
Uppsala University

Independent Project in Electrical Engineering

Navigation robot

Authors:
Artur Absalyamov

Jimmy Gladh

Supervisor:
Ping Wu

Subject Reviewer:
Mats Ekberg

Examiner:
Mikael Bergkvist

August 7, 2020

ELEKTRO-E 20008

Abstract

Journeying into the information era the need for new technologies used for
sending vast amounts of data efficiently has risen, as has the possibilities and need
for different types of AI-controlled robots. In this project a RC-car was modified
and equipped with a Raspberry PI and laser radar to let it automatically navigate
around a room using UWB transmitters and receivers. A framework for robotic
applications called ROS, Robot Operating System, was used with a large number
of open source packages to fill different functions. Custom scripts was created to
tie everything together, allowing all different components in the system to work in
unison.

Populärvetenskaplig sammanfattning

S̊a kallad Ultra-wideband-teknologi, UWB, är en typ av radiosändningar som kommit att
användas mer och mer dem senaste åren. Behovet av fler sätt att skicka information p̊a
har vuxit med v̊ar färd in i interneteran. Det är där UWB kommer in, det är nämligen
möjligt för en dator att skicka stora mängder information med teknologin jämfört med
traditionell radioteknik.

Som namnet antyder bygger det hela p̊a att man använder ett mycket vidare spann av
frekvenser för att skicka signalen. En radiokanal, säg Rix FM, skickar sina sändningar
p̊a en specifik frekvens, med en felmarginal p̊a säg en tiondels Hertz när du justerar din
radioapparat. UWB använder frekvenser över ett spann p̊a 500 MHz. För att inte störa
ut befintlig radiotrafik använder man en mycket svagare signal. En radiomast har en
räckvidd p̊a n̊agon mil beroende p̊a terrängen och din UWB sändare kanske p̊a sin höjd
kan sända ut information p̊alitligt i ditt hus och inte längre, det vill säga ungefär 10
meter.

I det här projektet har denna teknologi används för att bestämma positionen för en
radiostyrd bil. Fem UWB-moduler har använts för ändamålet, fyra som master i hörnen
p̊a ett rum och en p̊a bilen. Teknologin är perfekt för den här typen av applikationer d̊a
den är snabbare än vanliga radiosignaler. Positionen p̊a ett objekt i rörelse kan bestämmas
blixtsnabbt med centimeterprecision.

För att nu styra bilen behövs mer än master och mottagare, i projektet använder vi
en Raspberry PI, en liten dator, för att köra alla program som behövs. Datorn körs
med operativsystemet Ubiquity, vilket är designat som ett lättviktssystem för robotap-
plikationer, specifikt för ROS, Robot Operating System. Detta är ett ramverk som gör
kommunikation mellan olika delar i ett system lättare. Säg att vi vill styra en robotarm
till ett objekt. D̊a behöver vi säg tre sensorer, tv̊a som känner av var armens servomo-
torer befinner sig och en som ser hur l̊angt borta objektet är. Alla dessa sensorer måste
kommunicera med en dator som i sin tur skickar signaler till motorerna beroende p̊a vad
sensorerna rapporterar. Det är kommunikationen mellan alla dessa delar som ROS gör
enklare genom att standardisera dess struktur. Vi kan ha tre olika utvecklare som skriver
program till var del av robotarmen i var sitt programmeringsspr̊ak och det ska inte spela
n̊agon roll, för kommunikationen är standardiserad till en form.

ROS är ett open source-projekt med massvis med olika typer av paket man fritt kan ladda
ner ifr̊an sidor som githhub. N̊agra s̊adana paket har används i v̊art projekt. Vi använder
till exempel en lidar för att detektera hinder runtomkring bilen. Till denna lidar följer det
med mjukvara anpassat för ROS som vi fritt kan modifiera och använda. Informationen
kan vi sedan använda i andra paket för att l̊ata v̊ar bil navigera runt hinder kring sin
rutt.

För att ge bilen instruktioner programmerades en webserver med grafisk representation
av bilen och masternas positioner. Man kunde i en webbrowser klicka p̊a ett rutnät för
att ge bilen en destination, och man kunde med en panel ge bilen direkta instruktioner
för att köra den helt manuellt.

Contents

1 Introduction 1
1.1 Background and goals . 1
1.2 Method . 1

2 Theory 2
2.1 Sensor measurements . 2

2.1.1 Inertial Measurement Unit . 2
2.1.2 Distance measurement . 2
2.1.3 Position . 2

2.2 RC car motor control . 2
2.3 PID regulator . 3
2.4 UWB - Ultra-wideband . 3
2.5 Extended Kalman Filters . 4
2.6 Path-planning and obstacle avoidance . 5

2.6.1 A* algorithm based path planner 5
2.6.2 Dijkstra’s algorithm based planner 5

2.7 A positioning system . 6
2.8 Signal processing . 7

2.8.1 Frequency elimination . 7
2.8.2 Noise elimination . 7

3 Implementation 8
3.1 ROS . 8

3.1.1 User communication with ROS 8
3.2 Hardware . 9

3.2.1 The RC-car . 9
3.2.2 Computers and inter-connectivity 10
3.2.3 Adafruit 9DOF IMU . 11
3.2.4 MDEK1001 Development kit . 11
3.2.5 Slamtech RPLIDAR 360◦ Laser Range Finder 12
3.2.6 The whole systems hardware . 13

3.3 The whole system represented with flowcharts 14
3.4 Web-server . 15

3.4.1 React . 15
3.5 Software . 15

3.5.1 Frame handling . 15
3.5.2 Open source ROS packages utilized 16
3.5.3 Custom ROS package . 16
3.5.4 Navigation stack . 18
3.5.5 Velocity commands interpretation 18
3.5.6 ROS-tools for data collection . 19

4 Results 21
4.1 Server with React and Worldview . 21
4.2 The car in motion . 21
4.3 Performance of the IMU unit and Adafruit package 22
4.4 Acceleration integration . 23

4.5 Performance of the complementary filter package 24
4.6 Performance of the UWB modules and robot localization package 25
4.7 Perforamnce of the PID package . 27
4.8 Performance of the rplidar package . 27
4.9 Performance of the navigation stack packages 27

5 Discussion 28
5.1 Limitations of required knowledge . 28
5.2 ROS . 28
5.3 Some comments on Node.js and the server 28
5.4 Acceleration drift . 29
5.5 IMU . 29
5.6 UWB modules and EKF . 29
5.7 The navigation stack . 30
5.8 Miscellaneous . 30

5.8.1 Under voltage problem . 30
5.8.2 Stuttering GPIO PWM output 30
5.8.3 The movable base . 31
5.8.4 Pro tip . 31
5.8.5 Rviz . 31

6 Conclusions 31

7 References 32

A Topics and Messages they contain

B Graph of ROS nodes and topics

C ROS parameters handled for every package used

Nomenclature

A∗ A-star

API Application Programming Interface

BEC Battery Eliminator Circuit

EKF Extended Kalman Filter

ESC Electronic Speed Control

GPIO general-purpose-input-output

GPS Global Positioning System

I2C Inter-Integrated-Circuit

IMU Inertial Measurement unit

Lidar Laser range finder

MEMS Microelectromechanical systems

PID Proportional-integral-derivative

PWM Pulse Width Modulation

RC Radio Controlled

ROS Robotic Operating System

SSH Secure Shell

UWB Ultra-wideband

1 Introduction

1.1 Background and goals

The purpose of this project was to create a system for controlling a RC-car using UWB
modules, creating a GPS-like system of communication. It was a continuation of a project
that ended before completion. [1] The overall goals were to:

• Create a Ultra Width Band Controlled RC-car capable of navigating to a given
position.

