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APPLICATION OF THE DISTRIBUTED HBV-6 MODEL TO THE UPPER 

NARMADA BASIN IN INDIA 

by P.K. Bhatia, S. Bergström and M. Persson 

Report on Phase-II of the institutional collaboration between 

IIT-Delhi, India, and SMHI, Norrköping, Sweden, on Water 

Resources Development - Hydrological Forecasting 

Introduction 

The basic need for river basins development, both at the 

planning and management stages, is the evaluation of temporal 

and spatial water availability in the region. In India, while 

planning, it is generally experienced that river runoff re­

cords at a particular site in the basin are either lacking or 

too short for reliable statistical analysis. Missing data of 

critical highflow periods at the desired site are also fre­

quent problems. Often, however, there isa relatively long 

period of rainfall data available in the basin. In this situ­

ation, mathematical medels conceptually representing the land 

phase of the hydrologic cycle are very useful. These medels 

can be used to simulate runoff response of the catchment by 

quantifying the most dominant physical processes through a 

series of mathematical functions, combined together to repre­

sent the time-variant interaction of the processes. These 

models continuously account for the water in storage in the 

basin, relate loss functions for the rainfall to current con­

dition of the basin, and are capable of continuous simulation 

of flow for as long a period of time as there are input data 

available. 

Another very common application of rainfall-runoff models is 

for forecasting purposes. The lead time of the forecast is 

then depending on the reliability of the weather forecast 



available and on the dynamics of the river system . A river 

with a very damped response is thus easier to forecast than 

one with quick response to rainfall or snowmelt. For long 

range forecasting, historie climate records can be fed into 

the model, and the forecast can be based on a statistical 

analysis of several sequences of computed hydrographs. 

Several rainfall-runoff simulation models, viz . the Stanford 

Watershed Model (Linsley and Crawford , 1960), the SSARR model 

(Rockwood, 1958), the Dawdy and O'Donell model (Dawdy and 

O'Donell, 1965), the Boughton model (Boughton, 1966), the 

Hydrocomp Simulation Program (Hydrocomp Inc., 1969) , the UBC 

model (Quick and Pipes, 1972) , the HBV-model (Bergström , 

1976), the TANK model (Sugawara , 1961) , and the NWSRFS (NOAA, 

1972) etc. , have been developed since the late 1950ies. 

The complexity of these models varies over a wide range, 

which also entails variable demands as concerns computer 

facilities and input data. The HBV-model developed by the 

Swedish Meteorological and Hydrological Institute (Bergström, 

1976) is one of the simpler models in the range but has 

proved to yield satisfactory results for both forecasting and 

simulation. Its formulation is easily understood, and compu­

ter and input data demands are moderate. The model is run on 

daily values of rainfall and monthly values of the potential 

evapotranspiration. If the snow-routine of the model is to be 

used, it requires mean daily air temperatures as well. 

The number of process parameters to be estimated during the 

calibration procedure is kept low by means of the very ex­

tensive investigations of the error function response sur­

faces which were carried out when the model was developed. 

The medel can be roade operational on any small computer or 

advanced desk calculator. 
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The first operational versions of the HBV-model were two 

lumped versions named HBV-2 and HBV-3. Nowadays a distributed 

version, HBV-6, is used for most applications of the model in 

Sweden. In Norway, the HBV-3 version is normally used with a 

statistically distributed snow routine. 

Under Phase-I of Indo-Swedish Collaboration Project on Water 

Resources Development and Hydrological Forecasting, the 

lumped HBV-3 model was applied to the upper Narmada basin 

{catchment area= 16 576 km2) in Madhya Pradesh in India 

{Bergström and Chaturvedi, 1980). This application showed en­

couraging results, but errors were introduced both by the in­

complete data base and the large spatial variability of fac­

tors governing the rainfall-runoff process. So under Phase-II 

of the project, HBV-6, the distributed version of the model, 

was proposed. 

