a system moving along a continuous and
di�erentiable curve in three-dimensional Euclidean space, by the use of vari-
ables s and d, shown in Figure 3.1. s represents the distance traveled along
the curve and d represents the perpendicular distance to the curve. Using the
frenet frame to describe the vehicle motion along the road centerline makes it
possible to formulate the optimization problem for racing by maximizing pro-
gression along s while staying inside max and min values of d. All parameters
measured as part of the perception system are passed in terms of global X-Y
coordinates and is transformed to the local frenet frame, this permits the car
dynamics to be described relative to the centerline.

3.1.2 Bicycle model
The vehicle is modeled by representing left and right wheels at the front and
rear axles, as single wheels at each of the axle centers. This model is valid by
the assumption that the roll dynamics on the left are canceled out by those on
the right. This way of modeling a car is called a bicycle model. Equal steering
angle for both left and right wheel is assumed, however, this is not always
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the case. Although, in general, these angles will be approximately equal [27].
The bicycle model has previously been used in the field of autonomous driving
[28], [29], [1], [6], and has become a standard of sorts.
The representation of a bicycle model driving in a track is shown in Figure 3.1.
� denotes the steering angle, while  and  c denote the vehicle heading angle
and the angle of path tangent at s measured relative the X-axis, respectively. v
is the vehicle velocity, and distance from the center of gravity (CG) to the front
and rear axles are given by lf and lr. Lateral forces are denoted as Fyf and Fyr,
longitudinal forces represented as Fxf and Fxr, and rear-wheel is denoted by
the subscript r, while the front wheel is denoted by f. The coordinates of the
vehicle are represented in both the traditional X-Y system and the frenet frame.

3.1.3 Dynamic model
Experiments as part of this thesis were conducted using dynamic vehicle mod-
els. Consider the dynamic bicycle model represented in Figure 3.1, the vehicle
orientation relative to the centerline tangent at s is given as

� =  �  c (3.1)

whereby the vehicle dynamics can be described using the frenet frame as

ṡ =
vx cos(� )� vy sin(� )

1� dc
(3.2a)

ḋ = vx sin(� ) + vy cos(� ) (3.2b)

� ̇ =  ̇ � c
vx cos(� )� vy sin(� )

1� dc
(3.2c)

 ̈ =
1

Iz
(lfFyf � lrFyr) (3.2d)

v̇x =
1

m
(Fxf + Fxr �Dav

2
x) (3.2e)

v̇y =
1

m
(Fyf + Fyr)� vx ̇ (3.2f)

where  ̇, vx and vy denotes yaw rate, longitudinal velocity and lateral velocity,
m and Iz represent the mass and moment of inertia of the vehicle and c is the
curvature of the centerline at s. The term vx ̇ represents the centripetal accel-
eration and Dav2x represents the drag force component acting on the vehicle.
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Note that the road is flat during this work, therefore bank angle and inclination
of the road are assumed to be zero. State and control vectors are selected as

x = [s, d,� ,  ̇, vx, vy] (3.3)

and
u = [Fyf , Fxf , Fxr]

T (3.4)

which allows the state space equation with the control and state vectors can be
written as

ẋ = f(x, u) (3.5)

Slip Angle

The lateral force on the wheel depends on the characteristics of the tire like the
deflection of the treads in the contact between road and wheel. As a result the
lateral force on a tire is proportional to the slip angle, when the slip angle is
small[27]. Hence, in order to model the lateral force acting on the rear wheel,
the slip angle needs to be defined.

Figure 3.2: An illustration of the velocity vector (represented by the red arrow)
and the angle relative the rear wheel

The vehicle slip angle is given by

↵r = ✓r (3.6)

where ↵r is the slip angle at the rear wheel and ✓r is the angle of the velocity
vector at the rear wheel, shown in Figure 3.2. The direction of the velocity
vector at the rear wheel can be described as

✓r = arctan(
vy � lr ̇

vx
) (3.7)
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The variation of lateral tire force with slip angle is shown in the figure below.

Figure 3.3: Lateral tire force as a function of slip angle for di�erent road con-
ditions. [30]

As seen in Figure 3.3 for small slip angles, the lateral force is proportional to
the slip angle [27], if small slip angles are assumed the lateral force can be
described as

Fy = C↵↵ (3.8)

where C↵ is the cornering sti�ness of the wheel. Given equations (3.6),(3.7)
and (3.8), the lateral force on the rear wheels is described as

Fyr = 2C↵Fz arctan(
lr ̇ � vy

vx
) (3.9)

a factor 2 is included to account for both tires.

Force constraints

The longitudinal and lateral tire forces Fyf , Fxf and Fxf , and the relation be-
tween slip angles and tire forces exist as previously seen. Since these are used
as the control parameters, basic Newtonian mechanics is su�cient to get the
upper bound to set constraints on these control parameters. Upper bound for
the horizontal force acting on the front and rear wheels are given by

Fi  µFzi, i 2 [f, r] (3.10)

with

Fi =
q

F 2
xi + F 2

yi (3.11)
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f and r stands for front respectively rear wheels, Fzi represents the normal
force on each of the wheels, and µ is the tire-road friction coe�cient. The con-
dition in (3.11) provides a boundary called the friction circle since it forms a
circle with radii µFzi, this is illustrated by the circles around the tires in figure
3.1. Both µ and Fzi is dynamically changing with time, the friction varies as a
result of the vehicle driving on di�erent surfaces and Fzi is dependent on the
vehicle’s longitudinal acceleration. In order to adapt to changes in the friction,
a friction estimation algorithm needs to be implemented to predict the condi-
tions ahead of the vehicle. For the purpose of this project, the estimation of
the friction will be given by the simulation environment for the models using
friction estimation, models without friction estimation will take an assumed
value µa for the friction coe�cient.

