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Abstract

Artefact detection in microstructures using image
analysis

Oskar Stenerlöw

Gyros Protein Technologies AB produce instruments designed to perform 
automated immunoassaying on plastic CDs with microstructures. While 
generally being a very robust process, the company had noticed that 
some runs on the instruments encountered problems. They hypothesised 
it had to do with the chamber on the CD in which the sample is added 
to.It was believed that the chamber was not being filled properly, 
leaving it completely empty or contained with a small amount of air, 
rather than liquid. This project aimed to investigate this hypothesis 
and to develop an image analysis solution that could reliably detect 
these occurrences. 

An image analysis script was developed which mainly utilised template 
matching and canny edge detection to assess the presence of air. The 
analysis had great success in detecting empty chambers and large 
bubbles of air, while it had some trouble with discerning small 
bubbles from dirt on top of the CD. Evaluating the analysis on a test 
set of 1305 images annotated by two people, the analysis managed to 
score an accuracy of 96.8 % and 99.5 % respectively.
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Sammanfattning

Gyros Protein Technologies AB är ett företag som utvecklar instrument menade för au-
tomatiserad immunanalys. Immunanalys är en metod som används för att ta reda på
om en viss typ av molekyl förekommer i ett prov. I instrumenten tillförs olika typer av
reagens till en CD-skiva i plast med flödeskanaler på bara ett par millimeter i storlek.
När alla reagens såsmåningom passerat en detektionskolonn avläser en laser kolonnen
och avgör om provet innehöll den eftersökta molekylen. I de allra flesta fall går detta
som planerat, men företaget har upptäckt att den kammare som används för att mäta upp
mängden prov i CD-skivan ibland fylls felaktigt och innehåller luft. Detta gör att använ-
dare riskerar att presenteras med resultat som inte stämmer överens med verkligheten.
För att undersöka problemet valde Gyros att skapa detta projekt där det föreslogs instal-
lation av en kamera i ett av deras instrument som kan ta bilder på vilka det sedan kan
appliceras bildanalys.

Bildanalys är ett forskningsområde ägnat åt att extrahera information ur digitala bilder.
Digitala bilder består av små element kallade pixlar som tillsammans utgör en hel bild.
En pixel innehåller data som beskriver vart i bilden den är placerad samt vilken färg och
hur stark färg den avger. Denna typ av data används inom bildanalys för att manipulera
bilder och extrahera den information som eftersöks. Det kan vara simpla saker som att
göra en bild ljusare eller mörkare, eller mer avancerade tillämpningar där enkilda objekt
i en bild kan lokaliseras enbart med hjälp av olika beräkningar på den data som är lagrad
i pixlarna. Bildanalys har länge använts i en rad olika områden som sträcker sig från
rymden ner till mikroskopibilder av celler.

I detta projekt skapades ett bildanalys-skript utformat att detektera de fall då kammare
under immunoanalysen blev felaktigt fyllda och innehöll luft. Skriptet undersöker två
saker; är kammaren tom eller innehåller kammaren en luftbubbla? Kammare som är
tomma upptäcker skriptet genom att undersöka hur väl en mall av en tom kammare
matchar mot bilden. Om mallen matchar bra mot bilden kan skriptet avgöra att kam-
maren är tom. Den andra egenskapen som utnyttjas är det att en tydlig kant påträffas
mellan vätska och luft i de kammare som innehåller en bubbla. Med en typ av kantde-
tektion kan skriptet upptäcka om en kant är närvarande i bilden och på så sätt avgöra om
kammaren innehåller luft eller inte. När skriptet utvärderades på ett en samling av 1305
testbilder kunde det fastställas att skriptet lyckades detektera luft i 96,8 till 99,5 % av
fallen.
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1 Introduction

Gyros Protein Technologies AB is a company that develop solutions for bioanalysis. Part
of the solutions that the company offers are instruments designed to perform automated
immunoassaying. In short, immunoassays are used to detect the presence or concentra-
tion of a specific molecule, also called the analyte (Kemal Yetisen et al. 2013). It is a
technique that is applied in many different areas ranging from disease diagnosis to qual-
ity assurance (Findlay et al. 2000). In the process, as described in the Gyrolab user guide
P0020528 (Gyros Protein Technologies AB 2020b), the instruments distribute reagents
to a plastic CD with micro structures with areas no larger than a few square millimeters.
There are designated inlets on the CD for different types of reagents and all of them pass
through a capture column at some point. Once the sample passes over the column, any
analyte that is contained in the sample will bind to the column. The last component to
pass through the capture column is a fluorescent marker which only binds to the analyte.
When all reagents have passed through the column, a laser scans it. Should the sample
have contained the analyte, the fluorescent markers emit a light which is detected by a
photomultiplier tube (PMT) and a signal is registered. The signals are then evaluated
by software and a user can determine whether or not the sample contained the analyte.
During this process, the sample is added to a specific part of the CD called the volume
definition chamber (VDC). In figure 1 an illustration of the CD can be seen including
the VDC.

Figure 1: A part of a immunoassay CD. Different micro structures are labeled in the
figure. Taken with permission from Gyros Protein Technologies (Gyros Protein Tech-
nologies AB 2020a).
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While this process generally works well, an unknown fraction of the runs encounter
problems during the addition of sample to the VDC, leaving the chamber partly filled or
completely empty. When this occurs, the user may be presented with results indicating
that the sample did not contain the analyte, when in fact it did but the results were poor
due to lack of liquid in the VDC. Errors like these are dangerous as the user may be pre-
sented with faulty results and be completely unaware of it. As a solution to the problem,
Gyros proposed installation of a camera in one of their instruments that would be able
to capture images of the volume definition chamber after the sample has been added.
On the images that are taken, image analysis would be applied to determine when the
VDC is not completely filled and notify users of it. The hypothesis is that there should
be differences in filled vs. empty/half empty chambers that existing image processing
techniques should be able to reliably detect.

Image analysis is available in many programming languages such as C and C++, Java,
Python and Matlab, just to mention a few. Which language to choose depends on prefer-
ence, but if performance is of high importance C or C++ should be the preferred choice
(Vivanco & Pizzi 2002). In this project, Python was used. The company desired the fin-
ished image analysis application to be able to classify 99 % of the cases correctly with
a false positive rate of less than 5 %.

2 Background

2.1 Gyrolab instrument and Bioaffy CDs

The instruments are called Gyrolab® and come in a couple different versions, but they all
perform immunoassaying. While the instrument controls everything that happens during
a run, it is on the plastic CDs that the interesting parts happen. They consist of various
microstructures that utilise capillary forces to move fluid around the CD. Depending on
the application, CDs with VDCs of different sizes can be used. The most common CD-
type is the Bioaffy 200, which has a chamber of volume 200 nL. The CD consists of 14
segments denoted A-N. Each segment contains 8 chambers, in this project denoted 1-8
starting from the left. This means that a Bioaffy 200 CD has a total of 112 chambers,
each in which a different kind immunoassay experiment could be conducted.

Similarly to the Bioaffy 200 CD, the Bioaffy 1000 CD is also rather common. It has a
chamber volume of 1000 nL. The CD has 12 segments rather than 14, but each segment
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still consists of 8 separate chambers. In total, a Bioaffy 1000 CD have 98 chambers. The
shape of the chambers between each type of CD is different in order to accommodate
for each volume. Images of the CDs can be found in appendix B, section B.1.