This report summarizes the application of the HBV-6 model to 

the Upper Narmada basin. This version of the model accounts 

for variations of rainfall over the basin by dividing the ba­

sin into subbasins. It simulates the runoff volume from each 

subbasin independently and then combines it to calculate the 

total hydrograph. The approach, though increasing computation 

time, was felt to be the only way of handling this large size 

basin with this type of model. It demands, however, a more 

complete data base than was available for the application 

under Phase-I. A simulation by a lumped version of the model, 

carried out with the data base available for Phase II, 

showed, however, surprisingly close agreement with the dist­

ributed model. Finally an attempt has been made to transform 

the model into a set of nomograms for day-to-day simulation 

of runoff. 
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Description of the HBV~model 

The HBV-model isa conceptual runoff model for continuous 

calculation of runoff. Input data are observations of preci­

pitation, air temperature and estimates of potential evapo­

transpiration. The time scale is normally one day but shorter 

intervals can be used. The evaporation values used arenor­

mally monthly averages. Air temperature data are used for 

snow accumulation and ablation calculations only and can be 

omitted in snowfree areas. 

The HBV-6 version provides options for geographical zoning 

and different vegetation cover . A schematic sketch of a HBV - 3 

model is shown in Figure 1 , which may also serve as an il­

lustration of a HBV-6 submodel . 

P REC IPITA TION 

SNOW ROUTINE 

RAIN, SNOWMELT, 
EVAPORATION 

SOIL MOISTURE 
ZONE 

ER ZON , Q =K ·{S- L ) 
--5 --r-----. Q Q UZ UZ 

UZ L_ 
z Q =K · S 

l 1 UZ 

TRANSF. 
FU NC TION 

.,__ _______ .j'-X)= KtSlz ____ ___, 
Q 

Figure 1. The structure of the HBV-6 submodel. 
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The model consists of subroutines for snow accumulation and 

melt, a soil moisture accounting procedure, routines for run­

off generation, and finally a simple routing procedure. The 

snow routine is based on a degree-day approach with lapse 

rates of climatological data according to the hypsographic 

curve. It is, however, omitted in this application. 

The soil moisture accounting routine is the main part con­

trolling runoff formation. This routine is based on three 

parameters, S, Lp and Fe, as shown in Fig. 2. Bis control­

ling the contribution to the response function (6 Q/6 P ) or in­

crease in soil moisture storage (l-6Q/6P ) from each milli­

metre of rainfall or snowmelt, Lp isa value above which 

evapotranspiration reaches its potential value, and Fe is the 

maximum soil moisture storage in the model. In order to avoid 

problems with non-linearity the soil moisture routine is fed 

by snowmelt and rainfall mm by mm. 

S,m - computed soil moisture storage 
t.P - contribution from rainfall or snowmelt 
t.Q - contribution to the response function/ 

runoff 

Fe - maximum soil moisture storage 
13 - empirical coefficient 
EP - potential evapotranspiration 
E0 - computed actual evapotranspiration 
LP - limit for potential evapotranspiration 

1.0 

o -◄-~---~ 

O Fe Ss m Lp Fe Ssm 

Figure 2. Schematic presentation of the soil moisture 

accounting subroutine. 

The routine will have the effect that the contribution to 

runoff from rain or snowmelt is small when the soil is dry 

(low S -values) and great at wet conditions. The actual sm 
evapotranspiration decreases as the soil dries out. 
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For catchments of considerable elevation range, the altitude 

effect on precipitation is accounted for by division of sub­

basins into elevation zones and application of a precipita-

tion lapse rate (P1 ) for each zone. The corrections apse 
are made from the average altitude of the precipitation sta-

tions to the mean altitude of each zone. There is also an op­

tion fora general precipitation correction factor in case 

systematic errors in these data are obvious. 

In the Narmada basin application no precipitation correction 

factors or lapse rates were used. 