Figure 3.4: Force distribution - side view [27]

The time-varying axle loads can be modeled by moment balance about the two
contact points, seen in Figure 3.4, gives the normal forces Fzf and Fzr at the
front and rear wheels as

Fzf =
1

lf + lr
(mglr) (3.12)

Fzr =
1

lf + lr
(mglf ) (3.13)

and gives maximum value on Fzi for the models without pitch dynamics and
therefore constant load on the axes. To account for the longitudinal load trans-
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fer at high accelerations the following relationships are used to calculate the
normal force on the front and rear axles taking into account the longitudinal
load transfer e�ects

Fzf =
1

lf + lr
(mv̇xh�mghsin✓ +mglrcos✓) (3.14)

Fzr =
1

lf + lr
(�mv̇xh+mghsin✓ +mglfcos✓) (3.15)

and sets the maximum value on Fzi for the models with pitch dynamics.

3.2 Optimisation based planning
The thesis utilizes the optimisation based planning algorithm from paper [1].
Optimisation based motion planning involves solving a Constrained Finite
Time Optimal Control Problem (CFTOC), at each planning iteration in a re-
ceding horizon manner [31] [1]. The friction variation, motion planning CFTOC
problem, is as follows:

min
u0|t,..,uN�1|t

J(xk|t, uk|t) = p(xN |t) +
N�1X

k=0

q(xk|t, uk|t) (3.16)

such that, xk+1|t = f(xk|t, uk|t)

uk|t 2 Uk|t

xk|t 2 Xk|t

8k = 0, ...., N � 1

x0|t = xt, xN |t 2 Xk|t

[u0|t, ...., uN�1|t]T is the input applied to vehicle model f , to generate N+1
states [x0|t, ...., uN |t]T . Functions p(·) and q(·,·) denote the positive definite
running cost and terminal costs respectively. J(·) represents the overall quadratic
cost function. Each of the dynamic vehicle models as discussed earlier has its’
own set of states x and inputs u. The predicted trajectory is written as Tt =
(xx|t, uk|t), k 2 (0, ...., N). The predicted states are real at each step and repre-
sents collision free paths for the vehicle to follow. T ⇤

t = (x⇤
k|t, u

⇤
k|t, k 2 (0, ..., N)).

3.2.1 RTI algorithm
A common method of solving the previously defined optimisation problem in
real-time is Real Time Iteration Sequential Quadratic programming (RTI). In
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RTI, an initial guess is obtained from Tt and dynamics are linearised by the
solution obtained from the previous iteration T ⇤

t�1. Finally, the state and input
constraints are expressed as linear inequalities.

The solution is unsolvable in cases when T ⇤
t�1 is infeasible and not optimal, at

iteration step t and this leads to some drawbacks of RTI. Unsolvable optimi-
sation problem points to the lack of a control signal Uk|t at this iteration step.
The optimal solution from previous time iteration T ⇤

t�1 may not be collision
free due to a dynamic environment. RTI algorithm is prone to local sensitivity
as it involves discrete decision making (e.g, whether to go left or right of an
obstacle) and at rapid changes to the problem constraint (relevant for traction
adaption).

3.2.2 sampling augmented real time iteration (SAARTI)
SAARTI overcomes the above mentioned drawbacks of RTI, by the introduc-
tion of sampling. SAARTI solves the quadratic cost function using the same
planning horizon N and discretization stepTs [1], the cost function is described
as

J(xk|t, uk|t) = xT
N |tQNxN |t +

N�1X

k=0

xT
k|tQxk|t + uT

k|TRuk|t (3.17)

with QN > 0, Q > 0, and R > 0, representing the tuning matrices. A
dynamically feasible initial guess is generated from T ⇤

t�1, by projecting onto
current time stepUk|t and forward integration of dynamics. Additional guesses
created from trajectory rollout [32]. The best guess is selected by evaluating
the constraints and the cost function. The QP is then formulated around the
initial guess and solved with the constraints. The process is repeated with
closed loop control. The algorithm is summarised in the figure below,



CHAPTER 3. THEORETICAL BACKGROUND 20

Figure 3.5: Sampling augmented adaptive RTI algorithm [1]



Chapter 4

Implementation

The implementation utilized for batch simulations and setup of experiments
is described in this chapter. The initial sections deal with the reasoning for
choosing the di�erent parameter configurations and the latter end of the chap-
ter deals with the implementation.

4.1 Experimental Setup

4.1.1 Selection of cases
Di�erent track sections that a�ected the planning performance were identi-
fied. Adaption of friction and pitch dynamics were hypothesised to permit
better vehicle handling in cornering at higher speeds. U and S sections of
track provided a way of testing the vehicle handling under extreme cornering
conditions with di�erent complexities. U-section in real races, would start
typically with a long straight stretch to accelerate, followed by quick corner-
ing and then some accelerating stretch to follow up. S-section, is similar to
U-section, except that it has two back to back cornering sections. These sec-
tions permit some racing action, given equivalent car and driving parameters,
and hence are of interest. S- curve, formed by means of consecutive U turns,
was opportune to investigate, if there were any problems due to build up of
errors from earlier sections of the track and reasons for parameters like model
complexity and planning horizon, a�ecting it. The e�ect of planning horizon
on the performance and the e�ect of di�erent models on the physical limits of
speed, were tested by the use of tracks of di�erent radii, for both U- and S-
sections. The tracks used for testing is shown in Figure 4.1

21
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(a) S-shape (b) U-shape

Figure 4.1: The S- and U- curves with di�erent radius which form the cases
of the case study, the radius of the curves is denoted as r

4.1.2 Selection of input parameters
The performance of TA, FA, and LA were evaluated individually and also com-
pared with a generic model, to conclude how the added dynamics contributed
to the performance. NA provided a baseline for performance measurement,
which is a widely used vehicle model in the research field. Simulations were
done for the di�erent models, using equivalent parameter sets to ensure a fair
trial for comparison of results on common grounds.

By identifying di�erent sources of variations the input parameters of inter-
est and the levels of variation needed were defined. The purpose was to find
what input parameters a�ected the performance of the path planner. Param-
eters were selected in considerations of previous research and the models of
interest. Previous work has shown that the planning horizon has an impact
on the planning performance[6], and using standard deviation of the tire-road
friction coe�cient was chosen to study the e�ect of the friction estimation.
The standard deviation values was used to generate friction values for di�er-
ent parts of the track by draw random samples from a normal distribution.
Some questions that were investigated at this stage was, what is the maximum
and minimum value, and what step size should be used to ensure that interest-
ing behavior isn’t missed. The possible levels of variations are also limited by
the number of simulations that were possible to achieve under the restricted
time frame.

