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Abstract
Metal AM (additive manufacturing) components are generally inhomogeneous and have different microstructure in the bulk
compared with (contour) regions near the surface. This, as well as rough as-built surfaces, affects mechanical properties. In
this paper, we develop a topology optimization method that considers such inhomogeneities. The method is a direct extension
of standard density-based methods using linear filtering for regularization, and a second filtering of the design variables is
used to identify a surface layer, the thickness of which is given by the filter radius. Domain extension is used in order to
properly identify such layers at the boundary of the design domain. The method is generally applicable but is demonstrated
for stiffness optimization. Both two- and three-dimensional problems are treated. A general property of the method is that
the topological complexity is reduced, i.e. the optimized designs get fewer and thicker structural members as the width of
the surface layer is increased.

Keywords Topology optimization · Surface layer · Additive manufacturing · Stiffness optimization · Transversely isotropic
material

1 Introduction

Topology optimization (TO) and additive manufacturing
(AM) is an unusually natural and powerful match of design
and manufacturing methods, sharing the property of very
large freedom in geometrical form. This fact has prompted
new developments in TO, tailored to the needs of AM, such
as overhang constraints and anisotropic material properties.
However, the important fact that mechanical properties of
metal AM structures frequently show a pronounced member
size dependency (Algardh et al. 2016), originating from
surface or boundary layer effects, has not been modelled and
incorporated in TO methods. The present paper develops
a TO method that identifies boundary regions and assigns
unique properties, different from bulk properties, to these
regions.

Kahlin et al. (2017) studied the mechanical properties
of AM titanium Ti-6Al-4V test specimens built by both
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electron beam melting and laser sintering. In particular, they
compared fatigue properties of specimens that have rough
as-built surfaces with specimens where surfaces have been
machined and polished. A distinct trend in these results is
that the fatigue limit is increased with improved surface
quality. Moreover, even when surface roughness effects are
essentially removed by surface treatments, there is still a
difference in material properties in the bulk compared with
the boundary region or surface layer. Balachandramuthi
et al. (2019) studied the microstructure of AM alloy
718, investigating specimens made by both electron
beam melting and selective laser sintering, and found
that the hatch (bulk) region has pronounced directional
properties, resulting in anisotropic material behaviour,
while the contour (surface layer) region shows much less
directionality in the microstructure, indicating an isotropic
material behaviour. Anisotropic material behaviour of metal
AM components is quantified in Kumare et al. (2018).
In order to take into account both contour region effects
and surface roughness effects, we develop a particular TO
method as indicated above.

TO methods that identify boundary regions have
previously been developed for application to coated
structures, where the coating material typically has a higher
stiffness than the bulk material. This represents the inverse
of the present physical motivation, where, e.g. a rough as-
built surface implies a boundary region of less stiffness
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then the bulk. TO methods for coated structures have been
developed based on both density methods (Clausen et al.
2015; Yoon and Yi 2019; Wu et al. 2017) and level-set
methods (Wang and Kang 2018). These density methods use
a sequential application of filtering and projections, which is
in contrast to the more direct approach in this paper, where
two separate densities calculated by standard linear filtering
are used, as shown in Fig. 1.

2 Filtering andmaterial interpolation

Motivated by the experimental studies discussed in the
introduction, we develop a TO method that identifies
surface layers of the optimized structure and attributes
different material properties to bulk and surface. Three
density-like field variables are used:

• The optimization variable ξ .
• The shape density ρ, obtained from ξ by standard linear

filtering.
• The surface layer identifier ρS , also obtained from ξ by

standard linear filtering, but for a large filter radius than
for ρ.

The first two of these variables are used in a way that is
standard in modern TO Bendsøe and Sigmund (2002) and
Christensen and Klarbring (2009), while the surface layer
identifier ρS is novel and used to calculate a zero-one-valued
function

S = H(|∇ρS |2), (1)

where H is the Heaviside step function, ∇ is the gradient
operator and | · | denotes the Euclidean norm. Figure 1
illustrates the relation between these functions in the ideal
situation when the optimization variable ξ is zero-one-
valued.