The runoff generation routine is the response function which 

transforms excess water from the soil moisture zone to run­

off. It also includes the effect of direct precipitation and 

evaporation on apart (Pw) which represents lakes, rivers 

and other wet areas. The function consists of one upper and 

one lower quasi-linear reservoir, as shown in Figure 3. These 

are the origin of the quick and slow runoff components of the 

hydrograph. 

= ~Q from the soil moisture 

a0=~(SuzLvz: i 

QI = K( Suz 

TRANSF. 

_ ____.--;i FU N C T1 ON 

routine 

Q 

Figure 3. The response function of the HBV-6 submodel. 
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The upper zone may be interpreted as follows: If yield from 

the soil exceeds a certain percolation capacity (C ), 
perc 

the water will start to drain through more superficial chan -

nels and thus reach the rivers and streams with a higher 

drainage coefficient (K1). At a storage in the uppei zone 

exceeding L , even more rapid drainage according to 
uz 

K0 will start. The lower zone, on the other hand, repre-

sents the total groundwater storage of the catchment contri­

buting to the base flow. 

Each one of the subbasins has individual soil moisture ac­

counting procedures and response functons. The runoff is ge­

nerated independently from each one of the subbasins and is 

then routed through a transformation function in order to get 

a proper shape of the hydrograph. The transformation function 

isa simple filter technique with a triangular distribution 

of weights, as shown in Figure 4. If a translation of the hy­

drograph due to travel time is needed, this is accounted for 

by a parameter BLAG. Finally the discharge from each subbasin 

is combined by superposition to arrive at total discharge at 

the outlet. 

WE[GHT 
Q 

TIME 
0 
~ MAX BAS ~ TI ME TIME 

Figure 4. Schematic presentation of the effect of the trans­

formation function on the computed hydrograph. 

Recently a slightly modified version of the response function 

has been used for groundwater simulations in Sweden (Berg­

ström and Sandberg, 1983). Explicit groundwater simulations 

have not been made under Phase-II of this project. 
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Subdivision of the Narmada basin 

The 16 576 km2 of the Upper Narmada basin were subdivided in­

to five subbasins, 4183, 4780, 1802, 2612, and 3199 km2 re­

spectively, as shown in Figure 5. In the same figure is shown 

a schematic sketch of the HBV-6 model with corresponding sub­

division into submodels. The subdivision of the model makes 

it possible to calibrate submodels as well as the total 

model, if the data base is appropriate. Due to lacking runoff 

data this was not possible in this application. 

The subdivided model makes it possible to use separate model 

parameters in each basin. It is strongly recommended, how­

ever, that the use of multiple parameter settings is re­

stricted so that the number of free parameters is kept as low 

as possible. 

Data base 

In Phase-II of the project the number of precipitation sta­

tions was increased from 5 to 13. Runoff data were taken from 

Jamtara and values of the potential evapotranspiration first 

from the station Sagar but later changed to Jabalpur accord­

ing to Rao et al. (1976). 0ut of the 9 years of data avail­

able it was decided to use 5 for calibration of the model 

(1963 - 1967) and the last 4 for the independent test of 

model performance (1973 - 1976). 

The homogeneity of the precipitation records were tested by 

means of double-mass plottings using a program system de­

veloped by Westman (1982), as shown in Figure 6. This test 

resulted in the exclusion of station No. 6 (Baijag) and cor­

rection of obvious errors in some of the data for some peri­

ods at some stations. 0ne such example is the beginning of 

the calibration period for station No. 1. There are several 

possible breaks in the homogeneity suggested by Figure 6, for 

example for stations No. 2 and 7. After close examination of 

the data we could not, however, find any justification for 

further amendments. Station No. 13 was tested in a second 

test without any homogeneity problems. 
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Figure 5. Subdivision of the Upper Narmada basin for appli­

cation of the HBV-6 model. 
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Figure 6. Double-mass plots of 12 of the precipitation 