2.2 Images and image analysis

A digital image is a set of points, or pixels, with spatial coordinates and intensity values.
In grayscale images, the intensity, also referred to as the graylevel, denotes how light
or dark the pixel is (Gonzalez et al. 2008). A common way to represent images on a
computer is through pixels stored with 8 bits in a matrix denoting the spatial coordinates.
This gives rise to 28, or 256, possible graylevel intensities that pixels can display, ranging
from 0 (black) to 255 (white). An example of what this may look like can be seen in
figure 2. Another common representation is binary images where pixels are stored with
one single bit and thus display one of the two graylevels 0 (black) or 1 (white) (Gonzalez
et al. 2008).

Figure 2: An illustration of how a digital image may be represented on a computer. To
the left is figure 52 and in the middle and to the right is a 10 x 10 pixel slice of it with
graylevels denoted.

The process of performing calculations and operations on images to extract information
is known as image analysis (Solomon & Breckon 2011). It begun in the late 1960’s
(Rosenfeld 1969) and is nowadays a common application in quality assurance and clas-
sification. For example, in the food industry, companies look to replace quality assur-
ance made by humans with cameras and computers, which not only lower costs but also
provides higher consistency in the products (Girolami et al. 2013; Gunasekaran 1996;
Qin et al. 2013). It is used in many other fields as well, ranging from processing medi-
cal images (Duncan & Ayache 2000) to analysing images of outer space (Kremer et al.
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2017). In more recent years it has become popular combining machine learning with
image analysis to make further advancements (Madabhushi & Lee 2016). In this project
image analysis is implemented as a way to asses quality in areas otherwise inaccessible
to humans, namely the microstructures on the plastic Bioaffy CDs.

3 Method

In the following subsections, the steps taken that lead to the solution are described. In
short, the final solution consists of a camera control script and an image analysis script.
When a run in the instrument is started, the following happens:

1. Acquires images of empty chambers (background).

2. Acquires images of filled chambers (foreground).

3. Locates chambers to be analysed - crops out new background and foreground im-
ages for each VDC.

4. Attempts to detect air in the VDC.

5. Results are summarized and stored.

The solution was first to be applied to the Bioaffy 200 CD as it was the most commonly
used CD type and as such, all described solutions were at first developed towards that
model. Once this was finished, there was time left of the project that could be spent to
further extend the solution to the Bioaffy 1000 CD.

3.1 Image Acquisition

In figure 3, the final setup is depicted. The camera is mounted on a rack above the CD,
and the light source mounted below the CD.
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Figure 3: The camera setup as seen from the side. The red arrow marks the camera, the
blue arrow the plastic CD, and the green arrow the light source.

3.1.1 Camera and lens

To take the images, a Basler acA2440-20gm camera was used. The camera takes
monochrome images with a resolution of 2448 x 2040 pixels, resulting in roughly 5
megapixel resolution. The camera used a FUJINON HF35XA-5M lens with a focal
length of 35 mm, and is powered through power over ethernet (PoE), using a PoE injec-
tor. A monochrome camera was chosen as it captures more light and thus more detail
than color cameras. This is due to color cameras having a color filter, often a Bayer fil-
ter, that only allows each sensor in the camera to capture light of a certain wavelength,
thus reducing detail (Ramanath et al. 2002). It was not necessary to capture differences
in color in this project so there were no downsides to using a monochrome camera over
a color camera.

3.1.2 Controlling the camera

To acquire images with the camera, a program called pylon Viewer was initially used
to tune acquisition parameters to find optimal settings. The program allows the user to
easily capture images and change acquisition parameters using a user interface (UI). The
goal when tuning the parameters was to achieve a as large as possible contrast between
air and fluid inside the volume definition chambers. Contrast in this matter refers to the
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difference in the average pixel intensity in air vs. fluid. To find which parameters to
tune, the camera manufacturer’s website was utilised (Basler AG 2020) and the values
for each parameter determined empirically. The list below describes the parameters that
were tuned, and table 1 the values they were set to.

• Gain (raw) - increasing this parameter increases the overall brightness of the im-
age.

• Gamma correction - increasing this parameter makes images darker while simul-
taneously affecting contrast.

• Exposure time - controls how long the sensors in the camera is exposed to light.
A larger exposure time makes the image brighter

• Aperture - determines how much light the sensors are exposed to. A larger value
on the aperture increases image brightness.

• Working distance - simply how far from the lens of the camera the object is located.

• Area of interest (AOI) - determines which sensors in the camera to be activated.
Under normal circumstances, all of a camera’s sensors are activated, generating a
2448 x 2040 pixel image. By adjusting the AOI parameters, only the the sensors
that captures the part of the image that is of interest may be activated. This results
in images only containing the part of the CD that’s important, which not only
makes analysis easier but also reduces the amount of memory required to store
the images. AOI consists of the following parameters.

– X offset - the number of pixels the left side of the image is phased by.
– Y offset - the number of pixels the top of the image is phased by.
– Width - the width of the new AOI.
– Height - the height of the AOI.
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Table 1: Camera acquisition parameters.

Parameter Value

Gain 42.0
Gamma correction 2
Exposure time 400 ms
Aperture 8
Working distance 31 cm
X offset 1190 pixels
Y offset 500 pixels
Width 150 pixels
Height 600 pixels

Once the optimal parameters had been determined, control of the camera had to be
shifted from pylon Viewer to a camera control script which could be executed by the
instrument’s internal computer. It is possible to control the camera using any of the pro-
gramming languages C, C++ or C#. For this project, C++ was chosen as a lot of existing
code in the instrument is written in C++, and a desire to learn more about the language
also played a role in the decision. The script detects the camera connected to the instru-
ment, sets the parameters for optimal contrast stated in table 1, takes images and stores
them in an appropriate file location. This process is executed every time an image is to
be taken.

3.1.3 Illumination

In order to capture the details in the CD, good illumination was essential. As the images
were to contain one whole segment i.e. 8 separate VDC, it was important to find a light
source that provided an as even as possible illumination over the whole segment. Even
illumination would provide a higher consistency in the images and allow for a better
analysis down the line. Three different types of light settings were tested. To simulate a
real life application scenario, a CD with partially filled VDCs were used as the object.
An image for each of the setups were taken and compared.

The first light source was a simple desktop halogen lamp. It was directed at the CD at
an angle. In figure 4, the resulting image of the CD can be seen.
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Figure 4: The CD structures lit up using a halogen lamp. Hard to distinguish fluid from
air in the chambers.

The second light source was a Advanced Illumination DL2449 that utilised coaxial light.
According to manufacturers, the coaxial light provides a good result when the objects
are reflective (Polytec 2020). The plastic CD is rather reflective so this type of light had
potential of being good. The light was placed directly above the CD. In figure 5, the
resulting image can be seen.
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Figure 5: The CD structures lit up using coaxial light. The dark parts in the chamber are
fluid, the lighter parts air.

The last light source that was tested was a lightplate of model Eurobrite BL-S050075
that was placed beneath the CD. The lightplate produced diffuse light, which is light
scattered in many directions that is supposed to provide an even illumination (Hanrahan
& Krueger 1993). In figure 6, the resulting image can be seen.
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Figure 6: The CD structures lit up using a lightplate with diffuse light. The light parts
in the chamber are fluid, the darker parts are air.

Both the coaxial light and the lightplate provided good lighting whereas the halogen
lamp was too reflective. In the end the lightplate was chosen as it provided a more even
illumination on the chambers towards the respective edges of the segment.