Values for the planning horizon was decided by running test simulations for
TA. The planning horizon denoted as N is the number of states to be generated
by the planner. Figure 4.2 shows the failure for TA using di�erent planning
horizons and the blue patch represents a 68% confidence interval of failure.
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At the horizon N equal to 30, a sudden increase of the failure can be observed,
and running simulations with a failure of 100% would not generate any useful
data to analyze. Therefore, the maximum value of N was set to 30. At N equal
to 15 a small increase in failure is observed and is therefore chosen as the min-
imum value of N. The di�erence between consecutive N values decided to be
five, to capture the entire bandwidth of values between the upper and lower
bounds while ensuring a feasible number of simulations.

Figure 4.2: Failure for di�erent N values using TA

NA was hypothesized to be most a�ected by changes in the tire-road friction
coe�cient. Hence, the values of the standard deviation of the road friction
coe�cient, denoted as µ-sd, was selected by running simulations for NA. The
variation of the friction coe�cient as the car progresses along the track is
shown in Figure 4.7. Figure 4.3 shows di�erence in failure for the chosen
values on µ-sd.

Figure 4.3: E�ect on NA when varying µ-sd

The failure for tracks with friction coe�cient deviation of 0.2 is close to zero
and low enough to see a good performance for NA. The failure increases as
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the variance increases at a value of 0.6 a distinct increase in failure was ob-
served and about 40%. To limit the number of parameter configurations while
observing interesting behavior and ensure timely completion, the variances in
friction values were fixed to 0.2 and 0.6.

The models being compared and the cases consisting of the tracks is also in-
put parameters to the system. A table of the selected Input variables and their
levels of variations is shown in Table 4.1

Model µ-sd N Curve radius
Non adaptive (NA) 0.2 15 S 10

Friction adaptive (FA) 0.6 20 U 15
Load adaptive (LA) 25 20

Traction adaptive (TA) 30

Table 4.1: Table showing the input variables and their levels

We evaluated the e�ect of these input parameters on the planning performance
by simulating all combinations of these parameter sets. In total 32 sets of pa-
rameters, combinations are simulated for each case in terms of the tracks to
explore the e�ect by individual and combination of parameters, on the plan-
ning performance. For each set of parameters, 80 laps were computed.

4.1.3 Identifying Experimental units
Experimental units define the conditions of the environment which decide the
conclusions. The number of samplesNs in the planning algorithms using sam-
pling, assumption of tire-road friction coe�cient µa used by models without
friction estimation, and sample time Ts were identified as the experimental
units. These parameters were set to give each model as good conditions as
possible, to make a fair comparison. µa was set to the mean value of µ for the
whole track, while Ns was set by testing to find a value giving good perfor-
mance. Ts decides how often planning of a new trajectory is done and was set
to the same value used by [1] and is the same for all models. The values of the
experimental units are seen in Table 4.2

µa Ns Ts[ms]
1.6 50 100

Table 4.2: Table showing the experimental units
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4.1.4 Noise factors
Noise factors are factors that are not considered in the result but a�ect the re-
sult. When running simulations one noise factor identified was the placement
of di�erent µ values, meaning if a low value is placed in a sharp corner the risk
of failing is higher than if the value was higher. Another factor was the initial
conditions on speed and vehicle placement on the road. An important part
of the research was to find the di�erent generalisations possible from testing
on specific sections. Therefore noise factors were dealt with by introducing
randomness into the experiments and running batch simulations, meaning the
result is based on the mean values of several laps for each set of parameters.
This ensured that the various possible scenarios are accounted for and the most
likely output was obtained. Hence permitted the results to be generalised for
most sections of the track and answer the research question.

4.1.5 Measurements
The laptime and planning time was measured to conclude performance for dif-
ferent models. Data collection and output visualization were integrated into
the simulation environment to get an agile understanding of the relations be-
tween various parameters.

4.2 Software

4.2.1 ROS
ROS [33] was chosen for handling the functionality aspect of the simulations
due to simplicity and modularity. Robot Operating System (ROS) is a middle-
ware platform that provides libraries and tools that help software developers
create robot applications. It simplifies the integration of di�erent components
on the same system and over the network. A basic ROS system consists of
a master, nodes, topics, services, and actions. ROS nodes are executables,
that that can exchange information through topics, services, or actions. ROS
master ensures that all the nodes are running smoothly and asynchronously.
ROS handles the communication of di�erent nodes to run the package as a
single system. The entire setup is modular and permits di�erent modules to
be swapped in or out. The system of simulation is also close to reality, hence
reduce setup time when switching to hardware implementation.
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4.2.2 FSSIM
FSSIM was chosen as the racing simulator. FSSIM is a vehicle simulator ded-
icated for Formula Student Driverless Competition. It was developed for au-
tonomous software testing purposes. A version of this simulator was used to
predict laptime of gotthard car at the Formula student Germany 2018 track-
drive competition with one percent accuracy[3]. The simulator allows agile
real-time visualisation of closely modeled (to reality) cars to be run on tracks
defined by cones. The simulation is run in Gazebo environment with the RVIZ
package, on ROS.

4.2.3 ACADO Toolkit
The ACADO toolkit was chosen for handling the real-time optimisation of
the di�erent variables while planning the path. ACADO Toolkit is a software
environment and algorithm collection for automatic control and dynamic opti-
mization. It provides a general framework for using a variety of algorithms for
direct optimal control, including model predictive control, state and parameter
estimation and robust optimization. The toolkit has an object oriented design,
hence permits for easy modifications and optimisations.