stations. The test station along the vertical axis, 

the mean of the others along the horizontal axis. 
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Figure 6 (continued). Double-mass plots of 12 of the pre­

cipitation stations. The test station along the 

vertical axis, the mean of the others along the 

horizontal axis. 
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Figure 6 (continued). Double-mass plots of 12 of the pre­

cipitation stations. The test station along the 

vertical axis, the mean of the others along the 

horizontal axis. 
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Areal precipitation values for each subbasin were computed by 

the Thiessen-polygon method, as shown in Figure 7. The names,, 

numbers and weights of each precipitation station are given 

in Table 1. As can be seen in this table, station No. 2, 

Bichhia, hasa high average weight and is thus very important 

for the simulation results. Therefore it isa bit disturbing 

that the double-mass plot of Bichhia indicates the possibil­

ity of insufficient homogeneity. Bichhia is further situated 

in the part of the basin with maximum rainfall, which may be 

one reason for volume problems when calibrating the model. 

It is also obvious that station No. 6, Baijag, would have 

been very useful, if an acceptable record were available. The 

exclusion of Baijag has resulted in a very biased distribu­

tion of weights with as much as 26 % of the average weight on 

station No. 1, Dindori. 

Table 1. Summary of the precipitation stations and their 

weights in individual subbasins. 

Precipitation Station weights Average 
station for subbasin weight 

' for the 
entire 

No. Name 1 2 3 4 5 basin 

1 Dindori o.oo 0.72 0.28 0.17 o.oo 0.26 

2 Bichhia 0. 00 0. 00 0.66 0.44 0.16 0.17 

3 Niwas 0.15 0.12 o.oo 0.01 o.oo 0.08 

4 Mandla 0.10 0.01 o.oo 0.17 0.13 0.08 
5 Narayan-

ganj 0.23 0.01 0. 00 o.oo 0. 00 0.06 

6 Baijag Omitted 

7 Baihar 0. 00 0. 00 0. 00 o.oo 0.24 0. 05 
8 Barera-

kalan 0.25 o.oo 0. 00 0. 00 0. 00 0.06 

9 Ghansore 0.21 o.oo o.oo o.oo o.oo 0.07 

10 Palhera o.oo o.oo 0.06 0.15 0.19 Q.07 

11 Paraswada o.oo o.oo o.oo o.oo 0.15 0.03 

12 Saleteka o.oo o.oo o.oo o.oo 0.13 0.03 

13 Shahpura o.oo Q.14 o.oo o.oo o.oo 0.04 

13 
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Figure 7. Basin subdivision, Thiessen-polygons, and location 

of the rrecipitation stations. 
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In case runoff data were missing fora period of time, a 

negative value was inserted, and the period was omitted when 

computing the criterion of fit. 

Calibration of the model 

The model was calibrated by a manual trial and error pro­

cedure, combined with mapping of the topography of the 

response surface of the error function. 

Three main criteria of fit were used: 

1) Visual inspection of the computed and observed 

hydrographs. 

2) A continuous plot of the accumulated difference between 

the computed and the observed hydrographs expressed as 

ACC.DIFF 

where Oc 
Oo 
t 
C 

= t:(Qc - Oo)·c 

= computed runoff 
= observed runoff 

= time 
= a constant transforming to mm over the 

basin. 

3) The explained variance around the mean expressed as 

where 

I: - 2 I: 2 
R 2 = _t_(_Q_o_-_Q_o_) __ -_t_· _( Q_c_-_O_o_) _ 

I: - 2 
t (Qo - Qo) 

= 1 I: Q 
n t o 

n = the nurnber of days 

In addition to these prime criteria, the calibration process 

was supported by plots of the observed and computed flow 

duration curves and scatter diagrams of maximum daily flows 

for each month. 