A small experiment with light of different wavelengths was also conducted. Light with
a short wavelength, i.e. blue light travels further in water than light with longer wave-
length, i.e. red light (Bashkatov & Genina 2003). In theory, this could potentially pro-
vide an even larger contrast between air and fluid in the VDCs. By using sheets of
plastic designed to only let light of a certain wavelength penetrate, this hypothesis was
investigated. Unfortunately, no increase in contrast could be detected.
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3.1.4 Background and foreground images

Once the camera control script was finished, it could be implemented in the instrument.
The script was implemented by supervisor Anders Mattsson. When a run is initiated, the
first thing to occur is generating background images by rotating the CD to one segment
at a time and activating the camera script. The background image is an image of a
segment before it has been filled with liquid, see figure 7. The background images are
stored in a result folder to await analysis. The instrument then proceeds with its normal
procedure of adding different reagents to the CD. Immediately after the instrument has
added the sample to the VDC, foreground images are taken in the same manner as with
the background images. The foreground images represents the same segments as in the
background images, the difference being that these should now be filled with the sample
(liquid), see figure 8. Each segment that was used during the run now have a background
and a foreground image. These are then passed on to the analysis script.

Figure 7: An example of a background image. All VDCs are empty.

Figure 8: An example of a foreground image. Most of the VDCs are filled completely,
air can be viewed in two of the chambers.

3.1.5 Image precision

Some of the analysis was based on pairing the background and foreground images of the
chambers with each other. This required the instrument to be able to place the CD at the
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same position for both the background and foreground image, as well as the camera to
be precise in its acquisition. Precision in this sense refers to how well e.g. a black dot on
the CD remains in the same pixel location when taking several images of the dot. Take
the background and foreground images as an example. If a black dot is present in some
x and y position in the background image, one would desire to have that same black dot
to be present at the same x and y position in the foreground image as well.

To test how precise the setup was, 20 images were taken of the dot depicted in figure
9. Before each image was taken, the CD was reset to its home (default) position before
being set to the position at which the dot was located. For each of the 20 images, a
threshold was used to achieve a binary image, see figure 10. Following this, the coordi-
nates for the dot was retrieved, and the min and max values for the x and y coordinates
extracted. These min and max values were examined to see if they varied over the 20
images. More variation in i.e. the x-values would mean that the image may shift along
that axis between different images.

Figure 9: An image of the dot that was
used to determine the precision.

Figure 10: A binary representation of
the image to the left.

It was determined that the pixels representing the dot remained in the same positions over
the 20 different runs. With this result, all upcoming experiments could be performed with
the knowledge that the instrument and camera were very precise. However, one should
still take one aspect regarding the natural behaviour of light into account. Light particles
are scattered at random, meaning that two images taken at two different time points will
not reflect light in the same way (Muinonen et al. 1996). Performing this experiment, it
could be observed that the intensity of a pixel at coordinates (x, y) had its lowest value
at 122, and its highest at 134 over the 20 images. This gives a range of 12 at which the
intensity differed and a standard deviation of 3.5. This had to be kept in mind moving
forward with the analysis.
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3.2 Image analysis - preprocessing

Once background and foreground images have been taken and stored, they are passed
on to image analysis. The code for the analysis is written in Python and consists of two
python files. One file contains different functions for processing the images and is the
script that is being executed when it is time for the analysis. The other file is a class file
called Chamber.py that is used to create a Chamber-object for each VDC that is analysed.
This was made to make coding intuitive and easy to keep track of. For implementation
of many of the image analysis techniques, the library OpenCV (version 4.2.0.32) was
used. Plotting of images were made with the library matplotlib (version 3.1.2.). A list of
all softwares, packages and versions used during the project can be found in appendix
A. In the following subsections the approach used in the scripts are described and in
figure 15 at the end of this section a flowchart summarising all steps is shown.

3.2.1 Detecting individual chambers

The background and foreground images are taken one segment at a time, meaning that
each image will contain 8 VDCs each. If one VDC would contain air, the result in the
other 7 is unaffected, meaning that each chamber needs to be analysed individually. The
solution was to crop out each chamber and as little as possible of their surroundings.
This was done using a technique called template matching. Template matching uses, as
the name implies, a template to find the region in an image that is the most similar to that
of a template. It is achieved by passing the template over the entire image like a filter and
comparing the difference, or distance, in pixel intensity in image vs. template (Brunelli
2009). Depending on the application, different distance measures can be applied to get
the desired result. OpenCV was used to implement template matching. For distance
measure, the normed correlation coefficient was used as it provided the best results.

One aspect to keep in mind when using template matching is that it is very sensitive
to rotation and scale (Ullah & Kaneko 2004). If object and template are not parallel,
results will be poor and unreliable. Seeing as the segments contains 8 chambers each,
all at different angles, this had to be addressed. Luckily, the angle at which each chamber
is separated by is constant at 2.7 °. With this information, the problem could be solved
by rotating the image iteratively 2.7 ° in order to detect each chamber. In the script, this
is implemented in the following way. Background and foreground images are loaded.
The script iterates over the angles 0°, 2.7°, 5.4°, 8.1°, 10.8°, 13.5°, 16.2° and 18.9°.
Now, for every angle the following occurs. Both background and foreground images
are cropped so that they only contain the chamber parallel to the template, and some of
its surroundings. Template matching is then applied to the background image, using the
template in figure 11.
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Figure 11: Template used for the template matching. The template is an 84 x 41 pixel
image of an empty VDC.

The matching finds the area at which the chamber is located and crops the chamber.
Attempts were made to use template matching on the foreground images as well, but
the results were too unreliable, presumably because the visibility of the edges in the
chamber are significantly reduced when it contains liquid. Instead, the coordinates at
where the chamber was cropped in the background image are stored in a variable and
then used to crop out the chamber in the foreground image as well. This was possible as
the experiment conducted in section 3.1.5 had shown that a high level of precision could
be maintained between the background and foreground image. Now a background and
foreground image only containing the chamber had been generated. As mentioned, this
was repeated at every angle until 8 pairs of background and foreground images had been
generated. In figures 12 and 13 the result of the cropping can be viewed.

Figure 12: Each VDC in a segment cropped out of the background image using template
matching.
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Figure 13: Each VDC in a segment cropped out of the foreground image using the co-
ordinates found when template matching was applied to the background image.

3.2.2 Chamber class

To keep track of pairs of background and foreground images, and future parameters in
one place a class called ’Chamber.py’ was created. Classes are templates to objects,
which in turn is a collection of variables gathered in one place (Lewis et al. 2009).
Classes also contain functions that are designed to act upon the objects to achieve var-
ious results. With this class, one object for each VDC in the CD can be created and as
more information is gained during the analysis, it can be added to each Chamber object.
The following class variables exists for an object:

• bg_chamber - The background image of the chamber.

• fg_chamber - The foreground image of the chamber.

• chamber_number - Refers to the placement of the chamber in the segment. The
leftmost chamber is nr 0, the rightmost chamber is nr 7.

• bg_match_score - A measure on how well the template matched the background
image of the chamber.

• fg_match_score - A measure on how well the template matched the foreground
image of the chamber.

• template_match_ratio - fg_match_score divided by bg_match_score
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• bg_chamber_padded - A padded version of bg_chamber.

• fg_chamber_padded - A padded version of fg_chamber.

• air_percentage - The percentage of air estimated to be contained in the chamber
by the analysis.

Once a background-foreground chamber image pair is generated as described in section
3.2.1, the chamber objects are created and used from there on.

3.2.3 Padding chambers

In the subsequent analysis, only the contents of the actual chamber was to be analysed.
Look back at figures 12 and 13 for example. There are some parts of the image that
does not belong to the chamber, i.e. the four corners of the images. To minimize the
possibility of having these parts affect the analysis in some way, these parts are padded.
Padding is a a technique that replaces the pixel values at some location with different
pixel values.