4.3 Hardware in the loop
Jetson TX2 is a microcontroller and is used as a standard for hardware im-
plementation in the industry. Jetson TX2 has a powerful GPU with parallel
computing capabilities, and support for multiple hardware and software ap-
plications. This makes it widely used in the field of autonomous driving and
robotics. We utilize the Jetson for implementation of the planning algorithm,
as the main purpose is to evaluate the planning performance. The other as-
pects of the simulation like the racing track and it’s associated parameters are
implemented on another host machine, and this mimics the real scenario. The
host communicates over ethernet with the Jetson via SSH. Ethernet is used to
minimize the communication delay between the di�erent nodes. The control
node for the car runs on the Jetson.
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Figure 4.4: Hardware in the loop setup for batch simulations

4.4 System architecture
The simulation was implemented with the system architecture as shown in
Figure 4.5. The simulation handler is responsible for handling the entire sim-
ulation and is the master node. Simulation handler is also responsible for re-
setting the simulations in case of failure. Experiments need to be run with
a di�erent combination of parameters and this is given as input from the up-
date ROS parameters node. This node publishes the di�erent input parameters
to run the simulation. Run simulation runs one iteration of simulations, this
could be single or multiple laps, depending on the input configuration for a
single combination of parameters. Experiment manager receives inputs from
various nodes like perception, state estimation, and planning, to give output
commands to the control interface. The commands to the control interface tell
the car how it should be driven in the track. The track, the car and its motion
are visualized using RVIZ, figure . The FSSIM node provides the state of the
car as feedback for both the experiment manager and planning nodes. The
planning node takes input from the previous state of the car and the sample
set from sampling augmentation, calculates the optimal path by using di�er-
ently weighted parameters and constraints, and finally, output path is given to
the experiment manager. Planning node runs on the Jetson, while the remain-
ing nodes run remotely, allowing the planning performance to be evaluated as
independently as possible on actual hardware.
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Figure 4.5: System architecture

Figure 4.6: Visualisation of the planned path and the sample trajectories using
RVIZ

4.5 Simulation environment
The visualization of the simulation environment is seen in figure 4.6. The
sampled trajectories and the planned path are seen as the blue dotted curves.
The speed of the car and the friction estimate is displayed on the screen as the
car progresses along the track.
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4.5.1 Obstacles at beginning of race
Racing dictates that the car travels the maximum distance in a minimum time
interval and we are interested in randomizing the initial conditions only. Ob-
stacles were introduced at the beginning of the race at random locations for
each lap, to randomize the initial conditions and ensure a representative sam-
ple for analysis. The obstacles appear at a location such that it is far from the
start point and also gets su�cient distance to accelerate after passing the ob-
stacle, before entering critical testing regions of the race track. The existing
architecture permitted running multiple laps continuously while in the results
only data for the critical section of the track were considered.

4.5.2 Randomising µ throughout the track
Testing the traction adaptive planning algorithm required varying friction through-
out the track. This was achieved by variable friction coe�cients at di�erent
sections of the track. The coe�cients were modeled as a normal distribution
function with a mean and standard deviation. The simulations were run with
constant mean value and standard deviations of 0.2 and 0.6, a visualization
of the varying friction can be seen in 4.7. The coe�cients for the Pacejka
Tire Model [19] used to calculate the cornering sti�ness C↵ in the simula-
tion environment were experimentally identified for a friction coe�cient of
1.6[3]. Hence, the mean value of the friction was set to 1.6. The values were
randomly generated while following the probability distribution function. The
randomly generated values were assigned to smaller sections of the track. This
later permitted testing the e�ect of di�erent models and friction variations.
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(a) µ-sd of 0.2 (b) µ-sd of 0.6

Figure 4.7: A visualization of an s-shaped track with varying friction sections.
The colorbar in the bottom shows the colormapping for the friction coe�cient
sections in the track

4.5.3 Tracks
Critical sections of the tracks in racing include sections with roundabout turns,
quick sharp corners, and consecutive corners after long stretches of acceler-
ation. The tracks needed to be modeled to permit these sections to be tested
while allowing us to run a large number of simulations. Generalisation of the
results formed a large part of the test environment and simulations to answer
the research question. It was decided to keep the majority of the track a con-
stant while only swapping the critical sections to be tested. This would ensure
that the results would be due to the critical sections of the track. Su�cient
acceleration lengths were provided to ensure the car was going into the curves
at high speed and test the adaptability of the algorithm. Tracks generated in
frenet frame to allow the car to follow the curve path s and variations along
the width represented by d.

4.5.4 Tuning weights for optimisation
The weights of the cost function were tuned to give good performance in rac-
ing. A tune process was done where the weights are tuned one after the other.
The weights were increased/decreased as long as laptime was consistent or
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decreasing. When the failure or laptime increased the previous value of the
weight was used and then the next weight was tuned. This process was re-
peated for all weights until the tuning was not changing the weights. Many
sets of weights gave good results since the setup is insensitive to tuning, there-
fore a large step size could be used when tuning and the same weights could
be used for all models.

4.6 Data Post-processing
Extensive experimentation with the di�erent parameter combinations resulted
in large data sets and required systematic methods for analysis and visuali-
sation. The data is saved as numpy files, with all the details about path tra-
versed, path planned, planning samples, vehicle parameters, track parameters,
and any other parameter that required investigating. Python pandas were used
for collecting all the data and storing the parameters that required investiga-
tion. Sometimes failed runs occurred due to factors outside the planner (the
object of evaluation) and was filtered out during post-processing.
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Results and Discussion

During this thesis, it was hypothesized that models with dynamic constraints
would perform better than the one with the static constraints up to the point
of failure where all computational resources are used. By varying the input
parameters that were expected to have the most e�ect on performance, we
evaluate the e�ect of these parameters on the planning performance for dif-
ferent models. Suitable input parameters include the planning horizon and
the friction coe�cient variance. To generalize the evaluation, the algorithm
was tested on several S and U shaped tracks and curves of varying radii. The
resulting trade-o�s between model complexity and planning horizon and the
consequences of variation of input parameters are presented in this chapter.
Data gathered by performing batch simulations of 80 laps for each of the com-
binations of input parameters which resulted in a total number of 15360 laps.