• Implement an Extended Kalman Filter for position estimation and prediction.

• Creating a system for controlling the car with manual inputs.

• Implement a system to make the robot aware of obstacles with distance detection
using a lidar.

• Use a local web server to graphically present data on the fly.

1.2 Method

The project was to be completed using a framework for robotics called ROS, Robot
Operating System, which offers a widely used system capable of handling different pro-
gramming languages, and offering many open source packages. Hence the project was
focused around implementation and deployment of open source software and not devel-
opment.

The system consisted of Decawave receivers and transmitters, a web server, a Raspberry
PI and a Reely RC-car. The Raspberry PI ran the operating system Ubiquity, a light
weight system based on Linux, designed for ROS. Sensors used was a IMU chip from
Adafruit and a lidar system from Slamtech. The web server was created with Java script
Node, with the packages React and Worldview.

In short, the IMU chip made it possible to calculate and track the pose of the car,
inclination and position. It fused the data from an accelerometer, a gyroscope and a
magnetometer that senses applied force, inclination and the direction of earths magnetic
field respectively. The lidar is a 360◦ laser radar that can detect and calculate the distance
to obstacles.

All these parts were tied together by ROS, using custom made scripts and drivers supplied
for the sensors by its respective manufacturer. It made it possible to manually move the
car with direct user input, track its position with the UWB network, and create scripts
that let the car maneuver on its own.

1

2 Theory

2.1 Sensor measurements

For a robot to be able to act in the world with desired precision and outcome, some
sensory inputs are required.

2.1.1 Inertial Measurement Unit

An IMU is an electronic device built to measure the data necessary to calculate a heading.
It contains a gyro, an accelerometer and a magnetometer. The output from these readings
is acceleration, angular velocity and compass readings. With this information, a computer
or IC can be used to fuse all readings into a heading. [2]

2.1.2 Distance measurement

From a robotic perspective distance measurement can be accomplished directly with two
methods; ultrasonic distance measurement and laser distance measurement. To get the
distance to objects around a robot, a radar or a lidar may be used, where the radar utilises
the ultrasonic distance measurement and the lidar the laser distance measurement. Both
types usually tracks the angle to the detected objects. Distance can also be measured
indirectly, with the most prominent method being calculation of distance using position
tracking and known obstacle positions.

Ultrasonic distance measurement works by the usage of sound waves with typical fre-
quencies of 40kHz. By transmitting sound waves out from a transducer and receiving
the bounced back wave with a receiver, the distance to an object can be calculated by
the flight time of the sound wave.

Laser distance measurement works by the usage of directed light. In essence it works
by the same principles as ultrasonic measurements, but generally demands more of the
equipment used due to the nature of light.

2.1.3 Position

A prominent position tracking method is triangulation, and it can be achieved by mea-
suring the time of flight of signals. As the name implies at least three static measuring
points are needed to pinpoint the position of the tracked object. There are many ways
to do this, but using electromagnetic signals gives the most robust measuring option.
An object position may also be calculated from velocity and known original position.
Considering real world application this method is likely to contain errors, but it can be
fused with triangulation measurements with different types of state filters, one prominent
being the Kalman filter.

2.2 RC car motor control

A RC car may contain several types of motors, a servo motor and a DC motor are the two
most prominent components. A servo motor can be described as a mechanical pointer,
where the motor can rotate 180°. The position is determined by a 50Hz PWM signals
bandwidth, seen in figure 1.

2

Figure 1: The position of a servo motor based on PWM signal bandwidth.

A DC motor on the other hand should be controlled by a motor driver feeding the motor
a PWM power signal. This ensures direct control of the torque by a variable duty cycle.
One controller to be noted is the ESC controller. This controller takes the same signal
input as the servo motor, and if available on the model, allows a motor to run in reverse.
If reversing is allowed, the throttle follows the same principle shown in figure 1, no throttle
at 1.5ms bandwidth, full throttle in reverse at 1ms bandwidth and full throttle forward
at 2ms bandwidth. If reversing is not available the throttle increases with the bandwidth
from 1ms to 2ms. The ESC type controller is used in RC cars to ensure simplicity.
[3]

2.3 PID regulator

In control and system theory the PID regulator is a feedback regulator that adjusts the
error signal to a system, as seen in figure 2.

Figure 2: PID regulated system flowchart.

The PID regulator acts on the error signal, producing three parts of the input signal u(t)
to the system. The proportional part, where the error signal is multiplied by a constant
KP . The integral part, where the error signal is integrated and then multiplied by a
constant KI . The derivative part, where the error signal is derived and then multiplied
by a constant KD. Which can be expressed with the following equation;

u(t) = Kpe(t) +KI

∫ t

0

e(t)dt+KD
d

dt
e(t) (1)

2.4 UWB - Ultra-wideband

Ultra-wideband is a radio technology that uses a larger than normal portion of the spec-
trum, allowing quicker communication at a much lower energy. This keeps it from inter-
fering with other narrow band communication, which communicate by varying the power
level or/and frequency of the signal. UWB communicates instead by sending pulses at
set intervals. The technology allows for a very precise time of flight measurement, which
can be used to triangulate the position of a object at very high speeds.

3

Figure 3: Triangulation of the black objects position with three anchors.

These pulses are easy to encode with information. The amplitude, polarity and phase
can all be modulated for this purpose. With a known initial signal strength the time of
flight can be determined by detecting the strength at the receiver.

To keep the signals from interfering with other radio signals, the signal strength is limited
to −41.3 dBm/MHz at 3.1 GHz to 10.6 GHz by the FCC in USA, with similar regulations
existing around the world. An UWB-signals bandwidth is defined as having a fractional
bandwidth larger than 20% or sending information on a spread of over 500 MHz. [4]

2.5 Extended Kalman Filters

A Kalman Filter is a filter that converts state space data to, in the case of this project, a
position. The input are acceleration, magnetic field strength and gyroscope data, and its
associated measurement covariance, which is fused into an estimated pose. It can update
estimations continuously as new data are received.

An ordinary Kalman Filter are used for linear systems, while an Extended Kalman Filter
are used for nonlinear systems continually approximating the system as linear.

A state space system in this case is defined as,

xk+1 = f(xk) + wk (2)

yk = h(xk) + vk (3)

where f and h are non linear equations that are approximated as linear around the
present state of the system. w and v are static and measurement noise.