To determine the coordinates at where to pad, the software Paint was used. At first, a
padding with pixels of intensity 0 (black) was applied. Moving forward in the devel-
opment of the analysis, a technique designed to detect edges showed promising results.
Having a padding of 0 in such a case would always create an edge between the chamber
and the padding, so the pad value had to be changed so that as little edge as possible
could be detected. Using the median pixel value of the original image rather than 0 to
pad worked very well and was the value that the final solution ended up using, see figure
14 for an example.

Figure 14: To the left is a chamber image that has not been padded, to the right is the same
image but with padding along the corners using the median pixel value of the image.
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Once the images have been padded the preprocessing is finished and the images are
ready to have it determined if they contain air or not. In figure 15 a flowchart describing
the steps done in the preprocessing is depicted.

Figure 15: Flowchart of the preprocessing. Background images are subjected to template
matching and chambers are cropped. Coordinates from the template matching are used
on the foreground image to crop out chambers. A Chamber object is created for each
pair background-foreground image pair and corners in all images are padded.

3.3 Image analysis - detecting faulty chamber

Everything done so far is in preparation of this step in the analysis. The goal here is to
determine if there is air present in the chambers. In figure 16 a generalisation of three
cases that can occur is shown. Chambers that are empty or contain a bubble are deemed
faulty and should be detected by the algorithm. During development, it was found that
the detection had to be split up into first determining if the chamber was completely
empty or not. Chambers that were deemed to be completely empty are immediately
classed as faulty. If this can not be determined, detection of bubbles ensues. In the
following sections the avenues that were investigated are described and in figure 25 at
the end of this section a flowchart summarising all steps is shown.
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Figure 16: A generalisation of the three cases that can occur in a chamber. To the left is
an empty chamber, in the middle a chamber that is completely filled, and to the right a
chamber with an air bubble in it.

3.3.1 Detecting empty chambers using template matching

The first step in the analysis determines if the chamber is completely empty or not. At
first, attempts at subtracting the background image from the foreground image were
investigated. If the chamber was completely empty in the foreground image, the sub-
traction should yield a near black image when subtracting it from the background image.
This proved true in some cases but also untrue in many other, making the approach too
uncertain. Instead, the template matching used in section 3.2.1 proved useful. Apart
from finding the region in an image where the template makes the best fit, it also pro-
vides a numerical value between 0 (worst) and 1 (best) on how well the fit was based on
the distance measure. By applying the same template as before (figure 11, i.e. an image
of an empty chamber) to the background image, a match score could be attained. As the
background image always will be an empty chamber, the match score should be rather
good. The same template is then applied to the foreground image and another score is
attained. If the foreground image contains any liquid the match score should be lower
than for the background image, and if it is empty the match score should very closely
resemble the match score of the background image. By dividing the match score for the
background image with the match score of the foreground image, one gets a match ratio.
See equation 1.

match ratio =
foreground match score

background match score
(1)

If the chamber is empty, the two scores should be similar and the ratio lie close to 1.
If the chamber is filled the two scores should be dissimilar and the ratio be less than 1.
This approach was investigated thoroughly and tested on over 100 images. It showed
that when the chambers were empty, the ratio was over 0.85, and below 0.6 when filled
or contained bubbles. Moving forward, any chambers that had a ratio over 0.75 was
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not subjected to any further analysis as they had been determined to be empty. Cham-
bers with a ratio below 0.75 on the other hand could either be completely filled or have
bubbles in them, so the upcoming analyses are designed to separate those two cases.

3.3.2 Thresholding

The first technique used to detect bubbles was thresholding. Thresholding is one of the
most fundamental image analysis techniques and is applied in many different ways in
various approaches. In its most simple form, a threshold is set, and all pixels with a pixel
intensity below the threshold is set to 0 (black), and the rest set to 1 (white) (Gonzalez
et al. 2008). This creates a binary image of black and white pixels. The technique can
be used in many different ways and in this project it was the first technique investigated.
It was quickly noted that there was a clear difference in pixel intensity if the chamber
contained air or fluid, see figure 17. As the air appeared darker than the fluid in the
chambers, thresholding could potentially be used to distinguish air and fluid. While to
the human eye, the contrast between air and fluid appeared to be rather large, it was
found that the difference in was only around 10 intensity levels. As was detected in
section 3.1.5, a pixel’s intensity could differ 12 levels just by chance, meaning that air
could potentially be mixed up with fluid and vice versa. This kind of thresholding was
therefore deemed too unreliable.

Figure 17: 8 different chambers. The air appears much darker in the image than the fluid
but in reality there is only a difference of 10 in intensity between the two mediums (air
has an intensity of around 115 and the fluid around 125).

3.3.3 Canny edge detection

Immediately when the first images were acquired, it was noted that when bubbles was
present in the chambers, a clear black edge could be seen separating air and fluid. This
property could potentially be exploited in the analysis to determine if a chamber con-
tained bubbles or not. To test the hypothesis, a technique called canny edge detection
was utilised. It was chosen over other edge detection as it is robust and has a low error
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rate (Gonzalez et al. 2008). The approach was developed by John Canny and could be
described in short as followed (Canny 1986).

1. A Gaussian filter is applied to smooth the image. A Gaussian filter has a filter ker-
nel in the shape of a Gaussian bell that effectively smooths the image and reduces
noise (Gonzalez et al. 2008).

2. Gradients are computed.

3. Non-max suppression that reduces closely located edge candidates into a single
edge candidate (Magnusson & Olsson 2016).

4. Thresholding with two threshold values is applied, creating the edges.

5. Hysteresis thresholding is applied along the edges. Hysteresis is a type of thresh-
olding that takes neighbouring pixels into account.

This type of approach had great success in determining if the chambers contained bub-
bles or not. The method returns a binary image where edge pixels are white and the rest
black. It was implemented with the OpenCV. The function takes the following argu-
ments.

• threshold1 (int) - the lower bound in the double threshold.

• threshold2 (int) - the upper bound in the double threshold.

• L2gradient (boolean) - Whether or not the L2 norm, rather than the L1 norm should
be used during the computation of the gradients.

To determine the optimal values to set the parameters to, an application was developed
in which it was possible to interactively change the parameters using a trackbar and to
see the effect in the image in real-time. The goal was to find the set of values that detect
only the edge between fluid and air, and nothing else. Too loose restrictions on the edges
will mean that the method detects edges everywhere, including such edges not part of the
fluid-air transition. If the restrictions are too harsh, no edges will be detected and one risk
missing bubbles in the chamber. Once a good set of values had been determined, they
were evaluated on hundreds of images to assert that it held for various types of bubbles.
In table 2 the values for the arguments used in the final solution can be observed.
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Table 2: Final canny edge detection argument values.

Argument Value

Threshold1 100
Threshold2 200
L2norm True

Once the binary image have been generated using canny edge detection, it is scanned for
any white pixels. In figure 18, an example of what the edge detection may look like is
presented. If the binary image contains any white pixels, the algorithm has determined
that there is air in the chamber. In some cases, a very small amount of air could be visible
at the left edge. In some of these cases, the detection of air failed. This lead to further
refinement. If a chamber had passed both the match ratio analysis and edge detection,
the image was cropped to only contain the 5 leftmost columns of pixels in the image.
This part of the image was then subjected to another round of edge detection with more
sensitive parameter settings, namely a lower threshold of 100 and upper threshold of
125. This lead to some greater success in detecting these cases.

Figure 18: Left: Foreground image with air in it. Right: Edge detection when performed
on the image to the left.

3.3.4 Noise handling

The canny edge detection technique proved reliable in almost all cases where there was
a bubble present in the chamber. Despite this, every now and then cases where there
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were dirt on top of the chamber was encountered. The dirt has no effect at all on the
contents of the chamber, but it some cases the canny edge detection recognized the dirt
as an edge and therefore alerting that there is air present in the chamber. See figure 19
for two examples.