We utilize NA as the baseline for evaluating the planning performance. A
single lap on an S-track with low variance on the friction coe�cient is plotted
in Figure 5.1 for di�erent planning horizons. The vertical color bar represents
the variation in speed and the path traced by the car is plotted with the same
color coding. Variation in friction coe�cient along the track is represented
by the colors in the horizontal bar. The four N values represent the planning
horizon for each lap. It can be seen that NA manages to plan feasible trajec-
tories to compensate for the curve and handles small errors between assumed
and real value on the friction coe�cient for di�erent planning horizons.

32
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Figure 5.1: A sample of succeeded laps for NA on an S shaped track with
radii= 20 and µ-sd = 0.2. Color mapping on the vehicle path shows the
longitudinal velocity in m/s and color mapping on the track shows the real
tire-road friction coe�cient µ, NA uses an values of µ = 1.6 for planning

The following Overview section provides a generic view of the results obtained
for all models. To study the e�ect di�erent input parameters have on planning
performance the result is then presented for varying planning horizon, friction
variance, and track shapes in separate sections. The e�ect each of these pa-
rameters on output is presented as a contrast between using models with static
constraints and models with dynamic constraints. A table of the mean results
for all track shapes can be seen in appendix A.

5.1 Overview
This section presents the results and analysis of the data obtained by running
80 laps for each combination of input parameters. The input parameters used
is summarized in Table 4.1 from earlier section. To get an overall view of the
di�erences in performance for di�erent models, plots in Figure 5.2, shows how
the interaction between models and planning horizon a�ects failure and lap-
time. Results for all track shapes and µ-sd values are combined and visualized
by mean value and 68% confidence interval of laptime and failure.
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(a) Failure

(b) Laptimes

Figure 5.2: Plots showing failure and laptime vs planning horizon N. Lines
illustrate mean value to combine the results for all input parameters and the
colored area around the lines illustrates the 68% confidence interval for on
each value of N

As seen in Figure 5.2, TA and FA have the lowest failure for planning horizons
lower than 25 while NA allows for a higher planning horizon. For a planning
horizon of 30, NA has the lowest failure, although it is higher compared to the
adaptive models when using lower N. LA was hypothesized to have a higher
failure and lower laptime compared to FA and TA, the figure shows that the
results are in agreement with this hypothesis. Figure 5.2 shows that FA and
TA are close in performance except for a planning horizon of 20, where TA
has lower failure and laptime. TA and FA, show the most consistent result in
failure which is shown by the shaded area around the curves in Figure 5.2a.
The areas for NA and LA is both wider, and LA has lower spread for planning
horizons between 20 and 25.
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Table 5.1: Table presenting results at point of failure for each model, the result
is an average for all track shapes and radius

Avg. Laptime [s] Failure [%]
Model N µ-sd

Friction adaptive 25
0.2 9.96 0.00
0.6 10.72 7.50

Load adaptive 25
0.2 9.69 0.00
0.6 10.10 22.92

Non adaptive 30
0.2 9.60 0.62
0.6 9.69 24.38

Traction adaptive 25
0.2 9.77 0.21
0.6 10.89 6.67

The results for all input parameters combined shows that TA has the best per-
formance until a certain planning horizon. In the following sections the impact
of planning horizon, varying friction coe�cient and track shape will be further
investigated, to better understand what influences the results seen in Figure 5.2.

5.2 E�ect of planning horizon
The planning horizon limits the number of steps to which the car plans ahead
in time. Higher planning horizons require higher numbers of computations,
while a lower horizon meaning, the car sees a shorter length of the track to
follow. Given this, it was hypothesised that all models will first get decreased
failure with higher planning horizons and that there will be a trade o� when the
planning time gets close to point of failure, and failure will start increase with
higher planning horizons. Since NA is a less complex model, it is assumed to
be less a�ected by the increased planning time. Consider Figure 5.3 showing
laptime and failure for each model.
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Figure 5.3: Laptime and failure visualized in the same graph to view the
change in both laptime and failure

Figure 5.4: Planning time and failure. Planning time is defined as the average
planning time for a lap, the lines defined the mean result for all combinations
of input parameters, and the shaded area around the curves shows the standard
deviations in the results

As mentioned, planning time is increasing with the planning horizon and plan-
ning time in turn a�ects failure. Planning time and failure was plotted for each
planning horizon in Figure 5.4, to analyze the relation between parameters.
Sample time Ts used in the planning algorithm is set to 100ms. Point of fail-
ure is defined by the lack of computational resources. Hence, point of failure
can be seen for each model in Figure 5.4 by looking at the point where the
average planning time is 100ms. NA has a point of failure at N = 30, while
LA, TA and FA have failure points at N = 25, Table 5.1 shows a summary of
the results at these points of failures.

5.2.1 Static constraints
The increase in planning time is lower for NA compared to the models with
dynamic constrains as can be seen in figure 5.4, which is in agreement with
our initial hypothesis. The graph shows that the failure is decreasing for high
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and low values on N, creating a concave curve with a maximum value at N =
20, contrary to our hypothesis.

Lower failure for lower planning horizon could be explained by looking at
the planning time which has a lower value for N = 20 than N = 15. Planning
time far from the sample time, could have an adverse e�ect on the perfor-
mance when planning time is smaller than sample time. In the current setup
the planner runs continuously, therefore the actual planning time decides the
real sample time, while sample time used in calculations is Ts.

NA was run for 80 laps, however, the number of µ configurations is lesser
in comparison to the other models. Even though the µ configurations is ran-
domized the simulations was setup to run around the track until failure, where
after a new µ configuration was generated. If the first randomized tracks hap-
pens to be in favour for the NA model this could cause a possible bias, and can
also be the reason for the lower failure at horizons 15. As mentioned point of
failure occurs at N = 30 for NA, therefore the increased failure is not seen in
Figure 5.3, using a planning horizon higher than 30 should result in increased
failure.

Figure 5.5: Successful laps for di�erent planning horizons using NA model

In order to understand how laptime is a�ected by planning horizon, observe
Figure 5.5 which shows paths and planning time for successful laps using dif-
ferent planning horizons. The car manages to compensate the track for di�er-
ent planning horizons, with planning time under 100ms, while driving along
the U tracks. Performance is mostly a�ected by a higher N allowing for better
planning. Figure 5.5 shows how the higher planning horizons allows to plan
for the coming turn by making the car drive closer to the outer edge of the
road before taking the turn. For NA, as seen in 5.4 mean planning time is kept
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below 100ms, as a result increased planning horizon has a low negative e�ect
on performance.