A car moving in 2 dimensions can be modelled as,

xk+1 = xk + ẋk∆t+
1

2
ẍ∆t2 (4)

yk+1 = yk + ẏk∆t+
1

2
ÿ∆t2 (5)

θk+1 = θk + θ̇k∆t (6)

4

ẋk+1 = ẋk + ẍ∆t (7)

ẏk+1 = ẏk + ÿ∆t (8)

where x and y depicts the car position and θ its steering angle, at time indexes k. The
complete state space system in matrix form becomes,

xk+1

yk+1

θk+1

ẋk+1

ẏk+1

 =

1 0 0 ∆t 0
0 1 0 0 ∆t
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

xk
yk
θk
ẋk
ẏk

 +

1
2
∆t2 0 0
0 1

2
∆t2 0

0 0 ∆t
∆t 0 0
0 ∆t 0

ẍkÿk
θ̇k

 (9)

xkyk
θk

 =

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0

xk
yk
θk
ẋk
ẏk

 (10)

2.6 Path-planning and obstacle avoidance

For a robot to effectively navigate to a desired position a path planning algorithm should
be used, preferably one that also allows the robot to avoid collisions on the way. Two
different path planning algorithms are to be noted; Dijkstra’s and A*.

A* and Dijkstra’s algorithms use a graph network to compute the path to a desired
destination. [5] A suitable graph network forming a map can be seen in figure 4, with
nodes denoted N and edges containing a weight value denoted w. The graph network is
a grid based map. Path finding algorithms are based on weight values between nodes.
In a map style graph the weight values may represent distance or a stress factor for how
suitable the path between two nodes is.

2.6.1 A* algorithm based path planner

The A* algorithm is path finding algorithm. The path is computed based on the actual
distance to the goal and edge weights in a graph network. The algorithm computes the
shortest path node to node, using the sum of edge weights and the remaining actual
distance to the goal, meaning the produced path will be the most direct path, but not
necessarily the shortest.

2.6.2 Dijkstra’s algorithm based planner

Dijkstra’s algorithm is based on finding the shortest path. The algorithm works by iter-
ating over a graph network and saving paths summing the edge weights to a destination,
similarly to the A* algorithm. However, the Dijkstra’s algorithm computes all the possi-
ble paths to the goal without using the actual distance to the goal. The paths are saved
in a priority queue, where the path with the lowest sum of the edge weights to the goal
will be the output of the algorithm, and optimally will be the shortest path [5].

5

Figure 4: Representation of a graph network for a robotic application.

The A* and Dijkstra’s algorithms can plan a path around known obstacles, but a robot
will still have to efficiently navigate around unknown obstacles. That can be achieved by
continuously updating a graph map with obstacle data and computing new paths, thus
creating simple obstacle avoidance.

2.7 A positioning system

UWB-signals are very good for precise measurements of a signals time of flight. Consid-
ering a movable tag and four static anchors, which send pulses between each other, a high
precision position of the tag can be triangulated by the time of flight of the signals.

Figure 5: A diagram over the communication associated with determining the position.

6

2.8 Signal processing

2.8.1 Frequency elimination

To utilize sensors efficiently the signals received need to, at times, be filtered and pro-
cessed. There are two digital filters that can be used to improve any signal: the low-pass
filter and the high-pass filter. The low-pass filter filters out frequencies above a certain
cut-off frequency and the high-pass filter filters out frequencies below a certain cut-off
frequency. The filters are used to remove unwanted frequencies appearing in the sensor
signal stream.

2.8.2 Noise elimination

A signal can also accumulate noise throughout the signal stream. In that case other filters
need to be considered. The Wiener filters are to be noted. Theses filters are optimal in a
mean-square error sense. [6] The filter produces an estimation of a signal based on a cost
or error function which minimizes the mean square difference between the signal and the
desired output. This filter is suitable for white noise sequence cancellation.

7

3 Implementation

3.1 ROS

ROS is an open source system built to run on Linux based systems. ROS is a meta-
operating system meaning that it utilizes software in packages to function [7]. The main
reason ROS was used is because of its run-time communication system, where the commu-
nication contained within messages can be efficiently and simply passed between different
processing nodes, see Fig 6. The processes running on ROS are contained in nodes, and
information passed between the nodes is contained in ROS custom message formats. The
messages contain standard programming data types formatted to represent relevant in-
formation. The nodes act as publishers, publishing messages, or subscribers, subscribing
to messages, or acting as both at the same time. The ROS Master is a main process of
the framework that tracks the publishers and subscribers enabling individual nodes to
locate one another.

Figure 6: A diagram over the ROS communication.

A ROS framework contains two more used features running alongside the Master, a
parameter server and a service server. The parameter server keeps track and allows
dynamic updating of parameters specified in code lines. The service server allows nodes
to communicate with services, a ROS custom request and deliver system, containing the
same information as a standard message.

ROS works through a folder workspace where the software is contained in packages, which
can contain any number of nodes working in parallel. Main ROS workspace works in the
same fashion. Upon installation a workspace is used to run core ROS packages on the
computer.

3.1.1 User communication with ROS

After initializing the desired ROS nodes there are several ways for a user to interact with
running nodes. As ROS is built to run on a Linux based system, the user communica-
tion happens through the terminal, where terminal commands can be issued to directly
interact with the nodes, as the software allows it. Some useful terminal command-line
tools are:

• rosnode
Used for information collection about running nodes.

8

• rostopic
Used for information collection about running nodes, while also enabling the user
to publish and subscribe to topics through the terminal.

• rosparam
Used for getting and setting parameters when nodes are running.

3.2 Hardware

3.2.1 The RC-car

The RC-car provided for the project is a Reely Cyclone RC car with the decorative top
and receiver removed, which can be seen in figure 7. The car was used as a movable
base.

Figure 7: A picture of the RC car provided.

The car uses Ackermann steering to maneuver, where the inner wheel has a higher turning
angle than the outer wheel as the wheels travels different distances while taking a turn
[8]. The car is built with four wheel differential drive. The car contained two motors: A
servo for the steering and a DC motor for the throttle, and also one ESC controller. The
ESC controller contained a BEC regulator outputting 6V and 2A to the steering servo.
The controller allowed the DC motor to drive in reverse whilst allowing the input of same
signal type, servo control signals, to both the motors. The controller was configurable
by junction connections, the reverse mode could be turned on and off, the battery type
could be set to Lipo or NiMH. The controller self calibrated when first turned on, setting
the input signal att the time to be the neutral value [9]. The car contained a 7.4V li-ion
battery which delivered power to the motors.

It was found out that the 7.4V li-ion battery was faulty and did not work. Another
battery was used instead, a 11.1V Lipo battery.

9

Since the steering was handled by servo motor the steering angle as an input could be
described by the following equation;

φ = arctan
l

r
(11)

Where the turning angle is denoted φ, turning radius r and length of the car by l.

3.2.2 Computers and inter-connectivity

ROS required a Linux based computer to be able to fit on a mobile base. A lightweight
option for this was a Raspberry PI. The Raspberry PI was powerful enough to run ROS
and contained a 40 pin GPIO header, making external connections possible without the
use of an external controller. A Raspberry PI 3 B+ was used for the project, see figure 8.
It had a light weight operating system installed on it called Ubiquity Robotics [10], which
is built on Ubuntu, a Linux distribution, specifically for usage with ROS. The Raspberry
PI was used to run most of the software in the project through ROS Kinetic Kame, which
is a distribution of ROS designed for Ubuntu 16.04.