Figure 19: Two examples where there is dirt on top of the CD. The dirt would in some
cases be detected as an edge by canny edge detection, even though the chambers are
completely filled.

Having the algorithm detect dirt as a bubble was undesired as it would create false posi-
tives. To combat this, an approach where the dirt is padded was implemented. Before the
canny edge detection is applied to the foreground image, the same edge detection with
the same parameter values is applied to the background image. If there is any dirt present
in the background image, the edge detection should find it. The coordinates of the dirt is
stored in a variable and then used to pad the foreground image. To make the padding as
authentic as possible, the pad value is the median pixel value with some random noise.
The random noise is +/- the standard deviation of the pixel values in the entire image.
This should in theory yield a new foreground image where the dirt have been padded so
that it no longer is visible. See figure 20 for examples of how the padding worked out.
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Figure 20: Two examples where there is dirt on top of the CD. In the images to the right,
attempts at padding the dirt has been made. Note that the top images in the figure does
not appear to picture the same chamber. This is due to the way the module matplotlib
functions when plotting images, and the images does in fact picture the same chamber.

It was apparent that some dirt could easily be padded, while some could not. But as long
as the implementation fixed some of the problems with the dirt, it was deemed worth
keeping.

3.3.5 Estimating the amount of air in chamber

If the analysis ends up with determining that a chamber has a bubble in it based on the
canny edge detection, an attempt at estimating the percent air present in the chamber is
made. This was not essential to the analysis but there was some time left that allowed
the algorithm to be expanded with this feature. First, the size of the chamber in pixels
was determined. This was done by counting the number of white pixels in figure 21.
The size of the chambers was determined to 2415 pixels.
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Figure 21: A binary image used to estimate the number pf pixels contained in a chamber.
The number of white pixels, and consequently the ”size” of the chamber, was 2415
pixels.

When the size of the chamber had been determined, a way of separating the air from the
fluid was necessary. A revisit to thresholding became the solution. While thresholding
was too unreliable in terms of determining presence of bubbles, it proved useful for this
purpose. Still, in order to use thresholding, some smoothing of the image had to be done.
This was done by first applying a Gaussian filter with a kernel of 5 by 5 pixels to smooth.
On the smoothed image, a median filter is then applied to remove pixels that deviate a lot
from others in its proximity. The median filter simply looks at the neighbourhood of a
pixel and replaces its pixel value to that of the median pixel value in the neighbourhood
(Gonzalez et al. 2008). In this case, a neighbourhood of 7 by 7 pixels is used. Before
arriving at which filtering combinations to use in the end, each filter was investigated
on its own and the resulting image after each filtering can be seen in figure 22.

Figure 22: Top left to right: The original image and a smoothed version of the original
using a Gaussian smoothing (kernel 5 by 5 pixels). Bottom left to right: Original with
a median filter (kernel 7 by 7 pixels), and original with both filters applied after one
another.
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While all filters showed a significant reduction in noise, the combined solution was
somewhat more reliable and chosen as the approach in the final implementation.

Next comes the appliance of thresholding. While it appears that fluid have roughly the
same pixel intensity in every chamber, it was noted that this was not the case. See figure
23. Fluid in the leftmost chamber was represented by a pixel intensity of around 130,
while in the rightmost chamber fluid had an intensity of around 135. The same held
for the air in the chambers as well. In some of the chambers, the air appeared slightly
darker, and in others a little lighter. However, it was found to be consistent in chambers
located at the same position. E.g. the third chamber from the left would always have
fluid at around the same pixel intensity in every image. This lead to the need of having
to derive a separate threshold for each chamber position. I.e. the first chamber have one
threshold, the second another, and so on. In table 3 the values used for the thresholds
are listed.

Figure 23: An image of a segment. While no visible to the human eye, the pixel intensity
of fluid differs depending on which chamber is observed.
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Table 3: The threshold used in detection of air used for each chamber in a segment.
Chamber 1 is the leftmost chamber in figure 23.

Chamber Threshold

1 114
2 120
3 114
4 120
5 120
6 120
7 116
8 115

Before applying the threshold, the corners of the image are padded once again. They
are padded with a value of 255 (white) to minimize the risk of having the corners being
included as air during thresholding. The last step is to apply the threshold and an image
like figure 24 can be obtained. By counting the number of white pixels and dividing it by
the total number of pixels in the chamber (2415 pixels), a percentage can be calculated.
The percentage represents how much of the chamber is contained by air.

Figure 24: A binary image produced with thresholding on a smoothed. The white pixels
represent air.

Once the estimation of air is done, the analysis is finished. In figure 25 a flowchart
depicting each step during the analysis is presented. It summarises the following. It is
first determined if the chamber is empty or not. If it is empty it is deemed as faulty. If
it is not empty it, noise is padded and edge detection is applied to find any bubbles. If
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no edges are found, the 5 leftmost columns of pixels are subjected to a more sensitive
edge detection. If no edges are found in either edge detection, the chamber is deemed as
good. If edges are found in one of the two edge detection steps, the air in the chamber
is finally estimated.

Figure 25: A flowchart summarising the steps a Chamber object is subjected to during
the analysis.

3.4 Summarising the analysis

When the analysis is finished, all the chambers that was used during the run should have
been analysed by the script. If the analysis finds that a chamber is either completely
empty or has some amount of air in it, means that it is faulty. In other words one can
also describe it as if the chamber has tested positive for air. The results are presented in
a few different ways. A text file listing all positive chambers is always generated and
placed in a results folder in the same directory as where the images are located. The text
file lists which segment the positive chamber belongs to, the number of the chamber in
the segment (1-8) and how much air that was estimated to be contained in the chamber.
Along with the text file, images like in figure 26 are produced. The image is a copy of
the foreground image that was analysed, but with red arrows added to indicate which
chambers that the script detected as positive. If one desires to have the result of each
chamber printed out in the command prompt, one can add a verbose flag, ”-v”, when
running the script.
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Figure 26: An example of an image produced after the analysis. Red arrows indicate
which chamber that the script found as faulty.

3.5 Evaluating the analysis

To evaluate how well the analysis performs, a test set with labeled images was created.
Due lack of data where chambers contained air, all runs executed during this project was
initiated without priming the instrument. Priming the instrument is a way to remove any
excess air in the system that might affect volumes that are dispensed. With this approach
a fair bit of data could be generated.

The test set contained a total of 1305 background-foreground image pairs which were
generated from fresh runs so they would be completely unseen prior to the analysis. The
annotation was done using the software labelme (Github 2020). The software creates a
json file for each foreground image. If a chamber appears to be empty or have a bubble
in it, the user labels it as bad, otherwise it is labeled as good. The label is then stored
in the json file. The annotation was done by two people. The first was done by Oskar,
and in that annotation 195 images were labeled as bad, 1110 labeled as good. The other
annotation was done by supervisor Anders Mattsson. In his annotation 168 images were
labeled as bad and 1137 as good. The annotation was done by two people as bias may
be introduced by the developer of the analysis script.

The analysis script was then run on the labeled images. The outcome of the analysis is
compared to the label stored in the json file. Once all images have been analysed and
compared to its label, the result of the classification is presented in a confusion matrix.
To generate a confusion matrix the python module Seaborn (version 0.10.1) was used. A
confusion matrix is a way of evaluating the performance of a classifier (Fawcett 2006),
or the analysis script in this case. In figure 27 a confusion matrix is depicted. It contains
the following four possible outcomes:
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• True positive (TP) - both the classifier and the label has marked the image as bad
(positive in terms of air).

• True negative (TN) - both the classifier and the label has marked the image as
good (negative in terms of air).