5.2.2 Dynamic constraints
For LA and TA, the failure initially decreases with increased N as hypothe-
sized, while this is not seen for FA which is seen in Figure 5.3. Implying that a
low planning horizon has a bigger negative e�ect on models adapting to vary-
ing normal load. The previous section on NA, showed that a low planning
time negatively a�ected the performance. Looking at the mean planning time
at N = 15 in Figure 5.4, it can be seen that there is not a big di�erence between
the TA, FA and LA. In order to get a more detailed look at the di�erences in
planning time a box plot of the planning time is shown in Figure 5.6. Here
it can be seen that although the mean value is close between the models, the
outliers of FA is higher than the ones for TA and LA and could be a reason to
why FA is less sensitive to low N.

Figure 5.6: Boxplot showing the distribution of planning time for di�erent
planning horizons denoted as N

Using dynamic constraints with varying normal load allows the car to drive
closer to the dynamic limits and is therefore more sensitive to errors. This
could be another reason to why TA and LA is more sensitive to a low planning
horizon and planning time than FA model.

The initial hypothesis was that failure will increase with increasing planning
horizon after point of failure. The plot in Figure 5.3 shows that failure in-
creases with increased N for the dynamic models using a planning horizon
higher than 25. FA and TA with friction estimation has lowest failure for a
planning horizon below 25, while LA has a higher failure as hypothesised.
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The e�ect of an increased planning time causing slower control is seen in
Figures 5.7, 5.8, and 5.9, where one can see how the vehicle path gets more
unstable with high N. The path taken by the vehicle for LA, FA and TA is not
optimal at higher horizon lengths and results in higher laptime, and can be
seen in Figures 5.7, 5.8 and 5.9.

Figure 5.7: Successful laps for di�erent planning horizons using LA

Figure 5.8: Successful laps for di�erent planning horizons using FA

Figure 5.9: Successful laps for di�erent planning horizons using TA
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5.2.3 Takeaways
The trends in the advanced dynamic models for planning horizon against fail-
ure curve, are consistent. Uniform and consistent performance upto the point
of failure for TA and FA. LA is seen to be the most sensitive to change in hori-
zon. The advantages of variable normal force is improved vehicle handling.
However, faster dynamics also needs faster sample time and hence makes it
sensitive to increased planning time. NA shows higher failure in comparison
to models with dynamic constraints and is insensitive to change in horizon.
Laptime increases as the horizon is increased for dynamic models, while lap-
time is increasing with failure for NA.

5.3 E�ect of friction coe�cient variance
During the thesis, we hypothesised earlier that the models with friction esti-
mate would perform better than the ones without it. Better performance hy-
pothesised while running on tracks with lower friction variance. Figure 5.10
shows a higher failure while running on tracks with a higher friction coe�-
cient, for all the models.

Figure 5.10: Failure graph filtered by friction coe�cient variance
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Figure 5.11: Laptime graph filtered by friction coe�cient variance

Laptime is slightly higher while running on tracks with friction variance of
0.6, is shown in Figure 5.11. Higher value due to slower speeds essential to
compensate the larger variations in consecutive friction coe�cient values. The
di�erence in planning time isn’t as large, because the number of variables for
optimisation remains the same in both cases of friction variance of 0.2 and
0.6. This is quantified in the form of similar planning time in the two cases
and can be seen in Figure 5.12.

Figure 5.12: Planning time graph filtered by friction coe�cient variance

5.3.1 Static constraints
NA experiences the highest failure while running on tracks with friction coef-
ficient variance of 0.6, upto planning horizon 25. The model, however, shows
lower failure while running on tracks with friction variance of 0.2. At a fric-
tion variance of 0.2, with the known mean value and su�cient computational
resources, the model manages to compensate the track with same failure as its
counterparts. While running on tracks with higher variance, the computational
resources is not su�cient to overcome the larger error in friction estimation
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and results in the worst performance. In the lower cases of friction variance,
the performance is uniform which visualised in the form of colored patches,
surrounding the mean curves, for a higher value of variance the spread in re-
sults is higher. Lack of friction estimate and constraint adaption ensures insen-
sitivity to change in parameters when the variance in friction is low. Figure
5.13 shows NA compensating track with 0.2 variance of friction coe�cient
and a failed path while running along 0.6 friction variance track.

(a) Succsessful lap on µ-sd of 0.2 (b) Failed lap on µ-sd of 0.6

Figure 5.13: Di�erences between di�erent variances in friction

The di�erent cases of failure for NA is visualised in Figure 5.14. In subplot
1, the friction coe�cient changes from high value to low value (red to blue,
just before the point of failure). The car coming out of the corner, experiences
loss in grip, oversteers and fails to stay in the track. In subplot 2, friction
coe�cient changes from high to low. Car experiences understeer due to loss
in grip at the low friction section and is unable to change direction of velocity
vector in time. In subplot 3, consecutively low friction sections are followed
by high friction section. The model manages to compensate the lower friction
sections, experiences oversteer immediately after entering high friction area
and fails to stay in the track. In subplot 4, the change in friction region from
low to high, is too late into the corner and fails to keep the car in the track.
The lack of friction estimate for NA causes the loss in grip during the di�erent
cases presented here.
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Figure 5.14: Failed path visualised on varying friction track for NA model on
track with µ-sd = 0.6

5.3.2 Dynamic constraints
The trend of higher failure while running on tracks with friction variance of
0.6 in comparison 0.2, holds for all the models with dynamic constraint adap-
tion. The models with friction estimate showed better performance in agree-
ment with our earlier hypothesis. All models with dynamic constraints seen
to outperform the model with static constraints, while running with su�cient
computational resources.