Figure 8: A picture of the Raspberry PI 3 B+.

The Raspberry PI was used through a terminal on a laptop connected through a SSH
connection. The laptop was used to prepare ROS packages and collect data. The laptop
had Ubuntu operating system which was running ROS Melodic Morenia, a ROS distri-
bution for Ubuntu 18.04. During installation of diverse non ROS related packages the
Raspberry PI was connected and used as a standalone computer with a computer screen
connected. The Raspberry PI was powered by two 5V , 1A out batteries.

Connection through SSH was made possible by a router running a local network, where
the Raspberry PI was connected to the local network with WIFI, ensuring a movable
base. The laptop could be connected to the local network either with a cable or through
WIFI.

10

3.2.3 Adafruit 9DOF IMU

An Adafruit 9-DOF IMU Breakout - L3GD20H + LSM303 sensor board was used to
measure angular velocity, magnetic field strength and acceleration data and was connected
directly to the Raspberry PI through a I2C connection. The sensor board is a combination
of two breakout boards provided by Adafruit, the board contains two sensors L3GD20H
and LSM303, the board can be seen in figure 9. The L3GD20H is a 3-axis gyroscope
sensor, and the LSM303 is a 3-axis accelerometer and a 3-axis magnetometer sensor.

Figure 9: The Adafruit 9DOF IMU. Source: www.adafruit.com

3.2.4 MDEK1001 Development kit

In the project a Decawave kit for UWB-applications was used. The kit consisted of 12
DWM1001 development boards. The modules were capable of transmitting and receiving
signals, each board contained a microprocessor and a 3-axis motion detector, thus allowing
position calculation to done on the board extracted through either a USB connection or
a serial connection. The position was calculated with a 10cm standard deviation. Five
modules were used to create a fully functioning system, one module was situated on the
car, four were placed at a height in the corners of a room. This kit was used to track the
position of the car. In figure 10 this can be seen in action through Devawaves android
application, which was used to configure the tag and anchors. The module on the car
communicated with the Raspberry PI through an USB-cable.

11

Figure 10: The interface of the Android app.

Figure 11: An UWB-module.

3.2.5 Slamtech RPLIDAR 360◦ Laser Range Finder

To make the car aware of its surroundings a Slamtech RPLidar A1 was used. It was
mounted on the front of the car and connected to the Raspberry PI with an USB-cable.
It detected obstacles around the car with a range of 12 meters and published the angle
and distance in respect to the detector.

12

3.2.6 The whole systems hardware

The entire layout of the hardware, a plastic tray with the components haphazardly placed
in or taped to it. A custom made cardboard mount was created for the lidar. A proper
mounting made in Solidworks was designed but was not 3d-printed in time. It had four
slots for batteries and a Decawave 1001 unit, screw holes for the IMU and Raspberry PI
and a mounting for the lidar.

Figure 12: The picture shows the hardware layout on the car.

13

3.3 The whole system represented with flowcharts

In figure 13 through figure 15 data flows concerning different paths of the whole system
are depicted.

Figure 13: Data flow concerning the Kalman filter

Figure 14: Data flow associated with path planning. The teleop block handles manual
commands

Figure 15: Data stream for velocity control

Figure 16: Steering data flow

14

3.4 Web-server

A web-server was created to graphically present all the positions of the car and anchors.
A simple interface was also made to let the user send commands to the car. The server
was coded with Node.js, React and an open source package called Worldview. It has a
wide variety of functions allowing web developers to create interfaces and graphics for
their web pages.

Figure 17: A mysterious cube, rendered with Worldview for unknown reasons. Bound
by six sides, what evil does it contain? What madness would be release upon the world
if ever breached? All hail the cube.

One server was already created at the start of the project. Parts of this program was
used to create the server later used and was programmed in java script and HTML. It
could present the position of the anchors and the tag, and had a interface for allowing
direct control of the car. It also had a grid that the user could interact with to give the
car instructions on where to drive. It used a Node.js ROS-package, ROSbridge, to handle
this communication. The server was able to send messages back to the Raspberry PI
running ROS and was abandoned for ROS based tools.

3.4.1 React

React is a widely use Java script node package designed to create apps and web pages.
It was used to create the interface for the web-server. A package based on React called
Worldview was used to graphically present tag and anchor positions.

3.5 Software

3.5.1 Frame handling

Frames in ROS are defined by the right hand rule, positive x-direction is forward, positive
y-direction is left and positive z-direction is up. To handle transformations a ROS core
tool called tf was used in the custom package nodes. The tf tool keeps track of frames,
which for this project are only two. One frame for the world, denoted ”world”, and one
frame for the movable base, denoted ”tag frame ekf”. One frame for the tag position and
heading was used as a placeholder, denoted ”tag frame” The movable base frame is also
contained in odometry messages, see appendix A for message definition.

15

3.5.2 Open source ROS packages utilized

The laptop used one package, the teleop twist keyboard package [11]. This package pub-
lished velocity commands based on keyboard input on the ”/cmd vel” topic, this corre-
sponds to ”Teleop” block in figure 14.

Names and descriptions of the open source ROS packages used on the Raspberry PI, see
appendix A for topic message information. See appendix B for a graph over node to topic
communication. See appendix C for a graph over parameter settings.

• adafruit imu
This package provided ROS drivers for the Adafruit 9-DOF IMU Breakout - L3GD20H
+ LSM303 sensor board [12], allowing data reading from the board. This package
published on the ”/imu/data raw” and ”/imu/mag” topics. This corresponds to
”IMU” block in figure 13.

• imu complementary filter
This package provided orientation by fusing the accelerometer, magnetometer and
gyroscope data obtained from the IMU [13]. This package subscribed to the ”/imu/-
data raw” and published the compiled IMU data and orientation on the ”/imu/-
data” topic. This corresponds to ”Heading Calculator” block in figure 13.

• localizer dwm1001
This package provided position of the tag and the four latest anchors, obtained
from serial communication with a DWM1001 development board [14]. This package
published tag location on the ”/dwm1001/tag” topic and four anchor locations on
four ”/dwm1001/anchor” topics. This corresponds to the ”UWB” block in figure
13.

• pid
This package provided a PID regulator [15] and error calculation. The package
subscribed to ”/setpoint” and ”/state” topics and published on the ”/control effort”
topic. This corresponds to the summation point and ”PID” block in figure 15.

• robot localization
This package provided a ready to implement EKF, the package is able to fuse an
arbitrary number of sensor messages to provide a state estimation [16]. This package
subscribes to ”/imu/data ekf”, ”/odom” and ”/cmd vel” topics. Fusing the postion,
acceleration and velocity commands, and published on ”/odometry filtered” topic.
This corresponds to ”EKF” block in figure 13. This package could output velocity
of the frame, obtained from position data difference and acceleration, the velocity
did not however match an acceptable level of accuracy.

• rplidar
This package provided rplidar device drivers and laser scan transformations [17].
This package published on the ”/scan” topic. This corresponds to ”Laser Scanner”
block in figure 14.

3.5.3 Custom ROS package

One package was created to control and compensate the open source packages. Containing
several nodes written in Python, with names and descriptions below.