The calibration was based on the five years 1963 - 1967, 

while four years were saved as an independent test period. 
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It was soon realized that one of the main problems would be 

to handle a large positive volume error which was increasing 

the value of ACC. DIFF. each monsoon. After several trials 

with various values of Fe, LP and B we realized that it was 

not possible to match the water balance, even if potential 

values of evapotranspiration were used during the monsoon 

without reduction for soil moisture deficit. We therefore 

decided to make a special study on the effect of various 

estimates on the potential evapotranspiration. 

As mentioned in a previous chapter, the work was started 

based on values of the potential evapotranspiration from Rao 

(1976) and valid for the station Sagar. The average yearly 

value for this station is 1 543 mm/year. The corresponding 

value for Jabalpur is 1 448 mm/year, but they show a slightly 

different seasonal pattern. An independent source of informa­

tion is The World Water Balance Atlas (Kovzel, 1968), which 

shows values between 1 750 mm and 2 000 mm per year. These 

somewhat confusing results and the fact that we were in seri­

ous trouble as concerns the volume error made us decide to 

try three approaches. 

l} Original evapotranspiration data from Sagar. 

2) Evapotranspiration data from Sagar with a correction fac­

tor to arrive at an annual total of 1 800 mm. 

3) Evapotranspiration data from Jabalpur with a correction 

factor to arrive at an annual total of 1 800 mm. 

Results from 1963 are shown in Figure 8. These results are 

representative for the whole record and show that the modi­

fied data from Jabalpur are preferable. We do not, however, 

claim that these data are correct, only that these data were 

preferable for this application with all its possible other 

error sources, which may effect the volumes. Figure 8 also 

shows that the level of the storage in the soil moisture zone 

immediately before onset of the monsoon is very little 

16 
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sensitive to the choice of evapotranspiration data and that 

the most interesting evapotranspiration values are those 

during the monsoon. This further means that the total 

amount of potential evapotranspiration in a year is of less 

importance than its seasonal distribution. 

The calibration of the HBV-6 model was finalized within some 

15 computer runs. The final parameter values are summarized 

in Table 2 and plottings are shown in Figure 9. Note that 

negative values have been inserted for missing runoff data. 

A scatter diagram of monthly maximum flows and the flow du­

ration curves are shown in Figure 10. The final value of R2 

was 0.79 for the five years, which isa compromize between a 

high R2-value anda relatively low volume error. A slightly 

higher R2-value can be obtained, but then a larger value of 

ACC. DIFF. has to be accepted . 

Table 2. Final parameter values after calibration of the 

model. 

Parameter Parameter value 

type Unit in subbasin 

1 2 3 4 5 

Fe mm 300 500 500 400 300 

Lp mm 100 200 200 150 100 

B - 1.50 1.50 1.50 1.50 1.50 

C perc mm 0.70 0.70 0.70 0.70 0.70 

L mm 20 
UZ 

20 20 20 20 

Ko % 100 100 100 100 100 -

K1 % 20 20 20 20 20 

K2 % 2 2 2 2 2 

MAXBAS Day 1 1 1 1 1 

BIAG Day 0 1 1 1 1 

18 
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Independent test of the model 

Prior to the final test run of the model on the independent 

data sequence 1973 - 1976 double-mass plottings were per­

formed on its precipitation records. The results were rather 

discouraging. The independent period showed to contain more 

missing data than the calibration period, as shown in Figure 

11. We decided to exclude the year 1973 and to fill in the 

gaps in the remaining records by neighbouring station as far 

as possible to have at least a three year period. The year 

1975 proved to have the most complete data coverage. 

The results from the test period are shown on Figure 12 - 13. 

The corresponding value of R2 is 0.81. 

It is evident that the model still is suffering from a tend­

ency to overestimate the total volumes, even if the error is 

relatively small"' It is also evident that the more complete 

data in 1975 are reflected in the results. The peak in 1975 

is well described in spite of the fact that no peak of this 

magnitude was encountered in the calibration period. 