The function S—which at an optimum of a TO problem
is expected to take the value zero in the bulk of the
structure and the value one close to the boundary—can
be used to interpolate essentially any material parameter
of interest. In this paper, we study two cases: Firstly, a
simple model where different but constant Young’s moduli
in the bulk and in the surface layer are considered. These
are denoted EB and ES , respectively, and the interpolation
of Young’s modulus, using SIMP (Bendsøe and Sigmund
2002; Christensen and Klarbring 2009) for the shape
density, is then

E = ρq(SES + (1 − S)EB), (2)

where q ≥ 1 is the SIMP exponent. Secondly, we
interpolate between transversely isotropic material in the
bulk, represented by a matrix EB , using Voigt notation, and
isotropic material in the surface layer, where the matrix is
denoted ES . Expression (2) is then replaced by

E = ρq(SES + (1 − S)EB). (3)

Equation (2) can be included as a special case of (3), and
in the following we use the latter. The precise form of
the material matrix E for both isotropic and transversely
isotropic materials is given in Appendix 1.
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Fig. 1 Two linear filter operations, with different filter radii R and RS , R ≤ RS , are applied to a zero-one-valued optimization variable ξ ,
producing ρ and ρS . The latter is used to calculate the zero-one-valued function S in (1)
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2.1 Linear filtering and gradient

This subsection introduces the linear filter operator (Bor-
rvall 2001; Bourdin 2001) and gives the details of an
approximate calculation of the gradient ∇ρS to be used in a
finite element method.

The linear filter operator takes the field ξ , defined on the
design domain �, and delivers the field ρS , defined on the
same domain, by the convolution

ρS(x) =
∫

�

ξ(y)ψ(x, y) dy. (4)

The integral kernel ψ is given by

ψ(x, y) = max(0, RS − |x − y|)∫
�

max(0, RS − |x − z|) dz

,

where RS is a filter radius. This definition implies∫
�

ψ(x, y) dy = 1, for all x ∈ �,

and thus ρS(x) ∈ [0, 1] if ξ(x) ∈ [0, 1]. The field ρ is
calculated from ξ in the same way, but using a filter radius
R ≤ RS .

We like to calculate the Euclidean norm of the gradient
of ρS(x), and do so by first calculating partial derivatives.
Since the derivative ∂ψ/∂xj is defined almost everywhere,
we have
∂ρS

∂xj

(x) =
∫

�

∂ψ

∂xj

(x, y)ξ(y) dy. (5)

For x and y such that ∂ψ/∂xj exists and is non-zero, i.e.
when x �= y and |x − y| < RS , we have

∂ψ

∂xj

(x, y)=
[
Pj (y−x)F (x)−(RS −|x−y|) ∂F

∂xj

(x)

]
1

(F (x))2
,

where Pj (y − x) is the projection of the unit vector
(y − x)/|y − x| on the j -axis, i.e. cos or sin of an angle,

F(x) =
∫

�x

(RS − |x − y|) dy,
∂F (x)

∂xj

=
∫

�x

Pj (y − x) dy,

and

�x = {y ∈ � : |x − y| < RS}.
Note that for points x a distanceRS away from the boundary
of �, F(x) is independent of x and equal to (πRd+1

S )/3,
where d is 2 or 3 depending on the spatial dimension of the
problem.

2.1.1 Discrete filter derivative

Equation (5) is discretized in order to be used in a finite
element context. Taking ξ as element-wise constant, having
a value ξe for finite element e, we get,

∂ρS

∂xj

(x) =
∑

e

ξe

∫
�e

∂ψ

∂xj

(x, y) dy,

where�e is the domain of element e. Approximating further
by taking one integration point per element, we get

∂ρS

∂xj

(x) ≈
∑

e

ξe|�e| ∂ψ

∂xj

(x, ye
C), (6)

where ye
C is the centroid (integration point) of element e and

the sum needs to be taken only over those elements where
∂ψ/∂xj is non-zero. This equation is evaluated at x = xi

C ,
the centroid of element i, and the other functions in the
expression of ∂ψ/∂xj are approximated as