16

• turn angle and speed
This node subscribed to ”/odometry filtered” and ”/cmd vel” topics and published
the robots desired speed on ”/setpoint” topic. The velocity of the robot on ”/state”
topic and the the desired turn angle on ”/turn angle” topic. This node corresponds
to the ”Setpoint converter” block in figure 14. The setpoint of the speed was given
in the velocity commands linear x value, the turning angle setpoint was given by
the velocity commands angular. As the velocity command is sent relative to the
movable base frame, the summation point is in figure 16 is automatically built in
the transformation. The ”abs” function outputted the absolute value of the velocity
command, corresponding to the speed.

• Imu to ekf
This node subscribed to the ”/imu/data” and ”/cmd vel” topics and published
IMU data based on the state of the robot to the ”/imu/data ekf” topic. When no
velocity command is sent this node sets the acceleration to 0.

• tag odom broadcast
This node subscribes to ”dwm1001/tag” and ”/imu/data” topics and publishes on
the ”/odom” topic. This node is meant to provide access to the heading calculated
by the complementary filter package, where it can be transformed by an offset set
as a parameter.

• car controller
This node was responsible for controlling two GPIO pins on the Raspberry PI and
send PWM signals to the steering servo and ESC controller. The node subscribes
to ”/control effort” and ”/turn angle” topics. The node utilized the pigpio python
library for controlling GPIO pins on the Raspberry PI [18]. The pigpio library
utilises a daemon server running on the Raspberry PI, through code commands
GPIO channels could be controlled. Hardware PWM was used to send PWM signals
to the motors, with the ”set servo pulsewidth” function, the function had an input
of pulse width in µs. The PWM signal used followed the servo motor control logic
where the input was (1000, 2000).

Two different libraries were tested previously to the pigpio library, RPI.GPIO and
GPIO Zero. They but did not meet the requirements to control the motors.

The classes ”Servo” and ”AngularServo” in the GPIO Zero library were tested. The
”Servo” class allowed a PWM servo control specific signal to be outputted through
a GPIO pin. This class used input values of (−1, 1) to control the bandwidth of
the PWM signal, from 1ms to 2ms. This was used to create a PWM to the ESC
controller. The ”AngularServo” class works the same way ”Servo” class does, but
takes input as an angle of (−90, 90). The GPIO Zero library also used the pigpio
daemon server to control the GPIO channels [19].

The RPI.GPIO provided simple PWM output instance for the GPIO pins, ”GPIO.PWM”.
Which took a duty cycle of (0, 100) as the input [20].

• acc integration
This node was responsible for integrating acceleration data to produce a velocity
reading. The node subscribed to ”/imu/data raw” topic and published to ”/cur-
rent twist” topic. The node utilized the python signal processing library SciPy.

17

From the library two classes were used,”signal.butter” and ”signal.weiner”. The
”signal.butter” was used to create a high pass filter to filter out stationary offset in
the acceleration signal. The ”signal.weiner” was used to create a weiner filter and
eliminate present noise, which was assumed to be white noise in the acceleration
signal. Due to not acceptable velocity output this node was abandoned.

3.5.4 Navigation stack

The navigation stack is a compilation of different packages allowing for, path planning,
localization and velocity command output [21]. The navigation stack allows a map to
be used with the navigation, it was not used in this project. Several packages from the
navigation stack were used, with names and descriptions below.

• move base
This package handled the velocity command generetaion and published these on
”/cmd vel” topic. This package computed velocity commands based on inputs
of two different paths, one global path and one local path. This package is also
responisble for launching other packages.

• costmap 2d
This package created an occupancy grid map, assigning cost values to two different
maps. One map being a global map which could be loaded from a map file and a
local map. This package subscribes to the ”/scan” topic.

• base local planner
This package produced a local path for the robot to follow using the local costmap.
The package creates a kinematic trajectory by utilising the Trajectory Rollout and
Window Approach algorithms.

• global planner
This package produced a global path for the robot to follow using the global
costmap. This package utilized different path planning algorithms, including the
A* and Dijkstra’s algorithms.

Mer kommer senare.

3.5.5 Velocity commands interpretation

The velocity commands sent by the ”teleop twist keyboard” and navigation stack pack-
ages were set to be specified for a holonomic movable base, as Ackermann steering movable
base was not supported by default.

The navigation stack packages updates velocity commands based on the heading of the
”tag frame ekf” frame, thus a steering response is created as seen in figure 18 after the
velocity command in interpreted by the ”turn angle and speed” node.

The ”teleop twist keyboard” package did not update velocity commands based on heading
of the movable base frame. Thus a steering response mimicking an RC car control is
created as seen in figure 19.

18

Figure 18: Diagram of the steering systems response to velocity vector from the navi-
gation stack. The coordinate system depicted is the cars system.

Figure 19: Diagram of the steering systems response to velocity vectors from the
”teleop twist keyboard” package.

3.5.6 ROS-tools for data collection

To compensate the web-server ROS basic data collection and visualization tools were
used, these are packages which can be utilized to view ongoing processes and record
them.

• Rviz
Rviz is a 3D visualisation tool suitable for visualizing scan results, observing frame
transformations and publishing simple geometry messages, it was used to publish
a goal position on ”/movebase base simple/goal”.

• rqt graph
This tool visualizes the message stream on ROS, node to node or node to topic
information.

• rqt plot
This tool offers continuous plotting of published topics.

19

• rqt bag
This tool used in combination with the rosbag command line tool allows visualiza-
tion of recorded data with rosbag.

20

4 Results

4.1 Server with React and Worldview

The server was finished with some functionality. It had an interface that would have
let the user give commands to the car, including panel with direct steering dials, and
interactivity with the x-y-plane. Using Worldview, a React package for Node.js, all this
information was presented graphically in the browser connected to the car. However,
the server was not fully completed; only one way communication was possible where the
server received subscribed topics but could not publish them. Due to time constraints
data collection and visualisation was moved to ROS based tools.

4.2 The car in motion

Testing the node running the library GPIO Zero with the classes ”Servo” and ”Angu-
larServo” showed that the motors could be controlled. The input limits were noted to
be (−72°, 15°) for the ”AngularServo” class with an offset of −28.5°. The input limits
for when the DC motor started moving the car were noted to be (−0.25, 0.15) for the
”Servo” class. It was observed that the car could reach high speeds, which were assumed
unsafe for indoor environment.

When the node running the GPIO Zero library was used with the rest of the system it
produced irregular motor performance when the input was zero. The DC motor did not
work properly. Observing the PWM signals on an oscilloscope showed that the signal
was stuttering, changing the duty cycle momentarily.

Testing the RPI.GPIO library instance, with the node running with the rest of the system,
produced a PWM output following the same results as described above for the GPIO Zero
library.

Testing the pigpio library with hardware PWM produced a PWM signal which did not
stutter was observed with an oscilloscope, the motors did not have irregular performance.
The pulse width limits for the steering motor were noted to be (1085, 1660) in µs, the
steering angle was noted to be zero at 1400µs long pulse width. The limits for when the
DC motor started moving the car were noted to be (1375, 1585) in µs.