TA shows the best performance at higher friction variance of 0.6 compared
to the other models. When running on tracks with friction variance of 0.2 all
models is close in performance although TA has a slightly higher laptime. The
model’s success at tracks with variance 0.6 can be owed to the combined fric-
tion estimation and pitch adaption. The cumulative e�ect of these individual
models, make the traction adaptive constraints robust to changes in parameters.

Let’s examine few of the failed laps for TA, shown in Figure 5.15 around the
region of failure. In subplots 1 and 2, the change in friction coe�cient from
high to low happens, just before the car crashes in the cornering section. Al-
though the planning time is under 100ms in both cases, the model attempts
a tight corner and the slightest oversteer in the low friction region prevents
the car from staying in the track. In subplot 3 and 4, planning time is maxed
out and results in oscillatory motion of the car, before failing to stay in track.
Though its important to note that TA is able to compensate the variations in
friction from low to high and vice versa, due to the friction estimate. TA man-
ages tight corners due to pitch adaptive constraints.
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Figure 5.15: Failed path visualised on varying friction track for TA

FA shows good uniform performance, for di�erent parameter combinations.
The correct estimation of friction for di�erent sections of the track, ensure
that the performance is consistent as long as the available computational re-
sources are su�cient.

Consider the visualisation of failed laps for FA, shown in Figure 5.16 around
the fail region. In subplots 2 and 4, it can be seen that the model manages to
compensate the long low friction region (represented by the blue region), due
to the friction estimate, for some length of the track before failure. However,
the path is not smooth during these laps and car fails to make tight corners. In
subplot 3, the car fails due to higher planning time towards the end of the S
section, despite the friction estimate.

Figure 5.16: Failed path visualised on varying friction track for FA

LA shows good performance. The performance, however, is inconsistent and
is quantified in the form of standard deviation, seen as yellow and blue patches
for friction variances of 0.6 and 0.2 in Figure 5.10, respectively. The under-
estimation in friction values causes large deviation in performance for this
model. The model still manages to outperform the static constraints model.
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Pitch adaption ensures better vehicle handling and hence the better perfor-
mance.

Let’s examine the failed path for LA, shown in Figure 5.17 around the region
of failure. The pitch adaption permits tight corners and can be seen in all the
subplots. The lack of friction estimation while driving on the low friction sec-
tions, prevents the car from staying in the track. In subplot 4, the two reasons,
in combination with high planning time ensures that the car goes o� the track.

Figure 5.17: Failed path visualised on varying friction track for LA

5.3.3 Takeaways
The friction coe�cient plays a huge role in the planning performance of each
of the models. Models with the friction estimate had lower failure compared
to models without the estimate. The performance was inconsistent for NA.
TA with the pitch adaption and friction estimate, performed the most consis-
tently and showed robustness to changes in parameters. Higher changes in
friction coe�cient values in between consecutive track sections causes failure
for models without friction estimate. Slightly slower laps seen while running
on tracks with variance of 0.6, because of slower speeds. FA without the pitch
adaption has an oscillatory path towards the end of the S curve.

5.4 E�ect of Track shape
During the thesis, we evaluate the previously stated factors by the use of S
and U shaped tracks. These tracks were hypothesised to highlight the e�ect
of each of these parameters on the planning performance. The U sections are
simpler tracks in comparison to the S tracks, and observe lower failure overall
for the di�erent configurations. Figure 5.18 shows the failure for the di�erent
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models while running on S and U tracks. The S section permits errors to be
carried forward, on account of being longer and complex tracks, in compari-
son to the U tracks. Driving through S tracks therefore causes sensitivity for
latency created of high planning time, in comparison with the U tracks and is
quantified by the higher failure for higher N seen in Figure 5.18. By looking at
the failure plot for LA an increase in failure is seen for N = 15 for the S track,
meaning that running on the S track require a higher N.

Figure 5.18: Failure graph filtered by track shape

The visualisation of failure for di�erent models filtered by track radius is shown
in Figure 5.19. The figure shows how the radius changes optimal trade-o� be-
tween model accuracy and N, a higher radius requires a higher N in order to
achieve good performance. The bigger radius permits the car to run at higher
speeds. Inability to replan at higher speeds, results in the car failing to stay on
track.

Figure 5.19: Failure graph filtered by track radius

The visualisation of laptime for di�erent models filtered by track radius is
shown in Figure 5.20. Laptime increases as the radius of curvature increases



CHAPTER 5. RESULTS AND DISCUSSION 47

for the di�erent models. Increased laptime on account of longer tracks for
bigger radius of curvature.

Figure 5.20: Laptime graph filtered by track radius

5.4.1 Static constraints
NA model has the highest failure, in comparison to models with dynamic con-
straints. The performance of the model is inconsistent and can be seen as devi-
ation patch in Figure 5.19, remains una�ected by the radius of curvature. The
simple nature of model due to static constraints, not accounting for traction
variations, ensure that the model has the fastest laptime and the trend holds
even at higher planning horizons.

Figure 5.21 represents the path of the car during the failed laps on the U-curves
for NA. Vehicle fails to stay in track towards the end of the cornering section
in most of the failed attempts.

Figure 5.21: Lap plot showing failed laps for NA model on U curve with µ-sd
= 0.6
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The failed paths while driving on S track for NA is shown in Figure 5.22.
The failures are still concentrated either towards the beginning or the end of
smaller U cornering sections under consideration. The trend is repeating for
the consecutive U sections, for NA. The increase in planning time along the
length of the consecutive cornering sections, reduces chances to compensate
the curvature and results in failure.

Figure 5.22: Lap plot showing failed laps for NA model on S curve with µ-sd
= 0.6

The trends in terms of concentration of failure points for NA is recurring and
hence permit generalisation of trends, to certain extent. Longer consecutive
cornering sections, increases the model’s chances of failure.

5.4.2 Dynamic constraints
All models with dynamic constraints outperform NA, as long as computational
resources are su�cient. TA is observed to be the most robust to changes in ra-
dius of curvature of the track and shape of track (seen in Figure 5.18). This
behaviour is attributed to pitch adaption contributing to better vehicle han-
dling and friction adaption ensuring consistency. TA has laptime comparable
with that of NA at lower horizons, seen in Figure 5.20. The model complexity
results in higher planning time, and causes slower laptime at higher horizons.