Test of a lumped model structure 

In order to verify whether the distributed approach or merely 

the better data base are the cause of the increased perform­

ance of the model from Phase I to Phase II of the project, a 

lumped model structure was finally run. The parameter values 

were taken as averages of those found during calibration of 

the distributed model. The surprising results are shown in 

Table 3. 
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Table 3. Comparison, expressed as R2-values, between the 

distributed and the lumped model approach. 

Galibration perioo Verification perioo 

Distributed model 0,79 0,81 

Iurnp:rl rrroel 0,74 0,83 

The conclusion of the comparison, which is also supported by 

visual inspection of the simulations, is that there is no 

significant improvement when using a distributed approach in 

the Narmada Basin. · 
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Transformation of the model into aset of nomograms 

The response of the model to rainfall is governed by its 

state variables, which, in a general form, can be expressed 

as: 

Q = f(P, s sm' 8uz' 8 1z' ST) 
with 

Q = runoff 

p = precipitation 

s = soil moisture state in the model sm 
s = storage in the 

UZ 
upper zone of the model 

81z = storage in the lower zone of the model 

ST = state in the transformation function. 

Due to the quick response of runoff to precipitation in this 

particular basin, the transformation function is not very im­

portant when analysing daily data (MAXBAS = 1 in Table 2). A 

simple translation of one day for four of the subbasins seems 

to be the only routing procedure needed to turn generated 

runoff into discharge (BIAG = 1 in Table 2). 

The storage components of the upper zone, S , and the 
UZ 

lower zone, Slz' are further strongly related to runoff, 

Q, although this relationship is not unique due to nonlinear­

ities caused by the use of a constant percolation capacity, 

C perc 

The above two considerations together with the fact that a 

lumped model seemed to perform equally well as the distribu­

ted one, roade us believe that the runoff response to rainfall 

approximately be expressed as: 

Q(t) ~ f(P(t-1), S (t-2), Q(t-1)) sm . 

where t = time in days (24 h). 
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The interpretation of this equation is that the runoff on a 

given day is uniquely depending of the precipitation and run­

off on the previous day and the computed soil moisture state 

on the beginning of that day (oron the end of day t-2). The 

advantage of the simplified equation is that it may entail 

the possibility to transform the model into a graphical re­

presentation by aset of nomograms. 

After some attempts, aset of nomograms was constructed on 

the basis of synthetic rainfall records, which were run 

through the lumped version of the model with variable initial 

conditions. It was soon found out that a practical way would 

be to use three nomograms and two simple arithmetic expres­

sions. Due to the simplifications there was some scatter when 

plotting the graphs, but these were not considered to be 

serious. 

The set of nomograms is presented in Figures 14 - 16, and the 

procedures when calculating runoff is given below: 

1. Start with a given value of Q(t-1) and S (t-2). sm 
Enter nomogram 1 (Figure 14) with the actual precipi-

tation value for the last 24 hours, P(t-1), and 

arrive at the runoff value Q(t). 

2. Enter nomogram 2 (Figure 15) with P(t-1) and arrive 

at an intermediate soil moisture state S' sm 

3. Compute a new intermediate soil moisture state as: 

S' + S (t-2) sm sm s Il 

sm 2 

4. Enter nomogram 3 ( Figure 16) with S" and arrive sm 
at a value of the actual evapotranspiration of day 

(t-1), EVP(t-1). 
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5. Compute the soil moisture state for day t-1 as: 

S ( t-1) = S" - EVP ( t-1) • 
sm sm 

6. Put S (t-2) = S (t-1) and Q(t-1) = Q(t) 
sm sm 

and return to 1 . for simulation of next day. 