The DC motor at times stopped working in reverse, it was discovered that the ESC
controller required a signal change twice when changing directions to go backwards. A
solution to this was implemented in the code lines, by changing the PWM output twice
during a 30ms window. The hardware PWM did not shutdown at node shutdown, due
to time constraints a solution was not discovered.

The ”teleop twist keyboard” set velocities as outputs using a speed component and an
angular rotation component around the z-axis. The package was tested without the aid
of speed regulation, instead the pulse width at which the DC motor started moving the
car was used. When the car was in motion the steering response did follow the path
seen in figure 19. No significant delay could be observed between the keyboard presses
and the cars response. Manual control of the car was noted to be difficult due to high
speed.

The lowest speeds forward and backwards were calculated by allowing the car to drive 3
meters, were the first meter counted for its acceleration, the time to drive the remaining

21

mean
Forward (s) 2.64 1.51 1.44 1.58 1.51 1,96 2.11 2.17 2.04 1.98 1.80

Backward (s) 2.89 2.42 3.08 2.75 2.83 2,83 2.70 2.63 2.69 2.76 2.75

Table 1: Time measurements of the RC car speeds

two meters was noted, with mean value calculated, seen in the table 1. The lowest speed
going forward was 1.11m/s and backward 0.73m/s. The turning radius was noted to be
0.9m.

4.3 Performance of the IMU unit and Adafruit package

The IMU unit and ”adafruit imu” package were tested by observing how acceleration
and angular velocity changed during 60 seconds in stationary position with with normal
orientation, it was working if the values did not diverge much from zero. To test the
units acceleration during motion, the unit was rotated so each axis pointed towards the
Earth and if the value of the acceleration was around 9.8m/s the unit was assumed to
be working. The data was collected with rqt plot.

Figure 20: Stationary acceleration reading on x and y axis during 60 seconds

Figure 21: Stationary angular velocity reading on x, y and z axis during 60 seconds

The x-axis on the unit turned towards the earth showed a value around 9.8m/s, the
y-axis turned towards the earth showed a value around 9.8m/s and the z-axis showed a

22

value of −9.8m/s during the stationary test. As the values seen in figures 20 and 21 do
not diverge much from zero it was decided that the IMU unit and package were working
properly.

The magnetometer was assumed to be working normally. Calibration equipment for
magnetometer devices was not available. It was assumed, since the accelerometer was
working the magnetometer was working as well, since both are contained within one chip,
LSM303.

4.4 Acceleration integration

Recorded stationary acceleration data, as seen in figure 20, was analyzed with an FFT.
A notable 0Hz spike was visible and decaying frequency components as the frequency
increased. It was assumed that 0Hz spike represented an offset present and the rest of
the frequency components were assumed to be white noise.

The acceleration could not be integrated to produce acceptable velocity values during
stationary position, as seen in figures 22 to 24 where the velocity on both the x and y axis
are diverging from zero. Different cut off frequencies on the high pass were tested, none
produced acceptable velocity. The integration error was not reduced during movement
and integration of acceleration to produce velocity was abandoned.

Figure 22: Stationary acceleration integration during 60 seconds using a high pass filter
with a cutoff frequency off 1Hz.

23

Figure 23: Stationary acceleration integration during 60 seconds using a wiener filter

Figure 24: Stationary acceleration integration during 60 seconds using a high pass filter
with a cutoff frequency off 1Hz and a wiener filter.

To aid the integration switching the power supplied to the Raspberry PI was tried, it was
assumed it could aid the sensor measurements since the Rapsberry PI detected under
voltage. The power supply was changed from one 5V , 1A out battery to three. Using
three batteries showed that one battery turned off, two batteries could be used at the
same time. This approach did not produce any difference for the integration.

One attempt to aid the integration was to analyze how the software in the package
”adafruit imu” outputted the acceleration data and rewrite parts of the code. It was
discovered that the acceleration data was outputted by cumulative mean calculation. It
was attempted to change the sample size, this did not produce any difference for the
integration.

To compensate for the unsuccessful integration of the accelerometer data the possibility
of using velocity calculation in the ”robot localization” package was investigated.

4.5 Performance of the complementary filter package

The package was tested in Rviz by visually observing two events and tuning the param-
eters of the package until acceptable results were observed. The heading when the filter

24

started and the heading when the IMU unit was rotated 90° to the left four times, and
repeated with different speeds.

Setting the IMU unit facing negative y-axis showed that the heading was not aligned with
the axis, at startup of the package the heading offset was changing. To compensate for this
a heading offset parameter was implemented in the ”/tag odom broadcast” node.

Results of the rotation of the IMU can be seen in figure 25. The filter is assumed to be
working for reasonable rotations, where the IMU board does not flicker around.

Figure 25: The heading changed by rotating the IMU unit left 90°, visualized in Rviz.

4.6 Performance of the UWB modules and robot localization
package

The UWB modules were observed to function properly through the Decawave android
application.

The ”robot localization” package was tested in rqt plot by observing when the was turn-
ing in a circle and when the car was driving parallel the x- or y-axis. The parameters
for the package were tuned until acceptable results were observed. Seen in figures 26 to
28.

25

Figure 26: The car moving in a circle.

Figure 27: The car moving along the y-axis.

Figure 28: The car moving along the x-axis.

The velocity outputted by the ”robot localization” package was not produced with any
accuracy, spiking at either direction and not locking at a steady level.

26

4.7 Perforamnce of the PID package

This package could not be utilised since a stable velocity reading was not produced. The
speed of the car was still set by the ”/control effort” topic, but the ”/state” topic was
set to zero. The PWM pulse width sent to the ESC controller were set to the limits were
the car would drive, wither forward, backward or stand still.-

4.8 Performance of the rplidar package

The packages performance can be seen in figure 29. The package was visually tested in
Rviz by moving a panel around the scanning radius, it was observed that the position of
the panel was correct.

Figure 29: Lidar output visualized in Rviz.

At the end of the project it was noted that the laser scan data was not transformed
correctly, as it was transformed relative the tag all of the points were offset by the
distance between the tag and the lidar.

4.9 Performance of the navigation stack packages

The navigation stack packages were able to initialize. Two costmaps were created, local
and global, the local costmap can be seen in figure 30.

The velocity signals produced by the ”move base” package showed that the velocity
commands required the robot to spin in place, making goal navigation setpoint impossible
behind the robot with the used velocity interpretation.

An attempt to navigate the car showed that the local path, the local costmap and the
velocity commands were not updated fast enough, as observed through Rviz. The low
update rate led the robot to lock the velocity command and continue driving in the
direction until hitting a bump or being stopped by the next velocity commands update.
Further investigations was not done due to time constraints.

27

Figure 30: The local costmap visualized in Rviz.

5 Discussion

5.1 Limitations of required knowledge

None of the group participants had any knowledge using programming languages utilized
in this project, Python, Javascript and HTML. They were learned during the projects
duration. In combination with the Linux environment and ROS implementation this
created a steep learning curve, where no significant progress could be made at the start
of the project. Progress came in small steps at a slow pace.