• False positive (FP) - the classifier has marked the image as bad, but the label has
marked it as good.

• False negative (FN) - the classifier has marked the image as good, but the label
has marked it as bad.

Figure 27: An example of a confusion matrix comparing the predictions of the classifier
to the actual label of the image.

When all images have been analysed and compared to its respective labels, the confu-
sion matrix contain certain amount of true positives, true negatives, false positives and
false negatives. While they on their own give some measure on how well the prediction
performed, further calculations can be made (Tharwat 2018). Below are some common
statistics explained.

Accuracy is the first statistic, see equation 2. The accuracy simply shows how often the
classifier make a correct prediction.

Accuracy =
TP + TN

TP + TN + FP + FN
(2)
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The true positive rate (TPR), see equation 3. It shows how often the classifier predicts
a bad image as bad.

TPR =
TP

TP + FN
(3)

The true negative rate (TNR), see equation 4. It shows how often the classifier predicts
a good image as good.

TNR =
TN

TN + FP
(4)

The false positive rate (FPR), see equation 5. It shows how often the classifier predicts
a good image as bad.

FPR =
FP

FP + TN
(5)

The false negative rate (FNR), see equation 6. It shows how often the classifier predicts
a bad image as good.

FNR =
FN

FN + TP
(6)

3.5.1 Correlation of air detected in chamber to registered response

The hypothesis that started this project was that if there are bubbles present in the VDC,
the response signal in the instrument might be affected which would lead to a skewed
result. Up until now, the fluid used in the runs used to get the images had been a buffer.
The company wanted to conduct a test where a real sample containing an analyte was
used to test the hypothesis.

A run was made where the same sample was added to all 112 chambers in a CD. This
was to have as many replicates as possible in case some other problem unrelated to the
filling of the VDC occurred. During the run images were taken and analysed by the
script. The response signal that was registered in the instrument was compared to the
results of the image analysis.
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3.6 Expanding to other CD-types

Once the analysis and evaluation of the script was finished, there were some spare time
left. In its current form, the analysis script was only applicable to the CD-type at Gyros
which had chambers of volume 200 nL. While this CD is the most frequently used one,
the company desired to have the analysis to be applicable to other chamber volumes as
well. A solution for CDs with chamber of volume 1000 nL was then developed. It was
quickly realised that one single script could not be developed to be applicable to both
CDs in the time that was left. Instead the analysis script for the Bioaffy 200 CD was
duplicated and altered so that it could be applied to the 1000 CD. The following changes
were made:

• A new template for chamber detection and template matching had to be used, see
figure 28.

• The angle at which the chambers are separated by is 3.29° rather than 2.7°. The
angles that the segment is rotated by thus is 0°, 3.29°, 6.58°, 9.87°, 13.16°, 16.45°,
19.74° and 23.03°.

• New coordinates for the padding of the corners.

Figure 28: The template image used for chamber detection and template matching in the
1000 CD analysis script.

The performance of this script was also evaluated in the same manner as the script for
the Bioaffy 200 CD, although with a smaller dataset. This dataset contained a total of
858 background-foreground image pairs. Oskar annotated 94 images as bad and 764 as
good. Anders also annotated 94 images as bad and 764 as good.
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4 Result

In this section the results are presented. First shown is some results from the chamber
detection. This is followed by how the detection of empty chambers and bubbles went,
as well as how the classifier performed. In the end results from the Bioaffy 1000 CD is
presented.

4.1 Chamber detection

Determining the position of the chambers in the background image using template
matching worked very well. In figure 29 an example of a background-foreground image
pair can be seen. In figure 30 the result of the chamber detection is presented.

Figure 29: Background-foreground image pair. Top: background. Bottom: foreground.
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Figure 30: 8 Background-foreground chamber image pairs generated using template
matching and cropping on the images in figure 29.

All chambers were cropped successfully. Observe the position of the chamber in each
image. It seems to shift very slightly among different images. This can be attributed
to the fact that each plastic CD is unique, in the sense that the hole at which the CD
rotates around is not perfectly centered. Minuscule variations exists between different
CDs, which in turn makes the images shift. While this was an interesting fact, it did not
seem to affect the analysis in any notable way.

This approach of finding the chambers was successful in thousands of cases and only
once during the scope of the project did the template matching fail crop out the correct
area. This occurred when when a CD that had been marked with a marker pen to simulate
an excess amount of noise was used. In figure 31 the chamber with the noise can be
depicted, along with how the template matching cropped the chamber.
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Figure 31: Left: The area the template match sees and can crop in. Right: The area the
template match cropped, missing part of the chamber.

4.2 Detection of empty chambers

The detection of empty chambers worked extremely well. The template, depicting an
empty chamber, was applied to both background and foreground image to retain a match
score for each image pair. The match scores were used to calculate a match ratio. In
figure 32 a comparison of the ratio between empty and filled chambers is depicted. In
figure 33, a comparison of the ratio between chambers with bubbles and filled chambers
can be seen.

Figure 32: 8 chambers with the match ratio written above. Empty chambers have a ratio
close to 1, while filled have a ratio around 0.6 or less.
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Figure 33: 8 chambers with the match ratio written above. Chambers with bubbles have
the lowest match ratio at around 0.3.

The figures above display an example of how the range of template match ratios could
look like. By investigating these and many more examples, empty chambers could be
detected with a 100 % success rate in the cases looked at during development by setting
a threshold at 0.75. Images with a ratio above 0.75 could be deemed as empty, while
images with a ratio below 0.75 could either completely filled or contain bubbles and
processed further in the next step of the analysis. Non-empty chambers never displayed
a match ratio above 0.6 and empty chambers never displayed a ratio below 0.85, so the
threshold 0.75 was chosen to have space for potential future outliers in both directions.

4.3 Detection of bubbles

Any chamber not deemed as empty was subjected to canny edge detection to determine
if they contained bubbles or not. The edge detection coupled with the padding of noise
worked well in most cases, but not all. Below are some of the cases presented along with
the result from the edge detection. By far the most common case was when the chamber
is completely filled and contains no air, see figure 34. The binary image generated from
the edge detection does not contain any white pixels which in terms of the analysis means
that it contains no air.
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Figure 34: Left: The foreground image of the chamber, no air present. Right: The edge
detection of the foreground image. No air detected as shown by the lack of white pixels.

Second most common was when some air was present near the top of the chamber (see
figure 35). This kind of case was handled rather well by the algorithm, but it also missed
some cases when the edge was barely visible at the left edge of the image. When the
additional edge detection with more sensitive parameters was added to the analysis, most
of these cases could be detected.

Figure 35: Left: The foreground image of the chamber, air has begun entering at the top
(leftmost part of the image) of the chamber. Right: The edge detection of the foreground
image. Air is detected as shown by the white pixels.

Another case encountered was when large bubbles appeared in the chamber. See figure
36. These were clear cut cases where air was contained in the chamber. It was also the
case that the analysis had the least trouble with detecting.
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Figure 36: Left: The foreground image of the chamber, a pretty large amount of air
can be seen in the chamber Right: The edge detection of the foreground image. Air is
detected as shown by the white pixels.

The last cases encountered do not deal with air in the chamber but rather with noise
on top of the CD. While the algorithm was designed to reduce noise, some of these
problems persisted and many passed unnoticed. In these cases the algorithm sometimes
inaccurately detected the noise as air. There were two common types of noise that was
occasionally falsely detected as air. The first one is when some kind of fiber or strand
of hair is located on top of the CD, see figure 37. The second one is some other type of
dirt the shape of a small dot, see figure 38. In reality, the images in the figures below
does not contain any air and should be deemed as good.