F
(
xi

C

)
≈

∑
e∈Ni

(
RS −

∣∣∣xi
C − ye

C

∣∣∣
)

and
∂F (xi

C)

∂xj

≈
∑
e∈Ni

Pj

(
ye

C − xi
C

)
,

where

Ni = {e : |xe
C − xi

C | < RS}.
Having calculated the partial derivatives of ρS , we have

|∇ρS(x)|2 =
d∑

j=1

(
∂ρS

∂xj

(x)

)2

. (7)

The discretized zero-one measure used in the optimization
problem, defined in the next section, is then

Si = H̃

(∣∣∣∇ρS

(
xi

C

)∣∣∣2
)

,

where the smooth function

H̃ (x) = tanh(Ax), (8)

is used to approximate the Heaviside step function for x ≥ 0
by choosing A large enough.

For illustration, approximate expressions for |∇ρS(x)|2
in case of a uniform 2D mesh are given in Appendix 2 for
two different ranges of the filter radius. Note, however, that
the numerical implementation uses the general formulas (6)
and (7), valid for arbitrary meshes.

3 Discrete optimization problem

Given a standard displacement-based finite element dis-
cretization of linear elasticity, we consider a stiffness opti-
mization problem as follows:

(SO)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

min
ξ

f (ξ) = F T u(ξ)

subject to

⎧⎪⎨
⎪⎩

∑n
i=1 aiρi(ξ) ≤ V

ε ≤ ξi ≤ 1, i = 1, . . . , m

ξi = ε, i = m + 1, . . . , n.

Here, n is the number of finite elements covering �, V is
the total available structural volume and ai is the volume of
element i. The vector ξT = (ξ1, . . . , ξn) is the discretized
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optimization variable, where we use the standard setting of
one such variable for each finite element. The corresponding
discrete shape density ρ is a function of ξ through the linear
filter defined in the previous section. Following Clausen and
Andreassen (2017), we use the domain extension approach
in order to treat external boundaries in the same way as
internal boundaries. This is crucial for identification of
boundary regions by means of the filtered density ρS . If �

is considered the extended domain, the domain extension
method means that optimization variables are prescribed to
the lower box limit ε in extended parts (shown in Figs. 2, 4
and 5), while the elasticity problem is solved for the whole
domain �. Without loss of generality, we assume that the
last n − m elements of ξ are fixed to the lower bound ε.

For a given external load vector F , u = u(ξ) is the
solution of the equilibrium state problem

F = K(ξ)u, (9)

where using (3) the stiffness matrix can be written as

K(ξ) =
n∑

i=1

ρi(ξ)q
(
Si(ξ)KS

i + (1 − Si(ξ))KB
i

)

where KS
i and KB

i are (global) element stiffness matrices of
element i for surface and bulk material, respectively, Si(ξ)

was defined in Section 2.1 and the function ρi(ξ) is given
by a discretized version of the linear filter operator (Borrvall
2001), defined as

ρi(ξ) =
∑n

k=1 wkiξk∑n
k=1 wki

,

where the filter weights are

wki = |�k|max
(
0, R −

∣∣∣xk
C − xi

C

∣∣∣
)
.

The small positive number ε in (SO), together with suitable
support conditions, guarantees that K(ξ) is nonsingular for
all admissible designs, giving a unique solution u = u(ξ).

Problem (SO) is solved by the method of moving
asymptotes (MMA) (Svanberg 1987) using expressions for
the sensitivity of the objective function given in Appendix 3.
The computational cost is dominated by solving (9), similar
to standard stiffness based TO. The stopping criterion for
the optimization is given by∣∣∣∣fk+1 − fk

fk+1

∣∣∣∣ ≤ tol, (10)

where fk is the objective value at the kth iteration and tol is
a given value.