5.2 ROS

Using ROS has its advantages and disadvantages. Mainly ROS should not be used to rely
on different programming languages, there are two prominent languages used, python and
C++. That is reflected in the API of the ROS tools and open source packages, which are
focused on C++ implementation and, being user friendly, offer some Python classes. The
biggest advantage of ROS seen after the project were its available tools and open source
software, which simplified many operations, like transformations. During this project
however a lot of weight was put on programming in Python and Javascript. It was found
in later stages of the project that a much simpler approach to using ROS is to use its
tools and open source software, rather than relying on Python libraries.

5.3 Some comments on Node.js and the server

Java script node is a combination of java script and HTML. As it turns out, it is extremely
hard to jump into a project programming a server without any prior knowledge of either
of those programming languages.

The problem with the server only being able to communicate one way was not solved. It
was not possible to send instructions through ROSbridge from the server to the Raspberry
PI. However the communication the other way worked seamlessly. Publishing messages
from the server, even code copied from tutorials, did not work. These topics were defined

28

and initialized in the same function as the listeners, but for some reason they where
skipped.

It is recommended that ROS-packages are used to do this kind of work in future iterations
of this project. Like rplidar and rviz.

5.4 Acceleration drift

As it turns out calibrating and handling noise while working with accelerometers for
integration into a velocity is quite challenging. In spite of using several methods of
calibration and filtering, a very heavy drift gave unreasonable velocity calculations. The
high pass filter was not able to deliver a stationary velocity value of zero, meaning that
there were more then stationary offset in the signal. It seems most likely that the sensor
is subject to output random fluctuations in the signal, the fluctuations were not reflected
in the opposing direction and the integral error diverged from zero. The wiener filter
performance could also not be properly observed following the stationary error.

A preferable approach is to measure the speed of the car by other means, with encoders
or speed rotary sensors. Considering the movable base only uses one input to control the
speed, velocity vectors are not of interest, as seen in figure 15.

5.5 IMU

Considering the integration of acceleration data did not prove successful, the only reason
the IMU is relevant to the project is the heading calculation. With the movable base
containing one DC motor and one steering servo the heading calculation may prove
to be difficult without an IMU. Integrating an IMU does require some effort. It was
discovered that utilising ROS and communicating with an IMU directly is not an all
around approach, since drivers to read data from IMU’s are not in high demand on
ROS. Instead a separate micro controller should have been used for IMU communication,
allowing easier possibility of hardware change.

An approach to calculate a heading without an IMU is to use the steering angle input
sent to the steering servo, this approach may be subjected to growing errors when the
movable frame does not follow the signals directive, and requires a heading a known start
heading. Another apporach may be to utilize two DWM1001 tags, where one is placed
in the front of the movable base and one in the back. This approach would produce
a correct heading assuming the positions of the tags could be read, the heading would
however be defined by the tags position uncertainty. The two approaches discussed may
also be combined, where, considering a simple calculation, the two inputs could be added
at different gains to produce a stable heading.

5.6 UWB modules and EKF

As seen in figures 26 to 28 the UWB modules perform position calculation with high
precision. The only thing indicating something unusual is the visible difference between
the spikes seen on the plots following the x- and y-positions. This can be caused by the
anchors being on a slightly wrong position, which can explain the repeating distortion of
the sinus form seen in figure 26.

29

The kalman filter did work. The filtered position followed closely the tags position and
the spikes seen on every plot are evened out. Observing figure 27 it can be noted that the
filter determines a spike in position when the car stopped, it is most likely an error caused
by the ”/cmd vel” topic that the ”robot localization” package subscribes to. When the
velocity signal is set to a value the filter follows it and when the signal is set to zero
the filter stops following it and a small window is created, where the filter needs to
update

5.7 The navigation stack

As the navigation stack is built to work on holonomic and differential drive robots a
different approach to velocity interpretation should have been taken. The packages con-
tained within the navigation stack could also be used singularly, only the costmap could
have been created and worked on.

The low update rate may have been caused by hardware limitations on the Raspberry PI
model 3B+. A sensible approach is to measure the hardware usage of the Raspberry PI
and act accordingly, upgrading or limiting usage.

5.8 Miscellaneous

5.8.1 Under voltage problem

The batteries supplied were not capable of supplying the needed current for the Raspberry
PI, causing the operating system to output an under voltage warning. This was astutely
solved by connecting three USB-cables to each other as seen in figure 31, making it
possible to use three batteries to power the computer. This may have solved many
problems that could have arisen with sensors running on a low voltage.

Figure 31: With a can do spirit, three cables were jury rigged together to solve the
problem.

5.8.2 Stuttering GPIO PWM output

The output of the PWM signals suffered violent stuttering making control of the car
impossible. On an analog oscilloscope reading it manifested as the duty cycles high

30

phase varying in length, flickering widely. To debug this a wait function was added in
the PWM-code to ascertain if the problem had to do with the frequency of the callback
overwhelming the GPIO. The problem was solved by changing the class used for this
control.

5.8.3 The movable base

The goal of the project was to control an RC car, allowing it to navigate. However the
used model proved to be unsuited for indoor use, the speed of the car was too high and
the turning radius too large. The speed of the car maybe readjusted by using a smaller
size battery or limiting the current to the motor. The turning radius makes the control
of the car complicated indoor, as the only solution is to reverse to adjust the possible
turning angle. Using a smaller RC car as a base is a possible solution, or changing the
base to something more suited for indoor navigation.

5.8.4 Pro tip

Always ensure your Lidar is directed the correct way.

5.8.5 Rviz

As the server was not completed other ROS tools were used, it was observed that Rviz
is a tool capable of graphically presenting data, similarly to worldview. The project goal
could have been overhauled to present data in Rviz instead of a local web server, however
due to time constraints it was not possible.

6 Conclusions

The goal of controlling the robot with manual input was achieved. A Kalman filter
was implemented and used, the package that was used to create the filter showed good
results. Manual path following was not implemented due to time constraints. An RPLidar
was used to detect obstacles and the navigation stack was not able to navigate around
obstacles.

To be able to control the speed at reasonable levels for indoor navigation, a movable base
allowing slower speeds should be used. The speed measuring should not be done by the
integration of acceleration data, as it’s clearly subject to errors.

Working on both a server and ROS in parallel turned out to work poorly with only two
persons working on the project. There are very good ROS tools to create interfaces and
present data graphically. Keep the project focused around ROS to make it easier.

The navigation stack is a powerful ROS package collection, but can be broken down into
singular packages for customizable use. The Raspberry PI model 3 B+ hardware appeared
to be to weak to handle the navigation. The hardware usage should be monitored to
ensure hardware limitations are not exceeded, or at some point are exceeded then a
hardware update is in order.

31

7 References

[1] Elvis Rodas.
Automatic control for indoor navigating an autonomous RC car.
Uppsala Universitet, Uppsala, 2020

[2] Starlino.
A Guide To using IMU (Accelerometer and Gyroscope Devices) in Embedded Appli-
cations.
http://www.starlino.com/imu guide.html/

(visited on 2020-08-01)

[3] https://www.elprocus.com/electronic-speed-control-esc-working-applications/

(visited on 2020-08-01)

[4] Mohammadreza Yavari, Bradford G. Nickerson.
Ultra Wideband Wireless Positioning Systems
University of New Brunswick, Fredericton, 2014.