Figure 37: Left: The foreground image of the chamber, noise in the form a fiber strand
is present. Right: The noise is falsely detected air as by the algorithm as shown by the
white pixels.
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Figure 38: Left: The foreground image of the chamber, noise in the form of a black dot
is present Right: The noise is falsely detected air as by the algorithm as shown by the
white pixels.

4.4 Estimation of air percentage

Any chamber found to contain air by the edge detection was subjected to thresholding.
This was to get a rough estimate of how many percent of the chamber that was contained
by air. This approach worked rather well. The exact area at which the air was located
was not always detected, but for most of the time the estimations were relatively close to
what could be seen in the foreground image. In figure 39 the foreground image and the
estimated amount of air by the analysis is depicted. For additional images see appendix
B, section B.2.

Figure 39: 8 images analysed with a medium amount of air present. White pixels in the
binary images represent the air detected.
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4.5 Correlation of air detected in chamber to registered response

A small comparison between results from the image analysis and the actual output from
the instrument run was made. In chambers that were completely filled, the average signal
registered at 0.99. In figure 40 the result images depicting which chambers the analysis
found to contain air is presented. These were compared to the signal registered by the
instrument. If the signal is lower for these chambers, there might be a correlation. In
table 4 the response signals for these chambers are listed. The response signal basically is
a measure of how much analyte that was detected in the column, which potentially relates
to how much liquid that was contained in the VDC. While some correlation between air
in the chamber and low response signal can be seen, the opposite is also true. Some
chambers that were completely filled could also be seen as having a low signal.

Figure 40: 3 images merged that depicts the chambers that the analysis found to con-
tain air. The letter refers to which segment the chamber belongs to and the number the
chamber number. These were added manually after the analysis.
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Table 4: Response signal for the chambers detected as faulty shown in figure 40. The
average response signal for the filled chambers was 0.99.

Chamber Response
signal

L2 1.09
M1 0.12
N7 0.06
N8 0.14

4.6 Evaluating the analysis

The evaluation was done on images annotated by Oskar and Anders. On the images
Oskar annotated, an accuracy of 99.5 %, FPR of 0.63 % and FNR of 0 % was achieved.
On the images Anders annotated an accuracy of 96.8 %, FPR of 3.34 % and FNR of 2.38
% was achieved. More details are described in the following subsections.

4.6.1 Evaluation of images annotated by Oskar

Out of 1305 test images, the analysis managed to score 195 TPs, 1103 TNs, 7 FPs and 0
FN. A confusion matrix of the result is depicted in figure 48 in section 5. With the scores
from the confusion matrix, measures for accuracy, TPR, TNR, FPR and FNR could be
calculated using equations 2, 3, 4, 5, and 6. The results are listed in table 5.
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Table 5: Measures of accuracy, TPR, TNR, FPR and FNR calculated from results in the
confusion matrix in figure 48 (a).

Measure Value (%)

Accuracy 99.5
TPR 100
TNR 99.5
FPR 0.63
FNR 0

All the FPs that was encountered during this evaluation had to to with dirt on top of
the CD. The algorithm detected the dirt as air and thus the chamber as bad, while the
annotation had labeled the image as good. See figure 41 for an example.

Figure 41: A case of a FP. Image is labeled as good but algorithm classes image as bad.

4.6.2 Evaluation of images annotated by Anders Mattsson

Out of 1305 test images, the analysis managed to score 164 TPs, 1099 TNs, 38 FPs and
4 FN. A collection of the confusion matrices generated is depicted in figure 48 in section
5. With the scores from the confusion matrix, scores for accuracy, TPR, TNR, FPR and
FNR could be calculated using equations 2, 3, 4, 5, and 6. The results are listed in table
6.
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Table 6: Measures of accuracy, TPR, TNR, FPR and FNR calculated from results in the
confusion matrix in figure 48 (b).

Measure Value (%)

Accuracy 96.8
TPR 97.6
TNR 96.7
FPR 3.34
FNR 2.38

Some of the FPs that was encountered during this evaluation had to to with dirt on top
of the CD like with the previous evaluation. Another kind of FP was also introduced
where Anders had annotated the image as good but the algorithm classed it as bad. This
occurred when a very small amount of air was present at the left edge of the image. See
figure 42 for an example.

Figure 42: A case of a FP. Image is labeled as good but algorithm classes image as bad.

The FNs that was encountered in this evaluation was cases when Anders had annotated
and image as bad but algorithm classed it as good. This was likely due to difficulty in
distinguishing very small bubbles from dirt. See figure 43 for an example.
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Figure 43: A case of a FN. Image is labeled as bad but algorithm classes image as good.

4.7 Expanding to Bioaffy 1000 CD

The script designed for the 1000 CD used the same techniques as for the Bioaffy 200
CD. In summary, the analysis performed about equally well apart from the estimation
of the amount air in the chamber, which was more unreliable for the Bioaffy 1000 CD.
As the same techniques applies as for the 200 CD, the results are presented in more
condensed manner in the figures below. In figure 44 a background-foreground image
pair of a segment is shown, results on how the chamber detection performed on those
images is presented in 45. Figure 46 shows how the edge detection performed and lastly
in figure 47 how estimation of air went.
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Figure 44: A background-foreground image pair of a segment in a 1000 CD. Top image
represents the background and bottom image the foreground.

Figure 45: Results from the chamber detection used on the images depicted in figure 44.
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Figure 46: Results from edge detection on cases where air was contained in the chamber.

Figure 47: Estimation of percent air in the chambers. In many of the cases, pixels not
depicting air are classed as air by the algorithm.

Evaluating the analysis in the same manner as with the Bioaffy 200 CD procured the
following results. In figure 48 (c) the confusion matrix is depicted produced when eval-
uating the analysis on the images Oskar had annotated. Table 7 lists the performance
statistics. In figure 48 (d) the confusion matrix is depicted produced when evaluating
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the analysis on the images Anders had annotated. Table 8 lists the performance statistics
for that annotation.

Table 7: Measures of accuracy, TPR, TNR, FPR and FNR calculated from results in the
confusion matrix in figure 48 (c).

Measure Value (%)

Accuracy 99.5
TPR 96.8
TNR 99.9
FPR 0.13
FNR 3.19

Table 8: Measures of accuracy, TPR, TNR, FPR and FNR calculated from results in the
confusion matrix in figure 48 (d).

Measure Value (%)

Accuracy 99.8
TPR 97.9
TNR 100
FPR 0
FNR 2.13

5 Discussion

In the following sections the results that was produced during the project are discussed.
The discussion is focused on how the analysis was implemented, how it performed and
things that could have been done differently. For comparison of results, refer to the
confusion matrices in figure 48.

46



Figure 48: All confusion matrices combined. a) Confusion matrix from evaluation on
images annotated by Oskar for the Bioaffy 200 CD images. b) Confusion matrix from
evaluation on images annotated by Anders for the Bioaffy 200 CD images. c) Confusion
matrix from evaluation on images annotated by Oskar for the Bioaffy 1000 CD images.
d) Confusion matrix from evaluation on images annotated by Anders for the Bioaffy
1000 CD images.

5.1 Image analysis

5.1.1 Template matching

This technique proved very useful in this project as it not only could be used to detect
individual chambers in the images but also be used to determine if a chamber was empty
or not. Despite being successful in detecting individual chambers, the thought of simply
using a fixed set of coordinates to crop the chambers was thought of several times. Since
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it was determined that both camera and instrument had a very high precision in section
3.1.5, one could manually find the coordinates to crop the image with and simply skip
the template matching for this purpose. Using template matching in this step adds an-
other variable that might go wrong during the analysis. While only a single case where
template matching failed occurred, it may be a risk that should be avoided if possible.
On the other hand, using the template matching will make the analysis easier to apply in
other instruments than the prototype. The alternative of cropping based on a set coordi-
nates would require pixel precision and alterations of the analysis scripts before it could
be applied in other instruments. With this in mind, the future role of template matching
has to be investigated further, but its role in determining if a chamber is empty or not
should be kept as it is.