Remark 1 As mentioned in the introduction, density-based
TO methods that identify boundary regions have previously
been developed for application to coating material (Clausen
et al. 2015; Yoon and Yi 2019; Wu et al. 2017). The
comparison with the present approach is, however, not direct

since the aim is a different application and since the methods
differ in several important ways. The present approach uses
two separate applications of linear filtering of the design
variable followed by one projection (the Heaviside step),
while Clausen et al. (2015) use a sequence of filterings and
projections, where continuation strategies are needed for the
projection parameters. Moreover, to enable calculation of
gradients, the filters in Clausen et al. (2015) are of PDE-type
using nodal-based densities. The present work shows that
gradients can be effectively calculated for classical element-
wise densities by using the basic analytical expression
(4) for the linear filter. The actual formulation of the
optimization problem also differs between Clausen et al.
(2015) and the present work. The volume constraint of
problem (SO) is such that the “cost” is the same for bulk
and surface layer material. In Clausen et al. (2015), the
corresponding constraint is formulated in terms of mass and
by giving different physical densities for bulk and surface
layer material, the “cost” will be different for the two types
of material. Moreover, they also use a different interpolation
from (2), which in the notation of this paper is

E = SqES + ρq(1 − Sq)EB .

It is not clear at the present stage of development whether
the present method, intended for AM applications, could be
used also for the application to coated structures and vice
versa.

4 Numerical results

The proposed method is implemented in the in-house finite
element program TRINITAS (2000). Results are presented
for both the isotropic case, when (2) is used for material
interpolation, and for the case of transversely isotropic bulk
material, using (3). All calculations are performed on a
desktop computer with an Intel(R) Core(TM) i7-7500U
CPU@2.70GHzwith 24GB of RAM. The equilibrium state
problem (9) is solved with a sparse direct solver from Intel
MKL.

For the case of isotropic material properties, we use
a bulk material having Young’s modulus 210 GPa and
Poisson’s ratio 0.3. This Young’s modulus is then lowered
in the surface region to represent, e.g. the influence of
the rough as-built surface. Presently, no experimentally
determined value for this surface region Young’s modulus
is known, but the qualitative influence of such an
inhomogeneity on optimal topologies is certainly of interest
and in the examples we use EB = 210 GPa and ES = 105
GPa. For the case of transversely isotropic bulk material, we
use (3) to interpolate between transversely isotropic material
in the bulk, represented by EB , with the independent
material constants defined in Appendix 1 set to E1 = 210
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Fig. 2 Geometry of the cantilever beam

GPa, E3 = 150 GPa, ν12 = 0.23, ν13 = 0.3 and G13 = 78
GPa, and isotropic material in the surface layer having a
Young’s modulus of 75 GPa and Poisson’s ratio 0.3.

The value of the SIMP parameter is q = 3 and the initial
design variables are taken as ξe = 0.5. The lower bound
on the design variable is ε = 0.001. The maximum bound
on the structural volume is V = 0.4V0 in the 2D problems
and V = 0.3V0 in the 3D problem, with V0 as the initial
volume of the structure. The parameter A in the Heaviside
step function approximation should be scaled with respect
to finite element size h and filter radius RS . Since the

approximate expression for |∇ρS(x)|2 is proportional to
h2d/R2+2d

S , see Appendix 3 for the 2D case d = 2, we use
A = γ (R2+2d

S /h2d) where γ = 8. The stopping tolerance
in (10) is set to tol = 10−9.

4.1 2D cantilever beam

As the first example, we consider a 2D cantilever beam,
shown in Fig. 2. The dimensions of the geometry are shown
in Fig. 2, where L1 = 200 mm. The design domain is
discretized by 200 × 120 bi-linear square plane stress
elements with thickness of 1 mm and side length h = 1 mm.
The beam is fixed at the left end, while a static load
F1 = 150 N, distributed over 4 mm, is applied at the other
end. The regions in grey colour indicate elements used for
domain extension.

The standard filter radius used to obtain the shape density
is taken as R = 1.2 mm, while three different values are
used for the second filter radius identifying the surface layer,
namely RS = 1.2, 2.3 and 3.2 mm.