[5] Thomas H. Cormen, Charles E.Leiserson, and Ronald L. Rivest.
Intro to Algorithms.
Cambridge, Massachusetts, 1990

[6] P.M. Grant, C.F.N. Cowan. B.Mulgrew, J.H. Dripps.
Analogue and Digital Signal Processing and Coding.
Chartwell-Bratt, 1989

[7] ROS wiki http://wiki.ros.org/
(visited on 2020-08-06)

[8] Robert Eisle.
https://www.xarg.org/book/kinematics/ackerman-steering/

(visited on 2020-05-26)

[9] https://www.hobbex.se/internt/artiklar

/782509/789365 BSD fartreglage borstad 1-10 WP.pdf

(visited on 2020-08-01)

[10] Ubiquity robotics
https://www.ubiquityrobotics.coma/

(visisted on 2020-07-29)

[11] http://wiki.ros.org/teleop twist keyboard

(visited on 2020-07-08)

[12] Peter Mukhachev.
https://github.com/rolling-robot/adafruit imu

(visisted on 2020-04-27)

[13] Roberto G. Valenti.
http://wiki.ros.org/imu complementary filter

(visited on 2020-05-26)

[14] http://wiki.ros.org/localizer dwm1001

(visited on 2020-04-27)

32

[15] http://wiki.ros.org/pid

(visited on 2020-04-27)

[16] Tom Moore
http://wiki.ros.org/robot localization

(visited on 2020-05-29)

[17] http://wiki.ros.org/rplidar

(visited on 2020-07-08)

[18] http://abyz.me.uk/rpi/pigpio/index.html

(visited on 2020-08-04)

[19] https://gpiozero.readthedocs.io/en/stable/

(visited on 2020-07-29)

[20] https://sourceforge.net/p/raspberry-gpio-python/wiki/Home/

(visited on 2020-07-29)

[21] http://wiki.ros.org/navigation

(visited on 2020-07-15)

33

A Topics and Messages they contain

• /control effort
Control effort instructions from the PID (std msgs Float64)

• /state
State value to the PID-regulator (std msgs Float64)

• /setpoint
Speed set point to PID (std msgs Float64)

• /turn angle
Control message for steering angle duty cycle (std msgs Float64)

• /odom
Heading and position (nav msgs/Odometry)

• /odometry/filtered
velocity, heading and position (nav msgs/Odometry)

• /cmd vel
Velocity data (geometry msgs/Twist)

• /imu/mag
Magnetic field (sensor msgs/MagneticField)

• /imu/data raw
Acceleration, magnetic field and angular velocity (sensor msgs/Imu)

• /imu/data efk
Acceleration, magnetic field and angular velocity (sensor msgs/Imu)

• /dwm1001/tag
DWM1001 tag position data (geometry msgs/Pose)

• /movebase base simple/goal Goal point with orientation (geometry msgs/PoseStamped)

B Graph of ROS nodes and topics

C ROS parameters handled for every package used

• adafruit imu

No parameters handled.

• imu complementary filter

do bias estimation: false
do adaptive gain: false
use mag: false
bias alpha: 0.01
gain acc: 0.1
gain mag: 0.01

• localizer dwm1001

serial port name: /dev/ttyACM0
serial baud rate: 115200

• PID
Kp: 1.0

• robot localization
frequency: 10
sensor timeout: 0.5
two d mode: true
transform time offset: 10.0
transform timeout: 0.0
odom frame: world
base link frame: tag frame ekf
publish tf: true
odom0: /odom
odom0 config: [true, true, false, true, true, true, false, false, false, false, false, false,
false, false, false]
odom0 queue size: 2
odom0 nodelay: false
odom0 differential: false
odom0 relative: false
imu0: /imu/data ekf
imu0 config: [false, false, false, false, false, false, false, false, false, false, false, false,
true, true, false]
imu0 nodelay: false
imu0 differential: false
imu0 relative: true
imu0 queue size: 50
imu0 pose rejection threshold: 0.8
imu0 twist rejection threshold: 0.8
imu0 linear acceleration rejection threshold: 2

imu0 remove gravitational acceleration: true
use control: true
control timeout: 0.2
control config: [true, true, false, false, false, true]
process noise covariance: [0.005, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.005, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.03, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0.06, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0.025, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.04, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0.02, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0.01, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.015]
dynamic process noise covariance: true
initial estimate covariance: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 1e-9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 1e-12, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1e-9]
disabled at startup: false

• rplidar
serial port: /dev/ttyUSB0
serial baudrat: 115200
serial baudrate: 256000
frame id: tag frame ekf
inverted: true
angle compensate: true

• navigation stack

– base local planner parameter file
TrajectoryPlannerROS:

max vel x: 2
min vel x: 1
max vel theta: 1.0
min in place vel theta: 0
acc lim theta: 3.2
acc lim x: 2.5
acc lim y: 2.5
holonomic robot: true

– costmap common parameter file
obstacle range: 12
raytrace range: 3.0

robot radius: 0.25

observation sources: laser scan sensor

laser scan sensor: sensor frame: tag frame ekf, data type: LaserScan, topic:
scan, marking: true, clearing: true

– global costmap paramter file
global costmap:

global frame: world
robot base frame: tag frame ekf
update frequency: 5.0
static map: false
rolling window: true
width: 20.0
height: 20.0
resolution: 0.05

– local costmap paramter file
local costmap: global frame: world

robot base frame: tag frame ekf
update frequency: 5.0
publish frequency: 2.0
static map: false
rolling window: true
width: 20.0
height: 20.0
resolution: 0.05

	Introduction
	Background and goals
	Method

	Theory
	Sensor measurements
	Inertial Measurement Unit
	Distance measurement
	Position

	RC car motor control
	PID regulator
	UWB - Ultra-wideband
	Extended Kalman Filters
	Path-planning and obstacle avoidance
	A* algorithm based path planner
	Dijkstra's algorithm based planner

	A positioning system
	Signal processing
	Frequency elimination
	Noise elimination

	Implementation
	ROS
	User communication with ROS

	Hardware
	The RC-car
	Computers and inter-connectivity
	Adafruit 9DOF IMU
	MDEK1001 Development kit
	Slamtech RPLIDAR Laser Range Finder
	The whole systems hardware

	The whole system represented with flowcharts
	Web-server
	React

	Software
	Frame handling
	Open source ROS packages utilized
	Custom ROS package
	Navigation stack
	Velocity commands interpretation
	ROS-tools for data collection

	Results
	Server with React and Worldview
	The car in motion
	Performance of the IMU unit and Adafruit package
	Acceleration integration
	Performance of the complementary filter package
	Performance of the UWB modules and robot localization package
	Perforamnce of the PID package
	Performance of the rplidar package
	Performance of the navigation stack packages

	Discussion
	Limitations of required knowledge
	ROS
	Some comments on Node.js and the server
	Acceleration drift
	IMU
	UWB modules and EKF
	The navigation stack
	Miscellaneous
	Under voltage problem
	Stuttering GPIO PWM output
	The movable base
	Pro tip
	Rviz

	Conclusions
	References
	Topics and Messages they contain
	Graph of ROS nodes and topics
	ROS parameters handled for every package used