In Figure 17 simulations by the nomogram technique are com­

pared to computer simulations by the lumped model version. A 

scatter diagram of model simulations by the lumped mode! 

versus nomogram simulations is shown in Figure 18. As can be 

seen, the agreement is good with deviations of a smaller 

order of magnitude than between the model simulations and the 

observed hydrographs . Due to the quick response of the model 

in this basin the effect of runoff on the previous day is 

very small and does not change at values higher than 900 

m3 /s . 

33 



S5 m(t-2) mm 
l(t-1) mm 

>---~ ..........,,-~c----+--~-+-----,~---------~---+-~-------'------'-120 
300 250 200 150 100 so 

20 

0 

f------- f-----------,,~---+----+----- --1------ -----1---- - ---'-15 000 
Q(t)m3/s 

Q(t-1 ) m3/s 

Figure 14. Nomogram 1. Estimation of Q(t) from P(t-1), 

S (t-2), and Q(t-1), sm 

34 



S5m mm 

400 
5smlt-2)mm 

350 

300 

300 250 

200 

150 

200 100 

50 

Figure 15, Nomogram 2, Estimation of S' from P(t-1) sm 

EVP lt-1) mm 

8 

7 

6 

4 

2 

and S (t-2). sm 

100 

r------------------may 

r------------------june 
r------------------april 

r------------------ march 

october 
F==================september 
r------------------july 
~=================august 

feliruar y 

------------------november 

------------------january 
,---------------------december 

zoo 300 400 Ssm mm 

Figure 16. Nomogram 3. Estimation of EVP{ t-1) from 

and month of the year. 

35 

S" sm 



PERIIJO 750625 - 75 C'S 15 

Q IM3/SI 

2000 

1000 

nomogram simulation 
computer simulation 

R s 

Figure 17. Comparisons between simulations by the nomogram 

technique and computer simulations by the lumped 
3 

Q (m /s) 
nomogram 
simulation 
200 

: SO 1 

100 

500 

model version. 

SCRTTER DIRCRRM 
BRRGI NRRMRDR INDIR 

5000 

// 

// 

// 
// 

10000 

/// 
·/ 

/// 

15000 20000 

< 
Q (m..,/s) 
cornputer 
sim1lation 

Figure 18. Simulation by the nomogram technique plotted 

against computer simulations by the lumped model 

version. (Daily data.) 

36 



Needless to say, the use of the graphical representations of 

the model has the advantage that forecasts and shorter simu­

lations can be performed without any computer support. The 

six steps needed can be reduced to four (1, 4, 5, and 6) if 

there is no rain, and to three (4, 5, and 6) if only soil 

moisture is of interest during a dry spell. Because of the 

low variability of the soil moisture conditions imrnediately 

before the onset of the monsoon, the model can be at rest 

during the dry season, and the computation can start up in 

May or June. 

It has to be strongly emphazised that this set of nomograms 

is derived uniquely for this particular basin and this parti­

cular set of input data. The shape of the nomograms will be 

different in another basin, and it will be much more compli­

cated to construct a nomogram in abasin with slow response 

or with a significant snowmelt component. 

Summary and discussion 

The results from the calibration of the distributed HBV-6 

model are encouraging, and the model accounts for same 80 % 

of the initial variance of runoff in the Upper Narmada basin. 

The increase in performance from the lumped model in Phase-I 

of the project is considerable. The main cause of this im­

provement is the better coverage of precipitation data. The 

switch from a lumped toa distributed model structure did not 

result in a significantly better simulation. 

The choice of the potential evapotranspiration data <luring 

the monsoon proved to be very critical for the overall per­

formance of the model, while the values during the dry season 

are not as critical. This means that the seasonal distribu­

tion of the estimates of the potential evapotranspiration is 

more important than the annual totals. 
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Due to the quick response of the basin to rainfall and the 

absence of snow, it has been possible to transform the model 

inta aset of nomograms and two simple arithmetic operations . 

The performance of this procedure is comparable to that of 

the lumped model version. It is possible to run the model for 

the Upper Narmada river with the set of nomograms in this 

report and without support from a computer. 
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