Table 1 shows results for the cantilever beam in the
case of isotropic material. The first row of the table shows
the topology of the optimized model, while the second
row shows the material distribution within the structure,
red colour indicating bulk material with EB = 210 GPa
and green colour surface material with ES = 105 GPa.
Different filter radii RS , implying different surface layer
thicknesses, are compared. What is evident is that a thicker
layer promotes a less complicated topology, having thicker

Table 1 Optimized designs for the cantilever beam with isotropic material properties in both bulk and surface layers

RS = 0 RS = 1.2 mm RS = 2.3 mm RS = 3.2 mm

1.00

0.001

210

0.0

105

LS NA 2395 mm 1590 mm 1336 mm

Comp. 5.4 Nmm 5.6 Nmm 5.7 Nmm 5.9 Nmm

The first row shows the topology of the optimized model and the second row shows the material distribution, where EB is red and ES is green.
Length (LS ) of the boundary (perimeter) and optimal compliances are shown in the bottom lines
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Table 2 Optimized designs for the cantilever beam with transversely isotropic material properties in the bulk and isotropic material properties in
the surface layer

RS = 0 RS = 1.2 mm RS = 2.3 mm RS = 3.2 mm

1.00

0.001

1.00

0.5

0.0

LS NA 2211 mm 1487 mm 1219 mm

Comp. 6.8 Nmm 7.1 Nmm 7.2 Nmm 7.4 Nmm

Length (LS ) of the boundary (perimeter) and optimal compliances are shown in the bottom lines

structural members. The reason for this is that the total
length of the boundary is a direct measure of the proportion
of the available material that has low stiffness. To quantify
this, we calculate the length of the boundary of the
optimized geometries in Table 1, by summing the areas
of all finite elements belonging to the surface layer and
dividing by the layer thickness (that is the filter radius
RS). These lengths, denoted LS , are given in Table 1. For
comparison, to the far left in Table 1, the optimized topology
for the standard setting without the surface layer influence
is shown.

Table 2 shows optimized results for the cantilever beam
in case of transversely isotropic material in the bulk and
isotropic material in the surface layer. As for the previous

case, the first row shows the topology of the structure and
the second row shows the material distribution. The red
colour corresponds to transversely isotropic material which
is distributed in the bulk, while the green colour indicates
isotropic material properties which is distributed in the
surface layer. A similar trend in geometry change as the
second filter radius is increased is observed in both Tables 1
and 2, i.e. the structure changes to a less complicated
topology. For both cases, a gradual increase in compliance
value is noticed when RS is increased from zero.

Figure 3 shows the evolution of the objective function for
both cases when RS = 3.2 mm. The increase in the comp-
liance value noticed in the initial iterations is a consequence
of using an infeasible point (ξe = 0.5) as initial design: the
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0 400 800 0 500 1000
0

11

22

33

44

Fig. 3 Objective function convergence plots for RS = 3.2 mm. Left: Isotropic material. Right: Transversely isotropic material
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Table 3 Optimized designs for the MBB beam with isotropic material properties in both bulk and surface layer

RS = 0 RS = 1.8 mm RS = 2.5 mm RS = 3.5 mm

1.00

0.001

210

0.0

105

LS NA 2574 mm 2126 mm 1767 mm

Comp. 22.3 Nmm 25.3 Nmm 27.3 Nmm 29.7 Nmm

The first row shows the topology of the optimized model and the second row shows the material distribution with EB in red and ES in green.
Length (LS ) of the boundary (perimeter) and optimal compliances are shown in the bottom lines

objective function increases until the volume constraint is
satisfied. The slight oscillations noticed in the plots are due
to updates of the asymptotes in the MMAmethod, and is not
related to the particular problem formulation.

4.2 2DMBB beam

The next example is an MBB beam where the dimensions
of the geometry are shown in Fig. 4, where L2 = 100 mm.
Exploiting symmetry and again using an element size
h = 1 mm, the right half of the beam is discretized
with 300×100 bi-linear square quadrilateral plane stress
elements with a thickness of 1 mm. A static load F2 = 150
N is applied. This force, as well as the support in the lower
right corner, is distributed over 4 mm. Like in the previous
example, grey colour indicates parts used in the domain
extension approach.