The failed paths for TA while running on the U tracks are visualised in Figure
5.23. The points of failure concentrated towards the end of the U cornering
section. The planning time is much higher compared to NA and can be ob-
served by the purple colour of the paths for the di�erent laps.
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Figure 5.23: Lap plot showing failed laps for TA model on U curve with µ-sd
= 0.6

The trend of higher concentration of fail points towards the beginning and end
of smaller U sections, can be be seen in Figure 5.24 for TA. The planning time
increases as the car progresses along the curve and exhaustion of resources,
results in failure at di�erent parts of S curve. Similar trends can be seen for
LA and FA, in Figures 5.25 and 5.26 respectively. Lack of friction estimate
causes failure points to be spread out for LA. Models with friction estimate
have higher success upto the point of failure.

Figure 5.24: Lap plot showing failed laps for TA model on S curve with µ-sd
= 0.6
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Figure 5.25: Lap plot showing failed laps for LA model on S curve with µ-sd
= 0.6

Figure 5.26: Lap plot showing failed laps for FA model on S curve with µ-sd
= 0.6

5.4.3 Takeaways
The S and U curves of di�erent radius proved to be good testing grounds for
the di�erent models. Failure points concentrated either towards the end or
beginning of the smaller U sections of the S and U tracks, under consideration.
Models performed better while running on the tracks with only U sections and
the radius changes the optimal planning horizon for each model. Di�erent
constraints for the models a�ect the planning time and consequently a�ect,
failure and laptime. This is seen in S tracks as the car progressed along the
curve, for models with higher number of constraint adaption, the planning time
increased and in turn the chances of failure rose.
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5.5 Conclusions
During this thesis, we set out to evaluate the planning performance for dynamic
model with static constraints and dynamic models with dynamic constraints.
In addition, the thesis evaluated the generalisability of results for di�erent sec-
tions of the track, at the point of failure. The point of failure was dictated by
the increased planning time and lack of computational resources. Statistical
approach of batch simulations, was adopted to evaluate these parameter con-
figurations.

Models with dynamic constraints showed improved performance upto the point
of failure. This is quantified by lower failure and faster laptime, in compari-
son to NA. TA with the friction estimate and pitch adaption showed consistent
and robust performance. TA also manages to make tight corners while driving
on the di�erent track sections. FA managed to compensate the tracks with an
oscillatory path, due to the lack of pitch dynamics adaption. The absence of
friction estimate a�ects LA’s ability to compensate consecutive sections under-
going large di�erences in friction coe�cient. LA manages to have the fastest
laptime and shows good performance while running on tracks with lower vari-
ation of friction coe�cient. NA with static constraints showed robustness to
changes in planning horizon and track shape but performed badly in compar-
ison with the other models.

Failure points are concentrated either towards the beginning or end of the
smaller U sections under consideration for the S and U tracks. Large dif-
ferences in friction coe�cient values between consecutive sections at these
regions of the track, increased the failure chances for models without friction
estimate. Models required higher planning horizon lengths to perform better
on the S tracks. The S tracks permitted errors to be carried forward, in com-
parison to the U tracks and that negatively a�ected the planning performance
for models with dynamic constraints at high planning horizons.

The results shows that friction adaption is crucial in a planner used for racing
scenarios where the car is exposed for local variations. The planner is further
improved by including adaption to varying normal load due to increased abil-
ity to handle critical scenarios like varying surfaces and complex track shapes.
Adding load adaption enable driving closer to limits but also leads to a higher
sensitivity to model errors. Hence, adapting constraints to varying load will
further increase the need for friction estimation. In the real racing scenario
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the car would be exposed for local variations a�ecting the tire-road friction
coe�cient, in addition a real race includes other cars which increases the need
for more aggressive maneuvers. The results has shown that the load adap-
tive model allows for better handling of the vehicle while friction estimation
reduces errors due to local variations, therefore we believe that the traction
adaptive model is needed to achieve good performance in the racing case.

The tradeo�s between the accuracy of the model and planning horizon lengths,
for models with static and dynamic constraints was brought out during this the-
sis. The parameters a�ecting the performance for each of these models was
studied. The large number of simulations for di�erent parameter configura-
tions provided data on generalisation trends for di�erent critical track sections.
The shortcomings of the thesis will be addressed in the section to follow.

5.6 Future Work
• The current setup enabled testing of the traction adaptive algorithm with

the hardware in the loop. The next logical step would be to implement
and test, the algorithm on a scaled car with all the modules running on
the host.

• Investigate what local variations needs to be included in the friction es-
timation for the racing case.

• The friction estimation module needs to be implemented for complete
hardware run, as the current setup evaluates planning performance when
the friction estimate is given.

• Implement all modules with parallel processing abilities of Jetson GPU,
as it has a more powerful GPU in comparison to it’s CPU.

• Further investigations on the trade-o� between planning horizon and
numbers of samples
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Avg. Laptime [s] Failure [%]
Model N µ-sd

Friction adaptive

15
0.2 9.01 0.00
0.6 9.75 3.33

20
0.2 9.42 0.00
0.6 9.96 8.33

25
0.2 9.96 0.00
0.6 10.73 7.08

30
0.2 11.05 18.33
0.6 12.60 47.71

Load adaptive

15
0.2 8.93 0.00
0.6 9.01 30.42

20
0.2 9.33 0.00
0.6 9.83 13.96

25
0.2 9.69 0.00
0.6 10.11 21.46

30
0.2 11.04 28.54
0.6 11.42 56.88

Non adaptive

15
0.2 8.94 0.00
0.6 9.43 17.92

20
0.2 9.50 0.00
0.6 10.13 37.29

25
0.2 9.54 0.00
0.6 9.93 37.92

30
0.2 9.61 0.62
0.6 9.72 25.00

Traction adaptive

15
0.2 8.95 0.00
0.6 9.62 3.54

20
0.2 9.36 0.00
0.6 9.84 2.29

25
0.2 9.76 0.21
0.6 10.94 5.62

30
0.2 11.17 26.88
0.6 12.59 40.21
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