5.1.2 Canny edge detection

Canny edge detection proved to be a rather good approach in this project. The technique
combined with template matching could achieve an accuracy between 96.8 % and 99.5
%. The parameters that was used in the edge detection was chosen so as to make as
many correct predictions as possible, i.e. minimizing the total number of FPs and FNs.
While in theory this may be a good approach, it may not be as practical. Consider a
scenario where dirt is classed as air by the algorithm, i.e. a FP. This occurred during
the project and could occur even more often if more sensitive parameters were used
in the edge detection. In such a case the user would be notified of air and be able to
study the image and ultimately make the final decision to decided if it is good or bad.
The other scenario is when a tiny bubble is missed by the algorithm, i.e. a FN. This
could occur if the algorithm has too strict parameters which does not allow it to detect
all kinds of defects in the image. In this case, the user would not be notified and go
unaware that a bubble might have affected the run. With these two scenarios in mind,
the first is preferred over the second. A FP is harmless while a FN would mean missing
some potentially important artefacts. This considered, I believe that allowing for a slight
decrease in accuracy and increase in FPs could reduce the number of FNs to zero. The
optimal solution would of course be increasing accuracy and minimising FNs, but I do
not think it is possible with the current approach.

Another aspect one has to reflect over is what an accuracy of 96.8 to 99.5 % implicates.
While it may look like a pretty good score, considering that a single CD has 112 cham-
bers, roughly 1 to 3 chambers would be wrongly classified during each run. That is a
pretty high number and is nowhere near a performance that would allow the algorithm
to be used commercially. It also raises the question that there could be other techniques
that are better suited for the purpose of this project. As canny edge detection quickly
showed promising results, not many other processing techniques were tested. One area
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not explored in this project is machine learning, which has been successful in many other
applications (de Bruijne 2016; Yamamoto et al. 2014). Despite its success in other areas,
it requires a lot of additional work in accumulating data to train and test on. It simply
would not have been enough time to gather data, annotate data and develop the algorithm
in the time that I had at my disposal. In addition to this, the ambiguity when labeling
train data in whether a black dot in an image is dirt or a tiny bubble like in figure 43
will always remain. Having such uncertainties might not even make machine learning
a better approach, despite loads of work being put into accumulating a dataset. Me and
supervisor Anders did however consider the idea of combining machine learning with
the current algorithm. In such a scenario, a machine learning algorithm could be devel-
oped that specifically focuses on discerning tiny bubbles from dirt once edge detection
has detected an edge.

5.2 Evaluation of the analysis

The evaluation of the analysis was done on images annotated by me and Anders Matts-
son. As mentioned this was to see how bias might have affected the evaluation of the
analysis. While there was a difference in performance, I believe that some could be at-
tributed to bias, but that some also could be attributed to experience in evaluating the
images. Since this was the first time images was taken in this manner in the instrument,
I was allowed to gain a better understanding of when a chamber had dirt on it rather than
a tiny bubble. This is apparent when comparing the number of FNs between me (0) and
Anders (4). On the other hand, the bias is also apparent when looking at the number
of FPs where the evaluation of the images annotated by me only had 7 FPs, while on
Anders it had 38. This was likely due to me knowing that the more sensitive part of the
edge detection would always detect corner cases like the one depicted in figure 49.
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Figure 49: An edge case that may introduce bias. Images like these became false pos-
itives during evaluation of images annotated by Anders Mattsson but were correctly
classified on images annotated by Oskar. This could be potentially be attributed to bias.

While I think this approach in annotating images and evaluating the analysis was suffi-
cient for this project, I believe that another approach should be used if one wants to have
an as accurate evaluation as possible. First of all, three people should perform the anal-
ysis, two whom make their individual annotation of the image. If the annotation differs,
a third person makes a final annotation that decides the label of the image. Secondly,
all three people should have equal knowledge of the project annotating the images so
that each image gets a fair assessment. Lastly, a more balanced test set should be used.
Here, roughly a ratio of 20/80 for bad/good was used. Since no training is involved, an
unbalanced test set was fine but to get an accurate assessment of the analysis, a test set
divided 50/50 between bad/good is desired.

5.3 Expansion to other CDs and instruments

It was surprisingly easy to expand the analysis to the Bioaffy 1000 CD, which could
make expansion to even more CD types a possibility. Although, if one were to consider
the scenario of implementing a similar analysis in other instruments, the process would
probably be more meticulous. First of all, either the camera would have to be rigged
in the exact same position as in the prototype, or the analysis script would need to be
altered. I do no know how easy it would be to setup the camera with millimeter precision
in a new instrument, but one would have to take x, y, and z axes into account. The
alternative to alter the analysis script would not be that difficult, but the idea of having
separate versions of the script for each instrument is not that appealing. If the company
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decides to move forward with this in other instruments, these things will need to be kept
in mind.

6 Conclusion

The aim in this thesis was to develop an image analysis algorithm that could classify
images with an accuracy of 99 % and a FPR of less than 5 %. This was achieved in one
of the two evaluations that was made on the analysis. The algorithm was able to reliably
detect if a chamber was empty or contained a large bubble, but had some trouble with
discerning tiny bubbles from dirt. In the Bioaffy 200 CD it was possible to achieve a
rough estimate of how much air that was present in the chamber. While it is an interesting
feature, it is merely a novelty feature which should be taken with much significance.
Expanding the analysis to the Bioaffy 1000 CD was smooth and paves the way for further
expanding to other CDs as well.

While reaching the goal that was set in the beginning of the project, there is still much
room for improvement. The edge detection used to find bubbles is not reliable enough
to be commercialised and it is uncertain if it could be improved to meet the company’s
standard in that regard. Combining the existing analysis with some type of machine
learning is of interest and may be the next step in the development of the application.

All things considered, the project displayed various technical challenges from finding
the optimal experimental setup to fine tuning parameters in a function to increase per-
formance. The final analysis algorithm utilised various image processing techniques to
ultimately provide a result that was satisfactory to the company. While the use of image
analysis already is well established, this thesis showed that it is a reliable solution to the
challenges Gyros face as well.
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A Softwares and versions used

Table 9: Softwares

Software Version

Python 3.7
Pycharm 2019.3.2
Visual Studio 2019 16.4.6
pylon Viewer 6.1.5.7395

Table 10: Python packages

Software Version

imutils 0.5.3
matplotlib 3.1.2
numpy 1.18.1
opencv-python 4.2.0.32
pandas 1.0.3
random2 1.0.1
seaborn 0.10.1
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B Complementary images

B.1 The Bioaffy CD

In figures 50 and 51 actual images of a Bioaffy 200 CD is depicted. In figure 52 an
image detailing the Bioaffy 1000 CD can be seen.

Figure 50: An image of a whole Bioaffy 200 CD.
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Figure 51: An image of some segments in a Bioaffy 200 CD.
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Figure 52: An image of some segments in a Bioaffy 1000 CD.

B.2 Estimation of air

Further results of how the estimation of air performed. In figure 53, a small amount of
air is present and in 54 a rather large amount of air is present.
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Figure 53: 8 images analysed with a small amount of air present. White pixels in the
binary images represent the air detected.

Figure 54: 8 images analysed with a large amount of air present. White pixels in the
binary images represent the air detected.
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