The filter radius R = 1.35 mm is used for the shape
density, while three different values are compared for the
second filter radius: RS = 1.8, 2.5 and 3.5 mm. Like in
the previous example, the problem is solved for both the
isotropic and the transversely isotropic cases.

Results for the isotropic case are shown in Table 3. The
first row shows the topology of the optimized model, while
the second row shows the material distribution, with red
colour indicating regions with Young’s modulus EB =
210 GPa and green colour showing the surface layer with
Young’s modulus ES = 105 GPa.

Table 4 shows results when transversely isotropic mate-
rial properties are used in the bulk and isotropic material
properties in the surface layer. The topology of the opti-
mized design and the corresponding material distribution
within the structure are shown in the first and second
row, respectively. In all examples, it is seen that when the

Fig. 4 Geometry of the MBB
beam
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Table 4 Optimized designs for the MBB beam with transversely isotropic material properties in the bulk and isotropic material properties in the
surface layer

RS = 0 RS = 1.8 mm RS = 2.5 mm RS = 3.5 mm

1.00

0.001

1.00

0.5

0.0

LS NA 2767 mm 2262 mm 1790 mm

Comp. 27.3 Nmm 29.6 Nmm 32.5 Nmm 34.6 Nmm

Length (LS ) of the boundary (perimeter) and optimal compliances are shown in the bottom lines

second filter radius is increased, the structures are changed
towards less complicated topology. The length of perimeters
is calculated and given in the tables. We also note that in
all examples there is an increase in the optimal compliance
value when the second filter radius is increased.

4.3 3D cantilever beam

For the final example, we study a 3D cantilever beam, where
the dimensions of the geometry are shown in Fig. 5 with

L3 = 100 mm. The design domain, represented in orange
colour, is discretized by 100× 60× 30 eight-noded trilinear
brick elements, resulting in an element size h = 1 mm. The
surface of the beam is fixed at the left end, while a static
line load F3 = 150 N/mm is applied at the other end. The
regions in grey colour, shown in Fig. 5, indicate the elements
that are used in the domain extension approach. The filter
radius R is set to 1.2 mm and for brevity we treat only the
isotropic case of (2).

Fig. 5 Geometry of the 3D
cantilever beam
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x
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z
y

1.00

0.001

Fig. 6 Optimized designs with RS = 0. Left: Iso-surface. Right: Sliced optimal topology. Compliance is 0.22 Nmm

Figure 6 shows the optimized design for RS = 0, i.e.
no surface layer is present. The iso-surface of the optimized
design, based on ρ = 0.5, is shown to the left in Fig. 6, while
sliced surfaces of this design are shown to the right. The
slicing is done in orthogonal directions: an XY-symmetry
plane and different YZ-planes at regular intervals of 0.2L3.
It is evident that the structure is hollow, containing an inner
cavity.

Figure 7 shows an optimized design for RS = 1.5 mm,
with isotropic material in both bulk and surface layer. The
iso-surface of the optimized topology is shown in Fig. 7.
Both the geometry and the material distribution are shown
using slicing. Red colour in the material distribution plot
indicates bulk material having the modulus value EB = 210
GPa, while green colour indicates the surface layer with the
modulus valueES = 105 GPa.We notice a change in profile

x

z
y x

z
y

1.00

0.001

x

z
y

210

0.0

105

Fig. 7 Optimized designs with RS = 1.5 mm. Top left: Iso-surface. Top right: Sliced optimized topology. Bottom: Sliced material distribution.
Compliance is 0.25 Nmm
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when compared with the optimized profile obtained with
RS = 0, and the inner cavity has a smaller projected area
in the XY-plane. There is a change in optimal compliance
value from 0.22 Nmm in Fig. 6 to 0.25 Nmm in Fig. 7, due to
presence of material with low stiffness in the surface layer.

5 Concluding remarks

We have shown that linear filtering followed by a smoothed
Heaviside step can be used to construct a function S that
identifies a surface layer in TO optimized structures. The
method is based on calculating the gradient of the filtered
design field, using its analytical expression as a convolution
integral. After a simple discretization involving element-
wise constant fields and one integration point per finite
element, a value Si = Si(ξ) for each element i indicates
bulk (Si ≈ 0) or boundary (Si ≈ 1). The computational
cost is only minutely larger than that for standard stiffness
optimization involving homogenous material, where the
solution of the state problem dominates the computational
time. As a general conclusion concerning the influence of
a surface layer on optimized structures, it is evident that
the larger the surface layer, the more topologically simple
the structure becomes. The simple intuitive explanation is
that for a topologically complicated structure, consisting of
many structural members, the total length of the boundary
is larger, resulting in more low stiffness material spent
in the surface layer, working essentially like a perimeter
constraint (Borrvall 2001). It can also be mentioned that
similar trends have been observed in robust topology
optimization considering uncertain geometrical boundary
imperfections (Zhang and Kang 2017).

A goal of the presentation of the method has been to stay
as close as possible to a standard setting using linear filters
and element-wise densities, and, therefore, other filter-
related issues such as length-scale control and projections to
achieve black-and-white designs have not been discussed.
However, since the identification of the boundary layer is
uncoupled, or done in parallel, to the identification of the
geometrical domain, such extensions of the method are
rather direct.
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Appendix 1. Transversely isotropic material

The material matrix in Voigt notation E contains 5
independent material constants for a transversely isotropic
material. This is most clearly visible in the compliance
matrix, which is the inverse of E. Given that direction 3 is
the build direction and, thus, directions 1 and 2 define the
plane of isotropy, it reads

E−1 =

⎡
⎢⎢⎢⎢⎣

1/E1 −ν12/E1 −ν31/E3 0 0 0
−ν12/E1 1/E1 −ν31/E3 0 0 0
−ν13/E1 −ν13/E1 1/E3 0 0 0
0 0 0 1/G12 0 0
0 0 0 0 1/G13 0
0 0 0 0 0 1/G13

⎤
⎥⎥⎥⎥⎦ ,

where symmetry requires ν13/E1 = ν31/E3 and the shear
modulus in the plane of isotropy is

G12 = E1

2(1 + ν12)
.

The 5 independent material constants are E1, E3, ν12, ν13
and G13. For an isotropic material, E1 = E3, ν12 =
ν13 and G13 = G12, implying 2 independent material
constants.

Appendix 2. Example of discretization

Consider a uniform 2D mesh of square elements of side
length h such that h < RS <

√
2h. Numbering elements

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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by rows and columns, (k, �) ↔ e, the approximation of the
square gradient for an interior element (2, 2) is

|∇ρS(x)|2 ≈
(

3h2

πR3
S

)2 [
(ξ1,2 − ξ3,2)

2 + (ξ2,3 − ξ2,1)
2
]
.

For a slightly larger filter radius,
√
2h < RS < 2h, we have

|∇ρS(x)|2 ≈
(

3h2

πR3
S

)2 {[(
ξ1,1

1√
2

+ ξ1,2 + ξ1,3
1√
2

)

−
(

ξ3,1
1√
2

+ ξ3,2 + ξ3,3
1√
2

)]2
+ [. . . ]2

}
,

where the first square parenthesis represents the derivative
in the vertical (row) direction and the second square
parenthesis is a similar expression representing derivative in
the horizontal (column) direction.

Appendix 3. Sensitivity analysis

Since we are using the gradient-based method MMA (Svan-
berg 1987) for solution of (SO), we need the sensitivity
or derivative of the objective function f (ξ). The following
expression is valid (Christensen and Klarbring 2009):

∂f

∂ξk

= −uT ∂K

∂ξk

u

= −uT

{
n∑

i=1

[
∂ρi(ξ)q

∂ξk

(
Si(ξ)KS

i + (1 − Si(ξ))KB
i

)

+ρi(ξ)q
∂Si

∂ξk

(KS
i − KB

i )

]}
u,

where

∂Si

∂ξk

= 2H̃ ′(|∇ρS(xi
C)|2)∂ρS

∂xj

(xi
C)|�k| ∂ψ

∂xj

(xi
C, yk

C),

in which H̃ ′ is the derivative of the smooth Heaviside
function approximation, and u denotes the solution to (9).
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